

Computing the Center of Uncertain Points on Cactus Graphs

Ran Hu¹, Divy H. Kanani², and Jingru Zhang²

¹ Rensselaer Polytechnic Institute, Troy, NY 12180, USA

hur6@rpi.edu

² Cleveland State University, Cleveland, OH 44115, USA

d.kanani@vikes.csuohio.edu, j.zhang40@csuohio.edu

Abstract. In this paper, we consider the (weighted) one-center problem of uncertain points on a cactus graph. Given are a cactus graph G and a set of n uncertain points. Each uncertain point has m possible locations on G with probabilities and a non-negative weight. The (weighted) one-center problem aims to compute a point (the center) x^* on G to minimize the maximum (weighted) expected distance from x^* to all uncertain points. No previous algorithm is known for this problem. In this paper, we propose an $O(|G| + mn \log mn)$ -time algorithm for solving it. Since the input is $O(|G| + mn)$, our algorithm is almost optimal.

Keywords: Algorithms · One-Center · Cactus Graph · Uncertain Points

1 Introduction

Problems on uncertain data have attracted an increasing amount of attention due to the observation that many real-world measurements are inherently accompanied with uncertainty. For example, the k -center model has been considered a lot on uncertain demands in facility locations [1, 3, 4, 13, 14, 16, 19, 22]. Due to the prevalence of tree-like graphs [5, 6, 8, 10, 11, 24] in facility locations, in this paper, we study the (weighted) one-center problem of uncertain points on a cactus-graph network.

Let $G = (V, E)$ be a cactus graph where any two cycles do not share edges. Every edge e on G has a positive length. A point $x = (u, v, t)$ on G is characterized by being located at a distance of t on edge (u, v) from vertex u . Given any two points p and q on G , the distance $d(p, q)$ between p and q is defined as the length of their shortest path on G .

Let \mathcal{P} be a set of n uncertain points P_1, P_2, \dots, P_n on G . Each $P_i \in \mathcal{P}$ has m possible locations (points) $p_{i1}, p_{i2}, \dots, p_{im}$ on G . Each location p_{ij} is associated with a probability $f_{ij} \geq 0$ for P_i appearing at p_{ij} . Additionally, each $P_i \in \mathcal{P}$ has a weight $w_i \geq 0$.

Assume that all given points (locations) on any edge $e \in G$ are given sorted so that when we visit e , all points on e can be traversed in order.

Consider any point x on G . For any $P_i \in \mathcal{P}$, the (weighted) expected distance $\text{Ed}(P_i, x)$ from P_i to x is defined as $w_i \cdot \sum_{j=1}^m f_{ij} d(p_{ij}, x)$. The center of G with respect to \mathcal{P} is defined to be a point x^* on G that minimizes the maximum expected distance $\max_{1 \leq i \leq n} \text{Ed}(P_i, x)$. The goal is to compute center x^* on G .

If G is a tree network, then center x^* can be computed in $O(mn)$ time by [21]. To the best of our knowledge, however, no previous work exists for this problem on cacti. In this paper, we propose an $O(|G| + mn \log mn)$ -time algorithm for solving the problem where $|G|$ is the size of G . Note that our result matches the $O(|G| + n \log n)$ result [6] for the weighted *deterministic* case where each uncertain point has exactly one location.

1.1 Related Work

The deterministic one-center problem on graphs have been studied a lot. On a tree, the (weighted) one-center problem has been solved in linear time by Megiddo [18]. On a cactus, an $O(|G| + n \log n)$ algorithm was given by Ben-Moshe [6]. Note that the unweighted cactus version can be solved in linear time [17]. When G

is a general graph, the center can be found in $O(|E| \cdot |V| \log |V|)$ time [15], provided that the distance-matrix of G is given. See [5, 23, 24] for variations of the general k -center problem.

When it comes to uncertain points, a few of results for the one-center problem are available. When G is a path network, the center of \mathcal{P} can be found in $O(mn)$ time [20]. On tree graphs, the problem can be addressed in linear time [22] as well. See [13, 16, 22] for the general k -center problem on uncertain points.

1.2 Our Approach

Lemma 5 shows that the general one-center problem can be reduced in linear time to a *vertex-constrained* instance where all locations of \mathcal{P} are at vertices of G and every vertex of G holds at least one location of \mathcal{P} . Our algorithm focuses on solving the vertex-constrained version.

As shown in [10], a cactus graph is indeed a block graph and its skeleton is a tree where each node uniquely represents a cycle block, a graft block (i.e., a maximum connected tree subgraph), or a hinge (a vertex on a cycle of degree at least 3) on G . Since center x^* lies on an edge of a circle or a graft block on G , we seek for that block containing x^* by performing a binary search on its tree representation T . Our $O(mn \log mn)$ algorithm requires to address the following problems.

We first solve the one-center problem of uncertain points on a cycle. Since each $\text{Ed}(P_i, x)$ is piece-wise linear but non-convex as x moves along the cycle, our strategy is computing the local center of \mathcal{P} on every edge. Based on our useful observations, we can resolve this problem in $O(mn \log mn)$ time with the help of the dynamic convex-hull data structure [2, 9].

Two more problems are needed to be addressed during the search for the node containing x^* . First, given any hinge node h on T , the problem requires to determine if center x^* is on h , i.e., at hinge G_h h represents, and otherwise, which split subtree of h on T contains x^* , that is, which hanging subgraph of G_h on G contains x^* . In addition, a more general problem is the *center-detecting* problem: Given any block node u on T , the goal is to determine whether x^* is on u (i.e., on block G_u on G), and otherwise, which split tree of the H -subtree of u on T contains x^* , that is, which hanging subgraph of G_u contains x^* .

These two problems are more general problems on cacti than the tree version [21] since each $\text{Ed}(P_i, x)$ is no longer a convex function in x on any path of G . We however observe that the median of any $P_i \in \mathcal{P}$ always fall in the hanging subgraph of a block whose probability sum of P_i is at least 0.5. Based on this, with the assistance of other useful observations and lemmas, we can efficiently solve each above problem in $O(mn)$ time.

Outline. In Section 2, we introduce some notations and observations. In Section 3, we present our algorithm for the one-center problem on a cycle. In Section 4, we discuss our algorithm for the problem on a cactus. In Section 5, we show how to linearly reduce any general case into a vertex-constrained case.

2 Preliminary

In the following, unless otherwise stated, we assume that our problem is the vertex-constrained case where every location of \mathcal{P} is at a vertex on G and every vertex holds at least one location of \mathcal{P} . Note that Lemma 5 shows that any general case can be reduced in linear time into a vertex-constrained case.

Some terminologies are borrowed from the literature [10]. A G -vertex is a vertex on G not included in any cycle, and a hinge is one on a cycle of degree greater than 2. A graft is a maximum (connected) tree subgraph on G where every leaf is either a hinge or a G -vertex, all hinges are at leaves, and no two hinges belong to the same cycle. A cactus graph is indeed a block graph consisting of graft blocks and cycle blocks so that the skeleton of G is a tree T where for each block on G , a node is joined by an edge to its hinges. See Fig. 1 for an example.

In fact, T represents a decomposition of G so that we can traverse nodes on T in a specific order to traverse G blocks by blocks in the according order. Our algorithm thus works on T to compute center x^* . Tree T can be computed by a depth-first-search on G [6, 10] so that each node on T is attached with a block or a hinge of G . We say that a node u on T is a block (resp., hinge) node if it represents a block (resp., hinge)

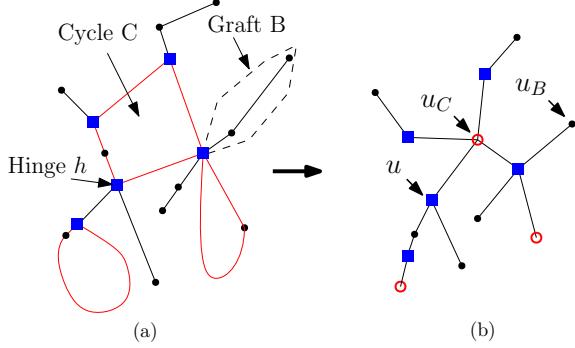


Fig. 1. (a) Illustrating a cactus G that consists of 3 cycles, 5 hinges (squares) and 6 G-vertices (disks); (b) Illustrating G 's skeleton T where circular and disk nodes represent cycles and grafts of G (e.g., nodes u , u_C and u_B respectively representing hinge h , cycle C and graft B on G).

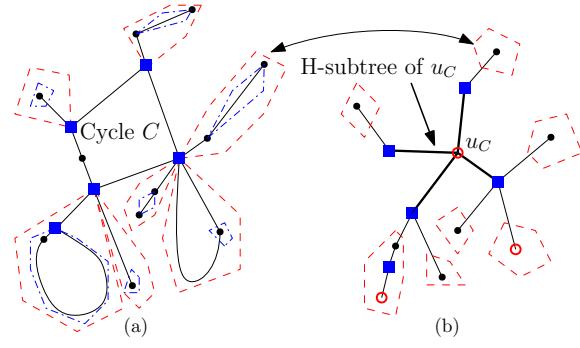


Fig. 2. (a) Cycle C on G has 7 split subgraphs (blue dash dotted lines) and accordingly 7 hanging subgraphs (red dashed lines); (b) on T , the H-subtree of node u_C representing cycle C has 7 split subtrees each of which represents a distinct hanging subgraph of C on G .

on G . In our preprocessing work, we construct the skeleton T with additional information maintained for nodes of T to fasten the computation.

Denote by G_u the block (resp., hinge) on G of any block (resp., hinge) node u on T . More specifically, we calculate and maintain the cycle circumstance for every cycle node on T . For any hinge node h on T , h is attached with hinge G_h on G (i.e., h represents G_h). For each adjacent node u of h , vertex G_h also exists on block G_u but with only adjacent vertices of G_u (that is, there is a copy of G_h on G_u but with adjacent vertices only on G_u). We associate each adjacent node u in the adjacent list of h with vertex G_h (the copy of G_h) on G_u , and also maintain the link from vertex G_h on G_u to node h .

Clearly, the size $|T|$ of T is $O(mn)$ due to $|G| = O(mn)$. It is not difficult to see that all preprocessing work can be done in $O(mn)$ time. As a result, the following operations can be done in constant time.

1. Given any vertex v on G , finding the node on T whose block v is on;
2. Given any hinge node h on T , finding vertex G_h on the block of every adjacent node of h on T ;
3. Given any block node u on T , for any hinge on G_u , finding the hinge node on T representing it.

Consider every hinge on the block of every block node on T as an *open* vertex that does not contain any locations of \mathcal{P} . To be convenient, for any point x on G , we say that a node u on T contains x or x is on u if x is on G_u . Note that x may be on multiple nodes if x is at a hinge on G . We say that a subtree on T contains x if x is on one of its nodes.

Let x be any point on G . Because T defines a tree topology of blocks on G so that vertices on G can be traversed in some order. We consider computing $\text{Ed}(P_i, x)$ for all $1 \leq i \leq n$ by traversing T . We have the following lemma. Note that it defines an order of traversing G , which is used in other operations of our algorithm.

Lemma 1. *Given any point x on G , $\text{Ed}(P_i, x)$ for all $1 \leq i \leq n$ can be computed in $O(mn)$ time.*

Proof. We create an array $A[1 \dots n]$ to maintain all $\text{Ed}(P_i, x)$ and initialize all as zero. Let u_x be the block node on T which contains x and set it as the root of T . Clearly, u_x as well as the corresponding point of x on block G_{u_x} can be obtained in $O(mn)$ time.

To compute $\text{Ed}(P_i, x)$ for all $1 \leq i \leq n$, it suffices to traverse G starting from x to compute the distance of every location to x . To do so, we instead traverse T in the pre-order from u_x : During the traversal, block G_{u_x} of u_x is first traversed in the pre-order from x to compute the distance of its every location to x . For every other block node u , the block is traversed in the pre-order starting from the hinge (open-vertex) whose corresponding hinge node on T is the parent of u . So is every hinge node on T .

More specifically, when we are visiting G_{u_x} , if u_x is a cycle node then we traverse G_{u_x} clockwise starting from x . During the traversal, for each vertex v , we first compute in constant time the distance $d(x, v)$; we next set $A[i] = A[i] + w_i \cdot f_{ij} \cdot d(x, v)$ for each location p_{ij} at v if v is not a hinge; otherwise, we find in $O(1)$ time the hinge node h on T representing v (i.e., u_x 's adjacent node), and set the distance v on h to x as $d(x, v)$.

In the case of G_{u_x} being a graft, we perform the pre-order traversal from x to update $A[1 \dots n]$ in the above way. Otherwise, G_{u_x} is a hinge and so $d(G_{u_x}, x) = 0$; we update $A[i]$ as the above for each location at u_x ; we then set the distance $d(G_{u_x}, x) = 0$ for G_{u_x} on the block of every adjacent node of u_x .

We continue our traversal on T to visit u_x 's successors on T in the pre-order to traverse their blocks. Suppose that we are visiting node u on T . If u is a hinge node, then its distance to x can be known in constant time since hinge G_u is an open vertex on the block of u 's parent node that has been visited. Consequently, we update $A[1 \dots n]$ as the above for every location p_{ij} at u , and set the distance $d(G_u, x) = 0$ for G_u on the block of every adjacent node of u .

Otherwise, we traverse block G_u from the hinge (open vertex) represented by u 's parent hinge node h on T , which can be found in $O(1)$ time. As the distance of G_h to x has been known, the distance from every vertex on G_u to x can be obtained in $O(1)$ time. We thus update $A[1 \dots n]$ for locations on G_u similarly.

It follows that for any given point x on G , values $\text{Ed}(P_i, x)$ of all $1 \leq i \leq n$ can be obtained in $O(mn)$ time by performing a pre-order traversal on T . \square

We say that a point x on G is an *articulation* point if x is on a graft block; removing x generates several connected disjoint subgraphs; each of them is called a *split* subgraph of x ; the subgraph induced by x and one of its split subgraphs is called a *hanging* subgraph of x .

Similarly, any connected subgraph G' of G has several split subgraphs caused by removing G' , and each split subgraph with adjacent vertex(s) on G' contributes a hanging subgraph. See Fig. 2 (a) for an example.

Consider any uncertain point $P_i \in \mathcal{P}$. There exists a point x_i^* on G so that $\text{Ed}(P_i, x)$ reaches its minimum at $x = x_i^*$; point x_i^* is called the *median* of P_i on G . For any subgraph G' on G , we refer to value $\sum_{p_{ij} \in G'} f_{ij}$ as P_i 's *probability sum* of G' ; we refer to value $w_i \cdot \sum_{p_{ij} \in G'} f_{ij} \cdot d(p_{ij}, x)$ as P_i 's (weighted) *distance sum* of G' to point x .

Notice that we say that median x_i^* of P_i (resp., center x^*) is on a hanging subgraph of a subgraph G' on G iff x_i^* (resp., x^*) is likely to be on that split subgraph of G' it contains. We have the following lemma.

Lemma 2. Consider any articulation point x on G and any uncertain point $P_i \in \mathcal{P}$.

1. If x has a split subgraph whose probability sum of P_i is greater than 0.5, then its median x_i^* is on the hanging subgraph including that split subgraph;
2. The point x is x_i^* if P_i 's probability sum of each split subgraph of x is less than 0.5;
3. The point x is x_i^* if x has a split subgraph with P_i 's probability sum equal to 0.5.

Proof. Let $G_1(x), \dots, G_s(x)$ be all split subgraphs of x on G . For claim 1, we assume that P_i 's probability sum of $G_1(x)$ is larger than 0.5. We shall show that x_i^* is not likely to be on $G_k(x)$ for any $2 \leq k \leq s$.

Consider any split subgraph $G_k(x)$ with $2 \leq k \leq s$. Let y be any point on $G_k(x)$. By the expected distance definition, we have the following.

$$\begin{aligned}
\text{Ed}(P_i, y) &= w_i \sum_{p_{ij} \notin G_k(x)} f_{ij} [d(p_{ij}, x) + d(x, y)] + w_i \sum_{p_{ij} \in G_k(x)} f_{ij} d(p_{ij}, y) \\
&= w_i \sum_{p_{ij} \notin G_k(x)} f_{ij} d(p_{ij}, x) + w_i \sum_{p_{ij} \notin G_k(x)} f_{ij} d(x, y) + w_i \sum_{p_{ij} \in G_k(x)} f_{ij} d(p_{ij}, y) \\
&> w_i \sum_{p_{ij} \notin G_k(x)} f_{ij} d(p_{ij}, x) + w_i \sum_{p_{ij} \in G_k(x)} f_{ij} [d(x, y) + d(p_{ij}, y)] \\
&> w_i \sum_{p_{ij} \notin G_k(x)} f_{ij} d(p_{ij}, x) + w_i \sum_{p_{ij} \in G_k(x)} f_{ij} d(p_{ij}, x) \\
&= \text{Ed}(P_i, x)
\end{aligned}$$

It follows that none of $G_2(x), \dots, G_s(x)$ contain x_i^* and x_i^* is thus on the hanging subgraph $G_1(x) \cup \{x\}$. Therefore, both claims 1 and 2 hold.

For claim 3, suppose that P_i 's probability sum of $G_1(x)$ is equal to 0.5. To prove claim 3, it is sufficient to prove $\text{Ed}(P_i, x) \leq \text{Ed}(P_i, y)$ for any point $y \in G_1(x)$. This can be verified similarly and we thus omit the details. \square

For any point $x \in G$, we say that P_i is a dominant uncertain point of x if $\text{Ed}(P_i, x) \geq \text{Ed}(P_j, x)$ for each $1 \leq j \leq n$. Point x may have multiple dominant uncertain points. Lemma 2 implies the following corollary.

Corollary 1. Consider any articulation point x on G .

1. If x has one dominant uncertain point whose median is at x , then center x^* is at x ;
2. If two dominant uncertain points have their medians on different hanging subgraphs of x , then x^* is at x ;
3. Otherwise, x^* is on the hanging subgraph that contains all their medians.

Let u be any block node on T ; denote by T_u^H the subtree on T induced by u and its adjacent (hinge) nodes; we refer to T_u^H as the H -subtree of u on T . Each hanging subgraph of block G_u on G is represented by a split subtree of T_u^H on T . See Fig. 2 (b) for an example. Lemma 2 also implies the following corollary.

Corollary 2. Consider any block node u on T and any uncertain point P_i of \mathcal{P} .

1. If the H -subtree T_u^H of u has a split subtree whose probability sum of P_i is greater than 0.5, then x_i^* is on the split subtree of T_u^H ;
2. If the probability sum of P_i on each of T_u^H 's split subtree is less than 0.5, then x_i^* is on u (i.e., block G_u of G);
3. If T_u^H has a split subtree whose probability sum of P_i is equal to 0.5, then x_i^* is on that hinge node of T_u^H that is adjacent to the split subtree.

Moreover, we have the following lemma.

Lemma 3. Given any articulation point x on G , we can determine in $O(mn)$ time whether x is x^* , and otherwise, which hanging subgraph of x contains x^* .

Proof. Apply Lemma 1 to compute the array $A[1 \dots n]$ with $A[i] = \text{Ed}(P_i, x)$ in $O(mn)$ time, and then find the largest value δ of A in $O(n)$ time. Create an array $F[1 \dots n]$ initialized as zero to store the probability sums of x 's dominant uncertain points on its each split subgraph, and another array $I[1 \dots n]$ initialized as -1 where $I[i]$ indicates x 's hanging subgraph containing P_i 's median x_i^* .

We proceed with determining which hanging subgraph of x contains medians of x 's dominant uncertain points by traversing T . Let u_x be the node on T containing x , which can be found in $O(mn)$ time. Notice that u_x is either a hinge node or a graft node on T . Let u_x be the root of T .

On the one hand, u_x is a graft node. Let $G_{u_x}^1, \dots, G_{u_x}^s$ be the split subgraphs of x on block G_{u_x} of u_x . Hence, x has s split subgraphs $G_1(x), \dots, G_s(x)$ on G and $G_{u_x}^k \in G_k(x)$ for each $1 \leq k \leq s$. Specifically, for each $1 \leq k \leq s$, denote by v_1^k, \dots, v_t^k all hinges on $G_{u_x}^k$; since $G_{u_x}^1, \dots, G_{u_x}^s$ are disjoint, the subgraph induced by $G_k(x)/G_{u_x}^k$ and $\{u_1^k, \dots, u_t^k\}$ is represented by the union of subtrees on T rooted at the corresponding hinge nodes u_1^k, \dots, u_t^k of v_1^k, \dots, v_t^k .

To prove the lemma, it suffices to compute the probability sum of dominant uncertain points of x on each $G_k(x)$. For each $G_k(x)$, we maintain a list L_k to store u_1^k, \dots, u_t^k , which is empty initially. We then perform a traversal on $G_k(x)$ to compute the probability sum of uncertain points as follows.

We first traverse $G_{u_x}^k$: For each non-hinge vertex v on $G_{u_x}^k$, for each location p_{ij} at v , we set $F[i] = F[i] + f_{ij}$; we then check whether $F[i] > 0.5$ and $A[i] = \delta$; if both yes, then P_i is a dominant uncertain point at x whose median is on $G_k(x) \cup \{x\}$, and thereby we set $I[i] = k$; otherwise, P_i is not a dominant uncertain point and hence we continue our traversal on $G_{u_x}^k$. When a hinge vertex v is currently encountered, we find in $O(1)$ time its corresponding hinge node on T , add it to L_k , and then continue our traversal on $G_{u_x}^k$.

Once we are done with traversing $G_{u_x}^k$, we continue to visit locations on the subgraph by $G_k(x)/G_{u_x}^k$ and $\{v_1^k, \dots, v_t^k\}$. In order to do so, we traverse the subtree of T rooted at each hinge node of L_k . The traversal is similar to that in Lemma 1 and so the details are omitted.

Notice that after the above traversal on $G_k(x)$, we perform another traversal on $G_k(x)$ as the above, whereas during the traversal we reset $F[i] = 0$ for each location p_{ij} on $G_k(x)$. Clearly, the traversal on all $G_k(x)$ can be carried out in $O(mn)$ time.

To the end, we scan $I[1 \dots n]$ to determine which case of Corollary 1 x falls into. More specifically, if there exist integers i and j with $1 \leq i \neq j \leq n$ satisfying that $I[i], I[j] > 0$ but $|I[i]| = |I[j]|$, then two dominant uncertain points of x have their medians on different hanging subgraphs of x and so center x^* must be at x ; if $I[i] = -1$ for each $1 \leq i \leq n$, x^* is at x as well; otherwise, only one hanging subgraph is found and it contains center x^* .

On the other hand, u_x is a hinge node on T . Let u_1, \dots, u_s be all adjacent (block) nodes of u_x on T . Denote by T_{u_k} the subtree rooted at u_k on T . Clearly, for each $1 \leq k \leq s$, the subgraph represented by T_{u_k} excluding vertex G_{u_x} is exactly $G_k(x)$. Since G_{u_x} is an open vertex on G_{u_k} , traversing each $G_k(x)$ amounts to traversing T_{u_k} , and we add only u_k into L_k for each $1 \leq k \leq s$. It follows that we traverse T_{u_k} to visit locations on $G_k(x)$ to compute $F[1 \dots n]$ and $I[1 \dots n]$ for each $1 \leq k \leq s$; finally, we scan $I[1 \dots n]$ to determine as the above case where center x^* locates.

Therefore, the lemma holds. \square

Consider any hinge node u on T . Lemma 3 implies the following corollary.

Corollary 3. *Given any hinge node u on T , we can determine in $O(mn)$ time whether x^* is on u (i.e., at hinge G_u on G), and otherwise, which split subtree of u contains x^* .*

3 The One-Center Problem on a Cycle

In this section, we consider the one-center problem for the case of G being a cycle. A general expected distance is considered: each $P_i \in \mathcal{P}$ is associated with a constant c_i so that the (weighted) distance of P_i to x is equal to their (weighted) expected distance plus c_i . With a little abuse of notations, we refer to it as the expected distance $Ed(P_i, x)$ from P_i to x .

Our algorithm focuses on the vertex-constrained version where every location is at a vertex on G and every vertex holds at least one location. Since G is a cycle, it is easy to see that any general instance can be reduced in linear time to a vertex-constrained instance.

Let u_1, u_2, \dots, u_M be the clockwise enumeration of all vertices on G , and $M \leq mn$. Let $l(G)$ be G 's circumference. Every u_i has a *semicircular* point $x_{i'}$ with $d(u_i, x_{i'}) = l(G)/2$ on G . Because sequence $x_1', \dots, x_{M'}$ is in the clockwise order, $x_1, \dots, x_{M'}$ can be computed in order in $O(mn)$ time by traversing G clockwise.

Join these semicircular points $x_1', \dots, x_{M'}$ to G by merging them and u_1, \dots, u_M in clockwise order; simultaneously, reindex all vertices on G clockwise. Hence, a clockwise enumeration of all vertices on G is generated in $O(mn)$ time. Clearly, the size N of G is now at most $2mn$. Given any vertex u_i on G , there exists another vertex $u_{i'}$ so that $d(u_i, u_{i'}) = l(G)/2$. Importantly, $i^c = [(i-1)^c + 1]\%N$ for $2 \leq i \leq N$ and $1^c = (N^c + 1)$.

Let x be any point on G . Consider the expected distance $y = Ed(P_i, x)$ in the x, y -coordinate system. We set u_1 at the origin and let vertices $u_1, u_2, \dots, u_N, u_{N+1}, \dots, u_{2N}$ be on x -axis in order so that $u_{N+i} = u_i$. Denote by x_i the x -coordinate of u_i on x -axis. For $1 \leq i < j \leq N$, the clockwise distance between u_i and u_j on G is exactly value $x_j - x_i$ and their counterclockwise distance is equal to $x_{i+N} - x_j$.

As shall be analyzed below, each $Ed(P_i, x)$ is linear in $x \in [x_s, x_{s+1}]$ for each $1 \leq s \leq N$ but may be neither convex nor concave for $x \in [x_1, x_{N+1}]$, which is different to the deterministic case [6]. See Fig. 3. Center x^* is determined by the lowest point of the upper envelope of all $Ed(P_i, x)$ for $x \in [x_1, x_{N+1}]$. Our strategy is computing the lowest point of the upper envelope on interval $[x_s, x_{s+1}]$, i.e., computing the local center $x_{s,s+1}^*$ of \mathcal{P} on $[x_s, x_{s+1}]$, for each $1 \leq s \leq N$. Center x^* is obviously decided by the lowest one among all of them.

For each $1 \leq s \leq N+1$, vertex u_s has a *semicircular* point x' on x -axis with $x_s - x' = l(G)/2$ and x' must be at a vertex on x -axis in that u_s on G has its semicircular point at vertex u_{s^c} . We still let u_{s^c} be u_s 's semicircular

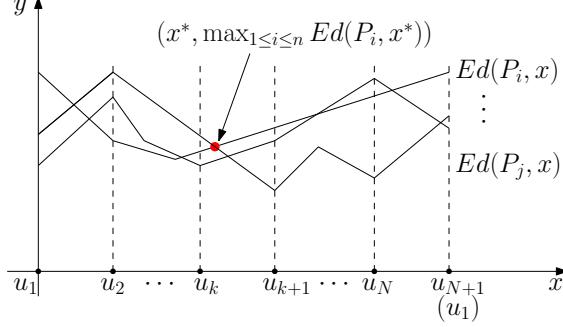


Fig. 3. Consider $y = \text{Ed}(P_i, x)$ in x, y -coordinate system by projecting cycle G onto x -axis; $\text{Ed}(P_i, x)$ of each $P_i \in \mathcal{P}$ is linear in x on any edge of G ; center x^* is decided by the projection on x -axis of the lowest point on the upper envelope of all $y = \text{Ed}(P_i, x)$'s.

point on x -axis. Clearly, for each $1 \leq s \leq N$, $(s+1)^c = s^c + 1$, and the semicircular point of any point in $[x_s, x_{s+1}]$ lies in $[x_{s^c}, x_{(s+1)^c}]$. Indices $1^c, 2^c, \dots, (N+1)^c$ can be easily determined in order in $O(mn)$ time and so we omit the details.

Consider any uncertain point P_i of \mathcal{P} . Because for any $1 \leq s \leq N$, interval $[x_{s+1}, x_{s+N}]$ contains all locations of \mathcal{P} uniquely. We denote by x_{ij} the x -coordinate of location p_{ij} in $[x_{s+1}, x_{s+N}]$; denote by $F_i(x_s, x_{s^c})$ the probability sum of P_i 's locations in $[x_s, x_{s^c}]$; let $D_i(x_{s+1}, x_{s^c})$ be value $w_i \cdot \sum_{p_{ij} \in [x_{s+1}, x_{s^c}]} f_{ij} x_{ij}$ and $D_i^c(x_{s^c+1}, x_{s+N})$ be value $w_i \cdot \sum_{p_{ij} \in [x_{s^c+1}, x_{s+N}]} f_{ij} (l(G) - x_{ij})$. Due to $F_i(x_{s+1}, x_{s^c}) + F_i(x_{s^c+1}, x_{s+N}) = 1$, we have that $\text{Ed}(P_i, x)$ for $x \in [x_s, x_{s+1}]$ can be formulated as follows.

$$\begin{aligned}
\text{Ed}(P_i, x) &= c_i + w_i \sum_{p_{ij} \in [x_{s+1}, x_{s^c}]} f_{ij} \cdot (x_{ij} - x) + w_i \sum_{p_{ij} \in [x_{s^c+1}, x_{s+N}]} f_{ij} \cdot [l(G) - (x_{ij} - x)] \\
&= c_i + w_i \left(\sum_{p_{ij} \in [x_{s^c+1}, x_{s+N}]} f_{ij} - \sum_{p_{ij} \in [x_{s+1}, x_{s^c}]} f_{ij} \right) \cdot x + w_i \sum_{p_{ij} \in [x_{s+1}, x_{s^c}]} f_{ij} x_{ij} \\
&\quad - w_i \sum_{p_{ij} \in [x_{s^c+1}, x_{s+N}]} f_{ij} (l(G) - x_{ij}) \\
&= w_i [1 - 2F_i(x_{s+1}, x_{s^c})] \cdot x + c_i + D_i(x_{s+1}, x_{s^c}) - D_i^c(x_{s^c+1}, x_{s+N})
\end{aligned}$$

It turns out that each $\text{Ed}(P_i, x)$ is linear in $x \in [x_s, x_{s+1}]$ for each $1 \leq s \leq N$, and it turns at $x = x_s$ if P_i has locations at points u_s, u_{s^c} , or u_{s+N} . Note that $\text{Ed}(P_i, x)$ may be neither convex nor concave. Hence, each $\text{Ed}(P_i, x)$ is a piece-wise linear function of complexity at most m for $x \in [x_1, x_{N+1}]$. It follows that the local center $x_{s,s+1}^*$ of \mathcal{P} on $[x_s, x_{s+1}]$ is decided by the x -coordinate of the lowest point of the upper envelope on $[x_s, x_{s+1}]$ of functions $\text{Ed}(P_i, x)$'s for all $1 \leq i \leq n$.

Consider the problem of computing the lowest points on the upper envelope of all $\text{Ed}(P_i, x)$'s on interval $[x_s, x_{s+1}]$ for all $1 \leq s \leq N$ from left to right. Let L be the set of lines by extending all line segments on $\text{Ed}(P_i, x)$ for all $1 \leq i \leq n$, and $|L| \leq mn$. Since the upper envelope of lines is geometric dual to the convex (lower) hull of points, the dynamic convex-hull maintenance data structure of Brodal and Jacob [9] can be applied to L so that with $O(|L| \log |L|)$ -time preprocessing and $O(|L|)$ -space, our problem can be solved as follows.

Suppose that we are about to process interval $[x_s, x_{s+1}]$. The dynamic convex-hull maintenance data structure Φ currently maintains the information of only n lines caused by extending the line segment of each $\text{Ed}(P_i, x)$'s on $[x_{s-1}, x_s]$. Let \mathcal{P}_s be the subset of uncertain points of \mathcal{P} whose expected distance functions turn at $x = x_s$. For each $P_i \in \mathcal{P}_s$, we delete from Φ function $\text{Ed}(P_i, x)$ for $x \in [x_{s-1}, x_s]$ and then insert the line function of $\text{Ed}(P_i, x)$ on $[x_s, x_{s+1}]$ into Φ . After these $2|\mathcal{P}_s|$ updates, we compute the local center $x_{s,s+1}^*$ of \mathcal{P} on $[x_s, x_{s+1}]$ as follows.

Perform an extreme-point query on Φ in the vertical direction to compute the lowest point of the upper envelope of the n lines. If the obtained point falls in $[x_s, x_{s+1}]$, $x_{s,s+1}^*$ is of same x -coordinate as this point and its y -coordinate is the objective value at $x_{s,s+1}^*$; otherwise, it is to left of line $x = x_s$ (resp., to right of $x = x_{s+1}$) and thereby $x_{s,s+1}^*$ is of x -coordinate equal to x_s (resp., x_{s+1}). Accordingly, we then compute the objective value at $x = x_s$ (resp., $x = x_{s+1}$) by performing another extreme-point query in direction $y = -x_s \cdot x$ (resp., $y = -x_{s+1} \cdot x$).

Note that $\mathcal{P}_1 = \mathcal{P}$ for interval $[x_1, x_2]$ and $\sum_{s=1}^N |P_s| = |L| \leq mn$. Since updates and queries each takes $O(\log |L|)$ amortized time, for each interval $[x_s, x_{s+1}]$, we spend totally $O(|\mathcal{P}_s| \cdot \log |L|)$ amortized time on computing $x_{s,s+1}^*$. It implies that the time complexity for all updates and queries on Φ is $O(mn \log mn)$ time. Therefore, the total running time of computing the local centers of \mathcal{P} on $[x_s, x_{s+1}]$ for all $1 \leq s \leq N$ is $O(mn \log mn)$ plus the time on determining functions $\text{Ed}(P_i, x)$ of each $P_i \in \mathcal{P}_s$ on $[x_s, x_{s+1}]$ for all $1 \leq s \leq N$.

We now present how to determine $\text{Ed}(P_i, x)$ of each $P_i \in \mathcal{P}_s$ in $x \in [x_s, x_{s+1}]$ for all $1 \leq s \leq N$. Recall that $\text{Ed}(P_i, x) = w_i \cdot [1 - 2F_i(x_{s+1}, x_{s^c})] \cdot x + D_i(x_{s+1}, x_{s^c}) - D_i^c(x_{s^c+1}, x_{s+N}) + c_i$ for $x \in [x_s, x_{s+1}]$. It suffices to compute the three coefficients $F_i(x_{s+1}, x_{s^c})$, $D_i(x_{s+1}, x_{s^c})$ and $D_i^c(x_{s^c+1}, x_{s+N})$ for each $1 \leq i \leq n$ and $1 \leq s \leq N$.

We create auxiliary arrays $X[1 \dots n]$, $Y[1 \dots n]$ and $Z[1 \dots n]$ to maintain the three coefficients of $\text{Ed}(P_i, x)$ for x in the current interval $[x_s, x_{s+1}]$, respectively; another array $I[1 \dots n]$ is also created so that $I[i] = 1$ indicates that $P_i \in \mathcal{P}_s$ for the current interval $[x_s, x_{s+1}]$; we associate with u_s for each $1 \leq s \leq N$ an empty list \mathcal{A}_s that will store the coefficients of $\text{Ed}(P_i, x)$ on $[x_s, x_{s+1}]$ for each $P_i \in \mathcal{P}_s$. Initially, $X[1 \dots n]$, $Y[1 \dots n]$, and $Z[1 \dots n]$ are all set as zero, and $I[1 \dots n]$ is set as one due to $\mathcal{P}_1 = \mathcal{P}$.

For interval $[x_1, x_2]$, we compute $F_i(x_2, x_{1^c})$, $D_i(x_2, x_{1^c})$ and $D_i^c(x_{1^c+1}, x_{N+1})$ for each $1 \leq i \leq n$: for every location p_{ij} in $[x_2, x_{1^c}]$, we set $X[i] = X[i] + f_{ij}$ and $Y[i] = Y[i] + w_i \cdot f_{ij} \cdot x_{ij}$; for every location p_{ij} in $[x_{1^c+1}, x_{N+1}]$, we set $Z[i] = Z[i] + w_i \cdot (l(G) - x_{ij})$. Since x_{1^c} is known in $O(1)$ time, it is easy to see that for all $P_i \in \mathcal{P}_1$, functions $\text{Ed}(P_i, x)$ for $x \in [x_1, x_2]$ can be determined in $O(mn)$ time. Next, we store in list \mathcal{A}_1 the coefficients of $\text{Ed}(P_i, x)$ of all $P_i \in \mathcal{P}_1$ on $[x_1, x_2]$: for each $I[i] = 1$, we add tuples $(i, w_i \cdot X[i], c_i + Y[i] - Z[i])$ to \mathcal{A}_1 and then set $I[i] = 0$. Clearly, list \mathcal{A}_1 for u_1 can be computed in $O(mn)$ time.

Suppose we are about to determine the line function of $\text{Ed}(P_i, x)$ on $[x_s, x_{s+1}]$, i.e., coefficients $F_i(x_{s+1}, x_{s^c})$, $D_i(x_{s+1}, x_{s^c})$ and $D_i^c(x_{s^c+1}, x_{s+N})$, for each $P_i \in \mathcal{P}_s$. Note that if P_i has no locations at u_s , u_{s^c} and u_{s+N} , then P_i is not in \mathcal{P}_s ; otherwise, $\text{Ed}(P_i, x)$ turns at $x = x_s$ and we need to determine $\text{Ed}(P_i, x)$ for $x \in [x_s, x_{s+1}]$.

Recall that for $x \in [x_{s-1}, x_s]$, $\text{Ed}(P_i, x) = c_i + w_i \cdot [1 - 2F_i(x_s, x_{(s-1)^c})] \cdot x + D_i(x_s, x_{(s-1)^c}) - D_i^c(x_{(s-1)^c+1}, x_{s-1+N})$. On account of $s^c = (s-1)^c + 1$, for $x \in [x_s, x_{s+1}]$, we have $F_i(x_{s+1}, x_{s^c}) = F_i(x_s, x_{(s-1)^c}) - F_i(x_s, x_s) + F_i(x_{s^c}, x_{s^c})$, $D_i(x_{s+1}, x_{s^c}) = D_i(x_s, x_{(s-1)^c}) - D_i(x_s, x_s) + D_i(x_{s^c}, x_{s^c})$, and $D_i^c(x_{s^c+1}, x_{s+N}) = D_i^c(x_{(s-1)^c+1}, x_{s-1+N}) - D_i^c(x_{s^c}, x_{s^c}) + D_i^c(x_{s+N}, x_{s+N})$. Additionally, for each $1 \leq i \leq n$, $\text{Ed}(P_i, x)$ on $[x_{s-1}, x_s]$ is known, and its three coefficients are respectively in entries $X[i]$, $Y[i]$ and $Z[i]$. We can determine $\text{Ed}(P_i, x)$ of each $P_i \in \mathcal{P}_s$ on $[x_s, x_{s+1}]$ as follows.

For each location p_{ij} at u_s , we set $X[i] = X[i] - f_{ij}$, $Y[i] = Y[i] - w_i f_{ij} x_{ij}$ and $I[i] = 1$; for each location p_{ij} at u_{s^c} , we set $X[i] = X[i] + f_{ij}$, $Y[i] = Y[i] + w_i f_{ij} x_{ij}$, $Z[i] = Z[i] - w_i f_{ij} (l(G) - x_{ij})$ and $I[i] = 1$; further, for each location p_{ij} at u_{s+N} , we set $Z[i] = Z[i] + w_i f_{ij} (l(G) - x_{ij})$ and $I[i] = 1$. Subsequently, we revisit locations at u_s , u_{s^c} and u_{s+N} : for each location p_{ij} , if $I[i] = 1$ then we add a tuple $(i, w_i \cdot X[i], c_i + Y[i] - Z[i])$ to \mathcal{A}_s and set $I[i] = 0$, and otherwise, we continue our visit.

For each $2 \leq s \leq N$, clearly, functions $\text{Ed}(P_i, x)$ on $[x_s, x_{s+1}]$ of all $P_i \in \mathcal{P}_s$ can be determined in the time linear to the number of locations at the three vertices u_s , u_{s^c} and u_{s+N} . It follows that the time complexity for determining $\text{Ed}(P_i, x)$ of each $P_i \in \mathcal{P}_s$ for all $1 \leq s \leq N$, i.e., computing the set L , is $O(mn)$; that is, the time complexity for determining $\text{Ed}(P_i, x)$ for each $P_i \in \mathcal{P}$ on $[x_1, x_{N+1}]$ is $O(mn)$.

Combining all above efforts, we have the following theorem.

Theorem 1. *The one-center problem of \mathcal{P} on a cycle can be solved in $O(|G| + mn \log mn)$ time.*

4 The Algorithm

In this section, we shall present our algorithm for computing the center x^* of \mathcal{P} on cactus G . We first give the lemma for solving the base case where a node of T , i.e., a block of G , is known to contain center x^* .

Lemma 4. *If a node u on T is known to contain center x^* , then x^* can be computed in $O(mn \log mn)$ time.*

Proof. If u is a hinge node, then x^* is at its corresponding hinge G_u on G , which can be obtained in $O(1)$ time, and we then return G_u immediately.

Otherwise, block G_u of node u is a graft or a cycle. Let u be the root of T ; let u_1, \dots, u_s be all child nodes of u , and each of them is a hinge node; vertices G_{u_1}, \dots, G_{u_s} are (open) vertices on G_u . Denote by $T_1(u), \dots, T_s(u)$ the split subtrees of u on T ; for each $1 \leq k \leq s$, $T_k(u)$ is rooted at u_k , and let $G_k(u)$ be the subgraph on G that $T_k(u)$ represents. Note that $T_1(u), \dots, T_s(u)$ can be known in $O(mn)$ time.

On the one hand, G_u is a graft and we then reduce our problem to an instance of the one-center problem with respect to a set \mathcal{P}' of n uncertain points on a tree G' so that center x^* can be computed in $O(mn)$ time by the algorithm [21] for tree graphs.

Initialize G' as G_u and set $\mathcal{P}' = \mathcal{P}$. To reduce our problem to a tree instance, we then do a pre-order traversal on $T_k(u)$ from u_k to traverse $G_k(u)$. More specifically, for hinge node u_k , we reassign all locations at u_k to vertex G_{u_k} on G' . For every other node u' on $T_k(u)$, as in Lemma 1, we traverse in the pre-order $G_{u'}$ from the hinge represented by its parent node: for each vertex v , we first compute distance $d(G_{u_k}, v)$ and next check if v is an open vertex. If no, we join a new vertex v' into G' , set the edge length between v' and G_{u_k} on G' as $d(G_{u_k}, v)$, and reassign all locations of v to v' ; otherwise, we continue our traversal.

Clearly, traversing all $T_k(u)$'s in the above way takes $O(mn)$ time in total. Now, we obtain a tree G' of size $O(mn)$ and a set \mathcal{P}' of n uncertain points where each $P_i \in \mathcal{P}'$ has at most m locations on G' . It is not difficult to see that the center of \mathcal{P}' on G' corresponds a point on G_u that is exactly the center of \mathcal{P} on G . Consequently, center x^* can be computed in $O(mn)$ time by the algorithm [21].

On the other hand, G_u is a cycle and we then reduce our problem into a cycle case where a set \mathcal{P}' of n uncertain points are on cycle G' . Initially, we set G' as G_u , set \mathcal{P}' as \mathcal{P} , and assign a variable $c_i = 0$ to each $P_i \in \mathcal{P}'$. Similarly, we do a pre-order traversal on each $T_k(u)$ from u_k to traverse $G_k(u)$. For u_k , we reassign G_{u_k} 's locations to the copy of G_{u_k} on G' . For every other node, we compute the distance $d(G_{u_k}, v)$ for each vertex v of the block; if v is not an open vertex, then we reassign each location p_{ij} at v to G_{u_k} on G' , and set $c_i = c_i + w_i f_{ij} \cdot d(G_{u_k}, v)$.

The above $O(mn)$ -time traversal generates a cycle G' and a set \mathcal{P}' of n uncertain points each with at most m locations on G' and a constant c_i . We can see that computing x^* of \mathcal{P} on G is equivalent to computing the center of \mathcal{P}' on G' , which can be solved in $O(mn \log mn)$ time by Theorem 1.

Hence, the lemma holds. \square

Now we are ready to present our algorithm that performs a recursive search on T to locate the node, i.e., the block on G , that contains center x^* . Once the node is found, Lemma 4 is then applied to find center x^* in $O(mn \log mn)$ time.

On the tree, a node is called a *centroid* if every split subtree of this node has no more than half nodes, and the centroid can be found in $O(|T|)$ time by a traversal on the tree [15, 18].

We first compute the centroid c of T in $O(|T|)$ time. If c is a hinge node, then we apply Corollary 3 to c , which takes $O(mn)$ time. If x^* is on c , we then immediately return its hinge G_c on G as x^* ; otherwise, we obtain a split subtree of c on T representing the hanging subgraph of hinge G_c on G that contains x^* .

On the other hand, c is a block node. We then solve the *center-detecting* problem for c that is to decide which split subtree of c 's H-subtree T_c^H on T contains x^* , that is, determine which hanging subgraph of block G_c contains x^* . As we shall present in Section 4.1, the center-detecting problem can be solved in $O(mn)$ time. It follows that x^* is either on one of T_c^H 's split subtrees or T_c^H . In the later case, since G_c is represented by T_c^H , we can apply Lemma 4 to c so that the center x^* can be obtained in $O(mn \log mn)$ time.

In general, we obtain a subtree T' that contains center x^* . The size of T' is no more than half of T . Further, we continue to perform the above procedure recursively on the obtained T' . Similarly, we compute the centroid c of T' in $O(|T'|)$ time; we then determine in $O(mn)$ time whether x^* is on node c , and otherwise, find the subtree of T' containing x^* but of size at most $|T'|/2$.

As analyzed above, each recursive step takes $O(mn)$ time. After $O(\log mn)$ recursive steps, we obtain one node on T that is known to contain center x^* . At this moment, we apply Lemma 4 to this node to compute x^* in $O(mn \log mn)$ time. Therefore, the vertex-constrained one-center problem can be solved in $O(mn \log mn)$ time.

Recall that in the general case, locations of \mathcal{P} could be anywhere on the given cactus graph rather than only at vertices. To solve the general one-center problem, we first reduce the given general instance to a vertex-constrained instance by Lemma 5, and then apply our above algorithm to compute the center. The proof for Lemma 5 is presented in Section 5.

Lemma 5. *The general case of the one-center problem can be reduced to a vertex-constrained case in $O(|G| + mn)$ time.*

Theorem 2. *The one-center problem of n uncertain points on cactus graphs can be solved in $O(|G| + mn \log mn)$ time.*

4.1 The Center-Detecting Problem

Given any block node u on T , the center-detecting problem is to determine which split subtree of u 's H-subtree T_u^H on T contains x^* , i.e., which hanging subgraph of block G_u contains x^* . If G is a tree, this problem can be solved in $O(mn)$ time [21]. Our problem is on cacti and a new approach is proposed below.

Let $G_1(u), \dots, G_s(u)$ be all hanging subgraphs of block G_u on G . For each $G_k(u)$, let v_k be the hinge on $G_k(u)$ that connects its vertices with $G/G_k(u)$. $G_1(u), \dots, G_s(u)$ are represented by split subtrees $T_1(u), \dots, T_s(u)$ of T_u^H on T , respectively.

Let u be the root of T . For each $1 \leq k \leq s$, $T_k(u)$ is rooted at a block node u_k , and hinge v_k is an (open) vertex on block G_{u_k} . Additionally, the parent node of u_k on T is the hinge node h_k on T_u^H that represents v_k . Note that h_k might be h_t for some $1 \leq t \neq k \leq s$. For all $1 \leq k \leq s$, $T_k(u)$, h_k , and v_k on block G_{u_k} can be obtained in $O(mn)$ time via traversing subtrees rooted at h_1, \dots, h_s .

For each $1 \leq k \leq s$, there is a subset \mathcal{P}_k of uncertain points so that each $P_i \in \mathcal{P}_k$ has its probability sum of $G_k(u)/\{v_k\}$, i.e., $T_k(u)$, greater than 0.5. Clearly, $\mathcal{P}_i \cap \mathcal{P}_j = \emptyset$ holds for any $1 \leq i \neq j \leq s$.

Define $\tau(G_k(u)) = \max_{P_i \in \mathcal{P}_k} \text{Ed}(P_i, v_k)$. Let γ be the largest value of $\tau(G_k(u))$'s for all $1 \leq k \leq s$. We have the following observation.

Observation 1 *If $\tau(G_k(u)) < \gamma$, then center x^* cannot be on $G_k(u)/\{v_k\}$; if $\tau(G_r(u)) = \tau(G_t(u)) = \gamma$ for some $1 \leq r \neq t \leq s$, then center x^* is on block G_u .*

Proof. Let $G_k(u)$ be such hanging subgraph of G_u with $\tau(G_k(u)) < \gamma$. For each $1 \leq r \neq k \leq s$, by Lemma 2, every uncertain point $P_i \in \mathcal{P}_r$ has $\text{Ed}(P_i, x) \geq \text{Ed}(P_i, v_r)$ for any point $x \in G_k(u)$. Additionally, $\tau(G_k(u)) < \gamma$. Hence, the dominant uncertain point at v_k can not belong to \mathcal{P}_k . By Corollary 1, center x^* cannot be on $G_k(u)/\{v_k\}$.

Suppose there are two subgraphs $G_r(u)$ and $G_t(u)$ with $\tau(G_r(u)) = \tau(G_t(u)) = \gamma$. To prove that x^* is on G_u , it is sufficient to show that x^* is on neither $G_r(u)/v_r$ nor $G_t(u)/v_t$. There are the two cases to consider.

If $v_r \neq v_t$, every $P_i \in \mathcal{P}_r$ has $\text{Ed}(P_i, v_r) < \text{Ed}(P_i, v_t)$ in that P_i 's probability sum of $G_r(u)$ is greater than 0.5. Hence, the dominant uncertain point at v_t cannot be in \mathcal{P}_t , and likewise, the dominant uncertain point at v_r is not in \mathcal{P}_r . It implies that if $v_r \neq v_t$ then x^* is on neither $G_r(u)/v_r$ nor $G_t(u)/v_t$.

Otherwise, v_r is indeed v_t . If the dominant uncertain points of v_t are in neither \mathcal{P}_r nor \mathcal{P}_t , then x^* cannot be on $G_r(u)/\{v_r\} \cup G_t(u)/\{v_t\}$. Otherwise, the objective value at v_t is γ due to $\tau(G_r(u)) = \tau(G_t(u)) = \gamma$. Hence, there are at least two dominant uncertain points at v_t : one in \mathcal{P}_r determining $\tau(G_r(u))$ and the other in \mathcal{P}_t determining $\tau(G_t(u))$. By Corollary 1, we have that x^* is at v_t , namely, x^* is on neither $G_r(u)/v_r$ nor $G_t(u)/v_t$.

The observation thus holds. \square

Below, we first describe the approach for solving the center-detecting problem and then present how to compute values $\tau(G_k(u))$ for all $1 \leq k \leq s$.

First, we compute $\gamma = \max_{k=1}^s \tau(G_k(u))$ in $O(s)$ time. We then determine in $O(s)$ time if there exists only one subgraph $G_r(u)$ with $\tau(G_r(u)) = \gamma$. If yes, then center x^* is on either $G_r(u)$ or G_u . Their only common vertex is v_r , and v_r and its corresponding hinge h_r on T are known in $O(1)$ time. For this case, we further apply Corollary 3 to h_r on T . If x^* is at v_r , then we immediately return hinge v_r on G as the center; otherwise, we obtain the subtree on T that represents the one containing x^* among $G_r(u)$ and G_u , and return it.

On the other hand, there exist at least two subgraphs, e.g., $G_r(u)$ and $G_t(u)$, so that $\tau(G_r(u)) = \tau(G_t(u)) = \gamma$ for $1 \leq r \neq t \leq s$. By Observation 1, x^* is on G_u and thereby node u on T is returned. Due to $s \leq mn$, we can see that all the above operations can be carried out in $O(mn)$ time.

To solve the center-detecting problem, it remains to compute $\tau(G_k(u))$ for all $1 \leq k \leq s$. We first consider the problem of computing the distance $d(v_k, x)$ for any given point x and any given v_k on G . We have the following result.

Lemma 6. *With $O(mn)$ -time preprocessing work, given any hinge v_k and any point x on G , the distance $d(v_k, x)$ can be known in constant time.*

Proof. For each $G_k(u)$ with $1 \leq k \leq s$, as in Lemma 1, we do a pre-order traversal on $T_k(u)$ starting from its root u_k to calculate the distance $d(v_k, v)$ from every vertex v on $G_k(u)$ to v_k , which can be done in $O(mn)$ time. Meanwhile, we associate every vertex v on $G_k(u)/\{v_k\}$ with node u_k on T to indicate that v uniquely belongs to $G_k(u)$. All these can be done in $O(mn)$ in total.

We proceed with traversing block G_u to compute its inter-vertex distances for all vertices on G_u . If u is a graft node, we pick any vertex on G_u as its root r and then perform a pre-order traversal on G_u to compute the distance of each vertex to r . Further, we construct the lowest common ancestor data structure [7, 12] on G_u so that with $O(|G_u|)$ preprocessing time and space, the lowest common ancestor of any two vertices on G_u can be obtained in constant time.

Now, given are any two points y and z on G_u , and let v_y (resp., v_z) be the closest vertex to r that is adjacent to y (resp., z). We first determine v_y and v_z in $O(1)$ time so that distances $d(y, r)$ and $d(z, r)$ can be known in $O(1)$ time. We then compute the lowest common ancestor v' of v_y and v_z by performing a constant-time query on the data structure. Due to $d(y, z) = d(y, r) + d(z, r) - 2d(v', r)$, $d(y, z)$ can be derived in constant time.

Otherwise, u is a cycle node. In this situation, starting from any vertex r , we traverse G_u clockwise to compute the clockwise distance of every vertex to r . For any points y and z on G_u , $d(y, z)$, equal to the minimum of their clockwise and counterclockwise distances, can be obtained in $O(1)$ time.

We now consider the problem of computing $d(v_k, x)$ for any given v_k and point x on G . Let (v, v') be the edge that contains x on G . Note that edge (v, v') is either on $G_r(u)$ for some $1 \leq r \leq s$ or on G_u . So, there are only three cases to consider.

On the one hand, v and v' are associated with the same node u_r on T . Recall that hinge node h_r is adjacent to u_r and u on T . It represents hinge v_r on G_u , and v_r is an open vertex on block G_{u_r} . So, edge (v, v') is on $G_r(u)/v_r$. We first obtain hinge v_r on G by u_r in $O(1)$ time. If v_r is exactly v_k , then $d(v_k, x)$ can be obtained in $O(1)$ time since $d(v, v_k)$ and $d(v', v_k)$ have been calculated ahead. Otherwise, hinges v_r and v_k are on block G_u . Since $d(v_r, x)$ and $d(v_r, v_k)$ are obtained in $O(1)$ time, $d(v_k, x)$, equal to their sum, can be known in constant time.

If only one of v and v' , say v , is associated with a node u_r on T , then edge (v, v') is on $G_r(u)$ and v' is exactly hinge v_r on G_u . Either v_r is not v_k (but both are on G_u), or $v_r = v_k$. For either case, distance $d(v_k, x)$ can be known in constant time.

Otherwise, edge (v, v') is on G_u , i.e., neither of v and v' are associated with any node on T . Clearly, distance $d(v_k, x)$ can be known in constant time.

Therefore, the lemma holds. \square

We now consider the problem of computing $\tau(G_k(u))$ for each $1 \leq k \leq s$, which is solved as follows.

First, we determine the subset \mathcal{P}_k for each $1 \leq k \leq s$: Create auxiliary arrays $A[1 \dots n]$ initialized as zero and $B[1 \dots n]$ initialized as null. We do a pre-order traversal on $T_k(u)$ from node u_k to compute the probability sum of each P_i on $G_k(u)/v_k$. During the traversal, for each location p_{ij} , we add f_{ij} to $A[i]$ and continue to check if $A[i] > 0.5$. If yes, we set $B[i]$ as u_k , and otherwise, we continue our traversal on $T_k(u)$. Once we are done, we traverse $T_k(u)$ again to reset $A[i] = 0$ for every location p_{ij} on $T_k(u)$. Clearly, $B[i] = u_k$ iff $P_i \in \mathcal{P}_k$. After traversing $T_1(u), \dots, T_s(u)$ as the above, given any $1 \leq i \leq n$, we can know to which subset P_i belongs by accessing $B[i]$.

To compute $\tau(G_k(u))$ for each $1 \leq k \leq s$, it suffices to compute $\text{Ed}(P_i, v_k)$ for each $P_i \in \mathcal{P}_k$. In details, we first create an array $L[1 \dots n]$ to maintain values $\text{Ed}(P_i, v_k)$ of each $P_i \in \mathcal{P}_k$ for all $1 \leq k \leq s$. We then traverse G directly to compute values $\text{Ed}(P_i, v_k)$. During the traversal on G , for each location p_{ij} , if $B[i]$ is u_k , then P_i

is in \mathcal{P}_k . We continue to compute in constant time the distance $d(p_{ij}, v_k)$ by Lemma 6, and then add value $w_i \cdot f_{ij} \cdot d(p_{ij}, v_k)$ to $L[i]$. It follows that in $O(mn)$ time we can compute values $\text{Ed}(P_i, v_k)$ of each $P_i \in \mathcal{P}_k$ for all $1 \leq k \leq s$.

With the above efforts, $\tau(G_k(u))$ for all $1 \leq k \leq s$ can be computed by scanning $L[1 \dots n]$: Initialize each $\tau(G_k(u))$ as zero. For each $L[i]$, supposing $B[i]$ is u_k , we set $\tau(G_k(u))$ as the larger of $\tau(G_k(u))$ and $L[i]$. Otherwise, either $L[i] = 0$ or $B[i]$ is null, and hence we continue our scan. These can be carried out in $O(n)$ time.

In a summary, with $O(mn)$ -preprocessing work, values $\tau(G_k(u))$ for all $1 \leq k \leq s$ can be computed in $O(mn)$ time. Once values $\tau(G_k(u))$ are known, as the above stated, the center-detecting problem for any given block node u on T can be solved in $O(mn)$ time. The following lemma is thus proved.

Lemma 7. *Given any block node u on T , the center-detecting problem can be solved in $O(mn)$ time.*

5 Reducing the General Case to the Vertex-Constrained Case

In this section, we present how to reduce the general case to a vertex-constrained case. In the following, we say that a vertex on G is empty if there are no locations at the vertex.

Let C be a cycle on G of only two hinges where all other vertices are empty. Denote by π the shorter path on C between two hinges. If the length of π is $l(C)/2$, then let π be any of their clockwise and counterclockwise paths on C . The following observation helps reduce the size of G .

Observation 2 *If center x^* is on C , x^* must be on π .*

Proof. Since only two hinges are on C and all other vertices are empty, every empty non-hinge vertex on C can be removed from C . On purpose of analysis, we assume that C contains only two hinges.

Suppose that π is the counterclockwise path between two hinges longer than their clockwise path. Join the semicircular point of every hinge as a new vertex to C . Let $\{u_1, u_2, u_3, u_4\}$ be their clockwise enumerations starting from hinge u_1 . We thus have the following properties: u_4 is the other hinge; u_2 must be u_4 's semicircular point; u_3 must be that of u_1 .

Removing C except for u_1, u_4 generates two disjoint subgraphs G_1 and G_4 where u_1 is on G_1 and u_4 is on G_4 (and which are not hanging subgraphs of C). All mn locations of \mathcal{P} are on $G_1 \cup G_4$. Denote by \mathcal{P}_1 the subset of all uncertain points in \mathcal{P} each with its probability sum of G_1 at least 0.5, and by \mathcal{P}_2 the subset of uncertain points each with its probability sum of G_4 at least 0.5. Hence, $\mathcal{P}_1 \cup \mathcal{P}_2 = \mathcal{P}$.

Let x be any point on C . Consider function $\text{Ed}(P_i, x)$ of each $P_i \in \mathcal{P}$ with respect to x . It is easy to see that each $\text{Ed}(P_i, x)$ linearly increases as x moves clockwise from u_1 to u_2 along edge (u_1, u_2) , and so does it as x moves counterclockwise from u_4 to u_3 along edge (u_4, u_3) . This means that the objective value at any point of $(u_1, u_2)/\{u_1\}$ (resp., $(u_4, u_3)/\{u_4\}$) is larger than that at u_1 (resp., u_4). Thus, center x^* is on neither $(u_1, u_2)/\{u_1\}$ nor $(u_4, u_3)/\{u_4\}$.

What's more, for each $P_r \in \mathcal{P}_1$, function $\text{Ed}(P_r, x)$ monotonically increases from $\text{Ed}(P_r, u_2)$ to $\text{Ed}(P_r, u_3)$ as x moves clockwise from u_2 to u_3 along edge (u_2, u_3) . It monotonically increases as well from $\text{Ed}(P_r, u_1)$ to $\text{Ed}(P_r, u_4)$ as x moves counterclockwise from u_1 to u_4 on edge (u_1, u_4) , i.e., the path π . Importantly, the increasing rate (slope) of $\text{Ed}(P_r, x)$ for x on edge (u_2, u_3) is same as that of it for x on edge (u_1, u_4) .

Consider function $y = \text{Ed}(P_i, x)$ of each $P_i \in \mathcal{P}$ for x on both edges (u_1, u_4) and (u_2, u_3) in the x, y -coordinate system. Let the two edges be on x -axis with both u_1 and u_2 at the origin. For each $P_r \in \mathcal{P}_1$, $\text{Ed}(P_r, x)$ defines a line segment for $x \in [u_2, u_3]$ (resp., $x \in [u_1, u_4]$). The line segment of $\text{Ed}(P_r, x)$ for $x \in [u_2, u_3]$ is parallel to that of $\text{Ed}(P_r, x)$ for $x \in [u_1, u_4]$. Likewise, for each $P_t \in \mathcal{P}_2$, the line segment of $\text{Ed}(P_t, x)$ for $x \in [u_2, u_3]$ is parallel to that of $\text{Ed}(P_t, x)$ for $x \in [u_1, u_4]$.

The local center of \mathcal{P} on edge (u_2, u_3) (resp., (u_1, u_4)) is decided by the lowest point on the upper envelope of line segments by n functions $y = \text{Ed}(P_i, x)$ for $x \in [u_2, u_3]$ (resp., for $x \in [u_1, u_4]$) on x -axis. Extending each line segment to a line. Because $\text{Ed}(P_i, u_1) < \text{Ed}(P_i, u_2)$ and $\text{Ed}(P_i, u_4) < \text{Ed}(P_i, u_3)$ for each $P_i \in \mathcal{P}$. The upper envelope of functions $y = \text{Ed}(P_i, x)$ for $x \in [u_2, u_3]$ is enclosed by that of functions $y = \text{Ed}(P_i, x)$ for $x \in [u_1, u_4]$. It implies that the local center of \mathcal{P} on edge (u_1, u_4) is of a smaller objective value than that of \mathcal{P} on edge (u_2, u_3) . Thus, center x^* is not on edge (u_2, u_3) either.

Based on the above analysis, we have that center x^* is not likely to be on the longer path between hinges u_1 and u_4 except for themselves. Therefore, center x^* is on the shorter path π of u_1 and u_4 on C .

It is possible that the clockwise and counterclockwise paths between two hinges on C are of same length. In this situation, u_2 must be at u_1 , and u_3 must be at u_4 . Because no locations of \mathcal{P} are on $C/\{u_1, u_4\}$. Every point on the clockwise path from u_1 to u_4 can be matched to a point their counterclockwise path in terms of the objective value, and vice versa. Recall that π is either one of the two paths. The above implies that center x^* is likely to be on π , and the other path can be removed from G . \square

Therefore, the observation holds. \square

Now we consider the reduction from the general case where locations of \mathcal{P} can be anywhere on cactus G to a vertex-constrained case on a set \mathcal{P}' of n uncertain points and cactus G' where all locations of \mathcal{P}' are at vertices of G' and every vertex on G' holds at least one location.

At first, we perform a traversal on G to join a new vertex to G for every location interior of an edge on G . Recall that all locations on any edge e of G are given sorted. Hence, these can be done in $O(|G| + mn)$ time. At this point, we obtain a cactus G_1 whose size is at most $(|G| + mn)$ and every location of \mathcal{P} is at a vertex of G_1 .

Further, we perform a post-order traversal on G_1 to process cycles. For every cycle C , we first determine whether C has only one hinge and all other vertices on C are empty. If yes, then we remove C from G_1 except for that hinge since center x^* is not likely to be on C except for that hinge. Otherwise, we check whether C meets the condition that C has only two hinges but no locations are on its non-hinge vertices. If yes, by Observation 2, the longer path of the two hinges on C can be removed. For this situation, we perform another traversal on C to compute the shortest path length a of two hinges, remove C except for two hinges, and finally connect the two hinges directly via an edge of length equal to a . Clearly, the above operations can be carried out in $O(|G| + mn)$ time and a cactus graph G_2 is generated.

We proceed with performing another post-order traversal on G_2 to further reduce the graph size. During the traversal, we delete every empty vertex of degree 1; for each empty vertex of degree 2, we remove it from G_2 by merging its two incident edges. As a consequence, a cactus graph G_3 is obtained after the $O(|G| + mn)$ -time traversal.

At this moment, every cycle with at most two hinges consists of non-hinge vertices, and each of them holds locations of \mathcal{P} . Every vertex of degree at most 2 holds locations of \mathcal{P} . Hence, every empty vertex on G_3 is of degree at least 3. By these above properties, we have the following observation.

Observation 3 *There are no more than $3mn$ empty vertices on G_3 .*

Proof. Since every vertex of degree at most 2 on G_3 is not empty, every empty vertex is either a G -vertex or a hinge. Denote by X the number of empty vertices on G_3 . X is thus bounded by the number X_G of empty G -vertices plus the number X_H of hinges on G_3 .

For the purpose of analysis, we construct a tree T' from G_3 as follows: For every cycle C on G_3 , we replace C by a new vertex v , connect v with C 's adjacent vertices (hinges) on G_3 , and reassign locations of \mathcal{P} at C 's non-hinge vertices to v . Additionally, we remove empty hinges of degree 2 by connecting its two adjacent vertices; note that the number of hinges we removed is no more than the number of cycles. Because every cycle on G_3 with at most two hinges must contain non-empty non-hinge vertex. On T' , every vertex of degree at most 2 is not empty. Since there are at most mn locations on T' , there are at most mn vertices of degree at most 2 on T' . It means the number of vertices of degree at least 3 is no more than mn . Thus, we have $X_G \leq mn$.

Moreover, the above analysis implies that the size of T' is no more than $2mn$. Because the total number of hinges on G_3 , i.e., X_H , is less than the total number of cycles and G -vertices. Thus, we have $X_H \leq 2mn$.

Therefore, the observation holds. \square

Observation 3 implies $|G_3| \leq 4mn$. Let G' be G_3 and denote by V' the set of empty vertices on G' . Initialize \mathcal{P}' as \mathcal{P} . We below assign new locations for each $P_i \in \mathcal{P}'$ to construct a vertex-constrained case on cactus G' and \mathcal{P}' .

First, we compute V' by traversing G' in $O(mn)$ time. We then create new locations for every uncertain point of \mathcal{P}' . Suppose we are about to process P_i of \mathcal{P}' . Pick any $3m$ (empty) vertices from V' ; then create $3m$

additional locations each with the probability of zero for P_i ; assign each of them to one of the $3m$ vertices; finally, remove these $3m$ vertices from V' . We perform the same operations for uncertain points of \mathcal{P}' until V' is empty. Now, every vertex on G' holds at least one location. Additionally, we obtain a set \mathcal{P}' of n uncertain points where each uncertain point P_i has at most $4m$ locations on G' , and its each location is at a vertex on G' .

Clearly, with $O(|G| + mn)$ -time construction, we obtain a vertex-constrained case for \mathcal{P}' on G' . It is not difficult to see that solving the general case on G with respect to \mathcal{P} is equivalent to solving this vertex-constrained case on G' with respect to \mathcal{P}' , which can be solved by our algorithm in $O(mn \log mn)$ time.

6 Conclusion

In this paper, we consider the (weighted) one-center problem of n uncertain points on a cactus graph. It is more challenging than the deterministic case [6] and the uncertain tree version [21] because of the nonconvexity and the $O(m)$ complexity of the expected distance function. We propose an $O(|G| + mn \log mn)$ algorithm for this problem, which matches the $O(|G| + n \log n)$ result for the deterministic case [6]. Our algorithm is a simple binary search on the skeleton T of G for the block of G containing the center. To support the search, we, however, solve the center-detecting problem for any given tree subgraph or cycle on a cactus. Our solution generalizes the method proposed for this problem on a tree [21] but still runs in linear time. Moreover, an $O(|G| + mn \log mn)$ approach for the one-center problem on a cycle is proposed. Our techniques are interesting in its own right and may find applications elsewhere.

References

1. Abam, M., de Berg, M., Farahzad, S., Mirsadeghi, M., Saghafian, M.: Preclustering algorithms for imprecise points. *Algorithmica* **84**, 1467–1489 (2022)
2. Agarwal, P., Matoušek, J.: Dynamic half-space range reporting and its applications. *Algorithmica* **13**(4), 325–345 (1995)
3. Averbakh, I., Bereg, S.: Facility location problems with uncertainty on the plane. *Discrete Optimization* **2**, 3–34 (2005)
4. Averbakh, I., Berman, O.: Minimax regret p -center location on a network with demand uncertainty. *Location Science* **5**, 247–254 (1997)
5. Bai, C., Kang, L., Shan, E.: The connected p -center problem on cactus graphs. *Theoretical Computer Science* **749**, 59–65 (2017)
6. Ben-Moshe, B., Bhattacharya, B., Shi, Q., Tamir, A.: Efficient algorithms for center problems in cactus networks. *Theoretical Computer Science* **378**(3), 237–252 (2007)
7. Bender, M., Farach-Colton, M.: The LCA problem revisited. In: Proc. of the 4th Latin American Symposium on Theoretical Informatics. pp. 88–94 (2000)
8. Bhattacharya, B., Shi, Q.: Improved algorithms to network p -center location problems. *Computational Geometry* **47**(2), 307–315 (2014)
9. Brodal, G., Jacob, R.: Dynamic planar convex hull. In: Proc. of the 43rd IEEE Symposium on Foundations of Computer Science (FOCS). pp. 617–626 (2002)
10. Burkard, R., Krarup, J.: A linear algorithm for the pos/neg-weighted 1-median problem on cactus. *Computing* **60**(3), 498–509 (1998)
11. Granot, D., Skorin-Kapov, D.: On some optimization problems on k -trees and partial k -trees. *Discrete Applied Mathematics* **48**(2), 129–145 (1994)
12. Harel, D., Tarjan, R.: Fast algorithms for finding nearest common ancestors. *SIAM Journal on Computing* **13**, 338–355 (1984)
13. Huang, L., Li, J.: Stochastic k -center and j -flat-center problems. In: Proc. of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA). pp. 110–129 (2017)
14. Kachooei, H.A., Davoodi, M., Tayebi, D.: The p -center problem under uncertainty. In: Proc. of the 2nd Iranian Conference on Computational Geometry. pp. 9–12 (2019)
15. Kariv, O., Hakimi, S.: An algorithmic approach to network location problems. I: The p -centers. *SIAM Journal on Applied Mathematics* **37**(3), 513–538 (1979)

16. Keikha, V., Aghamolaei, S., Mohades, A., Ghodsi, M.: Clustering geometrically-modeled points in the aggregated uncertainty model. *Fundamenta Informaticae* **184**, 205–231 (2021)
17. Lan, Y., Wang, Y., Suzuki, H.: A linear-time algorithm for solving the center problem on weighted cactus graphs. *Information Processing Letters* **71**(5), 205–212 (1999)
18. Megiddo, N.: Linear-time algorithms for linear programming in R^3 and related problems. *SIAM Journal on Computing* **12**(4), 759–776 (1983)
19. Nguyen, Q., Zhang, J.: Line-constrained l_∞ one-center problem on uncertain points. In: Proc. of the 3rd International Conference on Advanced Information Science and System. pp. 72:1–5 (2021)
20. Wang, H., Zhang, J.: A note on computing the center of uncertain data on the real line. *Operations Research Letters* **44**, 370–373 (2016)
21. Wang, H., Zhang, J.: Computing the center of uncertain points on tree networks. *Algorithmica* **78**(1), 232–254 (2017)
22. Wang, H., Zhang, J.: Covering uncertain points on a tree. *Algorithmica* **81**, 2346–2376 (2019)
23. Yen, W.: The connected p -center problem on block graphs with forbidden vertices. *Theoretical Computer Science* **426-427**, 13–24 (2012)
24. Zmazek, B., Žerovník, J.: The obnoxious center problem on weighted cactus graphs. *Discrete Applied Mathematics* **136**(2), 377–386 (2004)