Controllers for Edge-Cloud Cyber-Physical Systems

Tingan Zhu*, Prateek Ganguli*, Arkaprava Gupta*, Shengjie Xu*,
Luigi Capogrosso’, Enrico Fraccaroli*f, Marco Cristani! Franco Fummi', and Samarjit Chakraborty*

*The University of North Carolina at Chapel Hill, USA

Abstract—Deep Neural Networks (DNNs) are now widely used
in Cyber-Physical Systems (CPSs), both for sensor data or percep-
tion processing and also as neural network controllers. However,
resource constraints often prevent a full local deployment of the
DNNs, e.g., on edge devices. Implementing them on the cloud, on
the other hand, is associated with large delays and large volumes
of data transfers. This has resulted in the emergence of Split
Computing (SC), where a part of the DNN is implemented on an
edge device and the rest in the cloud. However, how to design
control strategies with such a setup has not been sufficiently
investigated in the past. In this paper, we study controller design
strategies where state estimates from sensor data processed on
an edge device are combined with estimates obtained from the
cloud. While the former is associated with low delays, the state
estimates have higher errors or uncertainties. The estimates from
the cloud, obtained with larger DNNs, are, however, delayed. We
show that the problem of sizing the DNNs on the edge and the
cloud can be formulated as an optimization problem with the
goal of maximizing system safety.

Index Terms—Split Computing, Early Exit, Deep Neural Net-
works, Cyber-Physical Systems.

I. INTRODUCTION

The algorithmic core of most Cyber-Physical Systems
(CPSs) like autonomous cars or industrial production systems
comprises multiple feedback control loops [1]. Today, the sen-
sor data processing in such controllers is mainly implemented
as Deep Neural Networks (DNNs). The control strategy is
often also a Neural Network (NN) controller. Figure 1 illus-
trates such a setup. Here, the system to be controlled (called
a “plant” in control theory) is modeled as a set of differential
equations x = S(x, u), where the system’s state x is a vector
of state components [z1,...2,], S could be a non-linear
function. The control input u is a vector [uq, . . . Up)].

The state of the plant Plant
x(t) at any time ¢ needs G
to be inferred from the
system’s output y =
G(x,u), where G, like
S, is a function that
models the dynamics of
the plant. Based on the
inferred value X of the
state x, the controller
computes a control input u = £(X) and applies it to the plant
using an actuator, to enforce a desired behavior on it. In the
case of an autonomous vehicle, such a behavior might require
moving the vehicle from a location A to B while satisfying
safety properties like collision avoidance. In Figure 1, the
control strategy & is implemented using Machine Learning

Actuator (* ;(t) = Ax(t) + Bu(r)|) Sensor
y(t) = Cx(t) + Du(t) |
DNN-based -
sensor data processing fAMNLA!
NN controller

Y,
f u(t) —é%d

Controller

Figure 1: ML-enabled control.

TUniversity of Verona, Italy

(ML) as a NN controller. Further, the different components
Y1, - .., Y of the output y are read by different sensors such as
cameras, lidars, and radars in an autonomous vehicle. Figure 1
shows that the estimation X of the state x, that serves as an
input to the NN controller, is done using a DNN responsible
for sensor data processing. The input to such a DNN is the
different components ¥, ..., y; of y.

However, implementing such DNNs locally on edge devices
might not be possible due to resource constraints. A purely
local implementation might require a smaller NN architecture,
resulting in large uncertainties or errors in the state estimation.
In other words, |[x — X| would be large. On the other hand,
the DNNs could be implemented on the cloud, where there
are no resource constraints, thereby allowing larger DNNs
to be deployed. The state of the plant could then be more
accurately estimated, i.e., [x — X| would be small. However,
this would involve large volumes of data transfer from the local
sensors to the cloud, which, along with the time necessary for
computation or DNN inference, would result in large sensor-
to-actuator delays.

A potential solution

to the above problems g%
lies in Split Computing ég
(SC), where the DNN is ig
partitioned into “Head” ng

uncertain but faster
state estimates

Edge ML

or edge, and “Tail” or
cloud components. The
part of the DNN im-
plemented on an edge
device returns an in-
ference quickly, albeit
with potentially signif- Automation
icant uncertainty in the Figure 2: Edge-cloud CPS.
inference quality. The part of the DNN implemented on the
cloud returns a much higher quality inference but with a
significant delay (see Figure 2).

Industrial

Automotive

A. Contributions of this paper

While SC has been studied in the past, it is unclear how
should a control strategy be designed to simultaneously exploit
these two types of DNN inferences on the plant’s state
estimate. Further, as more resources are allocated to the edge
device, its inference quality improves. Similarly, the smaller
the DNN implemented on the cloud, its inference quality might
reduce, but its associated delay might also decrease. This raises
the question: What is the optimal DNN sizing (and resource
allocation) on the edge and on the cloud? Answering this

question requires the identification of an objective function to
be optimized. In this paper, we use the size of the reachable
state space of the closed-loop system as an objective junction.
Given an initial state (or a set of initial states), the reachable
state space at any time t is the set of all states that can
be reached by the plant & controller at time ¢. If the state
x of the system can be accurately estimated, then the size
of the reachable state space at any time ¢ will be less than
if uncertainty exists in the estimated state. In other words,
the higher the value of |x — X|, the more prominent will be
the set of potential states that may be reached. Similarly, the
variability in the time taken to infer X (the estimate of x)
will also impact the states that may be reached. Since a larger
reachable state space increases the chances that some unsafe
states may be reached, the size of the state space is considered
to be a common notion of safety. Other similar notions are
discussed in Section II.

In addition to the size of the reachable state space, we also
consider the magnitude of the control input as a metric to
optimize. In an electric vehicle, for example, the magnitude
of the control input might determine the size of a battery or
the maximum current that may be drawn from it. We show
that both the only cloud and the only edge solutions result in
larger reachable sets and a higher magnitude of the control
input u. SC, or the hybrid edge-cloud solution, improves both
metrics. However, changing the resource dimensioning and
NN sizing in this hybrid setting impacts the solution, showing
that this design space needs to be explored. Prompted by
these results, in Section VII, we discuss some potential
control strategy templates, whose optimization should be
studied as a part of future work.

Paper organization: The following section provides some
background on control theory and discusses two notions of
safety, one of which we pursue in this paper. Section III
provides a background on split or edge-cloud ML. This is
followed by a controller design strategy in Section IV to
exploit such an edge-cloud ML-based sensor data processing.
Section V reports our experimental results, showing the per-
formance of the only-edge, only-cloud, and two edge-cloud
setups. Related work is discussed in Section VI, followed by
some concluding remarks and an outline of potential future
work in Section VII.

II. CONTROL THEORY BACKGROUND

While the description of control systems in the earlier
section was very general, for the rest of the paper, we will
restrict ourselves to Linear Time-Invariant (LTI) systems and
use the standard state-space model, where the state of the
system is represented by a state vector z(t) € R™ and the
control input to the system by w(t) € R™. Using these
notations, the state-space model of a continuous, LTI system
is given by:

2(t) = Acx(t) + Beu(t) , (1

where A, € R™ "™ and B, € R™*"™ are matrices describing
the dynamics of the system. Feedback control is enabled when

u(t) is adjusted based on the current system state x(¢). It is
usually computed by a periodic real-time software task, which
requires discretizing the continuous state-space model with
a constant sampling period h. Assuming periodic sampling,
i.e., tg41 — ty = h, matrices A and B can be derived from
Equation (1) such that: z(tx41) = Ax(tx) + Bu(ty). We
denote x(ty) as x[k] and u(ty) as u[k] and obtain the discrete
model: z[k + 1] = Ax[k] + Bulk] . ()

In the simplest case, the control input u[k] is computed as:
ulk] = Kz[k], 3)

where K € R™*"™ is the feedback gain. Many methods exist
to design the feedback gain K with various stability, energy,
and complexity considerations. While we restrict ourselves to
LTI systems and controllers of the form in Equation (3) for
the ease of exposition and the simplicity of the reachability
analysis that is involved, the conclusions we draw also hold
for more complex systems and controllers.

A. System-level safety

Nominal trajectory
Safety pipe

As mentioned ear- 100
lier, we need an ob-
jective function to op-
timize while sizing the
edge and the cloud
DNNs. One possibility 0
is to use system-safety
as such an objective.
There are different pos-
sible notions of system
safety. One measure of
system-level safety is
the deviation of the closed-loop system’s trajectory in its
state space from its ideal trajectory or desired behavior. In
Figure 3, the ideal (or nominal) trajectory is the black line
in the state space, and a safety pipe is marked around this
nominal trajectory (the light blue region). Trajectories that stay
within this safety pipe over the entire time horizon of interest
are considered safe. The optimization goal, in this case, is
to size the edge and cloud DNNs and dimension edge and
cloud resources to minimize the deviation from the nominal
trajectory.

Another measure of
system-level safety, as
outlined in Section I, is
the size of the reach-
able set in the state
space. In Figure 4, the
system evolves from
the initial region (la-
beled 1 in the figure).
This is a 1 x 1 square in
the state space centered
around (10, 10). The reachable sets in the state space as time
progresses are marked as 2, 3,4, ...,20. Since the underlying

75

50

25

time (seconds)

X position
(meters) 2

y position (meters)

Figure 3: Safety: Deviation from ideal.

y position (meters)

X position (meters)

Figure 4: Safety: Reachability.

system (plant + controller) is stable, in the ideal case, with
no state estimation uncertainty, the system converges with the
passage of time. However, in the presence of state estimation
uncertainty, i.e., |[x —X| # 0, the uncertainty or error accumu-
lates over time and the size of the reachable set might be much
larger, as seen in Figure 4. In other words, smaller reachable
sets (e.g., when no errors are present) indicate that the states of
the system are more predictable; and larger reachable sets (e.g.,
when there are errors/uncertainties in perception processing)
indicate greater uncertainty in the system’s evolution.

III. EDGE-CLOUD ML & SPLIT COMPUTING

In this section we present a brief overview of split com-
puting or edge-cloud ML. Over the past decade, DNNs
have become highly efficient at solving complex problems,
leading to increased deployment on edge devices, referred
to as Local-only Computing (LoC). However, DNNs often
demand more computing power than resource-limited edge
devices can provide, requiring compression techniques that
lead to accuracy loss. Consequently, cloud-based Remote-
only Computing (RoC) is the more commonly used approach,
where data is sent to a server for processing, and inference
results are returned to the edge device. While RoC maintains
the highest model accuracy, network delays can be large.

As a compromise between the LoC and the RoC, recently
suggested SC frameworks divide a DNN between the edge and
the cloud, reducing latency and bandwidth demands. Early SC
implementations partitioned models at specific layers without
further modification to the models, while recent advances
attempt to optimize latency. This section examines these
approaches—LoC, RoC, and SC—in detail and explores appli-
cations of SC in resource-constrained systems, with particular
emphasis on the role of SC in enhancing performance and
safety in CPSs.

A. LoC, RoC, SC: A closer look

We refer to any architecture LoC, RoC, or SC, that uses a
DNN model, as M (-). It produces the inference output y from
an input x.

Local-only Computing (LoC): In LoC, all computations
are performed on the edge device, which fully executes M (x).
Its structure is depicted in Figure 5a. This approach minimizes
latency due to the proximity of the DNN to the sensor
but may not support large DNN models that require more
resources. To address this, lightweight models M(z), such
as MobileNetV3 [2], use techniques like depth-wise separable
convolutions for efficient processing. Recent advances in DNN
compression, including network pruning and quantization [3],
or knowledge distillation [4], further optimize edge model
efficiency, though with potential quality trade-offs.

Remote-only Computing (RoC): In RoC, the input z is
sent to the cloud where M(x) is processed. Its structure, along
with a plant and a controller, is depicted in Figure 5b. This
setup achieves high inference accuracy, thanks to the server’s
processing power, but incurs higher latency and bandwidth
usage due to data transmissions.

>

Edge
Inference

Controller <x—l

(a) With LoC, the edge device entirely executes the model inference.

Plant |—>

_i, Edge &
- =>

Cloud
Inference

—> Plant

u
[
- 1
- ——-—— - o ____ 1

Controller

(b) With RoC, the input is transferred to the cloud, where it is
processed, and the result is then sent back to the edge device.

—> Plant 2, Edge Cloud
Inference - -> Inference
u Head Tail
X :
L—— Controller «----=-=-==-=—-—-—-—-—-—---- !

(c) With SC, the computation is split between edge and cloud.
Transmission bandwidth is reduced by using an encoder and decoder
to compress data.

>

—> Plant N Edge Cloud
Inference - -> Inference
u2 | uq Head Tail
2 , !
L= Controller [$o------_%2________!

(d) When combining SC and early-exit, the computation is split
between the edge and the cloud; however, we have intermediate
branches, producing an estimate x; of the final inference 2.

Figure 5: Different learning-enabled CPS architectures.

Split Computing (SC): As illustrated in Figure 5c, SC
divides the DNN into a “head”, processed on the edge device,
and a “tail”, processed remotely on the cloud. SC combines
the advantages of LoC and RoC by reducing the latency
and bandwidth needs, often using an auto-encoder for data
compression before transmission [5]. In this paradigm, the
encoder function z; = F(x) runs on the edge device, and a
decoder function Z = G(z;) runs on the server, with encoding
performance defined by the distance d(z, Z).

Early SC studies like [6] suggested that initial DNN layers
are ideal split points for balancing latency and energy use.
Advanced methods, such as quantization [7], predefined spar-
sity [8], and lossy compression [9], can also be combined to
further improve performance. For efficiency, lossless encoding
techniques like those in [10] and auto-encoder-based compres-
sion [11] have also been explored.

Methods for selecting split points have evolved from
architecture-based approaches to more refined neuron-based
techniques. Architecture-based methods, such as those in [12],
identify split points at layers where the network size decreases,
assuming that compression at these points is more efficient due
to reduced computational complexity. Indeed, neuron-based
techniques assess the importance of individual neurons, as
shown in [13], [14], by analyzing neuron gradients in relation
to decision accuracy. Optimal split points are thus placed after

layers containing highly influential neurons to preserve critical
information until then. Advanced learning techniques, such as
Multi-Task Learning (MTL), are also being adapted to SC
scenarios to allow concurrent task processing and improve
model generalization [15]. By incorporating MTL into SC,
these designs manage multiple learning tasks simultaneously,
shifting the focus from single-task learning and achieving
better performances for the main learning task.

B. Implementing Split Computing in Cyber-Physical Systems

We now examine how SC partitions can influence the
performance of a feedback controller [16]. Figure 5a presents
a basic scenario where the entire DNN is deployed locally on
an embedded system. In this case, the limited computational
power of the embedded platform constrains the DNN size,
affecting its accuracy in classification or estimation tasks.
A higher estimation error results in a larger reachable set,
compromising system safety.

Figure 5c also shows a typical SC architecture where initial
inference occurs on a local embedded platform, while further
inference runs on a cloud server. Cloud resources allow for a
larger DNN and higher inference accuracy, thereby reducing
state estimation error compared to full local “compressed”
computation. However, this setup introduces additional sensor-
to-actuator delay due to communication with the cloud. Data
loss may also occur depending on the network protocol, which
impacts the reachable set size and, consequently, system safety.

Finally, Figure 5d depicts an early-exit scenario where
sufficient inference accuracy on the local DNN triggers a
“local exit,” allowing the control input u; to be computed
using a state estimate x;. This approach reduces latency by
minimizing sensor-to-actuator delay. If the local inference
accuracy is insufficient, additional computation is conducted
on the cloud, and x, is additionally used by the controller to
compute a second control input us.

This paper aims to design a learning-enabled controller
suitable for use with a SC architecture. In this regard, it is
important to note that the DNN architecture with the highest
inference accuracy may not be the best for maximizing safety
in SC configurations due to the sensor-to-actuator delay. This
observation highlights the need to carefully select split points
in SC for control systems design.

C. Example of Split Computing in Autonomous Vehicle

In this example, we explore the application of SC for real-
time pedestrian distance estimation within an autonomous
vehicle. This system uses a split DNN to analyze visual
data and estimate the distance to pedestrians in the vehicle’s
surroundings. The DNN is divided into two segments, referred
to as the “head” and “tail”, each running on a separate device.
This division enables efficient parallel processing, which helps
reduce computation time.

The following paragraphs detail each phase of real-time in-
ference in this split DNN architecture, from image acquisition
and data pre-processing, to distance estimation, carried out by
the model’s head and tail.

Step 1: Image Acquisition: The inference process begins
with continuous image acquisition, where the autonomous
vehicle’s camera captures frames at a consistent rate, typically
30 frames per second, to provide a real-time view of the
surroundings. Each captured frame is then preprocessed to
meet the neural network’s input requirements. This prepro-
cessing step may include resizing or cropping the frame to the
necessary dimensions and applying normalization techniques,
such as pixel intensity scaling, to standardize the input.

Step 2: Data Preprocessing: In this stage, the image
frames undergo preprocessing to prepare them for pedes-
trian detection and distance estimation. An object detection
model, such as YOLO [17], analyzes each frame to identify
pedestrians and generate bounding boxes around each detected
individual. These bounding boxes specify the location of each
pedestrian in the scene and serve as input for the subsequent
distance estimation network. After detection, the bounding
boxes are transmitted to the head part of the split model, which
resides on the same edge device, where they will be used for
pedestrian distance estimation.

Step 3: Head Computation: In this step, the head of the
split model processes the detected pedestrian regions within
the bounding boxes. The bounding box features are fed into
this network section, consisting of a series of feature extraction
layers designed to capture relevant information for distance
estimation. The head network transforms these features into an
intermediate representation, encoding essential details about
each detected pedestrian. This intermediate representation is
used for a quick but uncertain distance estimation and may be
used for a fast control action. But it is then transmitted to the
tail network for final processing and a more accurate distance
estimation.

Step 4: Tail Computation: The tail network completes
the distance estimation process upon receiving the intermediate
feature representation from the head network. This tail network
refines these features using fully connected or specialized
layers optimized for regression, mapping the data to precise
distance values. The final output is a scalar for each pedestrian,
representing the estimated distance, in meters, between the
vehicle and each detected individual. This distance information
is relayed to the vehicle’s navigation and safety system,
providing essential data for real-time decision-making and a
more refined final control action.

IV. CONTROLLER DESIGN FOR EDGE-CLOUD PLATFORMS

We finally propose a learning-enabled controller suitable
for use with a split computing architecture. In this setup,
sensor devices sense the environment, and a DNN uses the
output from these sensors to estimate one or more of the
state variables modeled by the state space. In addition to the
pedestrian example outlined earlier, another example is that of
a cruise controller in a autonomous car, where sensors such as
camera devices capture raw image data from the environment.
A DNN then processes this image data stream to estimate
values such as the distance between the ego car and the car
in front. The control input (such as the acceleration to be

applied) is then calculated based on this estimated distance
as produced by the DNN. Here, the system behavior depends
on how accurate is the estimation produced by the NN and
how quickly that estimation is available for calculation and,
thus, the application of the control input.

Since such control systems need to react quickly to changes
in the environment in which they have been deployed, there
must be a balance between the computation delays encoun-
tered in implementing the controller and the accuracy of its
learning-based components. A smaller NN will be able to
produce output for a given input quicker than a larger NN
at the cost of reduced accuracy of the estimated result. As
described in Section I, we, therefore, propose using a SC
architecture where a smaller NN is deployed on the edge
device, which produces quick estimates but is less accurate
than another, larger DNN deployed in the cloud. The controller
can then use the early (but inaccurate/uncertain) results to
calculate a control input based on the output from the edge
DNN while simultaneously querying the cloud DNN. When
the more accurate output from the cloud DNN is available, a
new control input is calculated and applied.

A. System setup

We have two DNNs: a smaller and less accurate NNg,
deployed on the edge device, and a larger, more accurate
NN¢, deployed on the cloud. We assume that the data a
sensor, available at the start of a control period, is sent as
input to both NNz and NN simultaneously. The output from
NNg is available earlier than that from NN because of the
larger size of NN¢ and the need to transmit the input to the
cloud and the results back to the edge device.

The plant receives three different control inputs within a
single sampling period: (i) the control input calculated on the
output from NN¢ from the previous sampling period is applied
until NNz produces its output using the sample obtained in the
current sampling period. (ii) The output of this less accurate
NNg is then used to calculate a control input that is applied
until (iii) the one from NN for the current sampling arrives,
which is used for calculating a more accurate control input,
and this cycle continues into the next time step. See Figure 6.

To design the controller based on such a system setup, we
use the computation delay encountered with the use of the
edge DNN, NNg. This delay, denoted as D.,, is the time
from the instant the input to the NN is available till the instant
the control input based on the output from this network is
ready. Similarly, D., is the equivalent delay associated with
the cloud DNN, NN . We also use the simplifying assumption
that both D., and D, are less than the sampling period h of
the discrete-time controller. If D., > h, the design of the
controller needs to be suitably modified. Again, see Figure 6
for a timeline of the different control inputs within a sampling
period. At each sampling point, t = k — 1,k, k + 1,..., the
state of the plant is sensed using different sensors as discussed
earlier. The control inputs calculated from the estimations
provided by NNy and NN are denoted as u; and wug, respec-

tively. The sampling period, h, as well as the delays incurred
by NN and NN are also marked as D, and D,, in Figure 6.

‘Ug[lf — 1]| ul[k} . UQ[IC] ‘
T r T T T T 1
k-1 k k+1
h HD—ClH h
>
D.,

Figure 6: Control inputs (i) us[k—1], (ii) w1 [k], and (iii) ua[k].

B. State-space model

Suppose that the plant has a state vector xz[k] € R"
and a control input u[k] € R™. The discrete states-space
representation of the closed-loop system is given by:

zlk + 1] = Az[k] + Bulk]. 4)

Now, we have two control inputs u;[k] and wus[k], with a
sampling period h. As outlined earlier, the applied control
inputs within the k to k 4 1-th sampling period (see Figure 6)
can be divided into three stages: In the first stage, from time
0 (the start of the k-th sampling period) to D.,, the system is
controlled by us[k — 1], derived from the states calculated by
NN in the previous or k — 1-th period. In the second stage,
from time D,, to D.,, control is provided by wui[k], based
on the states calculated by NNg in the k-th sampling period.
Finally, in the third stage, from time D., to h, the system
is controlled by wus[k], derived from the states calculated by
NN¢in the current or k-th period. By reconstructing the
model, the state of the plant at the (k + 1)-th time step is
updated as follows:

(L’[k + 1] = A{E[lﬂ] + Fl(Dcl s DCz)ul[k] + FQ(DCQ)’U,Q [k]
+F3(DC17DC2)U2[k - 1]7

where I'1(D.,, D.,), I'2(D.,), and I's(D.,, D.,) are given

by:
-D

De, SN
Fl(D(317D(!2):/ € SBdS,
0

h—D.,
Iy (D,,) :/ e*Bds,
0

h—Dey+De,
Fg(Dcl,DCQ):/ e*Bds.
h—De,

To transform this into a standard state-space model (as
in Equation (4)), we define a new augmented state z by
combining the state z with the control input us from the
previous period, and a new control input vector u consisting

of u; and us, as follows:

The new state-space equation is then represented as:

z[k + 1] = ®z[k] + Tulk],

ulk] = Kz[k],

where the system matrix ¢ and input matrix I" are defined as:

_[A Ty [y Iy
‘I)_[o 0]’ F_{o 1]'

C. Controller Design

We compute the control input by multiplying the state
vector z[k] by the gain matrix K, obtained using the Lin-
ear—Quadratic Regulator (LQR) method.

ulk] = Kz[k].

The LQR is a widely used method for designing optimal
state-feedback controllers. The goal of the LQR approach
is to compute a gain matrix K that minimizes a quadratic
cost function, balancing between minimizing system state
deviations and control effort. The cost function is defined as:

J =Y (2[k]"Qz[k] + u[k]" Ru[k])
k=0

where z[k] is the state vector, u[k] is the control input, @ is
the state cost matrix that penalizes deviations in the state, and
R is the control cost matrix that penalizes control effort. The
@ and R matrices can be customized to adjust the balance
between the cost of control effort and deviations.

To find the optimal gain matrix K, the LQR method solves
the discrete-time algebraic Riccati equation, given by:

P=3"pPd - o"PI(ITPT + R)"'TTPS + Q,

where ® and T' represent the system dynamics matrices in
the states-space model. Solving the above equation yields the
matrix P, which is then used to compute K as:

K = (TPl + R)"'T"Po.

Since z[k] € R™™ and u[k] € R*", K € R2mx(ntm),
its entries are given by the following:

kg Eaqy ka1, Koy Kuqg Eus
21 k122 T kﬂfzn kum kuzz U2m
K =
k2(2n1)1 k1(2m)2 a .k$(2m)n k“(2m)1 ku(2'm,)2 o 'ku(2m)m

We then introduce the uncertainty values of the edge and
the cloud DNNs. The uncertainty for NN is denoted by Ay,
and the uncertainty for NN¢ is denoted by Ay,. We then have:

[k:c11>‘11 kein, A1, kuyy kuy
kr21 >\1n+1 kzzn)‘lzn kuzl U2m
K= kw(m+1)1)‘21 o kz(7n+l)n Az, kU(m+1)1 e ku(m+1)m
T(m4+2)1 "\ 2n+1 TR (m42)n 220 PU(m42)1 T T MU 2ym
_kx(27n)1>\2(m71)n+1 T kx(Zm)n A2 ku(2m)l k“(zm)m i

In our new state z[k|, the original state of the system z[k]
is multiplied by the k,,; entries in the K matrix. As a result,
we introduce our uncertainty values only to the k., entries,
because our objective is solely to simulate the estimation error
in the system states.

V. EXPERIMENTAL RESULTS

We examine the effectiveness of the SC architecture by
computing the reachable states of the closed-loop system in
four different scenarios:

(a) Only edge computation: Only the edge DNN, NNg, is
used for estimating the plant state, which is then used to
compute the control input. The edge DNN has a lower
inference accuracy but also a lower latency than the cloud
DNN.

(b) Only cloud computation: Here, only the cloud DNN,
NN¢, is used for estimating the plant state, which is
then used to compute the control input. The cloud DNN
has a higher accuracy than the edge DNN, but also suffers
from increased latency due to having the input and output
be transmitted over a network instead of being processed
locally on the edge device itself.

(c) Split-computation (i.e., (a) + (b)): This is a naive com-
bination of scenarios (a) and (b). Both the edge and the
cloud DNNs send the processed sensor output as inputs
to their respective controllers. Since NNy has a lower
latency than NN, the estimation output from NNg is
available earlier than that of NN, which is used to
compute and apply an initial control input, u;. When the
more accurate output from NN¢ becomes available, we
compute and apply a control input usy for the rest of the
sampling period, h. Here, the delays and the accuracies
of NNz and NN¢, are assumed to be the same as those
in the two earlier scenarios (a) and (b).

(d) Split-computation with different resource distribution: In
contrast to the previous Scenario (c), here we consider the
case where both the DNNSs are used as before, and hence,
have the same inference errors. But the edge device is run
slower and the cloud device is run faster. Hence, D,, is
increased and D,, is decreased compared to the values in
Scenario (c). We show that this change or redistribution
of delays impacts both, the size of the reachable state
space and the magnitude of the maximum control input.
This implies that DNN sizing and edge-cloud resource
allocation needs to be appropriately done to optimize CPS
safety and performance.

For our experiments, we used the state-space model of an
F1Tenth [18] racing car. This model has two state variables:
and xo. The sensor processing for estimating the states z; and
9 used an edge-cloud based ML as outlined earlier. The con-
troller used a sampling period of h = 0.02 seconds. The state
estimation uncertainty values, A\; for the edge DNN NNg,
and Ao for the cloud DNN NN¢ were sampled from normal
distributions. For each of scenarios (a) — (d) listed above,
the evolution of the system was studied for 10 iterations.
In other words, control inputs with state estimations from

0 10 20 30 40 50 60 0 10 20 30 40 50 60
@ @
1 1

(a) Only edge DNN (b) Only cloud DNN

0 10 20 30 40 50 60 0 10 20 30 40 50 60
@ @
1 1

(d) (a) + (b) with different in-
ference delays

(c) Split-computation: (a) + (b)

Figure 7: Reachable sets for different edge-cloud partitions for sensor data processing.

NNz and NN were used to perform a reachability analysis
that obtained all possible trajectories (evolutions of z; and
x9) of the closed-loop system.

The normal distribution describing the uncertainty of
the output of the edge DNN was assumed to be
NE (@ = 0,0 = 0.3), and that of the cloud DNN was assumed
to be Mo (. = 0,0 = 0.2). We assumed that both the edge and
the cloud DNNs produce correct state estimates on an average,
but the standard deviation of the inferences of NN are higher
than those of NN .

Scenario max. 1 | max. T2
(a) Only edge DNN 51.10 229.94
(b) Only cloud DNN 28.05 106.28
(c) Split computation: naive (a) + (b) 22.65 89.06
(d) (a) + (b) with different resource allocation 20.33 73.65
Ideal behavior (zero delay & uncertainty) 19.15 58.96

Table I: Size of reachable state space for different scenarios.

To plot the reachable sets, we sampled 10,000 random
trajectories for each scenario, along with the trajectory result-
ing in the ideal case when the system states can be inferred
accurately, i.e., without any uncertainty, and the sensor-to-
actuator delay is zero, i.e., D., = 0. With the single initial
state of (0,0), the reachable set in this ideal case is a single
trajectory in the (z1,xzo state space. Figure 7 shows the
reachable sets obtained under different scenarios, along with
the ideal trajectory as a bold line. In Figure 7a, the size of the
reachable set (and hence the deviation from the ideal behavior)
is the highest since only the edge DNN with the highest
inference uncertainty is used. This reachable set reduces to that
depicted in Figure 7b because of the increased accuracy of the
cloud DNN. Here, the sensor-to-actuator delays of NNz and
NN were respectively assumed to be D., = 0.005 seconds
and D., = 0.015 seconds (the sampling period h = 0.02s).

Figure 7c shows the reachable state space for the scenario
where an early estimate is obtained from the edge DNN,
used to compute the control input u;, which is applied until
the output from the cloud DNN is available for computing
and applying control input us. We observe that the size of
the reachable set, in this case, is even smaller than that
in the previous scenarios where only one DNN was used
throughout the sampling period (here, D., and D., were the
same as before). This reachable set reduces further in size, and
the randomly sampled trajectories become close to the ideal

trajectory if the transition to the control input us is done even
earlier (i.e., when D., is changed from 0.0015 to 0.009), as
shown in Figure 7d. Table I shows the boundaries and hence
the sizes of the reachable sets for the four different scenarios. It
shows that Scenario (d) has the smallest reachable state space,
and is therefore best in terms of optimizing system safety.

Scenario max. uj
(a) Only edge computation 326.03
(b) Only cloud computation 54.99
(c) Split computation: naive (a) + (b) 141.27
(d) (a) + (b) with different resource allocation 31.05
Ideal behavior (zero delay & uncertainty) 27.19

Table II: Maximum control input u; in different scenarios.

Table II shows the maximum control input w; that was
necessary in each scenario. The edge DNN only scenario
requires the maximum control input/effort. The lower the
magnitude of the control input, the better it is, since this
translates to the size of the energy source required to power
the controller. Using the cloud-only solution requires a lower
control input, and also results in a smaller reachable state
space. Hence, a cloud-only DNN is strictly better than using
the edge DNN alone. Using a combination of edge and cloud
DNNs results in a higher maximum control input, but it
results in improving system safety, i.e., a smaller reachable
state space. However, by appropriately allocating resources
to the edge and the cloud, in particular, by reducing the
cloud inference latency, the maximum control input can be
significantly reduced, while additionally decreasing the size
of the reachable state space. This is shown in Scenario (d).

We did not explore the impact of adjusting the sizes of
the DNNs in addition to changing the resource allocation.
Doing so will further impact the results. But results we already
obtained show that edge-cloud based sensor data processing
using ML involves a large design space that needs to be
explored to be able to optimize system-level CPS performance.

VI. RELATED WORK

We already provided a brief introduction to split computing
in Section III. The other line of work closely related to
this paper is control/architecture co-design [19]-[21]. The
design of control algorithms is typically driven by simplistic
assumptions about the implementation architecture. These
might include assumptions on delay, numerical accuracy, or

the faithfulness of the translation of controller models to
software code. If the realities of a software implementation
are not accommodated in the controller model, model-level
verification and certification [22]-[24] results no longer carry
over to an implementation.

In practice, this is often addressed by progressively refining
the controller model with more implementation details while
simulating and testing [25] the system after each refinement
step [26], [27]. This is to ensure that the introduced refine-
ments continue to satisfy the same specifications used to
construct the controller model. However, such simulation and
testing is associated with significant overheads.

An alternative is to systematically explore all possible
implementation options, derive the timing and other relevant
properties associate with each such option, and incorporate
these in the design of the controller. Such co-design or co-
synthesis [28]-[30] — as opposed to designing the controller
and deciding on its implementation choices in isolation —
ensures that the safety and performance of the controller is
preserved in its implementation. Controller implementation
choices like task mapping, task scheduling, and communi-
cation message scheduling have been studied in [31]-[35].
Based on such implementation choices, methods to synthesize
controllers have been explored in [36]—[38].

The notion of system safety used in this paper is not entirely
new. The idea of allowing a safety pipe around an ideal
behavior was studied in [39]-[43]. This notion was exploited
to allow a scheduler to miss the deadlines of control tasks —
thereby resulting in the trajectory of the closed-loop system to
deviate from its nominal trajectory — but only to an extent that
ensured the behavior of the system to be constrained within
the safety pipe.

The verification problem of checking whether a schedule is
safe for a given set of controllers was addressed in [44], [45].
The other notion of system safety, viz., the size of the reachable
state space was used in [46] to identify optimal sizing of DNNs
on a shared graphics processing unit (GPU). Associating DNN
inference uncertainty to safe control of autonomous systems,
but in a different setup than what we addressed in this paper,
has also been studied [47].

While we considered inference delay and uncertainty in
sensor data processing, communication with the cloud over
a wireless medium also results in potential data loss, which
needs to be studied as a part of future work. The domain of
networked control systems [48]-[51] studies this problem of
designing control strategies that are robust to data loss over a
wireless network.

Similarly timing analysis of both wired and wireless com-
munication protocols [52]-[54] to design timing-aware con-
trollers is broadly related to our work in this paper. While we
assumed in this paper that computation and communication
delays are given, there are several techniques [55], [56] to
compute them in different setups, including where streaming
data is sent [57], [58]. Similarly, scheduling to meet specified
timing constraints in the context of CPS design has also been
extensively studied [59]-[63].

VII. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this paper we have explored the problem of controller
design in an edge-cloud split computing framework for ML-
enabled CPS. Our experiments show that by appropriately
splitting a DNN for perception processing between the edge
and the cloud, we can make use of the early (but uncertain)
state estimate from the edge DNN, followed by a late (but
accurate) state estimate from the cloud DNN. Such a controller
exhibits a smaller reachable state space (and is therefore more
safe) compared to other a edge-only or a cloud-only DNN.
By appropriately dimensioning the edge and cloud DNNs and
resources, the size of the reachable state space and the mag-
nitude of the necessary control input may be minimized. How
should this optimization problem be formulated and solved is
a part of future work. Finally, our problem formulation should
also be extended to incorporate cloud DNN inference latencies
that are more than one sampling period long.

ACKNOWLEDGMENTS

This work was supported by the US NSF grant 2038960
and the Marie Sklodowska-Curie grant No. 101109243. Zhu
and Ganguli made equal contributions to this paper.

REFERENCES

[1] S. Chakraborty et al., “Automotive cyber-physical systems: A tutorial
introduction,” IEEE Des. Test, vol. 33, no. 4, pp. 92-108, 2016.

[2] A. Howard et al., “Searching for MobileNetV3,” in International Con-
ference on Computer Vision (ICCV), 2019.

[3] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning
and Quantization for Deep Neural Network Acceleration: A Survey,”
Neurocomputing, vol. 461, pp. 370-403, 2021.

[4] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge Distillation: A
Survey,” International Journal of Computer Vision, vol. 129, no. 6, pp.
1789-1819, 2021.

[5] Y. Matsubara et al., “Distilled Split Deep Neural Networks for Edge-
Assisted Real-Time Systems,” in Workshop on Hot Topics in Video
Analytics and Intelligent Edges at Mobicom, 2019.

[6] Y. Kang et al., “Neurosurgeon: Collaborative Intelligence Between the
Cloud and Mobile Edge,” SIGPLAN Notices, vol. 52, no. 4, 2017.

[71 G. Li et al., “Auto-tuning Neural Network Quantization Framework
for Collaborative Inference Between the Cloud and Edge,” in Artificial
Neural Networks and Machine Learning (ICANN). Springer, 2018.

[8] L. Capogrosso et al., “Enhancing Split Computing and Early Exit
Applications through Predefined Sparsity,” in Forum on Specification
& Design Languages (FDL). 1EEE, 2024, pp. 1-8.

[9] H. Choi and I. V. Baji¢, “Deep Feature Compression for Collaborative

Object Detection,” in 25th International Conference on Image Process-

ing (ICIP). 1EEE, 2018.

D. Carra and G. Neglia, “DNN Split Computing: Quantization and Run-

Length Coding are Enough,” in Global Communications Conference

(GLOBECOM). 1EEE, 2023.

Y. Matsubara et al., “BottleFit: Learning Compressed Representations in

Deep Neural Networks for Effective and Efficient Split Computing,” in

International Symposium on a World of Wireless, Mobile and Multimedia

Networks (WoWMoM), 2022.

M. Sbai, M. R. U. Saputra, N. Trigoni, and A. Markham, “Cut, Distil

and Encode (CDE): Split Cloud-Edge Deep Inference,” in International

Conference on Sensing, Communication, and Networking (SECON).

IEEE, 2021.

F. Cunico et al., “I-SPLIT: Deep Network Interpretability for Split Com-

puting,” in International Conference on Pattern Recognition (ICPR).

IEEE, 2022.

L. Capogrosso et al., “Split-Et-Impera: A Framework for the Design of

Distributed Deep Learning Applications,” in International Symposium on

Design and Diagnostics of Electronic Circuits and Systems (DDECS).

IEEE, 2023.

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

L. Capogrosso, E. Fraccaroli, S. Chakraborty, F. Fummi, and M. Cristani,
“MTL-Split: Multi-Task Learning for Edge Devices using Split Com-
puting,” in Design Automation Conference (DAC), 2024.

L. Capogrosso et al., “Learning-enabled CPS for edge-cloud comput-
ing,” in 14th International Symposium on Industrial Embedded Systems
(SIES), 2024.

G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLO,” https://github.
com/ultralytics/ultralytics, accessed: Sep. 16 2024.

M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “FITENTH:
An Open-source Evaluation Environment for Continuous Control and
Reinforcement Learning,” in Proceedings of Machine Learning Research
(PMLR), vol. 123. PMLR, 2020, pp. 77-89.

D. Roy et al., “Multi-objective co-optimization of FlexRay-based dis-
tributed control systems,” in IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2016.

D. Goswami, R. Schneider, and S. Chakraborty, “Co-design of cyber-
physical systems via controllers with flexible delay constraints,” in /6th
Asia South Pacific Design Automation Conference (ASP-DAC), 2011.
D. Roy et al, “Semantics-preserving cosynthesis of cyber-physical
systems,” Proc. IEEE, 2018.

P. Kumar et al., “A hybrid approach to cyber-physical systems verifica-
tion,” in 49th Annual Design Automation Conference (DAC), 2012.

G. Georgakos et al., “Reliability challenges for electric vehicles: from
devices to architecture and systems software,” in 50th Annual Design
Automation Conference (DAC), 2013.

W. Chang and S. Chakraborty, “Resource-aware automotive control
systems design: A cyber-physical systems approach,” Found. Trends
Electron. Des. Autom., vol. 10, no. 4, pp. 249-369, 2016.

M. Broy et al., “Cross-layer analysis, testing and verification of automo-
tive control software,” in 11th International Conference on Embedded
Software, (EMSOFT), 2011.

G. Tibba et al., “Testing automotive embedded systems under X-in-
the-loop setups,” in 35th International Conference on Computer-Aided
Design (ICCAD), 2016.

J. Oetjens et al., “Safety evaluation of automotive electronics using
virtual prototypes: State of the art and research challenges,” in The 51st
Annual Design Automation Conference (DAC). ACM, 2014.

L. Zhang et al., “Task- and network-level schedule co-synthesis of
Ethernet-based time-triggered systems,” in /9th Asia and South Pacific
Design Automation Conference (ASP-DAC), 2014.

D. Roy et al., “Tool integration for automated synthesis of distributed
embedded controllers,” ACM Trans. Cyber Phys. Syst., 2022.

R. Schneider et al., “Constraint-driven synthesis and tool-support
for Flexray-based automotive control systems,” in 9th International
Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2011.

F. Sagstetter et al., “Schedule integration framework for time-triggered
automotive architectures,” in 51st Annual Design Automation Conference
(DAC), 2014.

D. Roy et al., “Goodspread: Criticality-aware static scheduling of CPS
with multi-qos resources,” in 41st [EEE Real-Time Systems Symposium
(RTSS), 2020.

S. Chakraborty and L. Thiele, “A new task model for streaming
applications and its schedulability analysis,” in Design, Automation and
Test in Europe Conference and Exposition (DATE), 2005.

M. Lukasiewycz et al., “Modular scheduling of distributed heteroge-
neous time-triggered automotive systems,” in 17th Asia and South Pacific
Design Automation Conference (ASP-DAC), 2012.

H. Voit et al., “Optimizing hierarchical schedules for improved control
performance,” in IEEE Fifth International Symposium on Industrial
Embedded Systems (SIES), 2010.

D. Goswami, R. Schneider, and S. Chakraborty, “Re-engineering cyber-
physical control applications for hybrid communication protocols,” in
Design, Automation and Test in Europe (DATE), 2011.

W. Chang et al., “OS-aware automotive controller design using non-
uniform sampling,” ACM Trans. Cyber Phys. Syst., vol. 2, no. 4, pp.
26:1-26:22, 2018.

D. Roy et al., “Tighter dimensioning of heterogeneous multi-resource
autonomous CPS with control performance guarantees,” in 56th Annual
Design Automation Conference (DAC), 2019.

C. Hobbs et al., “Safety analysis of embedded controllers under imple-
mentation platform timing uncertainties,” IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst., vol. 41, no. 11, pp. 4016-4027, 2022.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

B. Ghosh et al., “Statistical verification of autonomous system con-
trollers under timing uncertainties,” Real Time Syst., vol. 60, no. 1, pp.
108-149, 2024.

S. Xu et al., “Safety-aware implementation of control tasks via schedul-
ing with period boosting and compressing,” in 29th IEEE International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA), 2023.

S. Xu et al., “Safety-aware flexible schedule synthesis for cyber-physical
systems using weakly-hard constraints,” in 28th Asia and South Pacific
Design Automation Conference (ASP-DAC), 2023.

C. Hobbs et al., “Quantitative safety-driven co-synthesis of cyber-
physical system implementations,” in /5th ACM/IEEE International
Conference on Cyber-Physical Systems (ICCPS), 2024.

A. Yeolekar et al., “Checking scheduling-induced violations of control
safety properties,” in 20th International Symposium on Automated
Technology for Verification and Analysis (ATVA), ser. Lecture Notes in
Computer Science. Springer, 2022.

A. Yeolekar, R. Metta, and S. Chakraborty, “SMT-based control safety
property checking in cyber-physical systems under timing uncertainties,”
in 37th International Conference on VLSI Design and 23rd International
Conference on Embedded Systems (VLSID), 2024.

S. Xu et al., “Neural architecture sizing for autonomous systems,” in
15th ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS), 2024.

Z. Wang, C. Huang, Y. Wang, C. Hobbs, S. Chakraborty, and Q. Zhu,
“Bounding perception neural network uncertainty for safe control of au-
tonomous systems,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2021.

S. Ghosh et al., “Proactive feedback for networked CPS,” in 36th
ACM/SIGAPP Symposium on Applied Computing (SAC), 2021.

M. Balszun et al., “Effectively utilizing elastic resources in networked
control systems,” in 23rd IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA), 2017.
D. Goswami et al., “Characterizing feedback signal drop patterns in
formal verification of networked control systems,” in IEEE International
Symposium on Computer-Aided Control System Design (CACSD), 2013.
A. M. Annaswamy et al., “Arbitrated network control systems: A co-
design of control and platform for cyber-physical systems,” in Control of
Cyber-Physical Systems, ser. Lecture Notes in Control and Information
Sciences, D. C. Tarraf, Ed., vol. 449. Springer, 2013, pp. 339-356.
P. H. Kindt et al., “Energy modeling for the Bluetooth low energy
protocol,” ACM Trans. Embed. Comput. Syst., 2020.

P. H. Kindt et al., “Neighbor discovery latency in BLE-like protocols,”
IEEE Trans. Mob. Comput., vol. 17, no. 3, pp. 617-631, 2018.

P. H. Kindt et al., “Optimizing BLE-like neighbor discovery,” IEEE
Trans. Mob. Comput., vol. 21, no. 5, pp. 1779-1797, 2022.

E. Fraccaroli et al., “Timing predictability for SOME/IP-based service-
oriented automotive in-vehicle networks,” in Design, Automation & Test
in Europe Conference (DATE), 2023.

D. Roy et al., “Timing debugging for cyber-physical systems,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2021.
A. Maxiaguine et al., “Rate analysis for streaming applications with
on-chip buffer constraints,” in Asia South Pacific Design Automation
Conference (ASP-DAC), 2004.

Y. Liu, S. Chakraborty, and R. Marculescu, “Generalized rate analysis
for media-processing platforms,” in /12th IEEE Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA), 2006.
M. Lukasiewycz, S. Chakraborty, and P. Milbredt, “FlexRay switch
scheduling - A networking concept for electric vehicles,” in Design,
Automation and Test in Europe (DATE), 2011.

R. Schneider er al., “Optimized schedule synthesis under real-time
constraints for the dynamic segment of FlexRay,” in IEEE/IFIP 8th
International Conference on Embedded and Ubiquitous Computing
(EUC), 2010.

P. Mundhenk et al., “Policy-based message scheduling using FlexRay,”
in International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2014.

R. Schneider et al., “Quantifying notions of extensibility in FlexRay
schedule synthesis,” ACM Trans. Design Autom. Electr. Syst., vol. 19,
no. 4, pp. 32:1-32:37, 2014.

F. Sagstetter, M. Lukasiewycz, and S. Chakraborty, “Generalized asyn-
chronous time-triggered scheduling for FlexRay,” IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst., vol. 36, no. 2, pp. 214-226, 2017.

