
Computing the Center of Uncertain Points on Cactus Graphs

Ran Hu1, Divy H. Kanani2, and Jingru Zhang2

1 Rensselaer Polytechnic Institute, Troy, NY 12180, USA
hur6@rpi.edu

2 Cleveland State University, Cleveland, OH 44115, USA
d.kanani@vikes.csuohio.edu, j.zhang40@csuohio.edu

Abstract. In this paper, we consider the (weighted) one-center problem of uncertain points on a cactus
graph. Given are a cactus graph G and a set of n uncertain points. Each uncertain point has m possible
locations on G with probabilities and a non-negative weight. The (weighted) one-center problem aims
to compute a point (the center) x∗ on G to minimize the maximum (weighted) expected distance from x∗

to all uncertain points. No previous algorithm is known for this problem. In this paper, we propose an
O(|G| + mn log mn)-time algorithm for solving it. Since the input is O(|G| + mn), our algorithm is almost
optimal.

Keywords: Algorithms · One-Center · Cactus Graph· Uncertain Points

1 Introduction

Problems on uncertain data have attracted an increasing amount of attention due to the observation that
many real-world measurements are inherently accompanied with uncertainty. For example, the k-center
model has been considered a lot on uncertain demands in facility locations [1, 3, 4, 13, 14, 16, 19, 22]. Due to
the prevalence of tree-like graphs [5,6,8,10,11,24] in facility locations, in this paper, we study the (weighted)
one-center problem of uncertain points on a cactus-graph network.

Let G = (V,E) be a cactus graph where any two cycles do not share edges. Every edge e on G has a
positive length. A point x = (u, v, t) on G is characterized by being located at a distance of t on edge (u, v)
from vertex u. Given any two points p and q on G, the distance d(p, q) between p and q is defined as the
length of their shortest path on G.

Let P be a set of n uncertain points P1,P2, · · · ,Pn on G. Each Pi ∈ P has m possible locations (points)
pi1, pi2, · · · , pim on G. Each location pi j is associated with a probability fi j ≥ 0 for Pi appearing at pi j. Addi-
tionally, each Pi ∈ P has a weight wi ≥ 0.

Assume that all given points (locations) on any edge e ∈ G are given sorted so that when we visit e, all
points on e can be traversed in order.

Consider any point x on G. For any Pi ∈ P, the (weighted) expected distance Ed(Pi, x) from Pi to x is
defined as wi ·

∑︁m
j=1 fi jd(pi j, x). The center of G with respect toP is defined to be a point x∗ on G that minimizes

the maximum expected distance max1≤i≤n Ed(Pi, x). The goal is to compute center x∗ on G.
If G is a tree network, then center x∗ can be computed in O(mn) time by [21]. To the best of our

knowledge, however, no previous work exists for this problem on cacti. In this paper, we propose an
O(|G| + mn log mn)-time algorithm for solving the problem where |G| is the size of G. Note that our result
matches the O(|G| + n log n) result [6] for the weighted deterministic case where each uncertain point has
exactly one location.

1.1 Related Work

The deterministic one-center problem on graphs have been studied a lot. On a tree, the (weighted) one-center
problem has been solved in linear time by Megiddo [18]. On a cactus, an O(|G| + n log n) algorithm was
given by Ben-Moshe [6]. Note that the unweighted cactus version can be solved in linear time [17]. When G

is a general graph, the center can be found in O(|E| · |V| log |V|) time [15], provided that the distance-matrix
of G is given. See [5, 23, 24] for variations of the general k-center problem.

When it comes to uncertain points, a few of results for the one-center problem are available. When G
is a path network, the center of P can be found in O(mn) time [20]. On tree graphs, the problem can be
addressed in linear time [22] as well. See [13, 16, 22] for the general k-center problem on uncertain points.

1.2 Our Approach

Lemma 5 shows that the general one-center problem can be reduced in linear time to a vertex-constrained
instance where all locations of P are at vertices of G and every vertex of G holds at least one location of P.
Our algorithm focuses on solving the vertex-constrained version.

As shown in [10], a cactus graph is indeed a block graph and its skeleton is a tree where each node
uniquely represents a cycle block, a graft block (i.e., a maximum connected tree subgraph), or a hinge (a
vertex on a cycle of degree at least 3) on G. Since center x∗ lies on an edge of a circle or a graft block on
G, we seek for that block containing x∗ by performing a binary search on its tree representation T. Our
O(mn log mn) algorithm requires to address the following problems.

We first solve the one-center problem of uncertain points on a cycle. Since each Ed(Pi, x) is piece-wise
linear but non-convex as x moves along the cycle, our strategy is computing the local center of P on every
edge. Based on our useful observations, we can resolve this problem in O(mn log mn) time with the help of
the dynamic convex-hull data structure [2, 9].

Two more problems are needed to be addressed during the search for the node containing x∗. First, given
any hinge node h on T, the problem requires to determine if center x∗ is on h, i.e., at hinge Gh h represents,
and otherwise, which split subtree of h on T contains x∗, that is, which hanging subgraph of Gh on G contains
x∗. In addition, a more general problem is the center-detecting problem: Given any block node u on T, the goal
is to determine whether x∗ is on u (i.e., on block Gu on G), and otherwise, which split tree of the H-subtree
of u on T contains x∗, that is, which hanging subgraph of Gu contains x∗.

These two problems are more general problems on cacti than the tree version [21] since each Ed(Pi, x)
is no longer a convex function in x on any path of G. We however observe that the median of any Pi ∈ P

always fall in the hanging subgraph of a block whose probability sum of Pi is at least 0.5. Based on this,
with the assistance of other useful observations and lemmas, we can efficiently solve each above problem
in O(mn) time.

Outline. In Section 2, we introduce some notations and observations. In Section 3, we present our
algorithm for the one-center problem on a cycle. In Section 4, we discuss our algorithm for the problem on
a cactus. In Section 5, we show how to linearly reduce any general case into a vertex-constrained case.

2 Preliminary

In the following, unless otherwise stated, we assume that our problem is the vertex-constrained case where
every location of P is at a vertex on G and every vertex holds at least one location of P. Note that Lemma 5
shows that any general case can be reduced in linear time into a vertex-constrained case.

Some terminologies are borrowed from the literature [10]. A G-vertex is a vertex on G not included in
any cycle, and a hinge is one on a cycle of degree greater than 2. A graft is a maximum (connected) tree
subgraph on G where every leaf is either a hinge or a G-vertex, all hinges are at leaves, and no two hinges
belong to the same cycle. A cactus graph is indeed a block graph consisting of graft blocks and cycle blocks
so that the skeleton of G is a tree T where for each block on G, a node is joined by an edge to its hinges. See
Fig. 1 for an example.

In fact, T represents a decomposition of G so that we can traverse nodes on T in a specific order to
traverse G blocks by blocks in the according order. Our algorithm thus works on T to compute center x∗.
Tree T can be computed by a depth-first-search on G [6, 10] so that each node on T is attached with a block
or a hinge of G. We say that a node u on T is a block (resp., hinge) node if it represents a block (resp., hinge)

2

Cycle C

Hinge h

(a) (b)

uC

u

Graft B

uB

Fig. 1. (a) Illustrating a cactus G that consists of 3 cycles, 5
hinges (squares) and 6 G-vertices (disks); (b) Illustrating
G’s skeleton T where circular and disk nodes represent
cycles and grafts of G (e.g., nodes u, uC and uB respectively
representing hinge h, cycle C and graft B on G).

Cycle C

H-subtree of uC

(a) (b)

uC

Fig. 2. (a) Cycle C on G has 7 split subgraphs (blue dash
doted lines) and accordingly 7 hanging subgraphs (red
dashed lines); (b) on T, the H-subtree of node uc represent-
ing cycle C has 7 split subtrees each of which represents
a distinct hanging subgraph of C on G.

on G. In our preprocessing work, we construct the skeleton T with additional information maintained for
nodes of T to fasten the computation.

Denote by Gu the block (resp., hinge) on G of any block (resp., hinge) node u on T. More specifically, we
calculate and maintain the cycle circumstance for every cycle node on T. For any hinge node h on T, h is
attached with hinge Gh on G (i.e., h represents Gh). For each adjacent node u of h, vertex Gh also exists on
block Gu but with only adjacent vertices of Gu (that is, there is a copy of Gh on Gu but with adjacent vertices
only on Gu). We associate each adjacent node u in the adjacent list of h with vertex Gh (the copy of Gh) on
Gu, and also maintain the link from vertex Gh on Gu to node h.

Clearly, the size |T| of T is O(mn) due to |G| = O(mn). It is not difficult to see that all preprocessing work
can be done in O(mn) time. As a result, the following operations can be done in constant time.

1. Given any vertex v on G, finding the node on T whose block v is on;
2. Given any hinge node h on T, finding vertex Gh on the block of every adjacent node of h on T;
3. Given any block node u on T, for any hinge on Gu, finding the hinge node on T representing it.

Consider every hinge on the block of every block node on T as an open vertex that does not contain any
locations of P. To be convenient, for any point x on G, we say that a node u on T contains x or x is on u if x
is on Gu. Note that x may be on multiple nodes if x is at a hinge on G. We say that a subtree on T contains x
if x is on one of its nodes.

Let x be any point on G. Because T defines a tree topology of blocks on G so that vertices on G can be
traversed in some order. We consider computing Ed(Pi, x) for all 1 ≤ i ≤ n by traversing T. We have the
following lemma. Note that it defines an order of traversing G, which is used in other operations of our
algorithm.

Lemma 1. Given any point x on G, Ed(Pi, x) for all 1 ≤ i ≤ n can be computed in O(mn) time.

Proof. We create an array A[1 · · · n] to maintain all Ed(Pi, x) and initialize all as zero. Let ux be the block node
on T which contains x and set it as the root of T. Clearly, ux as well as the corresponding point of x on block
Gux can be obtained in O(mn) time.

To compute Ed(Pi, x) for all 1 ≤ i ≤ n, it suffices to traverse G starting from x to compute the distance
of every location to x. To do so, we instead traverse T in the pre-order from ux: During the traversal, block
Gux of ux is first traversed in the pre-order from x to compute the distance of its every location to x. For
every other block node u, the block is traversed in the pre-order starting from the hinge (open-vertex) whose
corresponding hinge node on T is the parent of u. So is every hinge node on T.

3

More specifically, when we are visiting Gux , if ux is a cycle node then we traverse Gux clockwise starting
from x. During the traversal, for each vertex v, we first compute in constant time the distance d(x, v); we
next set A[i] = A[i]+wi · fi j · d(x, v) for each location pi j at v if v is not a hinge; otherwise, we find in O(1) time
the hinge node h on T representing v (i.e., ux’s adjacent node), and set the distance v on h to x as d(x, v).

In the case of Gux being a graft, we perform the pre-order traversal from x to update A[1 · · · n] in the
above way. Otherwise, Gux is a hinge and so d(Gux , x) = 0; we update A[i] as the above for each location at
ux; we then set the distance d(Gux , x) = 0 for Gux on the block of every adjacent node of ux.

We continue our traversal on T to visit ux’s successors on T in the pre-order to traverse their blocks.
Suppose that we are visiting node u on T. If u is a hinge node, then its distance to x can be known in constant
time since hinge Gu is an open vertex on the block of u’s parent node that has been visited. Consequently,
we update A[1 · · · n] as the above for every location pi j at u, and set the distance d(Gu, x) = 0 for Gu on the
block of every adjacent node of u.

Otherwise, we traverse block Gu from the hinge (open vertex) represented by u’s parent hinge node h on
T, which can be find in O(1) time. As the distance of Gh to x has been known, the distance from every vertex
on Gu to x can be obtained in O(1) time. We thus update A[1 · · · n] for locations on Gu similarly.

It follows that for any given point x on G, values Ed(Pi, x) of all 1 ≤ i ≤ n can be obtained in O(mn) time
by performing a pre-order traversal on T. ⊓⊔

We say that a point x on G is an articulation point if x is on a graft block; removing x generates several
connected disjoint subgraphs; each of them is called a split subgraph of x; the subgraph induced by x and
one of its split subgraphs is called a hanging subgraph of x.

Similarly, any connected subgraph G′ of G has several split subgraphs caused by removing G′, and each
split subgraph with adjacent vertice(s) on G′ contributes a hanging subgraph. See Fig. 2 (a) for an example.

Consider any uncertain point Pi ∈ P. There exists a point x∗i on G so that Ed(Pi, x) reaches its minimum
at x = x∗i ; point x∗i is called the median of Pi on G. For any subgraph G′ on G, we refer to value

∑︁
pi j∈G′ fi j as Pi’s

probability sum of G′; we refer to value wi ·
∑︁

pi j∈G′ fi j · d(pi j, x) as Pi’s (weighted) distance sum of G′ to point x.
Notice that we say that median x∗i of Pi (resp., center x∗) is on a hanging subgraph of a subgraph G′ on G

iff x∗i (resp., x∗) is likely to be on that split subgraph of G′ it contains. We have the following lemma.

Lemma 2. Consider any articulation point x on G and any uncertain point Pi ∈ P.

1. If x has a split subgraph whose probability sum of Pi is greater than 0.5, then its median x∗i is on the hanging
subgraph including that split subgraph;

2. The point x is x∗i if Pi’s probability sum of each split subgraph of x is less than 0.5;
3. The point x is x∗i if x has a split subgraph with Pi’s probability sum equal to 0.5.

Proof. Let G1(x), · · · ,Gs(x) be all split subgraphs of x on G. For claim 1, we assume that Pi’s probability sum
of G1(x) is larger than 0.5. We shall show that x∗i is not likely to be on Gk(x) for any 2 ≤ k ≤ s.

Consider any split subgraph Gk(x) with 2 ≤ k ≤ s. Let y be any point on Gk(x). By the expected distance
definition, we have the following.

Ed(Pi, y) = wi

∑︂
pi j∉Gk(x)

fi j[d(pi j, x) + d(x, y)] + wi

∑︂
pi j∈Gk(x)

fi jd(pi j, y)

= wi

∑︂
pi j∉Gk(x)

fi jd(pi j, x) + wi

∑︂
pi j∉Gk(x)

fi jd(x, y) + wi

∑︂
pi j∈Gk(x)

fi jd(pi j, y)

> wi

∑︂
pi j∉Gk(x)

fi jd(pi j, x) + wi

∑︂
pi j∈Gk(x)

fi j[d(x, y) + d(pi j, y)]

> wi

∑︂
pi j∉Gk(x)

fi jd(pi j, x) + wi

∑︂
pi j∈Gk(x)

fi jd(pi j, x)

= Ed(Pi, x)

4

It follows that none of G2(x), · · · ,Gs(x) contain x∗i and x∗i is thus on the hanging subgraph G1(x) ∪ {x}.
Therefore, both claims 1 and 2 hold.

For claim 3, suppose that Pi’s probability sum of G1(x) is equal to 0.5. To prove claim 3, it is sufficient
to prove Ed(Pi, x) ≤ Ed(Pi, y) for any point y ∈ G1(x). This can be verified similarly and we thus omit the
details. ⊓⊔

For any point x ∈ G, we say that Pi is a dominant uncertain point of x if Ed(Pi, x) ≥ Ed(P j, x) for each
1 ≤ j ≤ n. Point x may have multiple dominant uncertain points. Lemma 2 implies the following corollary.

Corollary 1. Consider any articulation point x on G.

1. If x has one dominant uncertain point whose median is at x, then center x∗ is at x;
2. If two dominant uncertain points have their medians on different hanging subgraphs of x, then x∗ is at x;
3. Otherwise, x∗ is on the hanging subgraph that contains all their medians.

Let u be any block node on T; denote by TH
u the subtree on T induced by u and its adjacent (hinge) nodes;

we refer to TH
u as the H-subtree of u on T. Each hanging subgraph of block Gu on G is represented by a split

subtree of TH
u on T. See Fig. 2 (b) for an example. Lemma 2 also implies the following corollary.

Corollary 2. Consider any block node u on T and any uncertain point Pi of P.

1. If the H-subtree TH
u of u has a split subtree whose probability sum of Pi is greater than 0.5, then x∗i is on the split

subtree of TH
u ;

2. If the probability sum of Pi on each of TH
u ’s split subtree is less than 0.5, then x∗i is on u (i.e., block Gu of G);

3. If TH
u has a split subtree whose probability sum of Pi is equal to 0.5, then x∗i is on that hinge node of TH

u that is
adjacent to the split subtree.

Moreover, we have the following lemma.

Lemma 3. Given any articulation point x on G, we can determine in O(mn) time whether x is x∗, and otherwise,
which hanging subgraph of x contains x∗.

Proof. Apply Lemma 1 to compute the array A[1 · · · n] with A[i] = Ed(Pi, x) in O(mn) time, and then find the
largest value δ of A in O(n) time. Create an array F[1 · · · n] initialized as zero to store the probability sums of
x’s dominant uncertain points on its each split subgraph, and another array I[1 · · · n] initialized as −1 where
I[i] indicates x’s hanging subgraph containing Pi’s median x∗i .

We proceed with determining which hanging subgraph of x contains medians of x’s dominant uncertain
points by traversing T. Let ux be the node on T containing x, which can be found in O(mn) time. Notice that
ux is either a hinge node or a graft node on T. Let ux be the root of T.

On the one hand, ux is a graft node. Let G1
ux
, · · · ,Gs

ux
be the split subgraphs of x on block Gux of ux. Hence,

x has s split subgraphs G1(x), · · · ,Gs(x) on G and Gk
ux
∈ Gk(x) for each 1 ≤ k ≤ s. Specifically, for each 1 ≤ k ≤ s,

denote by vk
1, · · · , v

k
t all hinges on Gk

ux
; since G1

ux
, · · · ,Gs

ux
are disjoint, the subgraph induced by Gk(x)/Gk

ux
and

{uk
1, · · · ,u

k
t } is represented by the union of subtrees on T rooted at the corresponding hinge nodes uk

1, · · · ,u
k
t

of vk
1, · · · , v

k
t .

To prove the lemma, it suffices to compute the probability sum of dominant uncertain points of x on
each Gk(x). For each Gk(x), we maintain a list Lk to store uk

1, · · · ,u
k
t , which is empty initially. We then perform

a traversal on Gk(x) to compute the probability sum of uncertain points as follows.
We first traverse Gk

ux
: For each non-hinge vertex v on Gk

ux
, for each location pi j at v, we set F[i] = F[i]+ fi j;

we then check whether F[i] > 0.5 and A[i] = δ; if both yes, then Pi is a dominant uncertain point at x whose
median is on Gk(x) ∪ {x}, and thereby we set I[i] = k; otherwise, Pi is not a dominant uncertain point and
hence we continue our traversal on Gk

ux
. When a hinge vertex v is currently encountered, we find in O(1)

time its corresponding hinge node on T, add it to Lk, and then continue our traversal on Gk
ux

.

5

Once we are done with traversing Gk
ux

, we continue to visit locations on the subgraph by Gk(x)/Gk
ux

and
{vk

1, · · · , v
k
t }. In order to do so, we traverse the subtree of T rooted at each hinge node of Lk. The traversal is

similar to that in Lemma 1 and so the details are omitted.
Notice that after the above traversal on Gk(x), we perform another traversal on Gk(x) as the above,

whereas during the traversal we reset F[i] = 0 for each location pi j on Gk(x). Clearly, the traversal on all Gk(x)
can be carried out in O(mn) time.

To the end, we scan I[1 · · · n] to determine which case of Corollary 1 x falls into. More specifically, if
there exist integers i and j with 1 ≤ i ≠ j ≤ n satisfying that I[i], I[j] > 0 but I[i]! = I[j], then two dominant
uncertain points of x have their medians on different hanging subgraphs of x and so center x∗ must be at
x; if I[i] = −1 for each 1 ≤ i ≤ n, x∗ is at x as well; otherwise, only one hanging subgraph is found and it
contains center x∗.

On the other hand, ux is a hinge node on T. Let u1, · · · ,us be all adjacent (block) nodes of ux on T. Denote
by Tuk the subtree rooted at uk on T. Clearly, for each 1 ≤ k ≤ s, the subgraph represented by Tuk excluding
vertex Gux is exactly Gk(x). Since Gux is an open vertex on Guk , traversing each Gk(x) amounts to traversing
Tuk , and we add only uk into Lk for each 1 ≤ k ≤ s. It follows that we traverse Tuk to visit locations on Gk(x)
to compute F[1 · · · n] and I[1 · · · n] for each 1 ≤ k ≤ s; finally, we scan I[1 · · · n] to determine as the above case
where center x∗ locates.

Therefore, the lemma holds. ⊓⊔

Consider any hinge node u on T. Lemma 3 implies the following corollary.

Corollary 3. Given any hinge node u on T, we can determine in O(mn) time whether x∗ is on u (i.e., at hinge Gu on
G), and otherwise, which split subtree of u contains x∗.

3 The One-Center Problem on a Cycle

In this section, we consider the one-center problem for the case of G being a cycle. A general expected
distance is considered: each Pi ∈ P is associated with a constant ci so that the (weighted) distance of Pi to
x is equal to their (weighted) expected distance plus ci. With a little abuse of notations, we refer to it as the
expected distance Ed(Pi, x) from Pi to x.

Our algorithm focuses on the vertex-constrained version where every location is at a vertex on G and
every vertex holds at least one location. Since G is a cycle, it is easy to see that any general instance can be
reduced in linear time to a vertex-constrained instance.

Let u1,u2, · · · ,uM be the clockwise enumeration of all vertices on G, and M ≤ mn. Let l(G) be G’s
circumstance. Every ui has a semicircular point xi′ with d(ui, xi′) = l(G)/2 on G. Because sequence x1′ , · · · , xM′

is in the clockwise order. x1′ , · · · , xM′ can be computed in order in O(mn) time by traversing G clockwise.
Join these semicircular points x1′ , · · · , xM′ to G by merging them and u1, · · · ,uM in clockwise order;

simultaneously, reindex all vertices on G clockwise. Hence, a clockwise enumeration of all vertices on G is
generated in O(mn) time. Clearly, the size N of G is now at most 2mn. Given any vertex ui on G, there exists
another vertex uic so that d(ui,uic) = l(G)/2. Importantly, ic = [(i − 1)c + 1]%N for 2 ≤ i ≤ N and 1c = (Nc + 1).

Let x be any point on G. Consider the expected distance y = Ed(Pi, x) in the x, y-coordinate system. We
set u1 at the origin and let vertices u1,u2, · · · ,uN uN+1, · · · ,u2N be on x-axis in order so that uN+i = ui. Denote
by xi the x-coordinate of ui on x-axis. For 1 ≤ i < j ≤ N, the clockwise distance between ui and u j on G is
exactly value x j − xi and their counterclockwise distance is equal to xi+N − x j.

As shall be analyzed below, each Ed(Pi, x) is linear in x ∈ [xs, xs+1] for each 1 ≤ s ≤ N but may be neither
convex nor concave for x ∈ [x1, xN+1], which is different to the deterministic case [6]. See Fig. 3. Center x∗

is determined by the lowest point of the upper envelope of all Ed(Pi, x) for x ∈ [x1, xN+1]. Our strategy is
computing the lowest point of the upper envelope on interval [xs, xs+1], i.e., computing the local center x∗s,s+1
of P on [xs, xs+1], for each 1 ≤ s ≤ N. Center x∗ is obviously decided by the lowest one among all of them.

For each 1 ≤ s ≤ N + 1, vertex us has a semicircular point x′ on x-axis with xs − x′ = l(G)/2 and x′ must be
at a vertex on x-axis in that us on G has its semicircular point at vertex usc . We still let usc be us’s semicircular

6

u1 u2 uN uN+1· · ·uk+1

Ed(Pi, x)

Ed(Pj, x)

x

y

(x∗,max1≤i≤nEd(Pi, x
∗))

· · · uk
(u1)

·

·

·

Fig. 3. Consider y = Ed(Pi, x) in x, y-coordinate system by projecting cycle G onto x-axis; Ed(Pi, x) of each Pi ∈ P is linear
in x on any edge of G; center x∗ is decided by the projection on x-axis of the lowest point on the upper envelope of all
y = Ed(Pi, x)’s.

point on x-axis. Clearly, for each 1 ≤ s ≤ N, (s + 1)c = sc + 1, and the semicircular point of any point in
[xs, xs+1] lies in [xsc , x(s+1)c]]. Indices 1c, 2c, · · · , (N + 1)c can be easily determined in order in O(mn) time and
so we omit the details.

Consider any uncertain point Pi of P. Because for any 1 ≤ s ≤ N, interval [xs+1, xs+N] contains all
locations of P uniquely. We denote by xi j the x-coordinate of location pi j in [xs+1, xs+N]; denote by Fi(xs, xsc)
the probability sum of Pi’s locations in [xs, xsc]; let Di(xs+1, xsc) be value wi ·

∑︁
pi j∈[xs+1,xsc] fi jxi j and Dc

i (xsc+1, xs+N)
be value wi ·

∑︁
pi j∈[xsc+1,xs+N] fi j(l(G) − xi j). Due to Fi(xs+1, xsc) + Fi(xsc+1, xs+N) = 1, we have that Ed(Pi, x) for

x ∈ [xs, xs+1] can be formulated as follows.

Ed(Pi, x) = ci + wi

∑︂
pi j∈[xs+1,xsc]

fi j · (xi j − x) + wi

∑︂
pi j∈[xsc+1,xs+N]

fi j · [l(G) − (xi j − x)]

= ci + wi(
∑︂

pi j∈[xsc+1,xs+N]

fi j −
∑︂

pi j∈[xs+1,xsc]

fi j) · x + wi

∑︂
pi j∈[xs+1,xsc]

fi jxi j

− wi

∑︂
pi j∈[xsc+1,xs+N]

fi j(l(G) − xi j)

= wi[1 − 2Fi(xs+1, xsc)] · x + ci +Di(xs+1, xsc) −Dc
i (xsc+1, xs+N)

It turns out that each Ed(Pi, x) is linear in x ∈ [xs, xs+1] for each 1 ≤ s ≤ N, and it turns at x = xs if Pi
has locations at points us, usc , or us+N. Note that Ed(Pi, x) may be neither convex nor concave. Hence, each
Ed(Pi, x) is a piece-wise linear function of complexity at most m for x ∈ [x1, xN+1]. It follows that the local
center x∗s,s+1 of P on [xs, xs+1] is decided by the x-coordinate of the lowest point of the upper envelope on
[xs, xs+1] of functions Ed(Pi, x)’s for all 1 ≤ i ≤ n.

Consider the problem of computing the lowest points on the upper envelope of all Ed(Pi, x)’s on interval
[xs, xs+1] for all 1 ≤ s ≤ N from left to right. Let L be the set of lines by extending all line segments on Ed(Pi, x)
for all 1 ≤ i ≤ n, and |L| ≤ mn. Since the upper envelope of lines is geometric dual to the convex (lower) hull
of points, the dynamic convex-hull maintenance data structure of Brodal and Jacob [9] can be applied to L
so that with O(|L| log |L|)-time preprocessing and O(|L|)-space, our problem can be solved as follows.

Suppose that we are about to process interval [xs, xs+1]. The dynamic convex-hull maintenance data
structure Φ currently maintains the information of only n lines caused by extending the line segment of
each Ed(Pi, x)’s on [xs−1, xs]. Let Ps be the subset of uncertain points of Pwhose expected distance functions
turn at x = xs. For each Pi ∈ Ps, we delete from Φ function Ed(Pi, x) for x ∈ [xs−1, xs] and then insert the line
function of Ed(Pi, x) on [xs, xs+1] intoΦ. After these 2|Ps| updates, we compute the local center x∗s,s+1 of P on
[xs, xs+1] as follows.

7

Perform an extreme-point query onΦ in the vertical direction to compute the lowest point of the upper
envelope of the n lines. If the obtained point falls in [xs, xs+1], x∗s,s+1 is of same x-coordinate as this point and
its y-coordinate is the objective value at x∗s,s+1; otherwise, it is to left of line x = xs (resp., to right of x = xs+1)
and thereby x∗s,s+1 is of x-coordinate equal to xs (resp., xs+1). Accordingly, we then compute the objective
value at x = xs (resp., x = xs+1) by performing another extreme-point query in direction y = −xs · x (resp.,
y = −xs+1 · x).

Note that P1 = P for interval [x1, x2] and
∑︁N

s=1 |Ps| = |L| ≤ mn. Since updates and queries each takes
O(log |L|) amortized time, for each interval [xs, xs+1], we spend totally O(|Ps| · log |L|) amortized time on
computing x∗s,s+1. It implies that the time complexity for all updates and queries on Φ is O(mn log mn) time.
Therefore, the total running time of computing the local centers of P on [xs, xs+1] for all 1 ≤ s ≤ N is
O(mn log mn) plus the time on determining functions Ed(Pi, x) of each Pi ∈ Ps on [xs, xs+1] for all 1 ≤ s ≤ N.

We now present how to determine Ed(Pi, x) of each Pi ∈ Ps in x ∈ [xs, xs+1] for all 1 ≤ s ≤ N. Recall that
Ed(Pi, x) = wi · [1 − 2Fi(xs+1, xsc)] · x +Di(xs+1, xsc) −Dc

i (xsc+1, xs+N) + ci for x ∈ [xs, xs+1]. It suffices to compute
the three coefficients Fi(xs+1, xsc), Di(xs+1, xsc) and Dc

i (xsc+1, xs+N) for each 1 ≤ i ≤ n and 1 ≤ s ≤ N.
We create auxiliary arrays X[1 · · · n], Y[1 · · · n] and Z[1 · · · n] to maintain the three coefficients of Ed(Pi, x)

for x in the current interval [xs, xs+1], respectively; another array I[1 · · · n] is also created so that I[i] = 1
indicates that Pi ∈ Ps for the current interval [xs, xs+1]; we associate with us for each 1 ≤ s ≤ N an empty list
As that will store the coefficients of Ed(Pi, x) on [xs, xs+1] for each Pi ∈ Ps. Initially, X[1 · · · n], Y[1 · · · n], and
Z[1 · · · n] are all set as zero, and I[1 · · · n] is set as one due to P1 = P.

For interval [x1, x2], we compute Fi(x2, x1c), Di(x2, x1c) and Dc
i (x1c+1, xN+1) for each 1 ≤ i ≤ n: for every

location pi j in [x2, x1c], we set X[i] = X[i]+ fi j and Y[i] = Y[i]+wi · fi j · xi j; for every location pi j in [x1c+1, xN+1],
we set Z[i] = Z[i] + wi · (l(G) − xi j). Since x1c is known in O(1) time, it is easy to see that for all Pi ∈ P1,
functions Ed(Pi, x) for x ∈ [x1, x2] can be determined in O(mn) time. Next, we store in listA1 the coefficients
of Ed(Pi, x) of all Pi ∈ P1 on [x1, x2]: for each I[i] = 1, we add tuples (i,wi ·X[i], ci +Y[i]−Z[i]) toA1 and then
set I[i] = 0. Clearly, listA1 for u1 can be computed in O(mn) time.

Suppose we are about to determine the line function of Ed(Pi, x) on [xs, xs+1], i.e., coefficients Fi(xs+1, xsc),
Di(xs+1, xsc) and Dc

i (xsc+1, xs+N), for each Pi ∈ Ps. Note that if Pi has no locations at us, usc and us+N, then Pi is
not in Ps; otherwise, Ed(Pi, x) turns at x = xs and we need to determine Ed(Pi, x) for x ∈ [xs, xs+1].

Recall that for x ∈ [xs−1, xs], Ed(Pi, x) = ci + wi · [1 − 2Fi(xs, x(s−1)c)] · x +Di(xs, x(s−1)c) −Dc
i (x(s−1)c+1, xs−1+N).

On account of sc = (s − 1)c + 1, for x ∈ [xs, xs+1], we have Fi(xs+1, xsc) = Fi(xs, x(s−1)c) − Fi(xs, xs) + Fi(xsc , xsc),
Di(xs+1, xsc) = Di(xs, x(s−1)c) − Di(xs, xs) + Di(xsc , xsc), and Dc

i (xsc+1, xs+N) = Dc
i (x(s−1)c+1, xs−1+N) − Dc

i (xsc , xsc) +
Dc

i (xs+N, xs+N). Additionally, for each 1 ≤ i ≤ n, Ed(Pi, x) on [xs−1, xs] is known, and its three coefficients are
respectively in entries X[i], Y[i], and Z[i]. We can determine Ed(Pi, x) of each Pi ∈ Ps on [xs, xs+1] as follows.

For each location pi j at us, we set X[i] = X[i] − fi j, Y[i] = Y[i] − wi fi jxi j and I[i] = 1; for each location pi j
at usc , we set X[i] = X[i] + fi j, Y[i] = Y[i] + wi fi jxi j, Z[i] = Z[i] − wi fi j(l(G) − xi j) and I[i] = 1; further, for each
location pi j at us+N, we set Z[i] = Z[i] + wi fi j(l(G) − xi j) and I[i] = 1. Subsequently, we revisit locations at us,
usc and us+N: for each location pi j, if I[i] = 1 then we add a tuple (i,wi · X[i], ci + Y[i] − Z[i]) to As and set
I[i] = 0, and otherwise, we continue our visit.

For each 2 ≤ s ≤ N, clearly, functions Ed(Pi, x) on [xs, xs+1] of all Pi ∈ Ps can be determined in the time
linear to the number of locations at the three vertices us, usc and us+N. It follows that the time complexity for
determining Ed(Pi, x) of each Pi ∈ Ps for all 1 ≤ s ≤ N, i.e., computing the set L, is O(mn); that is, the time
complexity for determining Ed(Pi, x) for each Pi ∈ P on [x1, xN+1] is O(mn).

Combining all above efforts, we have the following theorem.

Theorem 1. The one-center problem of P on a cycle can be solved in O(|G| +mn log mn) time.

4 The Algorithm

In this section, we shall present our algorithm for computing the center x∗ of P on cactus G. We first give
the lemma for solving the base case where a node of T, i.e., a block of G, is known to contain center x∗.

Lemma 4. If a node u on T is known to contain center x∗, then x∗ can be computed in O(mn log mn) time.

8

Proof. If u is a hinge node, then x∗ is at its corresponding hinge Gu on G, which can be obtained in O(1) time,
and we then return Gu immediately.

Otherwise, block Gu of node u is a graft or a cycle. Let u be the root of T; let u1, · · · ,us be all child nodes of
u, and each of them is a hinge node; vertices Gu1 , · · · ,Gus are (open) vertices on Gu. Denote by T1(u), · · · ,Ts(u)
the split subtrees of u on T; for each 1 ≤ k ≤ s, Tk(u) is rooted at uk, and let Gk(u) be the subgraph on G that
Tk(u) represents. Note that T1(u), · · · ,Ts(u) can be known in O(mn) time.

On the one hand, Gu is a graft and we then reduce our problem to an instance of the one-center problem
with respect to a set P′ of n uncertain points on a tree G′ so that center x∗ can be computed in O(mn) time
by the algorithm [21] for tree graphs.

Initialize G′ as Gu and set P′ = P. To reduce our problem to a tree instance, we then do a pre-order
traversal on Tk(u) from uk to traverse Gk(u). More specifically, for hinge node uk, we reassign all locations
at uk to vertex Guk on G′. For every other node u′ on Tk(u), as in Lemma 1, we traverse in the pre-order Gu′

from the hinge represented by its parent node: for each vertex v, we first compute distance d(Guk , v) and next
check if v is an open vertex. If no, we join a new vertex v′ into G′, set the edge length between v′ and Guk on
G′ as d(Guk , v), and reassign all locations of v to v′; otherwise, we continue our traversal.

Clearly, traversing all Tk(u)’s in the above way takes O(mn) time in total. Now, we obtain a tree G′ of size
O(mn) and a setP′ of n uncertain points where each Pi ∈ P

′ has at most m locations on G′. It is not difficult to
see that the center of P′ on G′ corresponds a point on Gu that is exactly the center of P on G. Consequently,
center x∗ can be computed in O(mn) time by the algorithm [21].

On the other hand, Gu is a cycle and we then reduce our problem into a cycle case where a set P′ of n
uncertain points are on cycle G′. Initially, we set G′ as Gu, set P′ as P, and assign a variable ci = 0 to each
Pi ∈ P

′. Similarly, we do a pre-order traversal on each Tk(u) from uk to traverse Gk(u). For uk, we reassign
Guk ’s locations to the copy of Guk on G′. For every other node, we compute the distance d(Guk , v) for each
vertex v of the block; if v is not an open vertex, then we reassign each location pi j at v to Guk on G′, and set
ci = ci + wi fi j · d(Guk , v).

The above O(mn)-time traversal generates a cycle G′ and a set P′ of n uncertain points each with at most
m locations on G′ and a constant ci. We can see that computing x∗ of P on G is equivalent to computing the
center of P′ on G′, which can be solved in O(mn log mn) time by Theorem 1.

Hence, the lemma holds. ⊓⊔

Now we are ready to present our algorithm that performs a recursive search on T to locate the node, i.e.,
the block on G, that contains center x∗. Once the node is found, Lemma 4 is then applied to find center x∗ in
O(mn log mn) time.

On the tree, a node is called a centroid if every split subtree of this node has no more than half nodes, and
the centroid can be found in O(|T|) time by a traversal on the tree [15, 18].

We first compute the centroid c of T in O(|T|) time. If c is a hinge node, then we apply Corollary 3 to
c, which takes O(mn) time. If x∗ is on c, we then immediately return its hinge Gc on G as x∗; otherwise, we
obtain a split subtree of c on T representing the hanging subgraph of hinge Gc on G that contains x∗.

On the other hand, c is a block node. We then solve the center-detecting problem for c that is to decide
which split subtree of c’s H-subtree TH

c on T contains x∗, that is, determine which hanging subgraph of block
Gc contains x∗. As we shall present in Section 4.1, the center-detecting problem can be solved in O(mn) time.
It follows that x∗ is either on one of TH

c ’s split subtrees or TH
c . In the later case, since Gc is represented by TH

c ,
we can apply Lemma 4 to c so that the center x∗ can be obtained in O(mn log mn) time.

In general, we obtain a subtree T′ that contains center x∗. The size of T′ is no more than half of T. Further,
we continue to perform the above procedure recursively on the obtained T′. Similarly, we compute the
centroid c of T′ in O(|T′|) time; we then determine in O(mn) time whether x∗ is on node c, and otherwise,
find the subtree of T′ containing x∗ but of size at most |T′|/2.

As analyzed above, each recursive step takes O(mn) time. After O(log mn) recursive steps, we obtain one
node on T that is known to contain center x∗. At this moment, we apply Lemma 4 to this node to compute x∗

in O(mn log mn) time. Therefore, the vertex-constrained one-center problem can be solved in O(mn log mn)
time.

9

Recall that in the general case, locations of P could be anywhere on the given cactus graph rather than
only at vertices. To solve the general one-center problem, we first reduce the given general instance to a
vertex-constrained instance by Lemma 5, and then apply our above algorithm to compute the center. The
proof for Lemma 5 is presented in Section 5.

Lemma 5. The general case of the one-center problem can be reduced to a vertex-constrained case in O(|G| + mn)
time.

Theorem 2. The one-center problem of n uncertain points on cactus graphs can be solved in O(|G| + mn log mn)
time.

4.1 The Center-Detecting Problem

Given any block node u on T, the center-detecting problem is to determine which split subtree of u’s H-
subtree TH

u on T contains x∗, i.e., which hanging subgraph of block Gu contains x∗. If G is a tree, this problem
can be solved in O(mn) time [21]. Our problem is on cacti and a new approach is proposed below.

Let G1(u), · · · ,Gs(u) be all hanging subgraphs of block Gu on G. For each Gk(u), let vk be the hinge on Gk(u)
that connects its vertices with G/Gk(u). G1(u), · · · ,Gs(u) are represented by split subtrees T1(u), · · · ,Ts(u) of
TH

u on T, respectively.
Let u be the root of T. For each 1 ≤ k ≤ s, Tk(u) is rooted at a block node uk, and hinge vk is an (open)

vertex on block Guk . Additionally, the parent node of uk on T is the hinge node hk on TH
u that represents vk.

Note that hk might be ht for some 1 ≤ t ≠ k ≤ s. For all 1 ≤ k ≤ s, Tk(u), hk, and vk on block Guk can be obtained
in O(mn) time via traversing subtrees rooted at h1, · · · , hs.

For each 1 ≤ k ≤ s, there is a subset Pk of uncertain points so that each Pi ∈ Pk has its probability sum of
Gk(u)/{vk}, i.e., Tk(u), greater than 0.5. Clearly, Pi ∩ P j = ∅ holds for any 1 ≤ i ≠ j ≤ s.

Define τ(Gk(u)) = maxPi∈Pk Ed(Pi, vk). Let γ be the largest value of τ(Gk(u))’s for all 1 ≤ k ≤ s. We have the
following observation.

Observation 1 If τ(Gk(u)) < γ, then center x∗ cannot be on Gk(u)/{vk}; if τ(Gr(u)) = τ(Gt(u)) = γ for some
1 ≤ r ≠ t ≤ s, then center x∗ is on block Gu.

Proof. Let Gk(u) be such hanging subgraph of Gu with τ(Gk(u)) < γ. For each 1 ≤ r ≠ k ≤ s, by Lemma 2,
every uncertain point Pi ∈ Pr has Ed(Pi, x) ≥ Ed(Pi, vr) for any point x ∈ Gk(u). Additionally, τ(Gk(u)) < γ.
Hence, the dominant uncertain point at vk can not belong to Pk. By Corollary 1, center x∗ cannot be on
Gk(u)/{vk}.

Suppose there are two subgraphs Gr(u) and Gt(u) with τ(Gr(u)) = τ(Gt(u)) = γ. To prove that x∗ is on Gu,
it is sufficient to show that x∗ is on neither Gr(u)/vr nor Gt(u)/vt. There are the two cases to consider.

If vr ≠ vt, every Pi ∈ Pr has Ed(Pi, vr) < Ed(Pi, vt) in that Pi’s probability sum of Gr(u) is greater than 0.5.
Hence, the dominant uncertain point at vt cannot be in Pt, and likewise, the dominant uncertain point at vr
is not in Pr. It implies that if vr ≠ vt then x∗ is on neither Gr(u)/vr nor Gt(u)/vt.

Otherwise, vr is indeed vt. If the dominant uncertain points of vt are in neither Pr nor Pt, then x∗ cannot
be on Gr(u)/{vr} ∪ Gt(u)/{vt}. Otherwise, the objective value at vt is γ due to τ(Gr(u)) = τ(Gt(u)) = γ. Hence,
there are at least two dominant uncertain points at vt: one in Pr determining τ(Gr(u)) and the other in Pt
determining τ(Gt(u)). By Corollary 1, we have that x∗ is at vt, namely, x∗ is on neither Gr(u)/vr nor Gt(u)/vt.

The observation thus holds. ⊓⊔

Below, we first describe the approach for solving the center-detecting problem and then present how to
compute values τ(Gk(u)) for all 1 ≤ k ≤ s.

First, we compute γ = maxs
k=1 τ(Gk(u)) in O(s) time. We then determine in O(s) time if there exists only

one subgraph Gr(u) with τ(Gr(u)) = γ. If yes, then center x∗ is on either Gr(u) or Gu. Their only common
vertex is vr, and vr and its corresponding hinge hr on T are known in O(1) time. For this case, we further
apply Corollary 3 to hr on T. If x∗ is at vr then we immediately return hinge vr on G as the center; otherwise,
we obtain the subtree on T that represents the one containing x∗ among Gr(u) and Gu, and return it.

10

On the other hand, there exist at least two subgraphs, e.g., Gr(u) and Gt(u), so that τ(Gr(u)) = τ(Gt(u)) = γ
for 1 ≤ r ≠ t ≤ s. By Observation 1, x∗ is on Gu and thereby node u on T is returned. Due to s ≤ mn, we can
see that all the above operations can be carried out in O(mn) time.

To solve the center-detecting problem, it remains to compute τ(Gk(u)) for all 1 ≤ k ≤ s. We first consider
the problem of computing the distance d(vk, x) for any given point x and any given vk on G. We have the
following result.

Lemma 6. With O(mn)-time preprocessing work, given any hinge vk and any point x on G, the distance d(vk, x) can
be known in constant time.

Proof. For each Gk(u) with 1 ≤ k ≤ s, as in Lemma 1, we do a pre-order traversal on Tk(u) starting from its
root uk to calculate the distance d(vk, v) from every vertex v on Gk(u) to vk, which can be done in O(mn) time.
Meanwhile, we associate every vertex v on Gk(u)/{vk}with node uk on T to indicate that v uniquely belongs
to Gk(u). All these can be done in O(mn) in total.

We proceed with traversing block Gu to compute its inter-vertex distances for all vertices on Gu. If u is a
graft node, we pick any vertex on Gu as its root r and then preform a pre-order traversal on Gu to compute
the distance of each vertex to r. Further, we construct the lowest common ancestor data structure [7, 12] on
Gu so that with O(|Gu|) preprocessing time and space, the lowest common ancestor of any two vertices on
Gu can be obtained in constant time.

Now, given are any two points y and z on Gu, and let vy (resp., vz) be the closest vertex to r that is adjacent
to y (resp., z). We first determine vy and vz in O(1) time so that distances d(y, r) and d(z, r) can be known
in O(1) time. We then compute the lowest common ancestor v′ of vy and vz by performing a constant-time
query on the data structure. Due to d(y, z) = d(y, r)+ d(z, r)− 2d(v′, r), d(y, z) can be derived in constant time.

Otherwise, u is a cycle node. In this situation, starting from any vertex r, we traverse Gu clockwise to
compute the clockwise distance of every vertex to r. For any points y and z on Gu, d(y, z), equal to the
minimum of their clockwise and counterclockwise distances, can be obtained in O(1) time.

We now consider the problem of computing d(vk, x) for any given vk and point x on G. Let (v, v′) be the
edge that contains x on G. Note that edge (v, v′) is either on Gr(u) for some 1 ≤ r ≤ s or on Gu. So, there are
only three cases to consider.

On the one hand, v and v′ are associated with the same node ur on T. Recall that hinge node hr is adjacent
to ur and u on T. It represents hinge vr on Gu, and vr is an open vertex on block Gur . So, edge (v, v′) is on
Gr(u)/vr. We first obtain hinge vr on G by ur in O(1) time. If vr is exactly vk, then d(vk, x) can be obtained in
O(1) time since d(v, vk) and d(v′, vk) have been calculated ahead. Otherwise, hinges vr and vk are on block Gu.
Since d(vr, x) and d(vr, vk) are obtained in O(1) time, d(vk, x), equal to their sum, can be known in constant
time.

If only one of v and v′, say v, is associated with a node ur on T, then edge (v, v′) is on Gr(u) and v′ is
exactly hinge vr on Gu. Either vr is not vk (but both are on Gu), or vr = vk. For either case, distance d(vk, x) can
be known in constant time.

Otherwise, edge (v, v′) is on Gu, i.e., neither of v and v′ are associated with any node on T. Clearly,
distance d(vk, x) can be known in constant time.

Therefore, the lemma holds. ⊓⊔

We now consider the problem of computing τ(Gk(u)) for each 1 ≤ k ≤ s, which is solved as follows.
First, we determine the subset Pk for each 1 ≤ k ≤ s: Create auxiliary arrays A[1 · · · n] initialized as zero

and B[1 · · · n] initialized as null. We do a pre-order traversal on Tk(u) from node uk to compute the probability
sum of each Pi on Gk(u)/vk. During the traversal, for each location pi j, we add fi j to A[i] and continue to
check if A[i] > 0.5. If yes, we set B[i] as uk, and otherwise, we continue our traversal on Tk(u). Once we are
done, we traverse Tk(u) again to reset A[i] = 0 for every location pi j on Tk(u). Clearly, B[i] = uk iff Pi ∈ Pk.
After traversing T1(u), · · · ,Ts(u) as the above, given any 1 ≤ i ≤ n, we can know to which subset Pi belongs
by accessing B[i].

To compute τ(Gk(u)) for each 1 ≤ k ≤ s, it suffices to compute Ed(Pi, vk) for each Pi ∈ Pk. In details, we
first create an array L[1 · · · n] to maintain values Ed(Pi, vk) of each Pi ∈ Pk for all 1 ≤ k ≤ s. We then traverse
G directly to compute values Ed(Pi, vk). During the traversal on G, for each location pi j, if B[i] is uk, then Pi

11

is in Pk. We continue to compute in constant time the distance d(pi j, vk) by Lemma 6, and then add value
wi · fi j · d(pi j, vk) to L[i]. It follows that in O(mn) time we can compute values Ed(Pi, vk) of each Pi ∈ Pk for all
1 ≤ k ≤ s.

With the above efforts, τ(Gk(u)) for all 1 ≤ k ≤ s can be computed by scanning L[1 · · · n]: Initialize each
τ(Gk(u)) as zero. For each L[i], supposing B[i] is uk, we set τ(Gk(u)) as the larger of τ(Gk(u)) and L[i]. Otherwise,
either L[i] = 0 or B[i] is null, and hence we continue our scan. These can be carried out in O(n) time.

In a summary, with O(mn)-preprocessing work, values τ(Gk(u)) for all 1 ≤ k ≤ s can be computed in
O(mn) time. Once values τ(Gk(u)) are known, as the above stated, the center-detecting problem for any given
block node u on T can be solved in O(mn) time. The following lemma is thus proved.

Lemma 7. Given any block node u on T, the center-detecting problem can be solved in O(mn) time.

5 Reducing the General Case to the Vertex-Constrained Case

In this section, we present how to reduce the general case to a vertex-constrained case. In the following, we
say that a vertex on G is empty if there are no locations at the vertex.

Let C be a cycle on G of only two hinges where all other vertices are empty. Denote by π the shorter path
on C between two hinges. If the length ofπ is l(C)/2, then letπ be any of their clockwise and counterclockwise
paths on C. The following observation helps reduce the size of G.

Observation 2 If center x∗ is on C, x∗ must be on π.

Proof. Since only two hinges are on C and all other vertices are empty, every empty non-hinge vertex on C
can be removed from C. On purpose of analysis, we assume that C contains only two hinges.

Suppose that π is the counterclockwise path between two hinges longer than their clockwise path. Join
the semicircular point of every hinge as a new vertex to C. Let {u1,u2,u3,u4} be their clockwise enumerations
starting from hinge u1. We thus have the following properties: u4 is the other hinge; u2 must be u4’s
semicircular point; u3 must be that of u1.

Removing C except for u1,u4 generates two disjoint subgraphs G1 and G4 where u1 is on G1 and u4 is
on G4 (and which are not hanging subgraphs of C). All mn locations of P are on G1 ∪ G4. Denote by P1 the
subset of all uncertain points in P each with its probability sum of G1 at least 0.5, and by P2 the subset of
uncertain points each with its probability sum of G4 at least 0.5. Hence, P1 ∪ P2 = P.

Let x be any point on C. Consider function Ed(Pi, x) of each Pi ∈ Pwith respect to x. It is easy to see that
each Ed(Pi, x) linearly increases as x moves clockwise from u1 to u2 along edge (u1,u2), and so does it as x
moves counterclockwise from u4 to u3 along edge (u4,u3). This means that the objective value at any point
of (u1,u2)/{u1} (resp., (u4,u3)/{u4}) is larger than that at u1 (resp., u4). Thus, center x∗ is on neither (u1,u2)/{u1}

nor (u4,u3)/{u4}.
What’s more, for each Pr ∈ P1, function Ed(Pr, x) monotonically increases from Ed(Pr,u2) to Ed(Pr,u3)

as x moves clockwise from u2 to u3 along edge (u2,u3). It monotonically increases as well from Ed(Pr,u1)
to Ed(Pr,u4) as x moves counterclockwise from u1 to u4 on edge (u1,u4), i.e., the path π. Importantly, the
increasing rate (slope) of Ed(Pr, x) for x on edge (u2,u3) is same as that of it for x on edge (u1,u4).

Consider function y = Ed(Pi, x) of each Pi ∈ P for x on both edges (u1,u4) and (u2,u3) in the x, y-coordinate
system. Let the two edges be on x-axis with both u1 and u2 at the origin. For each Pr ∈ P1, Ed(Pr, x) defines
a line segment for x ∈ [u2,u3] (resp., x ∈ [u1,u4]). The line segment of Ed(Pr, x) for x ∈ [u2,u3] is parallel to
that of Ed(Pr, x) for x ∈ [u1,u4]. Likewise, for each Pt ∈ P2, the line segment of Ed(Pt, x) for x ∈ [u2,u3] is
parallel to that of Ed(Pt, x) for x ∈ [u1,u4].

The local center ofP on edge (u2,u3) (resp., (u1,u4)) is decided by the lowest point on the upper envelope
of line segments by n functions y = Ed(Pi, x) for x ∈ [u2,u3] (resp., for x ∈ [u1,u4]) on x-axis. Extending
each line segment to a line. Because Ed(Pi,u1) < Ed(Pi,u2) and Ed(Pi,u4) < Ed(Pi,u3) for each Pi ∈ P. The
upper envelope of functions y = Ed(Pi, x) for x ∈ [u2,u3] is enclosed by that of functions y = Ed(Pi, x) for
x ∈ [u1,u4]. It implies that the local center of P on edge (u1,u4) is of a smaller objective value than that of P
on edge (u2,u3). Thus, center x∗ is not on edge (u2,u3) either.

12

Based on the above analysis, we have that center x∗ is not likely to be on the longer path between hinges
u1 and u4 except for themselves. Therefore, center x∗ is on the shorter path π of u1 and u4 on C.

It is possible that the clockwise and counterclockwise paths between two hinges on C are of same length.
In this situation, u2 must be at u1, and u3 must be at u4. Because no locations of P are on C/{u1,u4}. Every
point on the clockwise path from u1 to u4 can be matched to a point their counterclockwise path in terms
of the objective value, and vice versa. Recall that π is either one of the two paths. The above implies that
center x∗ is likely to be on π, and the other path can be removed from G.

Therefore, the observation holds. ⊓⊔

Now we consider the reduction from the general case where locations of P can be anywhere on cactus
G to a vertex-constrained case on a set P′ of n uncertain points and cactus G′ where all locations of P′ are
at vertices of G′ and every vertex on G′ holds at least one location.

At first, we perform a traversal on G to join a new vertex to G for every location interior of an edge on G.
Recall that all locations on any edge e of G are given sorted. Hence, these can be done in O(|G|+mn) time. At
this point, we obtain a cactus G1 whose size is at most (|G|+mn) and every location of P is at a vertex of G1.

Further, we perform a post-order traversal on G1 to process cycles. For every cycle C, we first determine
whether C has only one hinge and all other vertices on C are empty. If yes, then we remove C from G1 except
for that hinge since center x∗ is not likely to be on C except for that hinge. Otherwise, we check whether
C meets the condition that C has only two hinges but no locations are on its non-hinge vertices. If yes,
by Observation 2, the longer path of the two hinges on C can be removed. For this situation, we perform
another traversal on C to compute the shortest path length a of two hinges, remove C except for two hinges,
and finally connect the two hinges directly via an edge of length equal to a. Clearly, the above operations
can be carried out in O(|G| +mn) time and a cactus graph G2 is generated.

We proceed with performing another post-order traversal on G2 to further reduce the graph size. During
the traversal, we delete every empty vertex of degree 1; for each empty vertex of degree 2, we remove
it from G2 by merging its two incident edges. As a consequence, a cactus graph G3 is obtained after the
O(|G| +mn)-time traversal.

At this moment, every cycle with at most two hinges consists of non-hinge vertices, and each of them
holds locations of P. Every vertex of degree at most 2 holds locations of P. Hence, every empty vertex on
G3 is of degree at least 3. By these above properties, we have the following observation.

Observation 3 There are no more than 3mn empty vertices on G3.

Proof. Since every vertex of degree at most 2 on G3 is not empty, every empty vertex is either a G-vertex or
a hinge. Denote by X the number of empty vertices on G3. X is thus bounded by the number XG of empty
G-vertices plus the number XH of hinges on G3.

For the purpose of analysis, we construct a tree T′ from G3 as follows: For every cycle C on G3, we
replace C by a new vertex v, connect v with C’s adjacent vertices (hinges) on G3, and reassign locations of
P at C’s non-hinge vertices to v. Additionally, we remove empty hinges of degree 2 by connecting its two
adjacent vertices; note that the number of hinges we removed is no more than the number of cycles. Because
every cycle on G3 with at most two hinges must contain non-empty non-hinge vertex. On T′, every vertex
of degree at most 2 is not empty. Since there are at most mn locations on T′, there are at most mn vertices of
degree at most 2 on T‘. It means the number of vertices of degree at least 3 is no more than mn. Thus, we
have XG ≤ mn.

Moreover, the above analysis implies that the size of T′ is no more than 2mn. Because the total number
of hinges on G3, i.e., XH, is less than the total number of cycles and G-vertices. Thus, we have XH ≤ 2mn.

Therefore, the observation holds. ⊓⊔

Observation 3 implies |G3| ≤ 4mn. Let G′ be G3 and denote by V′ the set of empty vertices on G′. Initialize
P
′ as P. We below assign new locations for each Pi ∈ P

′ to construct a vertex-constrained case on cactus G′

and P′.
First, we compute V′ by traversing G′ in O(mn) time. We then create new locations for every uncertain

point of P′. Suppose we are about to process Pi of P′. Pick any 3m (empty) vertices from V′; then create 3m

13

additional locations each with the probability of zero for Pi; assign each of them to one of the 3m vertices;
finally, remove these 3m vertices from V′. We perform the same operations for uncertain points ofP′ until V′

is empty. Now, every vertex on G′ holds at least one location. Additionally, we obtain a set P′ of n uncertain
points where each uncertain point Pi has at most 4m locations on G′, and its each location is at a vertex on
G′.

Clearly, with O(|G| + mn)-time construction, we obtain a vertex-constrained case for P′ on G′. It is not
difficult to see that solving the general case on G with respect to P is equivalent to solving this vertex-
constrained case on G′ with respect to P′, which can be solved by our algorithm in O(mn log mn) time.

6 Conclusion

In this paper, we consider the (weighted) one-center problem of n uncertain points on a cactus graph.
It is more challenging than the deterministic case [6] and the uncertain tree version [21] because of the
nonconvexity and the O(m) complexity of the expected distance function. We propose an O(|G|+mn log mn)
algorithm for this problem, which matches the O(|G| + n log n) result for the deterministic case [6]. Our
algorithm is a simple binary search on the skeleton T of G for the block of G containing the center. To
support the search, we, however, solve the center-detecting problem for any given tree subgraph or cycle
on a cactus. Our solution generalizes the method proposed for this problem on a tree [21] but still runs in
linear time. Moreover, an O(|G| + mn log mn) approach for the one-center problem on a cycle is proposed.
Our techniques are interesting in its own right and may find applications elsewhere.

References

1. Abam, M., de Berg, M., Farahzad, S., Mirsadeghi, M., Saghafian, M.: Preclustering algorithms for imprecise points.
Algorithmica 84, 1467–1489 (2022)

2. Agarwal, P., Matoušek, J.: Dynamic half-space range reporting and its applications. Algorithmica 13(4), 325–345
(1995)

3. Averbakh, I., Bereg, S.: Facility location problems with uncertainty on the plane. Discrete Optimization 2, 3–34 (2005)
4. Averbakh, I., Berman, O.: Minimax regret p-center location on a network with demand uncertainty. Location Science

5, 247–254 (1997)
5. Bai, C., Kang, L., Shan, E.: The connected p-center problem on cactus graphs. Theoretical Computer Science 749,

59–65 (2017)
6. Ben-Moshe, B., Bhattacharya, B., Shi, Q., Tamir, A.: Efficient algorithms for center problems in cactus networks.

Theoretical Computer Science 378(3), 237–252 (2007)
7. Bender, M., Farach-Colton, M.: The LCA problem revisited. In: Proc. of the 4th Latin American Symposium on

Theoretical Informatics. pp. 88–94 (2000)
8. Bhattacharya, B., Shi, Q.: Improved algorithms to network p-center location problems. Computational Geometry

47(2), 307–315 (2014)
9. Brodal, G., Jacob, R.: Dynamic planar convex hull. In: Proc. of the 43rd IEEE Symposium on Foundations of Computer

Science (FOCS). pp. 617–626 (2002)
10. Burkard, R., Krarup, J.: A linear algorithm for the pos/neg-weighted 1-median problem on cactus. Computing 60(3),

498–509 (1998)
11. Granot, D., Skorin-Kapov, D.: On some optimization problems on k-trees and partial k-trees. Discrete Applied

Mathematics 48(2), 129–145 (1994)
12. Harel, D., Tarjan, R.: Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing 13, 338–355

(1984)
13. Huang, L., Li, J.: Stochastic k-center and j-flat-center problems. In: Proc. of the 28th ACM-SIAM Symposium on

Discrete Algorithms (SODA). pp. 110–129 (2017)
14. Kachooei, H.A., Davoodi, M., Tayebi, D.: The p-center problem under uncertainty. In: Proc. of the 2nd Iranian

Conference on Computational Geometry. pp. 9–12 (2019)
15. Kariv, O., Hakimi, S.: An algorithmic approach to network location problems. I: The p-centers. SIAM Journal on

Applied Mathematics 37(3), 513–538 (1979)

14

16. Keikha, V., Aghamolaei, S., Mohades, A., Ghodsi, M.: Clustering geometrically-modeled points in the aggregated
uncertainty model. Fundamenta Informaticae 184, 205–231 (2021)

17. Lan, Y., Wang, Y., Suzuki, H.: A linear-time algorithm for solving the center problem on weighted cactus graphs.
Information Processing Letters 71(5), 205–212 (1999)

18. Megiddo, N.: Linear-time algorithms for linear programming in R3 and related problems. SIAM Journal on Com-
puting 12(4), 759–776 (1983)

19. Nguyen, Q., Zhang, J.: Line-constrained l∞ one-center problem on uncertain points. In: Proc. of the 3rd International
Conference on Advanced Information Science and System. pp. 72:1–5 (2021)

20. Wang, H., Zhang, J.: A note on computing the center of uncertain data on the real line. Operations Research Letters
44, 370–373 (2016)

21. Wang, H., Zhang, J.: Computing the center of uncertain points on tree networks. Algorithmica 78(1), 232–254 (2017)
22. Wang, H., Zhang, J.: Covering uncertain points on a tree. Algorithmica 81, 2346–2376 (2019)
23. Yen, W.: The connected p-center problem on block graphs with forbidden vertices. Theoretical Computer Science

426-427, 13–24 (2012)
24. Zmazek, B., Žerovnik, J.: The obnoxious center problem on weighted cactus graphs. Discrete Applied Mathematics

136(2), 377–386 (2004)

15

	Computing the Center of Uncertain Points on Cactus Graphs

