
Incremental Topological Ordering and Cycle Detection with Predictions

Samuel McCauley
1

Benjamin Moseley
2

Aidin Niaparast
2

Shikha Singh
1

Abstract

This paper leverages the framework of algorithms-
with-predictions to design data structures for two
fundamental dynamic graph problems: incremen-
tal topological ordering and cycle detection. In
these problems, the input is a directed graph on
n nodes, and the m edges arrive one by one. The
data structure must maintain a topological order-
ing of the vertices at all times and detect if the
newly inserted edge creates a cycle. The theoret-
ically best worst-case algorithms for these prob-
lems have high update cost (polynomial in n and
m). In practice, greedy heuristics (that recompute
the solution from scratch each time) perform well
but can have high update cost in the worst case.
In this paper, we bridge this gap by leveraging
predictions to design a learned new data structure
for the problems. Our data structure guarantees
consistency, robustness, and smoothness with re-
spect to predictions—that is, it has the best possi-
ble running time under perfect predictions, never
performs worse than the best-known worst-case
methods, and its running time degrades smoothly
with the prediction error. Moreover, we demon-
strate empirically that predictions, learned from a
very small training dataset, are sufficient to pro-
vide significant speed-ups on real datasets.

1. Introduction

A recent line of research has focused on how learned predic-
tions can be used to enhance the running time of algorithms.
This novel approach, often referred to as warm starting, ini-
tializes an algorithm with a machine-learned starting state

1Department of Computer Science, Williams College,
Williamstown, MA 01267 USA 2Tepper School of Business,
Carnegie Mellon University, Pittsburgh, PA 15213 USA. Cor-
respondence to: Samuel McCauley <sam@cs.williams.edu>,
Benjamin Moseley <moseleyb@andrew.cmu.edu>, Aidin
Niaparast <aniapara@andrew.cmu.edu>, Shikha Singh
<shikha@cs.williams.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

to optimize efficiency on a new problem instance. This
starting state can significantly improve performance over
the conventional method of solving problems from scratch.

Warm starting algorithms with machine-learned predictions
can be viewed through the lens of beyond-worst-case anal-
ysis. While the predominant algorithmic paradigm for
decades has been to use worst-case analysis, warm starting
takes into account that real-world applications repeatedly
solve a problem on similar instances that share a common
underlying structure. Predictions about these input instances
can be used to the improve running time of future computa-
tions.

This new line of research, called algorithms with predictions
or learning-augmented algorithms, leverages predictions to
achieve strong guarantees–much like those achieved using
worst-case analysis—for warm-started algorithms. Under
this setting, the performance of the algorithm is measured
as a function of the prediction quality. This ensures that
the algorithm is robust to prediction inaccuracies and has
performance that interpolates smoothly between ideal and
worst-case guarantees with respect to predictions.

Recent proof-of-concept results have demonstrated the po-
tential to enhance the running time of offline algorithms.
The area was empirically initiated by Kraska et al. (2018).
Theoretically, Dinitz et al. (2021) were the first to provide a
theoretical framework for using warm-start to improve the
running time of the weighted bipartite matching problem.
Follow-up works include the application of learned predic-
tions to improve the efficiency of computing flows using
Ford-Fulkerson (Davies et al., 2023), shortest path compu-
tations using Bellman-Ford (Lattanzi et al., 2023), binary
search (Bai & Coester, 2023), convex optimization (Sakaue
& Oki, 2022) and maintaining a dynamic sorted array (Mc-
Cauley et al., 2023). These results showcase the promising
potential to harness predictions more broadly for algorith-
mic efficiency.

Data structures are one of the most fundamental algorith-
mic domains, forming the backbone of most computer sys-
tems and databases. Leveraging predictions to improve data
structure design remains a nascent research area. Empir-
ical investigations, initiated by Kraska et al. (2018) and
follow-ups such as Ferragina et al. (2021), demonstrate the
exciting potential of speeding up indexing data structures

1

Incremental Topological Ordering and Cycle Detection with Predictions

using machine learning. More recently (McCauley et al.,
2023) developed the first data structure in the new theo-
retical framework of algorithms with predictions. They
design a learned data structure to maintain a sorted array
efficiently under insertions (aka online list labeling). Since
then, two concurrent works (Brand et al., 2024) and (Hen-
zinger et al., 2024) show how to leverage predictions for
maintaining dynamic graphs for problems such as shortest
paths, reachability, and triangle detection via predictions for
the matrix-vector multiplication problem.

This paper focuses specifically on developing the area of
data structures for dynamic graph problems. We study the
fundamental problems of maintaining an incremental topo-

logical ordering of the nodes of a directed-acyclic graph
(DAG) and the related problem of incremental cycle de-

tection. In the problem, a set of n nodes V is given and
the edge set is initially empty. Over time, directed edges
arrive that are added to the graph. The algorithm must main-
tain a topological ordering of V at all times. A topological

ordering is a labeling L : V ! Z of the vertices V such
that L(v) < L(u) if there is a directed path from v to u. A
topological ordering exists if and only if the directed graph
is acyclic. Thus, if an edge is inserted that creates a cycle,
the data structure must report that a cycle has been detected,
after which the algorithm ends.

The goal is to design an online algorithm that has small total

update time for the m edge insertions. Offline, when all
edges are available a priori, the problem can be solved in
O(m) (linear time) by running Depth-First-Search (DFS).
A naive approach to the incremental problem is to use DFS
from scratch each time an edge arrives, giving O(m2) total
time. The goal is to design dynamic data structures that can
perform better than this naive approach.

Topological ordering and cycle detection are foundational
textbook problems on DAGs. Incremental maintenance of
DAGs is ubiquitous in database and scheduling applications
with dependencies between events (such as task scheduling,
network routing, and causal networks). Due to their wide
use, there has been substantial prior work on maintaining
incremental topological ordering in the worst case (without
predictions). Prior work can roughly be partitioned into the
cases where the underlying graph is sparse or dense. A line
of work (Bender et al., 2009; Haeupler et al., 2012; Bender
et al., 2015; Bernstein & Chechi, 2018; Bhattacharya &
Kulkarni, 2020) for sparse graphs led to (Bhattacharya &
Kulkarni, 2020) giving a randomized algorithm with total
update time eO(m4/3). The eO suppresses logarithmic factors.
For dense graphs, a line of work (Cohen et al., 2013; Bender
et al., 2015) has total update time eO(n2). These results
hold for both incremental topological ordering and cycle
detection. A recent breakthrough (Chen et al., 2023) uses
new techniques to improve the running time of incremental

cycle detection to O(m1+o(1)); their results do not extend
to topological ordering. At present there are no nontrivial
lower bounds for either problem, that is, it is not known if
there exists an algorithm with update time eO(m).

Despite the rich theoretical literature on the problem, there
is limited empirical evidence of their success (Ajwani et al.,
2008). As most practical data is non-worst-case, greedy
brute-force methods do well empirically (Baswana et al.,
2018). The algorithms-with-predictions framework is moti-
vated precisely by this disconnect between high-cost worst-
case methods and simple practical heuristics. The goal of
designing learned algorithms in this framework is to extract
beyond-worst-case performance on typical instances, while
being robust to bad predictions in the worst case.

More formally, in the algorithms-with-predictions frame-
work, an algorithm is (a) consistent if it matches the offline
optimal (or outperforms the worst case) under perfect predic-
tions, (b) robust if it is never worse than the best worst-case
algorithm under adversarial predictions, and (c) smooth if it
interpolates smoothly between these extremes. We call an
algorithm ideal if it is consistent, robust, and smooth.

In this paper, we initiate the study of how learned predic-
tions can be leveraged for incremental topological ordering.
We propose a coarse-grained prediction model and use it
to design a new ideal data structure for the problem; see
Section 1.1. Moreover, we present a practical learned DFS
algorithm and our experiments show that using even mildly
accurate predictions leads to significant speedups. All our
results extend to incremental cycle detection. Our results
complement the concurrent theoretical work by (Brand et al.,
2024) on dynamic graph data structures; see Section 1.2.

1.1. Our Contributions

We first propose a prediction model for the problem and
then use it to formally describe our results.

Coarse Prediction Model. For the incremental topological
ordering problem, it is natural to consider predictions on the
nodes which give information about their relative ordering in
the final graph. Intuitively, a vertex is earlier in the ordering
if it has few ancestors and many descendants. For technical
reasons, instead of predicting the number of ancestor and
descendant vertices, we predict the number of ancestor and
descendant edges.1 More formally, for each vertex v, let
↵(v) be the total number of ancestor edges of v after all
edges arrive, and let �(v) be the number of descendant
edges. An edge (u,w) is an ancestor edge of v in there is a
directed path from w to v. The edge (u,w) is a descendent

edge of v if there is a directed path from v to u. At the
beginning of time, the algorithm is given predictions e↵(v)

1This is because the running time of the learned algorithm
depends on the number of edges traversed.

2

Incremental Topological Ordering and Cycle Detection with Predictions

and e�(v) for ↵(v) and �(v) for each vertex v. The error in
the prediction for vertex v is ⌘v = |↵(v)� e↵(v)|+ |�(v)�
e�(v)|. The overall prediction error of the input sequence is2

⌘ = maxv2V ⌘v .

We note that our prediction model predicts a small amount
of information about the input, in contrast to models that
predict the entire input sequence, e.g. (Brand et al., 2024;
Henzinger et al., 2024). In particular, predictions that pre-
dict the entire input are fine-grained—each possible input
sequence maps to a unique perfect prediction. Our predic-
tions are coarse-grained because there are many possible
input graphs that can map to a single perfect prediction.
Intuitively, the more coarse-grained the prediction, the more
robust it is to small changes in the input.

Ideal Learned Ordering. We present a new learned data
structure for the incremental topological ordering, called
Ideal Learned Ordering. This data structure has total update
time eO(min{n⌘ + m,m⌘1/3, n2

}). The data structure is
ideal with respect to predictions; in particular, it is:

• Consistent: If ⌘ = O(1), its performance matches (up
to logarithmic factors) the best possible running time
eO(m) of an offline optimal algorithm.

• Robust: For any ⌘  m, the total running time is
eO(min{m4/3, n2

}), and thus its performance is never
worse than the best-known worst-case algorithms (Ben-
der et al., 2015) and (Bhattacharya & Kulkarni, 2020).

• Smooth: For any intermediate error ⌘, the performance
smoothly interpolates as a function of ⌘ (and n and m),
between the above two extremes.

At a high level, the ideal learned ordering decomposes the
vertices into subproblems based on the predictions. On each
subproblem, it runs the best-known worst-case algorithm,
which is warm-started with the predictions.

Learned DFS Ordering and Empirical Results. In ad-
dition to the above ideal algorithm, we present a simple
practical data structure that essentially warm-starts depth-
first search using predictions. We call this the learned DFS

ordering (LDFS). This data structure has total update time
O(m⌘); thus each insert has running time O(⌘). We imple-
ment LDFS and our experiments show that with very little
training data, the predictions deliver excellent speed-ups. In
particular, we demonstrate on real time-series data that us-
ing only 5% of training data, LDFS explores over 36x fewer
vertices and edges than baselines, giving a 3.1x speedup
in running time. Moreover, its performance is extremely
robust to prediction errors; see Figure 1b.

2For simplicity, we assume throughout our analysis that ⌘ � 1;
this is to avoid ⌘ + 1 terms throughout our running times.

1.2. Related Work

Recently, (Brand et al., 2024) leverage predictions for dy-
namic graph data structures. They give a general result
for the online matrix-vector multiplication problem where
the matrix is given and a sequence of vectors arrive on-
line. They apply this to several dynamic graph problems
including cycle detection. Their data structure requires
O(n! + n

P
i2V

min{�i, n}) total time where �i is the er-
ror between when edge i arrives and when it is predicted
to arrive, and n! is the time to perform matrix multiplica-
tion. Their prediction is the entire input, that is, the online
sequence of vectors. The predictions used in this work are
more coarse-grained (only require a pair of numbers per
vertex), and thus are robust to small perturbations to the
input sequence. Moreover, their work is purely theoretical
and leaves open (a) how predictions can be leveraged for
maintaining topological ordering, and (b) how predictions
can be empirically leveraged for dynamic graph problems.
Our work addresses both and complements their findings.

Ideal Learned Ordering uses the best-known sparse algo-
rithm (Bhattacharya & Kulkarni, 2020) and the best-known
dense algorithm (Bender et al., 2015), referred to as BK and
BFGT throughout. We briefly summarize them; we refer to
the papers for more details.

The BFGT algorithm maintains levels `(u) for each vertex
u: these are underestimates of the total number of ancestors
of u in the final graph. The levels are initially set to 1.
On an edge insertion (x, y), if `(x) > `(y), they greedily
update levels to maintain a topological ordering. To improve
the efficiency, they update y’s level even if `(x)  `(y) if
a better underestimate of the number of ancestors of y is
available (based on its predecessors’ levels). The total time
for all insertions is bounded by eO(m+

P
v
`(v)). As `(v)

is at most the number of ancestors, their total running time
is eO(n2). In Section 4, we use predictions to ensure that
BFGT is run on subproblems containing vertices with O(⌘)
ancestors. Thus, the levels can only increase at most ⌘ times,
which leads to the total update time eO(m+ n⌘).

The BK algorithm (which is based on (Bernstein & Chechi,
2018)) also partitions the vertices into levels, but these are
based on their ancestors and descendants. It is a randomized
algorithm and initializes the vertex levels using sampling.
In particular, they use an internal parameter ⌧ where each
vertex v 2 V is sampled with probability ⇥(log n/⌧). A
vertex is in a level (i, j) if it has i ancestors and j descen-
dants among the sampled nodes. They bound the number
of possible ancestors and descendants of a vertex within
a level using the parameter ⌧ . In Section 4, we use their
algorithm as a blackbox with the exception that we set ⌧
using predictions. For the analysis, we give a tighter bound
of Phase I and II of their algorithm.

3

Incremental Topological Ordering and Cycle Detection with Predictions

1.3. Organization

Section 2 defines the model. Learned DFS Ordering is
presented in Section 3; which is generalized to the Ideal
Learned Ordering in Section 4. Finally, Section 5 presents
experimental results. For space, many proofs and further
experiments are deferred to the Appendices A and B.

2. Model and Definitions

Directed Graphs. Consider a directed graph G = (V,E)
with |V | = n and |E| = m. Let (u, v) 2 E denote a
directed edge from u to v. We say that a vertex v is an
ancestor of vertex w if there is a path from v to w in the
graph. We say w is a descendant of v if v is an ancestor of
w. A vertex is an ancestor and descendant of itself. We say
that an edge (u, v) is an ancestor edge of a vertex w if v is
an ancestor of w. Similarly, an edge (u, v) is a descendant

edge of a vertex w if u is a descendant of w. If (v, w) is an
edge then we say that v is a parent of w and w is a child of
v. A topological ordering of a directed acyclic graph (DAG)
G = (V,E) is a labeling L : V ! Z such that for every
edge (v, w) 2 E, we have L(v) < L(w).3 A directed graph
has a cycle if there exist vertices u and w that are mutually
reachable from each other: that is, u is both an ancestor and
descendant of w. A topological ordering of a directed graph
exists if and only if it is acyclic.

Incremental Graph Problems. In the incremental topolog-
ical ordering and cycle detection problems, initially, there
are n vertices V and no edges. The m edges from the set
E arrive one at a time and are inserted into the graph data
structure. Let Gt denote the graph after t edges have been
inserted (which we also refer to as time t). We assume that
after an edge is inserted, the graph continues to be acyclic.
If an edge insertion leads to a cycle, the algorithm must
report the cycle and terminate. Thus Gm denotes the final
graph (after the last edge insertion that does not create a
cycle).

The performance of the graph data structure is measured
as its total running time to perform all m edge insertions.
In Sections 3 and 4, we use the terms total cost and total

update time and total running time interchangeably. We use
the notation eO defined as eO(f(n)) = O(f(n) ·polylog(n)).

Prediction Model. In the incremental topological ordering
problem with predictions, the data structure additionally
obtains a prediction for each vertex v 2 V at the beginning.
Intuitively, this prediction helps the data structure initialize
the label of v to be closer to a feasible topological ordering.

For a vertex v, let ↵(v) be the total number of ancestor
3Such a topological ordering is also referred to as a weak topo-

logical ordering (Bender et al., 2015) as it does not require a total
ordering on the vertices.

edges of v in the final graph Gm. Analogously, let �(v) be
the total number of descendant edges of v in the final graph
Gm. The Learned-DFS Ordering in Section 3 receives a
prediction e↵(v) of ↵(v) for each vertex v.4 The prediction
error of a vertex v is ⌘v = |e↵(v)� ↵(v)|.

The Ideal Learned Ordering in Section 4 receives a
prediction e↵(v) of the number of ancestors ↵(v) and
e�(v) of the number of descendants �(v) respectively, for
each vertex v. The prediction error of the vertex v is
⌘v = |e↵(v)� ↵(v)|+ |e�(v)� �(v)|.

The overall error is ⌘ = maxv ⌘v throughout the paper.

3. Learned-DFS Ordering

In this section, we give a simple and easy-to-implement data
structure that achieves O(m⌘) total update time. We refer
to this algorithm as the Learned DFS Ordering (LDFS).

3.1. Algorithm Description

At all times, the algorithm maintains a level `(v) for each
vertex, which is a number from 0 to m. For each vertex v,
the algorithm maintains a linked list in(v) of v’s parents at
the same level (i.e. a linked list of all parents p of v with
`(p) = `(v)). Finally, to maintain a topological ordering,
the algorithm additionally maintains a (global) counter a,
and for each vertex v an integer j(v) 2 {1, . . . , nm+ 1}.

Initially, a = nm+1, and for each v, `(v) = e↵(v), in(v) =
{}, and j(v) = nm+ 1.

On insertion of an edge e = (u, v), if `(u) > `(v), set
`(v) `(u) and in(v) {u}. Then, do a forward search
from v to recursively update v’s descendants. That is, for
each child w of v, if `(v) > `(w), update `(w) and in(w)
and recurse. Report a cycle if one is found; otherwise cal-
culate a topological order Tf on all vertices whose levels
changed during this search.

Cycle detection. After the above update concludes, if
`(u) = `(v), do a reverse DFS starting at u (i.e. a DFS
where edges are followed backward) only following edges
in(u) from vertices at the same level. If this search visits
v, report a cycle. Otherwise, let Tb be a topological order
on the vertices visited during this DFS (e.g., Tb can be
computed by ordering vertices in the order of their DFS
finish times).

Topological ordering. The ordering imposed by the level
`(v) on the vertices is a pseudo-topological ordering (Ben-
der et al., 2015). Indeed, our algorithm can be viewed as a
simplification of the sparse algorithm in (Bender et al., 2015)

4Note that the algorithm also works if we instead receive a
prediction of the number of ancestor vertices of v. However, this
increases the running time to O(m⌘

m
n).

4

Incremental Topological Ordering and Cycle Detection with Predictions

with the addition that levels are initialized using predictions.

Bender et al. describe how to extend their ordering to a
topological order by breaking ties between vertices on a
level using the order in which they are traversed in the
reverse DFS. We use a similar technique here. Concatenate
Tb and Tf to create a single topological order T . If `(u) =
`(v) and j(u) � j(v), proceed through each vertex w 2 T
in reverse order. Set j(w) = a, then a = a� 1, and then set
w to the previous vertex in T .

We define the label of a vertex v to be L(v) = `(v)(nm+
2)+ j(v). The algorithm maintains the following invariants.

Invariant 3.1. For any edge e = (u, v) in the graph Gt at
time t, `(u)  `(v).

Invariant 3.2 ((Bender et al., 2015, Theorem 2.5)). At all
times, a 2 {1, . . . , nm+ 1}; furthermore, a is nonincreas-
ing over the entire run of the algorithm.

Invariant 3.3. At any time t and any vertex v, let At(v) be
the set of ancestors of v in Gt. Then, the level of v in Gt is
`(v) = maxa2At(v) e↵(a).

3.2. Analysis

The following proves that the algorithm is always correct.

Lemma 3.4. If the insertion of the last edge creates a cycle
in Gt, the simple learned algorithm correctly detects and
reports it. Furthermore, for any edge e = (u, v) in the
graph Gt at time t, L(u) < L(v).

We bound the running time by bounding the cost of the
forward search to update levels, and the reverse DFS within
a level to detect a cycle.

We first upper bound how big the levels can get using ⌘.

Lemma 3.5. Let `0 and `m denote the initial and final level
of any vertex v. Then, `m � `0  2⌘.

Proof. By Invariant 3.3, v has some ancestor u 2 Gm with
`m(v) = e↵(u). Since `0(v) = e↵(v) by definition, we have
that `m(v) � `0(v) = e↵(u) � e↵(v). Any ancestor of u is
also an ancestor of v, so ↵(v)� ↵(u) � 0. Thus,

`m(v)� `0(v) = e↵(u)� e↵(v)
 e↵(u)� e↵(v) + (↵(v)� ↵(u))

= (e↵(u)� ↵(u)) + (↵(v)� e↵(v))
 ⌘ + ⌘.

Lemma 3.5 is sufficient to bound the cost of all level updates
during the forward search.

Lemma 3.6. The total cost to update the levels of all ver-
tices is O(m⌘).

Proof. To obtain the total cost of updating the levels, note
that each time we update the level of a vertex v, the algo-
rithm recursively updates its children, and then checks each
of its parents to update in(v). This takes O(�(v)) time,
where �(v) is the sum of the outdegree and indegree of v.
Thus, using Lemma 3.5 the total cost of all level updates is

O

X

v

�(v) · (`m(v)� `0(v) + 1)

!
= O(m⌘)

To bound the cost of the reverse DFS on a level, we bound
the number of incoming edges on any level at any time.
Lemma 3.7. At any time, if a vertex v has k ancestor edges
on its level then ⌘ � k/2.

Now we can bound the cost of the reverse DFS. The algo-
rithm maintains incoming edges in(v) of v from vertices on
its level in a linked list. Performing the reverse DFS from v
thus has cost O(1 + at(v)), where at(v) is the number of
ancestor edges of v from vertices at level `(v) at time t. By
Lemma 3.7, at(v1)  ⌘ and thus the reverse DFS costs O(⌘)
for each insertion. Finally, combining with Lemma 3.6 and
the O(n) time for initialization, we get the following result.
Theorem 3.8. The Learned DFS Ordering solves the incre-
mental topological ordering and cycle detection problem
with predictions in total running time O(m⌘ + n).

4. Ideal Learned Ordering

In this section, we give an ideal learned data structure for the
incremental topological ordering and cycle detection prob-
lem with total update time eO(m + min{n⌘, n2,m⌘1/3})
for m edge insertions. We refer to this algorithm as Ideal

Learned Ordering.

The algorithm receives a prediction e↵(v) and e�(v) of the
number of ancestor and descendant edges of each vertex in
the final graph Gm. By definition, |e↵(v)� ↵(v)|  ⌘ and
|e�(v)� �(v)|  ⌘ for all v.

Prediction Decomposition. At a high level, the algorithm
decomposes the problem instance into smaller subproblems
based on each vertex’s prediction, and uses the state-of-the-
art worst-case algorithm on each subproblem based on the
instance’s sparsity. Recall that BK and BFGT refer to the
best-known sparse algorithm by (Bhattacharya & Kulkarni,
2020) and the best-known dense algorithm by (Bender et al.,
2015); see Section 1.2. Using a tighter analysis for these
algorithms under predictions, we then bound the running
time of each subproblem using the prediction error.

4.1. Algorithm Description

The algorithm maintains an estimate ⌘̂ which is an estimate
of the overall error ⌘ based on edges seen so far. It also

5

Incremental Topological Ordering and Cycle Detection with Predictions

maintains a level `(v) for each vertex, initialized using both
e↵(v) and e�(v). It maintains a pseudo-topological ordering
over these levels greedily. We decompose the initial set of
vertices V into a sequence of subproblems based on the
predictions for each vertex. When an edge e = (u, v) ar-
rives, it is treated as an edge insertion into each subproblem
that contains both u and v. The algorithm invokes the BK
or BFGT algorithm to perform this insertion and to assign
internal labels within each subproblem.

If an edge is inserted across subproblems that violates the
ordering over the levels, the algorithm updates its estimate
of ⌘̂ and rebuilds with an improved decomposition.

Algorithm setup. Let ⌘̂i be the value of ⌘̂ after i edges are
inserted. We begin with ⌘̂0 = 1.

We maintain a level `(v) for each vertex v. Each `(v) con-
sists of a pair of numbers: `(v) = (`a(v), `d(v)); we call
this the ancestor level and descendant level of v respec-
tively. The idea is that `a(v) and `d(v) are initialized using
the predicted ancestors and descendants of v respectively
and updated as edges are inserted.

At all times, the level `(v) has four possible values satisfying
the constraints below. These are referred to as the possible

levels for v.

`a(v) 2 {de↵(v)/⌘̂e, de↵(v)/⌘̂e+ 1}

`d(v) 2 {be�(v)/⌘̂c, be�(v)/⌘̂c � 1}

We maintain that for any edge e = (u, v), `a(u)  `a(v)
and `d(u) � `d(v).

At any time, the vertex set V is decomposed into subprob-

lems Hj,k, where the indices j, k 2 {0, . . . , dm/⌘̂ie + 1}.
Each subproblem H := Hj,k is a subgraph of Gt and rep-
resents an instance of the incremental topological ordering
problem (possibly at an intermediate state with some edges
already inserted). A vertex v can be part of at most four
subproblems, indexed by one of its possible levels:

H(v) = {Hj,k | (j, k) is a possible level of v}.

As each vertex is in at most four subproblems, the algorithm
maintains O(n) subproblems at any point; note that “empty”
subproblems are not maintained.

Initialization and Build. We first describe how to perform
a BUILD on a graph Gt; BUILD is called each time the
estimate ⌘̂ changes. At initialization, BUILD(G0) adds each
vertex v to the subproblems H(v). If a sequence of edge
insertions e1, . . . , et are such that tth insertion causes ⌘̂t to
be updated, then BUILD(Gt) first updates H(v) for each
v based on the updated value of ⌘̂t and adds v to H(v).
Then it calls INSERT(ei) for i 2 {1, . . . , t} using the insert
algorithm described next.

The insert algorithm uses a further subroutine BUILD-
BFGT(H), which is used to “switch” a subproblem from
the sparse case to the dense case. Let VH and EH be the
vertices and edges currently in H . BUILD-BFGT initializes
an instance of BFGT on vertices VH , and then inserts all
edges in EH one by one using BFGT.

Edge Insertion. On the insertion of the tth edge et, IN-
SERT(et) first recursively updates the ancestor and descen-
dant levels of v and u in Gt. That is, if `a(u) > `a(v), set
`a(v) = `a(u) and recurse on all out-edges of v. Similarly,
if `d(u) < `d(v), set `d(u) = `d(v) and recurse on all
in-edges of u. This maintains the following invariant.

Invariant 4.1. For any edge e = (u, v), `a(u)  `a(v) and
`d(u) � `d(v).

If for any vertex v, the updated value of `(v) is not one of
the possible levels of v, the algorithm doubles ⌘̂ (i.e. set
⌘̂i = 2⌘̂i�1) and calls BUILD on Gt.

Next, we describe how the algorithm inserts et into all
subproblems H 2 H(u) \ H(v) using the BK or BFGT
algorithm based on whether the subproblem is sparse or
dense. Without predictions, a graph is termed sparse if
m = o(n3/2) and dense otherwise. To determine if a sub-
problem with predictions is sparse or dense, the algorithm
takes error ⌘̂ into account. More formally, let n0 and m0

denote the number of vertices and edges in a subproblem H
prior to the insertion of et into H . Then:

• (Sparse) If m0 + 1 < n0⌘2/3, it inserts et to the sub-
problem H using BK;

• (Dense) if m0 > n0⌘2/3, it inserts et to subproblem H
using BFGT;

• (Sparse to dense transition) if m0 < n0⌘2/3 and
m0 + 1 > n0⌘2/3, it calls BUILD-BFGT(H) first, then
inserts et into H using BFGT.

We refer to the label within a subproblem assigned by the
BFGT or BK algorithm as an internal label of the vertex.

If after t edges are inserted (for any t) we have ⌘̂ > n and
t⌘̂1/3 > n2, the algorithm ignores all predictions and reverts
to using the worst-case BFGT. The algorithm creates a new
instance of BFGT using the vertices in Gt, and inserts all t
edges into this BFGT instance one by one. All future edges
are inserted into this BFGT instance.

Defining Labels. For any vertex v, let i(v) be the internal
label of v in subproblem H`(v). Let k be a positive integer
larger than the internal label of any node in a graph with n
vertices in either BFGT or BK (we note that both algorithms
maintain only nonnegative labels). Define the label L of v
as L(v) = k(`a(v) +m� `d(v)) + i(v).

6

Incremental Topological Ordering and Cycle Detection with Predictions

4.2. Analysis

We analyze the correctness and running time of Ideal
Learned Ordering.

Correctness. First, we show that if a cycle exists, then it is
correctly reported by the algorithm.

By Invariant 4.1, if the insertion of an edge creates a cycle,
all vertices in the cycle must have the same level `. The
algorithm maintains the invariant that at all times H`(v) 2

H(v), so all vertices and edges in the cycle must be in some
subproblem H and thus will be detected by BFGT or BK.

Lemma 4.2. For any edge e = (u, v) in Gt, L(u)  L(v).

Proof. If `a(u)+m� `d(u) < `a(v)+m� `d(v) then the
lemma holds since i(u) < k.

Otherwise, suppose `a(u)+m�`d(u) � `a(v)+m�`d(v).
By Invariant 4.1, `a(u)  `a(v) and m � `d(u)  m �
`d(v); thus we must have `(u) = `(v). Thus, i(u) and i(v)
are both assigned by BFGT or BK on H`(u). By correctness
of BFGT and BK, i(u) < i(v).

Running Time Analysis. We give an overview of the
running time analysis of Ideal Learned Ordering. Proofs are
deferred to Appendix A.

Lemma 4.3 bounds the number of ancestors and descendants
of a vertex within the graph of any subproblem.

Lemma 4.3. For any subproblem Hj,k and vertex v 2
Hj,k, v has at most 2(⌘̂ + ⌘) ancestor edges and 2(⌘̂ + ⌘)
descendant edges in Hj,k.

Lemma 4.4 shows that the estimate ⌘̂ maintained by the
algorithm is never more than 2⌘.

Lemma 4.4. At all times, ⌘̂  2⌘

Lemma 4.5 and Lemma 4.6 bound the cost of running BFGT
and BK any subproblem respectively.

Lemma 4.5. Consider a subproblem H with n0 vertices
and m0 edges that are inserted into H one by one. If each
vertex in H has at most O(⌘) edge ancestors, then the total
running time of running BFGT on H is eO(n0⌘ +m0) time.

Lemma 4.6. Consider a subproblem H with n0 nodes and
m0 edges, such that: (1) m0 < ⌘̂2n0/ log2 n0, (2) each
vertex in H has at most O(⌘) edge ancestors and O(⌘)
edge descendants, and (3) ⌘̂ = O(⌘). Then running BK
on H with parameter ⌧ = n1/3⌘̂2/3/m1/3 takes total time
eO(m0⌘1/3) in expectation.

Finally, Theorem 4.7 analyzes the total running time.

Theorem 4.7. Ideal Learned Ordering has total expected
running time eO(min{m⌘1/3, n⌘, n2

}).

5. Experiments

This section presents experimental results for the Learned
DFS Ordering (LDFS) described in Section 3. Our exper-
iments show that using prediction significantly speeds up
performance over baseline solutions on real temporal data.
Moreover, only a small amount of training dataset (e.g., 5%)
is sufficient to see one or two orders of magnitude of im-
provement. Finally, we show that LDFS is extremely robust
to errors in the predictions.

Our implementation and datasets can be found at
https://github.com/AidinNiaparast/

Learned-Topological-Order.

Algorithms. We compare LDFS against two natural base-
line solutions that we call DFS I and DFS II. Each of the
three algorithms use a greedy depth-first-search approach
to maintain a topological ordering, with the difference that
LDFS warm-starts its levels using predictions.

DFS I. The first algorithm is equivalent to LDFS with zero
predictions: that is, e↵(v) = 0 for each v.

DFS II. This algorithm was presented by (Marchetti-
Spaccamela et al., 1993) for incremental topological order-
ing and revisited by (Franciosa et al., 1997) for incremental
DFS. It has total update time O(mn). (Baswana et al., 2018)
perform an empirical study on incremental DFS algorithms
and show that DFS II (which they call FDFS) is the state-
of-the-art on DAGs. DFS II maintains exactly one vertex at
each level. When an edge (u, v) is inserted, if l(v) < l(u),
the algorithm performs a partial DFS to detect all the ver-
tices w reachable from v such that l(v) < l(w) < l(u), and
updates their levels to be larger than l(u).

We remark that the Ideal Learned Ordering algorithm is
of theoretical interest. Our experiments focus on the prac-
tical algorithm (LDFS) and on showing the usefulness of
predictions.

Datasets. We use real directed temporal networks from
the SNAP Large Network Dataset Collection (Leskovec &
Krevl, 2014). To obtain the final DAG G, we randomly
permute the vertices and only keep the edges that go from
smaller to larger positions (this ensures G is acyclic). Then,
we sort the edges in increasing order of their timestamps to
obtain the sequence of edge insertions. Table 1 summarizes
these datasets. Note that these graphs are sparse.

Predictions. To generate the predictions for LDFS, we use
a contiguous portion of the input sequence as the training set.
Consider the graph that results from inserting the training
set edges into an empty graph. For each node v, we define
e↵(v) to be the number of v’s ancestor edges in that graph.

Experimental Setup and Results. On real datasets, we
compare LDFS to DFS I and II in terms of the number

7

https://github.com/AidinNiaparast/Learned-Topological-Order
https://github.com/AidinNiaparast/Learned-Topological-Order

Incremental Topological Ordering and Cycle Detection with Predictions

of edges and vertices processed (cost) in Table 2a and in
terms of runtime in Table 2b. The last 50% of the data in
increasing order of the timestamps is used as the test data
in all of the experiments in Table 2. The training data for
LDFS is a contiguous subsequence of the data that comes
right before the test data.

We include plots for the email-Eu-core5 (Paranjape et al.,
2017) dataset, which contains the email communications
in a large European research institution. A directed edge
(u, v, t) in this dataset means that u has sent an e-mail to v
at time t. Figure 1a shows how the training data size affects
the runtime of LDFS. Figure 1b is a robustness experiment
showing performance versus the noise added to predictions.

For testing robustness to prediction error, we add noise to
the predictions. We first generate predictions as described.
Then, we calculate the standard deviation of the prediction
error, which we denote by SD(predictions). Finally, we
add a normal noise with mean 0 and standard deviation
SD(noise) = C· SD(predictions) (for some constant C) in-
dependently to all of the predictions to obtain our noisy
predictions. We repeat the experiment 10 times, each time
regenerating the noisy predictions; we plot the mean and
standard deviation of the resulting running time in Figure 1b.

Table 1. The number of nodes and edges in the real datasets from
SNAP. The input sequence has duplicate edges (referred to as
temporal edges). The length of the sequence is the number of
temporal edges. Static edges are the number of distinct edges.

Nodes Static Edges Temporal Edges

Email-Eu-core 918 12320 171617
CollegeMsg 1652 9790 27931

Math Overflow 14839 45267 53499

Discussion. Results in Table 2 demonstrate that, in all
cases, even a very basic prediction algorithm can signifi-
cantly enhance performance over the baselines. Only 5%
of historical data is needed to see a significant difference
between our methods’s performance and the baselines; in
some cases up to a factor of 36 in cost. Better predictions
obtained from 50% of historical data improve performance
further, up to a factor of 116. These experiments show that
it is possible to learn predictions that give significant per-
formance improvements from a small amount of training
data.

Finally, Figure 1b shows that LDFS is very robust to
bad predictions. For example, note that if SD(noise) �
2 · SD(predictions), then ⇡ 61% of the noisy predictions
have noise added to them that is at least SD(predictions)6—
thus, the relative value of the predictions becomes largely

5https://snap.stanford.edu/data/email-Eu-core-temporal.html
6In a normal distribution, ⇡ 61% of items are more than half a

standard deviation from the mean.

Table 2. Performance of LDFS against DFS I and II on the test
data, which is the last 50% of the dataset. Columns LDFS(5) and
LDFS(50) correspond to the performance of LDFS when 5% and
50% of the data are used for training, respectively. For the LDFS(5)
column, the initial 45 percent of the dataset remains unused, while
the data falling between the 45th and 50th percentiles is used as
the training data.

LDFS(5) LDFS(50) DFS I DFS II

Email-Eu-core 8.4e+3 2.6e+3 5.0e+5 3.1e+5
CollegeMsg 9.6e+3 5.4e+3 1.2e+5 6.8e+5

Math Overflow 4.4e+4 2.8e+4 2.8e+5 3.9e+7
(a) Cost (# nodes and edges processed)

LDFS(5) LDFS(50) DFS I DFS II

Email-Eu-core 0.071 0.078 0.274 0.226
CollegeMsg 0.021 0.016 0.101 0.336

Math Overflow 0.094 0.078 0.241 18.373
(b) Running Time (s)

random for many items. Since the LDFS algorithm’s perfor-
mance only depends on how predictions for different nodes
relate to each other (not their value), this represents a signif-
icant amount of noise, effectively nullifying the predictions
of many nodes. Nonetheless, LDFS still outperforms the
baselines even for this extreme stress test. Moreover, in-
creasing the noise degrades the performance confirming that
the efficiency does depend on the quality of predictions.

In Appendix B, we include additional plots for the datasets
in Table 1. We also investigate the effect of edge density
on performance for synthetic DAGs. These experiments
further support our conclusions; in particular, even for very
dense DAGs, our algorithm still outperforms the baselines,
although with smaller margins.

6. Conclusion

This paper gave the first dynamic graph data structure that
leverages predictions to maintain an incremental topological
ordering. We show that the data structure is ideal: that is, it
is consistent, robust, and smooth with respect to errors in
prediction. Thus, predictions deliver speedups on typical
instances while never performing worse than the state-of-
the-art worst case solutions. This paper is also the first
empirical evaluation of using predictions on dynamic graph
data structures. Our experiments show that the theory is
predictive of practice: predictions deliver up to 6x speedup
for LDFS compared to natural baselines.

Our results demonstrate the incredible potential for improv-
ing the theoretical and empirical efficiency of data structures
using predictions. It would be interesting to explore how
predictions can be leveraged for designing data structures

8

Incremental Topological Ordering and Cycle Detection with Predictions

(a)

(b)

Figure 1. Total cost (number of nodes and edges processed) of
LDFS compared to the two baselines for email-Eu-core dataset,
in logarithmic scale. In Figure 1a, the x-axis is the percentage of
the input sequence used as training data for LDFS. The training
data in this experiment is a contiguous subsequence of the data
that comes right before the test data. Figure 1b shows the effect of
adding noise to predictions on the cost of LDFS. In this experiment,
the first 5% of the input is used as the training data and the last
95% as the test data. For different values of C, a normal noise
with mean 0 and standard deviation (SD) of C·SD(predictions) is
independently added to each prediction. This noise is regenerated
10 times. The x-axis is SD(noise)/SD(predictions). The blue line
is the mean and the cloud around it is the SD of these experiments.

for other dynamic graph problems.

We remark that the Ideal Learned Ordering algorithm is of
theoretical interest and we did not implement it. Similarly,
the subroutines BK and BFGT used by the algorithm as a
black box are of theoretical interest and, as far as we are
aware, have not been empirically evaluated. We leave it as
an open question how to engineer these algorithms to work
well in practice.

Acknowledgements

Samuel McCauley was supported in part by NSF CCF
2103813. Ben Moseley was supported in part by a Google
Research Award, Inform Research Award, Carnegie Bosch
Junior Faculty Chair, NSF grants CCF-2121744, CCF-
1845146, and ONR Award N000142212702. Aidin Nia-
parast was supported in part by U. S. Office of Naval Re-
search under award number N00014-21-1-2243 and the Air
Force Office of Scientific Research under award number

FA9550-20-1-0080. Shikha Singh was supported in part by
NSF CCF 1947789.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning and Algorithms. There are many po-
tential societal consequences of our work, none which we
feel must be specifically highlighted here.

References

Ajwani, D., Friedrich, T., and Meyer, U. An O(n2.75) algo-
rithm for incremental topological ordering. ACM Trans-
actions on Algorithms (TALG), 4(4):1–14, 2008.

Bai, X. and Coester, C. Sorting with predictions. In Oh,
A., Naumann, T., Globerson, A., Saenko, K., Hardt, M.,
and Levine, S. (eds.), Proc. 37th Conference on Advances
in Neural Information Processing Systems (NeurIPS),
volume 36, pp. 26563–26584. Curran Associates, Inc.,
2023.

Baswana, S., Goel, A., and Khan, S. Incremental dfs algo-
rithms: a theoretical and experimental study. In Proc. 29th
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 53–72. SIAM, 2018.

Bender, M. A., Fineman, J. T., and Gilbert, S. A new ap-
proach to incremental topological ordering. In Proc. 20th
ACM-SIAM Symposium on Discrete algorithms (SODA),
pp. 1108–1115. SIAM, 2009.

Bender, M. A., Fineman, J. T., Gilbert, S., and Tarjan,
R. E. A new approach to incremental cycle detection
and related problems. ACM Transactions on Algorithms
(TALG), 12(2):1–22, 2015.

Bernstein, A. and Chechi, S. Incremental topological sort
and cycle detection in eO(m

p
n) expected total time. In

Proc. 29th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 21–34. SIAM, 2018.

Bhattacharya, S. and Kulkarni, J. An improved algorithm
for incremental cycle detection and topological ordering
in sparse graphs. In Proc. 31st ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 2509–2521. SIAM,
2020.

Brand, J. v. d., Forster, S., Nazari, Y., and Polak, A. On
dynamic graph algorithms with predictions. In Proc. 35th
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 3534–3557. SIAM, 2024.

Chen, L., Kyng, R., Liu, Y. P., Meierhans, S., and Guten-
berg, M. P. Almost-linear time algorithms for incremen-
tal graphs: Cycle detection, sccs, s-t shortest path, and
minimum-cost flow, 2023.

9

Incremental Topological Ordering and Cycle Detection with Predictions

Cohen, E., Fiat, A., Kaplan, H., and Roditty, L. A la-
beling approach to incremental cycle detection. CoRR,
abs/1310.8381, 2013. URL http://arxiv.org/

abs/1310.8381.

Davies, S., Moseley, B., Vassilvitskii, S., and Wang,
Y. Predictive flows for faster ford-fulkerson. In
Krause, A., Brunskill, E., Cho, K., Engelhardt, B.,
Sabato, S., and Scarlett, J. (eds.), Proc. of the
40th International Conference on Machine Learn-
ing (ICML), volume 202 of Proceedings of Machine
Learning Research, pp. 7231–7248. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/davies23b.html.

Dinitz, M., Im, S., Lavastida, T., Moseley, B., and Vassil-
vitskii, S. Faster matchings via learned duals. In Ran-
zato, M., Beygelzimer, A., Dauphin, Y. N., Liang, P., and
Vaughan, J. W. (eds.), Proc. 34th Conference on Advances
in Neural Information Processing Systems (NeurIPS), pp.
10393–10406, 2021.

Ferragina, P., Lillo, F., and Vinciguerra, G. On the perfor-
mance of learned data structures. Theoretical Computer
Science (TCS), 871:107–120, 2021.

Franciosa, P. G., Gambosi, G., and Nanni, U. The incremen-
tal maintenance of a depth-first-search tree in directed
acyclic graphs. Information processing letters, 61(2):
113–120, 1997.

Haeupler, B., Kavitha, T., Mathew, R., Sen, S., and Tarjan,
R. E. Incremental cycle detection, topological ordering,
and strong component maintenance. ACM Transactions
on Algorithms (TALG), 8(1):1–33, 2012.

Henzinger, M., Lincoln, A., Saha, B., Seybold, M. P., and
Ye, C. On the complexity of algorithms with predictions
for dynamic graph problems. In Innovations in Theoreti-
cal Computer Science (ITCS), 2024.

Italiano, G. F. Amortized efficiency of a path retrieval data
structure. Theoretical Computer Science, 48:273–281,
1986.

Kraska, T., Beutel, A., Chi, E. H., Dean, J., and Poly-
zotis, N. The case for learned index structures. In
Das, G., Jermaine, C. M., and Bernstein, P. A. (eds.),

Proc. 44th Annual International Conference on Manage-
ment of Data, (SIGMOD), pp. 489–504. ACM, 2018.
doi: 10.1145/3183713.3196909. URL https://doi.

org/10.1145/3183713.3196909.

Lattanzi, S., Svensson, O., and Vassilvitskii, S. Speeding
up bellman ford via minimum violation permutations.
In Krause, A., Brunskill, E., Cho, K., Engelhardt, B.,
Sabato, S., and Scarlett, J. (eds.), International Confer-
ence on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pp. 18584–18598. PMLR,
2023. URL https://proceedings.mlr.press/
v202/lattanzi23a.html.

Leskovec, J. and Krevl, A. SNAP Datasets:
Stanford large network dataset collection.
http://snap.stanford.edu/data, June
2014.

Marchetti-Spaccamela, A., Nanni, U., and Rohnert, H. On-
line graph algorithms for incremental compilation. In
International Workshop on Graph-Theoretic Concepts in
Computer Science, pp. 70–86. Springer, 1993.

McCauley, S., Moseley, B., Niaparast, A., and Singh, S.
Online list labeling with predictions. In Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine,
S. (eds.), Proc. 36th Conference on Neural Information
Processing Systems (NeurIPS), volume 36, pp. 60278–
60290. Curran Associates, Inc., 2023.

Panzarasa, P., Opsahl, T., and Carley, K. M. Patterns and
dynamics of users’ behavior and interaction: Network
analysis of an online community. Journal of the American
Society for Information Science and Technology, 60(5):
911–932, 2009.

Paranjape, A., Benson, A. R., and Leskovec, J. Motifs in
temporal networks. In Proceedings of the tenth ACM
international conference on web search and data mining,
pp. 601–610, 2017.

Sakaue, S. and Oki, T. Discrete-convex-analysis-based
framework for warm-starting algorithms with predictions.
In 35th Conference on Neural Information Processing
Systems (NeurIPS), 2022.

10

http://arxiv.org/abs/1310.8381
http://arxiv.org/abs/1310.8381
https://proceedings.mlr.press/v202/davies23b.html
https://proceedings.mlr.press/v202/davies23b.html
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://proceedings.mlr.press/v202/lattanzi23a.html
https://proceedings.mlr.press/v202/lattanzi23a.html

Incremental Topological Ordering and Cycle Detection with Predictions

A. Omitted Proofs

Proof of Lemma 3.4. By Invariant 3.1, for any cycle C in the
graph, all vertices in C must at the same level. Each time
we add an edge e = (u, v), if `(u) = `(v), the algorithm
checks whether the addition of this edge creates a cycle
within that level through a reverse depth-first search.

Now, assume there is no cycle in Gt; we show that a weak
topological sort is maintained. A weak topological sort
is trivially maintained in G0, so assume inductively that
the algorithm correctly maintains a weak topological sort
in Gt�1. Consider an edge (u, v) 2 Gt. If `(u) < `(v),
then the label of u is less than the label of v since
j(u), j(v)  nm + 1. If `(u) = `(v), then we split into
cases based on if the label of u or v was changed during
the updates after the tth edge was inserted. If neither u
or v were updated, the labels continue to be a topological
ordering as in Gt�1. It is not possible that v is updated but
u is not: for any v visited during DFS, since `(u) = `(v),
u is also visited; for any v whose label is updated, u must
have a strictly larger label than any other parent of v. If u is
updated and v is not, then j(u) is set to a; since a decreases
each time some j(w) is set, we must have j(u) < j(v).
If both u and v are updated, u must come before v in T .
Again, since a decreases each time some j(w) is set, we
must have j(u) < j(v).

Proof of Lemma 3.7. Let A denote the set of all ancestors of
v at level `(v) at the current time. Consider the vertices in
A after all edges are inserted (in Gm): since Gm is acyclic,
there must be at least one vertex z 2 A such that no vertex
w 2 A has that w is an ancestor of z in Gm.

Since z is an ancestor of v, all ancestor edges of z are
ancestor edges of v. However by definition of z, an ancestor
edge of any w 2 A is never an ancestor edge of z. All k
ancestor edges of v on its level are ancestor edges of some
w 2 A. Therefore, ↵(v) � ↵(z) + k, so ↵(v)� ↵(z) � k.

As levels only increase `(v) � e↵(v). By Invariant 3.3,
`(v)  e↵(z); equivalently, �e↵(v) + e↵(z) � 0. Summing
the above two inequalities, we get

(↵(v)� e↵(v)) + (e↵(z)� ↵(z)) � k.

Thus, either ⌘v � k/2 or ⌘z � k/2.

Proof of Lemma 4.3. Let H refer to the subgraph Hj,k

after the last edge is inserted into it (thus, H includes edges
that are inserted in the future, whereas Hj,k does not). We
use ↵H(v) and �H(v) to denote the number of number of
ancestor and descendant edges of a vertex v in H .

Let u be an ancestor of v in H , such that no ancestor edge of
v in H is an ancestor edge of u in H . Such a u always exists
as H is acyclic and can be found by recursively following
in-edges of v.

By definition of u, all ancestor edges of u are ancestor edges
of v (in Gm); however, no ancestor edges of v in H are
ancestor edges of w (in Gm). Thus, ↵(v) � ↵(u) + ↵H(v),
so ↵(v)� ↵(u) � aH(v).

As both v and u are in Hj,k we can bound the difference
of their predictions using ⌘̂. That is, j � de↵(v)/⌘̂e, and
therefore j � e↵(v)/⌘̂. Similarly, j  de↵(u)/⌘̂e + 1, so
j  e↵(u)/⌘̂ + 2. Combining, e↵(u)/⌘̂ + 2 � e↵(v)/⌘̂, so
e↵(u)� e↵(v) � �2⌘̂.

Summing the two above equations, we obtain that

(↵(v)� e↵(v)) + (e↵(u)� ↵(u)) � aH(v)� 2⌘̂

By the definition, ↵(v)� e↵(v)  ⌘ and e↵(u)� ↵(u)  ⌘.
Substituting, aH(v)  2⌘̂ + 2⌘.

The analysis for the number of descendants is analogous.
Let w be a descendant of v in H , such that no descendant
edge of v in H is a descendant edge of w in H . By definition
of w, all descendant edges of w are descendant edges of
v (in Gm); however, no descendant edges of v in H are
descendant edges of w (in Gm). Therefore, �(v) � �(w) +
�H(v), so �m(v)� �(w) � �H(v).

As both v and w are in Hj,k, we have that j  be�(w)/⌘̂c,
and therefore j  e�(w)/⌘̂. Similarly, j � be�(v)/⌘̂c � 1,
so j � e�(v)/⌘̂ � 2. Combining, e�(w)/⌘̂ � e�(v)/⌘̂ � 2, so
e�(w)� e�(v) � �2⌘̂.

Summing the two above equations, we obtain that
⇣
�(v)� e�(v)

⌘
+
⇣
e�(w)� �(w)

⌘
� �H(v)� 2⌘̂.

By the definition, �(v) � e�(v)  ⌘ and e�(w) � �(w)  ⌘.
Substituting, �H(v)  2⌘̂ + 2⌘. As the number of ancestor
and descendant edges are nondecreasing, this upper bound
(in H after all edges are inserted), is also an upper bound at
all times in Hj,k.

Proof of Lemma 4.4. We proceed by induction. The lemma
is trivially satisfied at time 0 (since ⌘̂0 = 1), as well as any
time where ⌘̂ does not change.

Consider a time when ⌘̂ is increased, from ⌘̂ to 2⌘̂; we show
that ⌘̂  2⌘. When ⌘̂ is increased, there is some vertex v
with `(v) /2 H(v). We split into two cases based on if the
ancestor level or the descendant level constraint is violated:

11

Incremental Topological Ordering and Cycle Detection with Predictions

`a(v) > de↵(v)/⌘̂e+1, and `d(v) < be�(v)/⌘̂c�1. We begin
with the first case. Without loss of generality, consider a
vertex v that violates the constraint such that no ancestor of v
violates the constraint. Specifically, `a(v) > de↵(v)/⌘̂e+ 1,
whereas `(u)  de↵(v)/⌘̂e+ 1 for all ancestors u of v.

When inserting an edge e = (x, y), the algorithm updates
the ancestor levels of all descendants of x to have the same
ancestor levels as x; no other ancestor levels are updated.
Thus, v has an ancestor w with e↵(w) = `a(v).

Noting that the label of v can only increase, we must have
that e↵(w) = `(v) > de↵(v)/⌘̂e+1. Thus, e↵(w)�e↵(v) > ⌘̂.

Since w is an ancestor of v, ↵(w) < ↵(v), so ↵(v) �
↵(w) � 0. Summing the above two equations,

(e↵(w)� ↵(w)) + (↵(v)� e↵(v)) > ⌘̂

Thus either ⌘w > ⌘̂/2 or ⌘v > ⌘̂/2, so ⌘̂ < 2⌘.

The analysis for the descendant constraint is identical.

Proof of Lemma 4.5. For each vertex, BFGT maintains
a vertex level (that determines the internal label for our
algorithm), and a vertex count. In the proof of (Bender et al.,
2015, Theorem 3.6), each edge traversal in BFGT increases
the vertex level or a vertex count, and the running time of
BFGT is upper bounded by the number of edge traversals
plus m0 (i.e. O(1) additional time for each inserted edge,
even if no edge is traversed). Thus, our goal is to bound the
number of times a vertex level or vertex count increases in
H .

A vertex level begins at 0 and is nondecreasing for all ver-
tices by definition. By (Bender et al., 2015, Theorem 3.5),
the level of each vertex is upper bounded by the number
of (vertex) ancestors, which is in turn upper bounded by
the number of edge ancestors. Since each vertex has O(⌘)
vertex ancestors by Lemma 4.5, the total number of vertex
level increases is eO(⌘), giving eO(n0⌘) increases overall.

Next, we summarize how a vertex count changes over time,
and use this to show that it increases by the maximum
vertex level. Let ` = eO(⌘) be the maximum vertex level
of any vertex. See the proof of (Bender et al., 2015,
Theorem 3.6) for more details. The data structure maintains
a parameter j for each vertex v, where j is at most
log2(current vertex count of v). The count for a vertex v
begins at 0, and increases up to 3 · 2j , after which it is reset
to 0. This count must increase by at least 2j over the same
time. Thus, so far, the number of times a vertex count is
incremented is at most 3`. The count may be reset to 0 one
additional time (at most 3` more increases); furthermore,
the count may at the end of the algorithm increase up to
3 · 2j without being reset (another 3` more increases). Thus,
a vertex count can be incremented at most 9` times.

Proof of Lemma 4.6. The cost of BK as shown in (Bhat-
tacharya & Kulkarni, 2020) is

eO
⇣
m0n0/⌧ + n02/⌧ +

p
m03⌧/n0 +

p

m0n0⌧
⌘
.

First, we show that if all vertices in H have at most O(⌘)
edge ancestors and O(⌘) edge descendants, then the running
time of BK on H is

eO

m0⌘

⌧
+

n0⌘

⌧
+

r
m03⌧

n0 +
p

m0n0⌧

!
. (1)

Let us begin with the first term of Equation 1. This term
comes from (Bhattacharya & Kulkarni, 2020, Lemma 2.2).
Specifically, there are n/⌧ sampled vertices in expectation;
we maintain all ancestors and descendants of each sampled
vertex. This can be done efficiently using the classic data
structure presented in (Italiano, 1986).

The result as stated in (Italiano, 1986) states that the de-
scendants of all (rather than just sampled) vertices can be
maintained in O(nm) time. Our results require a slightly
stronger analysis.7 For completeness, we summarize this
tighter analysis here. The bounds in (Italiano, 1986) are
based on a potential function analysis, where each ver-
tex v has (using the notation of (Italiano, 1986)) poten-
tial �(|vis(x) + 3|desc(x)), where vis(x) is the number of
descendant edges of x, and desc(x) is the number of de-
scendant vertices of x. They show that their amortized cost
(the cost plus the change in potential) of an edge insert is
O(1), and that the potential of all nodes is nonincreasing.
We observe that if we only want to maintain the descendants
of sampled vertices, we can set the potential of non-sampled
nodes to 0; their amortized analysis argument still holds
under this change. By Lemma 4.3 and Lemma 4.4, the
potential of any node is at least �6⌘, so the total cost to
maintain the descendants of each sampled vertex is O(⌘).
An essentially-identical analysis shows that the total cost
to maintain all ancestors of sampled nodes is O(⌘). Since
there are n/⌧ expected sampled nodes, we obtain a total
expected cost of O(n⌘/⌧).

Now, the second term of Equation 1. In (Bhattacharya &
Kulkarni, 2020, Lemma 2.3), it is shown that the total time in
“phase II” is eO(n2/⌧). In short, they show that the cost for
a vertex v is eO(AS(v) +DS(v)), where AS(v) and DS(v)
are the number of sampled ancestor and descendant vertices
of v respectively. Since a vertex is sampled with probability

7In fact, (Bhattacharya & Kulkarni, 2020) also need a stronger
analysis, simpler to that presented here, since they only maintain
the descendants of sampled vertices.

12

Incremental Topological Ordering and Cycle Detection with Predictions

⇥(log n/⌧), they obtain expected cost eO(n/⌧) per vertex.
A vertex in H has only O(⌘) ancestor or descendant edges,
and therefore only O(⌘) ancestor or descendant vertices,
and therefore expected cost eO(log n0⌘/⌧). Summing over
all n0 vertices of H we obtain the desired second term.

The third and fourth term of Equation 1 remain unchanged;
thus the running time of BK on H is given by Equation 1.

Substituting ⌧ = n01/3⌘̂2/3/m01/3, we obtain running time
m⌘1/3. Note that BK samples vertices with probability
⇥(log n/⌧), so we need that ⌧ = ⌦(log n). This is satisfied
for large n0 due to m0 < ⌘̂2n0 log2 n0. We note that if BK
was to sample vertices with a fixed probability C1 log n0/⌧ ,
we could replace the final log n0 term in our bound on m0

with C1.

Proof of Theorem 4.7. We bound the cost of updat-
ing the levels first; then we bound the total cost of all
subgraphs.

First, we consider the cost of updating levels after the ith
edge is inserted. We only traverse an edge (u, v) while
updating levels if the level of u is updated.

First, consider an update when ⌘̂ does not increase; thus
each vertex has one of its possible levels after the update.
Each vertex has four possible levels, so each vertex can
have its levels updated once per value of ⌘̂; thus, each edge
can only be traversed once per value of ⌘̂. This leads to
eO(m log ⌘̂m) time.

Now, the other case: if ⌘̂ increases, the cost of the scan is
at most O(m); since ⌘̂ increases log2 ⌘̂ times, this gives an
additional eO(m log ⌘̂m) time.

Now, the cost of inserting all edges into their correspond-
ing subgraphs. Let us begin with some observations about
the cost of a single subgraph Hi,j with n0 vertices and
(after all insertions are complete) m0 edges, for a fixed
⌘̂. If m0 < ⌘̂2/3n0/ log2 n, then by Lemma 4.6 (note that
m0 < ⌘̂2/3n0/ log2 n implies m0 < ⌘̂2n0/ log2 n0), all edge
insertions into Hi,j cost m0⌘̂1/3. If m0

� ⌘̂2/3n0/ log2 n0,
then the first ⌘̂2/3n0/ log2 n0 insertions into Hi,j have cost
eO(⌘̂n0) by Lemma 4.6. All remaining insertions (in-
cluding reinserting the first ⌘̂2/3n0/ log2 n0 edges during
REBUILD) have cost O(n0⌘̂) by Lemma 4.5, for O(n0⌘̂)
total time. Overall, all edge insertions into Hi,j take
O(min{n0⌘̂,m0⌘̂1/3}) time.

Now, we sum over all subgraphs and over all values of ⌘̂
to achieve the final running time. Let `⌘ = log2 ⌘̂; thus
when ⌘̂ doubles `⌘ is incremented. Let ni,j,⌘̂ and mi,j,⌘̂

be respectively the number of vertices and total number of
edges in Hi,j under a given ⌘̂. Then we can bound the total

time spent in all subgraphs as:

dlog2 ⌘e+1X

`⌘=0

m/⌘̂+1X

i=0

m/⌘̂+1X

j=0

eO(min{⌘̂ni,j,⌘̂, ⌘̂
1/3mi,j,⌘̂}) 

min

8
<

:

dlog2 ⌘e+1X

`⌘=0

m/⌘̂+1X

i=0

m/⌘̂+1X

j=0

eO(⌘̂ni,j,⌘̂),

dlog2 ⌘e+1X

`⌘=0

m/⌘̂+1X

i=0

m/⌘̂+1X

j=0

eO(⌘̂1/3mi,j,⌘̂).

9
=

;

Since each vertex is in at most 4 subgraphs,

m/⌘̂+1X

i=0

m/⌘̂+1X

j=0

ni,j,⌘  4n.

and
m/⌘̂+1X

i=0

m/⌘̂+1X

j=0

mi,j,⌘  4m.

Substituting, the total running time on all subgraphs is
eO(min{n⌘,m⌘1/3}).

If at any time ⌘̂ > n and m⌘̂1/3 > n2 we stop the above
process and use BFGT. The cost of all edge inserts while
⌘̂  n is eO(n2) by the above; the cost of all remaining
inserts is eO(n2) (Bender et al., 2015). Thus, the overall
total running time is eO(min{n⌘,m⌘1/3, n2

}).

B. Additional Experiments

In this section, we present additional experiments; in par-
ticular, we explore how the performance is influenced by
the edge density of the graph in synthetic DAGs. We also
further describe the experimental setup and the datasets we
use.

Dataset Description. Here we describe the real temporal
datasets we use in our experiments.

• email-Eu-core8 (Paranjape et al., 2017): This network
contains the records of the email communications be-
tween the members of a large European research insti-
tution. A directed edge (u, v, t) means that person u
sent an e-mail to person v at time t.

• CollegeMsg9 (Panzarasa et al., 2009): This dataset
includes records about the private messages sent on an
online social network at the University of California,
Irvine. A timestamped arc (u, v, t) means that user u
sent a private message to user v at time t.

8https://snap.stanford.edu/data/email-Eu-core-temporal.html
9https://snap.stanford.edu/data/CollegeMsg.html

13

Incremental Topological Ordering and Cycle Detection with Predictions

• Math Overflow10 (Paranjape et al., 2017): This is a tem-
poral network of interactions on the stack exchange
web site Math Overflow11. We use the answers-to-
questions network, which includes arcs of the form
(u, v, t), meaning that user u answered user v’s ques-
tion at time t.

(a)

(b)

Figure 2. Performance comparison for different edge densities on
synthetic DAGs (in logarithmic scale). The number of nodes is
n = 1000, and we increase p in the x-axis (in logarithmic scale).
We use the first 5% of the input as the training data for LDFS
(our algorithm), and the last 95% is used as the test data for all the
algorithms. The blue lines correspond to the results for LDFS, with
different amounts of perturbation added to the predictions. The
perturbation is a normal noise with mean 0 and standard deviation
C.SD(predictions) that is independently added to each prediction,
where SD(predictions) is the standard deviation of the initial pre-
dictions. We include the results for C = 0, 1, 2. The blue lines are
the average of 5 different runs, each time regenerating the noise.
Figures 2a and 2b illustrate the cost (number of nodes and edges
processed) and the runtime of these experiments, respectively.

Experimental Setup and Results. We use Python 3.10
on a machine with 11th Gen Intel Core i7 CPU 2.80GHz,
32GB of RAM, 128GB NVMe KIOXIA disk drive, and
64-bit Windows 10 Enterprise to run our experiments. Note
that the cost of the algorithms, i.e., the total number of edges
and nodes processed, is hardware-independent.

The datasets we use might include duplicate arcs, but both
our algorithm and the baselines skip duplicate edges, both

10https://snap.stanford.edu/data/sx-mathoverflow.html
11https://mathoverflow.net/

in the training phase and the test phase. To check if an arc
already exists in the graph, we use the set data structure in
Python, which has an average time complexity of O(1) for
the operations that we use.

We use a random permutation of the nodes for the initial
levels of the nodes in the DFS II algorithm. For all the ex-
periments on this algorithm, we regenerate this permutation
5 times and report the average of these runs.

To generate the synthetic DAGs for the experiments on
the edge density, we set V = {1, . . . , n}, and for each
1  u < v  n, we sample the edge (u, v) independently
at random with some (constant) probability p. We randomly
permute the edges to obtain the sequence of inserts.

Figure 2 compares the performance of LDFS and the two
baselines on synthetic DAGs with n = 1000 nodes and
different edge densities. Only the first 5% of the data is used
as the training set for LDFS, and the rest is used as the test
set. We also show the effect of adding a huge perturbation
to the predictions. Importantly, we show that the quality of
predictions is essential to our algorithm’s performance: for
very dense graphs, and sufficient additional noise added to
the predictions, our algorithm’s performance degrades to be
worse than the baseline.

(a)

(b)

Figure 3. email-Eu-core

In Figure 3, we show the runtime plots for email-Eu-core.
The setup is the same as that of Figure 1, except that here
we measure the runtime instead of the cost. Figures 4 and 5
show the same experiments for the other two datasets in
Table 1.

14

Incremental Topological Ordering and Cycle Detection with Predictions

(a)

(b)

(c)

(d)

Figure 4. CollegeMsg

Discussion. Figure 2 suggests that our algorithm (without
perturbation) outperforms the baselines, even for very dense
DAGs (note that the last point in the x-axis corresponds to
p = 1, which means that the DAG is complete). However,
as the edge density of the DAG increases, the gap between
our algorithm and DFS II decreases. Also for high densities

and high perturbations, our algorithm still performs reason-
ably compared to other baselines in terms of cost (which is
the main focus of the paper). Another observation is that
LDFS is more robust to perturbation on sparse graphs. Fi-
nally, Figures 3, 4, and 5 further support our conclusions in
Section 5.

(a)

(b)

(c)

(d)

Figure 5. Math Overflow

15

