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AbstractÐGravitational-wave observatories like LIGO are
large-scale, terrestrial instruments housed in infrastructure that
spans a multi-kilometer geographic area and which must be
actively controlled to maintain operational stability for long ob-
servation periods. Despite exquisite seismic isolation, they remain
susceptible to seismic noise and other terrestrial disturbances
that can couple undesirable vibrations into the instrumental
infrastructure, potentially leading to control instabilities or noise
artifacts in the detector output. It is, therefore, critical to
characterize the seismic state of these observatories to identify a
set of temporal patterns that can inform the detector operators
in day-to-day monitoring and diagnostics. On a day-to-day basis,
the operators monitor several seismically relevant data streams to
diagnose operational instabilities and sources of noise using some
simple empirically-determined thresholds. It can be untenable
for a human operator to monitor multiple data streams in this
manual fashion and thus a distillation of these data-streams
into a more human-friendly format is sought. In this paper, we
present an end-to-end machine learning pipeline for features-
based multivariate time series clustering to achieve this goal
and to provide actionable insights to the detector operators by
correlating found clusters with events of interest in the detector.

I. INTRODUCTION

In the last nine years, the Laser Interferometer Gravitational-

wave Observatory (LIGO) [1] and the European Virgo ob-

servatory [4] have established gravitational waves as a new

observational probe of the universe. Gravitational waves, dis-

turbances in the geometry of spacetime generated by the

acceleration of matter, are a longstanding prediction of general

relativity. The first direct detection of gravitational waves from

two merging black holes in 2015 by LIGO [7] opened a new

window on the universe. A subsequent observation of a binary

neutron star merger with gravitational waves [8] and every

band of the electromagnetic spectrum [10], [11] launched a

new multi-messenger era of astronomy. The current generation

of detectors have now observed a wide variety of merger events

involving black holes and neutron stars [2], [9], [28], [30].

The insights provided by these gravitational-wave signals are

being used to address long-standing questions in astrophysics

and fundamental physics.

Gravitational-wave detectors like LIGO are large-scale, ter-

restrial instruments housed in an infrastructure which sprawls

a large geographic area. The two LIGO detectors, located

in Hanford, WA and Livingston, LA, each consist of a 4-

km-long Michelson laser interferometer whose sensitivity is

further enhanced using multiple internal laser cavities [16].

The length and angular degrees of the individual laser cavities,

as well as the interferometer as a whole, must be sensed and

actively controlled in order to maintain operational stability for

long observation periods. Despite exquisite seismic isolation

of the detectors’ optics, they remain susceptible to seismic

noise and other terrestrial disturbances that can couple unde-

sirable vibrations into the instruments’ infrastructure. Figure 1

shows an example of some of the environmental disturbances

regularly recorded by sensors at the LIGO sites.

By introducing physical motions between the interferome-

ters’ optics, environmental disturbances limit LIGO’s sensitiv-

ity to gravitational waves at the lower end of its sensitive band,

below 20 Hz. Environmental noise also poses a serious chal-

lenge to the operational stability and data quality of the detec-

tors. For example, environmental conditions may account for

many detector glitches, nonstationary noise bursts of largely

unknown origin, that severely degrade the detector sensitivity

during their duration [12], [13], [17]. Glitches contaminate

the astrophysical data streams, confusing the gravitational-

wave search pipelines and hindering the timely issuance of

real-time alerts for electromagnetic follow-up observations.

Elevated environmental noise is also known to cause lock
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losses, control failures occurring when a disturbance causes

the laser cavities to become driven too far from their resonant

operating points [35]. Because lock re-acquisition typically

requires 30 minutes to complete, lock losses limit the duty

cycle for multi-detector observations, which are essential for

precise sky localization of gravitational-wave events.

As a result, LIGO is extremely interested in understand-

ing the emergence and effects of external disturbances and

monitoring their behavior over time. For example, periods

of increased glitch rates have been anecdotally associated

with elevations of certain types of environmental noise. In

fact, internally, detector commissioners already have heuristic

means for manually monitoring such behavior. The motivation

of this work is a result of direct collaboration with LIGO

in order to automate, and extend, this endeavor. Our ob-

jective is to distill the information from a large number of

heterogeneous environmental sensors, distributed across the

4-km LIGO sites, into a single environment ªstateº word

that can be continuously recorded and tracked over time.

Beyond automation, this tracking has the potential to reveal

new, previously unrecognized associations between specific

environmental conditions and detector anomalies (e.g., periods

of increased glitch rates or controls instabilities). Such associ-

ations can provide actionable insight into the physical nature

of the anomalies, directly guiding detector commissioning.

In this paper, we present an end-to-end multivariate time

series analysis pipeline built to characterize the environmental

state of ground-based gravitational-wave observatories like

LIGO. The task at hand is to identify known seismic and other

environmental phenomena (e.g., earthquakes, anthropogenic

activity) in measurements made by the network of sensors

deployed across the detector sites and assign an interpretable

label to each point in time identifying combinations of phe-

nomena and the location(s) where they are active. The major

aspects of this work include:

• End-to-end data science pipeline: A major contribution

of this work is identifying what data sources to monitor

and collect and how to translate the task, defined by a real

LIGO need, to a data science pipeline. Given our active

collaboration with LIGO, this pipeline has the potential

to be deployed at the sites as a powerful diagnostic tool.

• Dataset: We accompany our work with a public release

of a relevant dataset that can foster further research in this

direction. The dataset includes all of the LIGO time series

data used in the development of our pipeline, hosted and

provided by the Gravitational Wave Open Science Center

(GWOSC) [3], [29].1

The rest of this paper is organized as follows. In Section II

we provide a brief background on state-of-the-art gravitational-

wave detectors, followed by a review of the existing work

related to environmental state characterization. Section III

presents our proposed data science pipeline. We then present

results on a real LIGO dataset in Section IV to demonstrate the

1Data available at: https://gwosc.org/O3/trend/

Fig. 1. A one-week band-limited sample of root-mean-square (RMS) ground
motion data recorded by seismometers at the LIGO Livingston site. Each
frequency band is associated with a set of different physical causes. (a) Micro-
seismic frequency band (0.1-0.3 Hz) is mostly sensitive to ground motion
caused by oceanic waves and has a characteristic time scale of multiple
days [21]. (b) Low-frequency anthropogenic band (0.3-1 Hz) is correlated
to various human related activities and the tides. (c) Earthquake band (0.03-
0.1 Hz) captures ground motions mostly due to earthquakes and wind. (d) The
10-30 Hz frequency band is sensitive to ground motion due to mechanical
vibrations of equipment at the LIGO sites, such as the HVAC system [31].
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effectiveness of this pipeline. Finally, we conclude this paper

in Section V.

II. BACKGROUND AND MOTIVATION

A. Gravitational-Wave Detectors

Gravitational-wave detectors are multi-kilometer-scale in-

struments ranking among the largest and most complex sci-

entific facilities in the world. In addition to the main channel

sensitive to spacetime strain, where gravitational-wave signals

are observed, each LIGO detector has over 100,000 auxiliary

channels which monitor the operation of each subsystem

and the seismic, acoustic, and electromagnetic environment.

LIGO’s physical environmental monitoring (PEM) system [5],

[19], [31] consists of a distributed network of accelerom-

eters, seismometers, microphones, magnetometers, power-

mains voltage monitors, radio-frequency receivers, cosmic-

ray detectors, and wind, temperature, and humidity sensors.

This wealth of data presents a unique and largely untapped

opportunity: Can we leverage these vast amounts of data

to improve our understanding of the relationship between

changing environmental conditions and their impact on the

detector’s performance?

B. Relation to Previous Work

In the context of environmental state characterization, a

prior pipeline has been developed within LIGO to provide

real-time seismic predictions to the interferometer operators.

Seismon [15] is an earthquake early-warning system deployed

at both LIGO detector sites. It uses near real-time earthquake

alerts provided by the U.S. Geological Survey (USGS) and the

National Oceanic and Atmospheric Administration (NOAA) to

estimate the time of arrival and amplitude of the surface waves

of earthquakes from around the globe at each detector site.

Based on the predicted amplitude and direction of the surface

waves, Seismon provides a machine-learning-based estimate

of the probability that the incoming seismic event will cause

a lock loss.

Seismon has enhanced the operational stability and up-

time of the LIGO detectors by providing operators with the

information necessary for on-site decision making to transition

the detector to a more earthquake-robust operational mode.

ªEarthquake modeº is an alternative controls strategy which

allows the detectors’ length servos to handle larger seismic

disturbances, but at the expense of increased instrumental

noise (reduced astrophysical sensitivity). The work presented

here plays a highly complementary role to Seismon. Rather

than making forward-looking predictions for real-time decision

making, our pipeline is designed to characterize the current

environmental state and can potentially include many other

forms of disturbances, beyond seismic phenomena, as well.

Furthermore, in a broader context of state characterization,

various detector characterization methods are used to generate

data quality products from both the main strain channel and the

auxiliary channels. These products take the form of bit-vector

flags that indicate time segments of specific quality within

each interferometer [17]. For instance, there are ºobserving

modeº flags at both sites generated by detector operators,

indicating time segments in which the interferometer is locked

and is reliable for astrophysical data inference. In this study,

we only utilized the segments flagged in this manner, defining

the detector’s status as being in observing mode.

C. Related Time Series Work

There exist a number of relevant works in the time series

mining and learning literature that have tackled problems that

are similar to the one at hand. Matsubara et al. [27] has

developed AutoPlait, a co-evolving time series mining tool

that can identify a general set of patterns among a collection

of time series that are related. There is even earlier work

by Papadimitriou et al. [33] that attempts to do so, with the

additional constraint that the data is seen as a stream, which

introduces computational challenges.

Beyond the general-purpose identification of patterns in

multiple time series, there have been various problem defini-

tions and associated solutions which can fit our scenario and

are also highly related to each other. These include regime

shifts in multivariate time series [26], change detection [23],

and multivariate time series segmentation [20]. Broadly, these

techniques all seek to identify periods of correlated behav-

ior across a collection of time series and points in time

where those periods change from one category to another.

Additionally, works that detect anomalies in multivariate time

series [18], [24], [32], [37], while not directly addressing the

problem definition at hand, computationally require a similar

approach. Here, the interest is in identifying irregular patterns

that far exceed the ªnormalº behavior, which the rest of the

related works seek to characterize.

III. PROPOSED PIPELINE

In this section, we describe our pipeline consisting of three

modules:

1) Dataset Creation

2) Modeling

3) Downstream Evaluation

Our code-base is available at UC Riverside’s git repository. 2

A. Dataset Creation

a) Data: There are numerous seismometers deployed

across the detector sites to monitor seismic activity. Fig-

ure 2 (top) shows a readout from one of these sensors.

There are known seismic phenomena that manifest in certain

frequency ranges, Figure 2 (bottom) shows three time series

which are obtained by bandpass filtering the seismometer read-

out to isolate the following physically-motivated frequency

ranges.

1) 0.03-0.1 Hz Earthquake band: This frequency band is

sensitive to ground motion due to earthquakes.

2) 0.1-0.3 Hz Microseism band: This frequency band is

sensitive to ground motion due to ocean waves beating

against the shore, dominated by the Pacific Ocean for

2https://git.ligo.org/uc riverside/state-characterization
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Fig. 2. Top: Example time series data from one of the numerous seismometers
deployed across the LIGO sites. Bottom: The same signal bandpass-filtered
to select three physically-motivated frequency bands corresponding to known
seismic phenomenon.

the LIGO Hanford detector and the Atlantic Ocean and

Gulf of Mexico for the LIGO Livingston detector.

3) 1-3 Hz Anthropogenic band: This frequency band is

sensitive to ground motion due to daily human activity,

such as heavy traffic on nearby roads, passing trains, and

logging or construction close to a LIGO site.

Although LIGO data channels have various sample rates

depending on the physical quantity they measure and the

specific sensors used for measurement, in this study, we used

the band-limited RMS-averaged (BLRMS) second-trend data

from each channel. Therefore, each data point is generated by

calculating the root mean square of one-second segments of

the recorded data.

In the current analysis, we used the data from a one month

period during the O3b run. The utilized sensors are five tri-

axial seismometers (STS) located at different positions of the

LIGO Livingston’s Internal Seismic Isolation subsystem (L1-

ISI), namely at ETMX, ETMY, ITMX, ITMY, and HAM5 [1].

Each sensor has three orthogonal axes and is band-limited

to six physically motivated frequency bands. The total data

volume for the 90 second-trend L1-ISI-STS-BLRMS channels

used in this analysis amounts to 20 GiB.

B. Modeling

In our approach, given that (1) we require near real-time

computations that can provide immediate insights to the LIGO

operators and (2) we are expecting domain experts to deploy

and fine-tune our tool, we would like to start from a simple

approach with a minimal number of hyperparameters. As

a result, even though (as we outlined in the related work

above) there exist a number of off-the-shelf methods that could

be adapted for the purposes of this work, we instead opt

for a light-weight clustering-based approach which can run

fast and requires the definition of only two hyperparameters:

the duration of window segments we are considering and

the number of clusters that correspond to the sought-after

states. The window segment size is a parameter that our

domain expert collaborators are very confident setting up

given their empirical knowledge stemming from working with

the detector. The number of clusters can be relatively easily

narrowed down by popular heuristics [36], minimizing the

time spent in hyperparameter tuning by the operators.

Our proposed algorithm for identifying different environ-

mental states of the detector based on the subset of the

channels we have selected is as follows:

1) We are given a batch of C time-series, corresponding

to the different channels of interest. The current chosen

length is one hour.

2) For a given input window size w, create C segments per

non-overlapping window of the entire length.

3) For each set of C time-series corresponding to the same

window, derive a set of statistical features. In this way,

a given window becomes a data point. We experimented

with (a) simple statistics such as mean and standard

deviation, (b) tsfresh [14], and (c) catch22 [25].

In our use cases we found (a) to be sufficient, but if

and when we introduce more complex patterns, more

sophisticated features may become necessary.

4) Run k-means clustering on all windows/data points. We

utilized the k-means++ [6] algorithm to find the initial

seeds for the k-means clustering. We determine the

number of clusters by intersecting the results with known

intrinsic cluster validation indices [36], see 5. Scikit-

learn [34] library was used for all of the modeling done

in this analysis.

5) As a final step, we need to provide a human-

understandable set of labels for our results. Instead of

using the raw names of the channels involved, which are

not necessarily always intuitive, even to an experienced

operator, we create three different ªreplicasº of the

channels: (a) Anthropogenic, (b) Microseism, and (c)

Earthquake. They correspond to known thresholds that

LIGO operators currently manually use to identify one

of those events. We then take the centroid of a given

cluster and compare it against the known thresholds, and

label the cluster accordingly.

Figure 3 graphically illustrates this workflow.

C. Downstream Evaluation

Obtaining ground truth for our task is a rather ill-defined

problem. For some of the discovered states, we can confirm the

presence or absence of an earthquake by cross-referencing the

discovered states with USGS data. However, less well-defined

and properly monitored states, such as ones caused

by anthropogenic factors, are very hard to validate. Thus, in

lieu of ground truth, we investigate if and to what degree the

discovered states correlate with instances where it has been

documented that the detector was witnessing a noise glitch or

experienced a loss of lock.
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Fig. 3. Step-by-step workflow of our proposed pipeline. Each step is described in detail in the text of §III-B.

IV. RESULTS

In this section, we first demonstrate an example of running

our tool end-to-end and what we envision the final deployed

outcome would look like. Then, we present results that link

certain discovered states with documented problematic detec-

tor states.

A. Indicative End-to-End Results

Figure 4 shows a snapshot of our results, starting from

the different channel time series as they are band-passed in

different frequency bands (top), to the raw clustering results

(center), to the labeled states (bottom). We envision the bottom

panel of the figure to be the final product of the tool shown to

the operator in near real-time. Figure 5 shows an indicative set

of results for identifying the number of clusters/states in a data

sample. We find that different cluster validation indices have

slight variation on the ªbestº number indicated. However, they

seem to indicate a small range of admissible sets of states that

are very feasible for the operator to iterate over and inspect.

B. Linking Discovered States to Glitches and Loss of Lock

One of the main goals of our proposed monitoring tool

is to be able to diagnose problematic detector states, such

as periods of controls instabilities and elevated noise glitch

activity [22]. In order to do so, we conducted an experiment

where we computed the expected glitch and loss of lock rates,

assuming they occur randomly (i.e., have no physical relation

to the identified environmental states), and then compare that

expected rate to the observed rate per discovered state. The

observed glitch rate was calculated using the publicly available

Gravity Spy glitch classifications dataset [22], considering all

the triggers with SNR > 7.5 during the analysis period. We

make an extremely fascinating observation: For some states,

the observed glitch rate far exceeds the expected rate, thus

linking those states to those core detector issues. Figure 6

shows an example of such analysis, where some discovered

states experience a much larger amount of glitches than would

be randomly expected.

V. CONCLUSION & FUTURE WORK

In this paper, we present an instance of applied data science

for detecting different environmental states of the LIGO detec-

tors. This work has been directly motivated by working closely

with LIGO commissioners and operators, understanding their

needs, and translating them into a data science pipeline. We

make interesting and important observations that link various

discovered environmental states to documented issues faced

by the detector, which is a positive step in the process of

addressing those issues towards improving the detectors’ up-

time and the quality of the science data.

In the near future, we will continue working closely with

LIGO for subsequent deployment of our tool. Furthermore,

we are interested in extending our framework in order to be

able to accommodate novel, previously unrecognized environ-

mental states. Finally, towards a highly-efficient deployment,

we would like to explore the transition to a supervised model

including known states discovered by our unsupervised tool

and possibly obtain labeled data in a citizen science fashion,

similar to the Gravity Spy project [22], [38] which does so for

detecting glitches in the main channel of LIGO.

ACKNOWLEDGMENTS

This material is based upon work supported by NSF’s

LIGO Laboratory which is a major facility fully funded by

the National Science Foundation. The authors are grateful for

computational resources provided by the LIGO Laboratory and

5



Fig. 4. Example of our end-to-end analysis. Top panel consists of a set
of sample channels that we are running the model on. The middle panel
is the output of the clustering model. Each line represents a different state
and the green flags are the segments at which the detector is in that specific
state. The bottom panel shows the states assigned by the field experts using
a simple threshold. It can be seen that the model’s output recovers the
expert’s expectations without supervision. For example, there are clusters that
correspond to earthquakes, high microseism, and high anthropogenic noise.

Fig. 5. Cluster validation indices [36] employed in order to identify a short
range of admissible number of cluster values that the operator can iterate
over. A grid search for [3-20] number of clusters was done and three standard
clustering validation scores where calculated. The final number of clusters was
determined using the correlation with the Glitch rates as an external validation
metric.

supported by the National Science Foundation under Award

Nos. PHY-0757058 and PHY-0823459. Research at UC River-

side was supported by the National Science Foundation under

Award Nos. PHY-2141072 and IIS-2046086. This research has

made use of data or software obtained from the Gravitational

Wave Open Science Center (gwosc.org), a service of the

LIGO Scientific Collaboration, the Virgo Collaboration, and

KAGRA. This paper carries LIGO Document Number LIGO-

P2400407.

REFERENCES

[1] J. Aasi et al. Advanced LIGO. Class. Quant. Grav., 32:074001, 2015.
doi: 10.1088/0264-9381/32/7/074001.

[2] R. Abbott et al. GWTC-3: Compact Binary Coalescences Observed by
LIGO and Virgo during the Second Part of the Third Observing Run.
Phys. Rev. X, 13(4):041039, 2023. doi: 10.1103/PhysRevX.13.041039.

[3] R. Abbott et al. Open Data from the Third Observing Run of LIGO,
Virgo, KAGRA, and GEO. Astrophys. J. Suppl., 267(2):29, 2023. doi:
10.3847/1538-4365/acdc9f.

[4] F. Acernese et al. Advanced Virgo: a second-generation interferometric
gravitational wave detector. Class. Quant. Grav., 32(2):024001, 2015.
doi: 10.1088/0264-9381/32/2/024001.

[5] Fausto Acernese, M Agathos, A Ain, S Albanesi, A Allocca, Alexandre
Amato, T Andrade, N Andres, Marc AndrÂes-Carcasona, T AndriÂc, et al.
The virgo o3 run and the impact of the environment. Classical and

quantum gravity, 39(23):235009, 2022.
[6] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of

careful seeding. Technical Report 2006-13, Stanford InfoLab, June 2006.
[7] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collabo-

ration). Observation of Gravitational Waves from a Binary Black Hole
Merger. Physical Review Letters, 116:061102, February 2016. doi:
10.1103/PhysRevLett.116.061102.

6



Fig. 6. Some of our discovered states experience a far higher number of glitches than expected, assuming random occurrence (top). This indicates that
there is a physical connection between the identified environmental states and those core detector problems, so our pipeline can provide valuable diagnostic
information to guide future detector improvements and commissioning.

[8] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collabo-
ration). GW170817: Observation of Gravitational Waves from a Binary
Neutron Star Inspiral. Physical Review Letters, 119:161101, October
2017. doi: 10.1103/PhysRevLett.119.161101.

[9] B. P. Abbott et al. (LIGO Scientific Collaboration, Virgo Collaboration,
and KAGRA Collaboration). Observation of Gravitational Waves from
Two Neutron Star±Black Hole Coalescences. The Astrophysical Journal

Letters, 915(1):L5, June 2021. doi: 10.3847/2041-8213/ac082e.
[10] B. P. Abbott et al. (LIGO Scientific Collaboration, Virgo Collabora-

tion, Fermi Gamma-ray Burst Monitor, and INTEGRAL). Gravita-
tional Waves and Gamma-Rays from a Binary Neutron Star Merger:
GW170817 and GRB 170817A. The Astrophysical Journal Letters,
848(2):L13, October 2017. doi: 10.3847/2041-8213/aa920c.

[11] B. P. Abbott et al. (LIGO Scientific Collaboration, Virgo Collabora-
tion, Fermi Gamma-ray Burst Monitor, INTEGRAL, IceCube, AstroSat
Cadmium Zinc Telluride Imager Team, IPN, Insight-Hxmt, ANTARES,
Swift, AGILE Team, 1M2H Team, Dark Energy Camera GW-EM,
DES, DLT40, GRAWITA, Fermi-LAT, ATCA, ASKAP, Las Cumbres
Observatory Group, OzGrav, DWF (Deeper Wider Faster Program),
AST3, CAASTRO, VINROUGE, MASTER, J-GEM, GROWTH, JAG-
WAR, CaltechNRAO, TTU-NRAO, NuSTAR, Pan-STARRS, MAXI
Team, TZAC Consortium, KU, Nordic Optical Telescope, ePESSTO,
GROND, Texas Tech University, SALT Group, TOROS, BOOTES,
MWA, CALET, IKI-GW Follow-up, H.E.S.S., LOFAR, LWA, HAWC,
Pierre Auger, ALMA, Euro VLBI Team, Pi of Sky, Chandra Team at
McGill University, DFN, ATLAS Telescopes, High Time Resolution
Universe Survey, RIMAS, RATIR, SKA South Africa/MeerKAT). Multi-
messenger observations of a binary neutron star merger. The Astrophys-

ical Journal Letters, 848(2):L12, October 2017. doi: 10.3847/2041-
8213/aa91c9.

[12] L Blackburn, L Cadonati, S Caride, S Caudill, S Chatterji, N Chris-
tensen, J Dalrymple, S Desai, A Di Credico, G Ely, J Garofoli, L Goggin,
G GonzÂalez, R Gouaty, C Gray, A Gretarsson, D Hoak, T Isogai,
E Katsavounidis, J Kissel, S Klimenko, R A Mercer, S Mohapatra,
S Mukherjee, F Raab, K Riles, P Saulson, R Schofield, P Shawhan,
J Slutsky, J R Smith, R Stone, C Vorvick, M Zanolin, N Zotov, and
J Zweizig. The LSC glitch group: monitoring noise transients during the
fifth LIGO science run. Classical and Quantum Gravity, 25(18):184004,
September 2008. doi: 10.1088/0264-9381/25/18/184004.

[13] M Cabero, A Lundgren, A H Nitz, T Dent, D Barker, E Goetz, J S
Kissel, L K Nuttall, P Schale, R Schofield, and D Davis. Blip glitches in

Advanced LIGO data. Classical and Quantum Gravity, 36(15):155010,
July 2019. doi: 10.1088/1361-6382/ab2e14.

[14] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W Kempa-
Liehr. Time series feature extraction on basis of scalable hypothesis
tests (tsfresh±a python package). Neurocomputing, 307:72±77, 2018.
doi: 10.1016/j.neucom.2018.03.067.

[15] Michael Coughlin, Paul Earle, Jan Harms, Sebastien Biscans, Christo-
pher Buchanan, Eric Coughlin, Fred Donovan, Jeremy Fee, Hunter Gab-
bard, Michelle Guy, Nikhil Mukund, and Matthew Perry. Limiting the
effects of earthquakes on gravitational-wave interferometers. Classical

and Quantum Gravity, 34(4):044004, February 2017. doi: 10.1088/1361-
6382/aa5a60.

[16] D. V. Martynov et al. Sensitivity of the Advanced LIGO detectors at
the beginning of gravitational wave astronomy. Physical Review D,
93:112004, June 2016. doi: 10.1103/PhysRevD.93.112004.

[17] Derek Davis et al. LIGO detector characterization in the second and
third observing runs. Class. Quant. Grav., 38(13):135014, 2021. doi:
10.1088/1361-6382/abfd85.

[18] Ailin Deng and Bryan Hooi. Graph neural network-based anomaly
detection in multivariate time series. In Proceedings of the AAAI

conference on artificial intelligence, volume 35, pages 4027±4035, 2021.
doi: 10.1609/aaai.v35i5.16523 .

[19] A Effler, R M S Schofield, V V Frolov, G GonzÂalez, K Kawabe, J R
Smith, J Birch, and R McCarthy. Environmental influences on the
LIGO gravitational wave detectors during the 6th science run. Classical

and Quantum Gravity, 32(3):035017, January 2015. doi: 10.1088/0264-
9381/32/3/035017.

[20] Shaghayegh Gharghabi, Chin-Chia Michael Yeh, Yifei Ding, Wei Ding,
Paul Hibbing, Samuel LaMunion, Andrew Kaplan, Scott E Crouter, and
Eamonn Keogh. Domain agnostic online semantic segmentation for
multi-dimensional time series. Data mining and knowledge discovery,
33:96±130, 2019. doi: 10.1007/s10618-018-0589-3.

[21] J. A. Giaime, E. J. Daw, M. Weitz, R. Adhikari, P. Fritschel, R. Abbott,
R. Bork, and J. Heefner. Feedforward reduction of the microseism dis-
turbance in a long-base-line interferometric gravitational-wave detector.
Review of Scientific Instruments, 74(1):218±224, January 2003. doi:
10.1063/1.1524717.

[22] J Glanzer, S Banagiri, S B Coughlin, S Soni, M Zevin, C P L Berry,
O Patane, S Bahaadini, N Rohani, K Crowston, V Kalogera, C ésterlund,
L Trouille, and A Katsaggelos. Data quality up to the third observing
run of Advanced LIGO: Gravity Spy glitch classifications. Classical and

7



Quantum Gravity, 40(6):065004, February 2023. doi: 10.1088/1361-
6382/acb633.

[23] Bryan Hooi and Christos Faloutsos. Branch and border: Partition-based
change detection in multivariate time series. In Proceedings of the 2019

SIAM International Conference on Data Mining, pages 504±512. SIAM,
2019. doi: 10.1137/1.9781611975673.57.

[24] Paloma Laguarta, Robin van der Laag, Melissa Lopez, Tom Dooney,
Andrew L Miller, Stefano Schmidt, Marco Cavaglia, Sarah Caudill, Kurt
Driessens, JoÈel Karel, et al. Detection of anomalies amongst ligo’s
glitch populations with autoencoders. Classical and Quantum Gravity,
41(5):055004, 2024.

[25] Carl H Lubba, Sarab S Sethi, Philip Knaute, Simon R Schultz, Ben D
Fulcher, and Nick S Jones. catch22: Canonical time-series char-
acteristics: Selected through highly comparative time-series analysis.
Data Mining and Knowledge Discovery, 33(6):1821±1852, 2019. doi:
10.1007/s10618-019-00647-x.

[26] Yasuko Matsubara and Yasushi Sakurai. Regime shifts in streams:
Real-time forecasting of co-evolving time sequences. In Proceed-

ings of the 22nd ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, pages 1045±1054, 2016. doi:
10.1145/2939672.2939755.

[27] Yasuko Matsubara, Yasushi Sakurai, and Christos Faloutsos. Autoplait:
Automatic mining of co-evolving time sequences. In Proceedings of the

2014 ACM SIGMOD international conference on Management of data,
pages 193±204, 2014. doi: 10.1145/2588555.2588556.

[28] Alexander H. Nitz, Sumit Kumar, Yi-Fan Wang, Shilpa Kastha, Shichao
Wu, Marlin SchÈafer, Rahul Dhurkunde, and Collin D. Capano. 4-
OGC: Catalog of Gravitational Waves from Compact Binary Mergers.
Astrophys. J., 946(2):59, 2023. doi: 10.3847/1538-4357/aca591.

[29] Gravitational Wave Open Science Center, O3 Second-trend Data from
Seismometers, Wind Speed Monitors, and Accelerometers, Dec. 2024,
doi: 10.7935/9yc2-5d96.

[30] Seth Olsen, Tejaswi Venumadhav, Jonathan Mushkin, Javier Roulet,
Barak Zackay, and Matias Zaldarriaga. New binary black hole mergers
in the LIGO-Virgo O3a data. Phys. Rev. D, 106(4):043009, 2022. doi:
10.1103/PhysRevD.106.043009.

[31] P Nguyen et al. Environmental noise in advanced LIGO detectors.
Classical and Quantum Gravity, 38(14):145001, June 2021. doi:
10.1088/1361-6382/ac011a.

[32] Matteo Paltenghi. Time series anomaly detection for cern large-scale

computing infrastructure. PhD thesis, Milan, Polytech., 2020.
[33] Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. Streaming

pattern discovery in multiple time-series. 2005.
[34] Fabian Pedregosa, GaÈel Varoquaux, Alexandre Gramfort, Vincent

Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pretten-
hofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot, and ÂEdouard
Duchesnay. Scikit-learn: Machine learning in python. Journal of

Machine Learning Research, 12(85):2825±2830, 2011.
[35] Jameson Rollins. Machine learning for lock loss analysis. LIGO

Technical Report LIGO-G1701409-v1, July 2017.
[36] Erich Schubert. Stop using the elbow criterion for k-means and how

to choose the number of clusters instead. ACM SIGKDD Explorations

Newsletter, 25(1):36±42, 2023. doi: 10.1145/3606274.3606278.
[37] Sadaf Tafazoli and Eamonn Keogh. Matrix profile xxviii: Discov-

ering multi-dimensional time series anomalies with k of n anomaly
detection. In Proceedings of the 2023 SIAM International Confer-

ence on Data Mining (SDM), pages 685±693. SIAM, 2023. doi:
10.1137/1.9781611977653.ch77.

[38] Michael Zevin, Corey B Jackson, Zoheyr Doctor, Yunan Wu, Carsten
ésterlund, L Clifton Johnson, Christopher PL Berry, Kevin Crowston,
Scott B Coughlin, Vicky Kalogera, et al. Gravity spy: lessons learned
and a path forward. The European Physical Journal Plus, 139(1):100,
2024. doi: 10.1140/epjp/s13360-023-04795-4.

8


	Introduction
	Background and Motivation
	Gravitational-Wave Detectors
	Relation to Previous Work
	Related Time Series Work

	Proposed Pipeline
	Dataset Creation
	Modeling
	Downstream Evaluation

	Results
	Indicative End-to-End Results
	Linking Discovered States to Glitches and Loss of Lock

	Conclusion & Future Work
	References

