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Abstract. We present an efficient matrix-free point spread function (PSF) method for approx-
imating operators that have locally supported nonnegative integral kernels. The PSF-based method
computes impulse responses of the operator at scattered points and interpolates these impulse re-
sponses to approximate entries of the integral kernel. To compute impulse responses efficiently, we
apply the operator to Dirac combs associated with batches of point sources, which are chosen by
solving an ellipsoid packing problem. The ability to rapidly evaluate kernel entries allows us to con-
struct a hierarchical matrix (H-matrix) approximation of the operator. Further matrix computations
are then performed with fast H-matrix methods. This end-to-end procedure is illustrated on a blur
problem. We demonstrate the PSF-based method's effectiveness by using it to build preconditioners
for the Hessian operator arising in two inverse problems governed by PDEs: inversion for the basal
friction coefficient in an ice sheet flow problem and for the initial condition in an advective-diffusive
transport problem. While for many ill-posed inverse problems the Hessian of the data misfit term
exhibits a low-rank structure, and hence a low-rank approximation is suitable, for many problems
of practical interest, the numerical rank of the Hessian is still large. The Hessian impulse responses,
on the other hand, typically become more local as the numerical rank increases, which benefits the
PSF-based method. Numerical results reveal that the preconditioner clusters the spectrum of the
preconditioned Hessian near one, yielding roughly 5\times --10\times reductions in the required number of
PDE solves, as compared to classical regularization-based preconditioning and no preconditioning.
We also present a comprehensive numerical study for the influence of various parameters (that con-
trol the shape of the impulse responses and the rank of the Hessian) on the effectiveness of the
advection-diffusion Hessian approximation. The results show that the PSF-based method is able to
form good approximations of high-rank Hessians using only a small number of operator applications.

Key words. data scalability, Hessian, hierarchical matrix, high-rank, impulse response, local
translation invariance, matrix-free, moment methods, operator approximation, PDE-constrained in-
verse problems, point spread function, preconditioning, product convolution

MSC codes. 35R30, 41A35, 47A52, 47J06, 65D12, 65F08, 65F10, 65K10, 65N21, 86A22, 86A40

DOI. 10.1137/23M1584745

1. Introduction. We present an efficientmatrix-free point spread function (PSF)
method for approximating operators \scrA :L2(\Omega )\rightarrow L2(\Omega )\prime that have locally supported
nonnegative integral kernels. Here, \Omega \subset Rd is a bounded domain, and L2(\Omega )\prime is the
space of real-valued continuous linear functionals on L2(\Omega ). By ``nonnegative inte-
gral kernel,"" we mean that entries of \scrA 's integral kernel are nonnegative numbers;
this is not the same as positive semidefiniteness of \scrA . Such operators appear, for
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HIGH-RANK PSF HESSIAN APPROXIMATION A1659

(a) One impulse response batch (b) Local mean displacement invariance

Fig. 1. (a) One batch, \eta b, of normalized impulse responses, \phi x, that arise from applying \scrA 
to a weighted sum of scattered point sources (see section 5.2). Here, \scrA is the ice sheet inverse
problem data misfit Gauss--Newton Hessian described in section 7. Black stars are point source
locations. Shading shows the magnitude of the normalized impulse responses (darker means larger
function values). Dashed gray ellipses are estimated impulse response support ellipsoids based on
the moment method in section 4.1. The large circle is \partial \Omega . (b) Illustration of impulse responses, \phi x

and \phi x\prime , corresponding to points x and x\prime . The operator \scrA is locally mean displacement invariant
(section 4.2) if \phi x(y) \approx \phi x\prime (y  - \mu (x) + \mu (x\prime )) when x is close to x\prime . Here, \mu (z) denotes the mean
(center of mass) of \phi z.

instance, as Hessians in optimization and inverse problems governed by partial differ-
ential equations (PDEs) [14, 20, 47], Schur complements in Schur complement methods
for solving PDEs and Poincare--Steklov operators in domain decomposition methods
(e.g., Dirichlet-to-Neumann maps) [16, 67, 73], covariance operators in spatial statis-
tics [17, 36, 37, 56], and blurring operators in imaging [22, 60]. Here, ``matrix-free""
means that we may apply \scrA and its transpose,1 \scrA T , to functions

(1.1) u \mapsto \rightarrow \scrA u and w \mapsto \rightarrow \scrA Tw

via a black box computational procedure but cannot easily access entries of \scrA 's in-
tegral kernel. Evaluating the maps in (1.1) may require solving a subproblem that
involves PDEs or performing other costly computations.

The idea of the proposed method, which we refer to throughout the paper as
the ``PSF-based method,"" is to use impulse response interpolation to form a high-
rank approximation of \scrA using a small number of operator applications. The impulse
response, \phi x, associated with a point, x, is the Riesz representation2 of the linear func-
tional that results from applying \scrA to a delta distribution (i.e., point source, impulse)
centered at x. We compute batches of impulse responses by applying \scrA to weighted
sums of delta distributions associated with batches of points scattered throughout the
domain (see Figure 1(a)). Batches of impulse responses may be thought of intuitively
as sets of ``columns"" of the kernel (Figure 2). To choose the batches, we form ellipsoid
estimates for the supports of all \phi x via a moment method (Figure 3) that involves
applying \scrA T to a small number of polynomials (see section 4.1). We then use a greedy
ellipsoid packing algorithm (Figure 4) to maximize the number of impulse responses
per batch. Then we interpolate translated and scaled versions of these impulse re-
sponses to approximate entries of the operator's integral kernel (Figure 5). Adding

1Recall that \scrA T :L2(\Omega )\rightarrow L2(\Omega )\prime is the unique operator satisfying (\scrA u) (w) =
\bigl( 
\scrA Tw

\bigr) 
(u) for all

u,w \in L2(\Omega ), where \scrA u\in L2(\Omega )\prime is the result of applying \scrA to u\in L2(\Omega ) and (\scrA u) (w) is the result
of applying that linear functional to w \in L2(\Omega ) and similar for operations with \scrA T .

2Recall that the Riesz representative of a functional \rho \in L2(\Omega )\prime with respect to the L2 inner
product is the unique function \rho \ast \in L2(\Omega ) such that \rho (w) = (\rho \ast ,w)L2(\Omega ) for all w \in L2(\Omega ).
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A1660 N. ALGER, T. HARTLAND, N. PETRA, AND O. GHATTAS

Fig. 2. Left: Matrix created by evaluating the integral kernel \Phi for \scrA (3.1) at all pairs of mesh
vertices. This illustration is for the integral kernel in (7.4). Dark colors indicate large entries, and
light colors indicate small entries. Rows and columns are ordered according to a kd-tree hierarchical
clustering. Right: Impulse responses associated with points x1, x2 \in \Omega , shown by the two dotted
vertical lines. Intuitively, one may think of impulse responses as ``columns"" of the integral kernel.

Fig. 3. Left: Impulse response moments. Scaling factor (V ), mean (\mu ), and covariance (\Sigma ).
For each point x \in \Omega , the quantity V (x) is the integral of \phi x over \Omega , \mu (x) is the location that \phi x is
centered at, and \Sigma (x) is a matrix with eigenvectors and eigenvalues that characterize the width of the
support of \phi x about \mu (x) (see section 4.1). Right: Ellipsoid support for an impulse response. This
ellipsoid is the set of points within \tau standard deviations of the mean of the Gaussian distribution
with mean \mu (x) and covariance \Sigma (x). The scaling factor V (x) characterizes the magnitude of \phi x.

more batches yields impulse responses at more points, increasing the approximation
accuracy at the cost of one operator application per batch (Figure 6).

The PSF-based method we propose is loosely based on ``product convolution""
(PC) approximations, which are approximations of an operator by weighted sums of
convolution operators with spatially varying weights. PC and PSF methods have a
long history dating back several decades. We note the following papers (among many
others) in which the convolution kernels are constructed from sampling impulse re-
sponses of the operator to scattered point sources: [1, 5, 12, 27, 29, 30, 32, 60, 78]. For
background on PC and PSF methods, we recommend the following papers: [23, 28, 35].
The proposed PSF-based method improves on existing PC and PSF methods in the
following ways: (1) While PC and PSF approximations are typically based on an
assumption of local translation invariance, the method we propose is based on a more

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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HIGH-RANK PSF HESSIAN APPROXIMATION A1661

Fig. 4. Illustration of the process to compute one impulse response batch. Impulse response
moments are first used to form ellipsoid-shaped estimates of the supports of impulse responses (4.6).
Then an ellipsoid packing problem is solved to choose batches of nonoverlapping support ellipsoids
(section 5.1). Finally, \scrA is applied to a Dirac comb associated with the points xi, which correspond
to the ellipsoids (section 5.2). The process is repeated to form more batches.

Fig. 5. Left: H-matrix structure for \Phi . Computing an entry of this matrix requires evaluating
the integral kernel, \Phi (y,x), at a pair of points (y,x) \in \Omega \times \Omega . Center: Kernel evaluation points x
and y (black circles), sample points for the approximation (light gray and black dots), and the kn
sample points, x\prime that are nearest to x (black dots). Right: Known impulse response at x\prime . Using
radial basis function interpolation, the desired kernel entry is approximated as a weighted linear
combination of translated and scaled versions of impulse responses at the points x\prime (section 5.3).

general assumption we call ``local mean displacement invariance"" (section 4.2 and
Figure 1(b)), which improves the interpolation of the impulse responses. (2) In our
previous work [5], we chose point sources in an adaptive grid via a sequential proce-
dure; the refinements to the adaptive grid were chosen to maximally reduce the error
at each step. However, in that work, each point source required a separate operator
application, making the previous method expensive when a large number of impulse
responses is desired. In this paper, we use a new moment method (section 4.1) which
permits computation of many impulse responses (e.g., 50) per operator application.
We are inspired by resolution analysis in seismic imaging, in which \scrA T is applied
to a random noise function and the width of the support of \phi x is estimated to be
the autocorrelation length of the resultant function near x [31, 74]. The moment
method that we use estimates the support of \phi x more accurately than random noise
probing in resolution analysis at the cost of the additional constraint that \scrA has a
nonnegative integral kernel. (3) The PSF-based method we propose never evaluates
computed impulse responses outside of their domain of definition. This eliminates
``boundary-artifact"" errors (see [5, section 1.1]) that plague conventional PC and PSF
methods.

The ability to rapidly approximate entries of \scrA 's integral kernel allows one to
approximate discretized versions of \scrA using the full arsenal of tools for matrix ap-
proximation that rely on fast access to matrix entries. In this work, we form a
hierarchical matrix [13, 42] approximation of a discretized version of \scrA . H-matrices

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A1662 N. ALGER, T. HARTLAND, N. PETRA, AND O. GHATTAS

Fig. 6. Relative error, | | \Phi (\cdot , x)  - \widetilde \Phi (\cdot , x)| | /| | \Phi (\cdot , x)| | , in the approximation of the ``column"" of
the integral kernel associated with x, using 5 (left), 10 (center), and 20 (right) impulse response
batches. Sample points are indicated by black dots. The error associated with the point x is the
shade of the image at location x, with white indicating zero error and black indicating 100\% error.
At the sample points, the error is zero. The farther the point x is from the sample points, the larger
the error. Adding more batches yields a more accurate approximation.

are a compressed matrix format in which the rows and columns of the matrix are
reordered, then the matrix is recursively subdivided into blocks in such a way that
many off-diagonal blocks are low rank, even though the matrix as a whole may be high
rank. H-matrix methods permit us to perform matrix-vector products cheaply and
perform other useful linear algebra operations that cannot be done easily using the
original operator. These operations include matrix-matrix addition, matrix-matrix
multiplication, matrix factorization, and matrix inversion. The work and memory
required to perform these operations for an N \times N H-matrix with rank kh blocks
scale as O

\bigl( 
kahN log(N)b

\bigr) 
, where a, b \in \{ 0,1,2,3\} are constants which depend on the

type of H-matrix used and the operation being performed [40], [52, section 2.1].

2. Why we need more efficient approximations of high-rank Hessians.
While the PSF-based method proposed in this paper may be used to approximate any
operator that has a locally supported nonnegative integral kernel, we are primarily
motivated by approximation of high-rank Hessians in distributed parameter inverse
problems governed by PDEs. In this section, we provide a brief background on this
topic and explain why existing Hessian approximation methods are not satisfactory.

In distributed parameter inverse problems governed by PDEs, one seeks to infer
an unknown spatially varying parameter field from limited observations of a state
variable that depends on the parameter implicitly through the solution of a PDE.
Conventionally, the inverse problem is formulated using either a deterministic frame-
work [9, 76] or a Bayesian probabilistic framework [49, 70, 72]. In the deterministic
framework, one solves an optimization problem to find the parameter that best fits
the observations, subject to appropriate regularization [25, 76]. In the probabilistic
framework, Bayes' theorem combines the observations with prior information to form
a posterior distribution over the space of all possible parameter fields, and computa-
tions are performed to extract statistical information about the parameter from this
posterior. The Hessian of the objective function with respect to the parameter in the
determinstic optimization problem and the Hessian of the negative log posterior in
the Bayesian setting are equal or approximately equal under typical noise, regulariza-
tion, and prior models, so we refer to both of these Hessians as ``the Hessian."" The
Hessian consists of a data misfit term (the data misfit Hessian), which depends on
a discrepancy between the observations and the associated model predictions, and a
regularization or prior term (the regularization Hessian) which does not depend on
the observations. For more details on the Hessian, see [4, 38, 75].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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HIGH-RANK PSF HESSIAN APPROXIMATION A1663

Hessian approximations and preconditioners are highly desirable because the Hes-
sian is central to efficient solution of inverse problems in both deterministic and
Bayesian settings. When solving the deterministic optimization problem with Newton-
type methods, the Hessian is the coefficient operator for the linear system that must
be solved or approximately solved at every Newton iteration. Good Hessian precondi-
tioners reduce the number of iterations required to solve these Newton linear systems
with the conjugate gradient method [66]. In the Bayesian setting, the inverse of the
Hessian is the covariance of a local Gaussian approximation of the posterior. This
Gaussian distribution can be used directly as an approximation of the posterior, or it
can be used as a proposal for Markov chain Monte Carlo methods for drawing samples
from the posterior. For instance, see [50, 62] and the references therein.

Due to the implicit dependence of predicted observations on the parameter, entries
of the Hessian are not easily accessible. Rather, the Hessian may be applied to a vector
via a computational process that involves solving a pair of forward and adjoint PDEs
which are linearizations of the original PDE [38, 63]. The most popular matrix-free
Hessian approximation methods are based on low-rank approximation of either the
data misfit Hessian or the data misfit Hessian preconditioned by the regularization
Hessian (e.g., [15, 19, 33, 62, 68]). Krylov methods such as Lanczos or randomized
methods [18, 44] are typically used to construct these low-rank approximations by
applying the Hessian to vectors. Using these methods, the required number of Hessian
applications (and hence the required number of PDE solves) is proportional to the
rank of the low-rank approximation. Low-rank approximation methods are justified
by arguing that the numerical rank of the data misfit Hessian is insensitive to the
dimension of the discretized parameter. This means that the required number of PDE
solves remains the same as the mesh used to discretize the parameter is refined.
However, in many inverse problems of practical interest, the numerical rank of the
data misfit Hessian, while mesh independent, is still large, which makes it costly to
approximate the Hessian using low-rank approximation methods [7, 15, 48].

Examples of inverse problems with high-rank data misfit Hessians include large-
scale ice sheet inverse problems [45, 48], advection-dominated advection-diffusion in-
verse problems [2], [34, Chapter 5], high-frequency wave propagation inverse problems
[15], inverse problems governed by high Reynolds number flows, and, more generally,
all inverse problems in which the observations highly inform the parameter. The ei-
genvalues of the data misfit Hessian characterize how informative the data are about
components of the parameter in the corresponding eigenvector directions; hence, more
informative data lead to larger eigenvalues and a larger numerical rank [3], [4, sec-
tion 1.4 and Chapter 4]. Roughly speaking, the numerical rank of the data misfit
Hessian is the dimension of the subspace of parameter space that is informed by the
data. The numerical rank of the regularization preconditioned data misfit Hessian
may be reduced by increasing the strength of the regularization, but this throws
away useful information: Components of the parameter that could be learned from
the observations would instead be reconstructed based on the regularization [6, sec-
tion 4], [76, Chapters 1 and 7]. Hence, low-rank approximation methods suffer from
a predicament: If the data highly inform the parameter and the regularization is cho-
sen appropriately, then a large number of operator applications are required to form
an accurate approximation of the Hessian using low-rank approximation methods.
High-rank Hessian approximation methods are thus needed.

Recently, there have been improvements in matrix-free H-matrix construction
methods in which an operator is applied to structured random vectors and the re-
sponse of the operator to those random vectors is processed to construct an H-matrix

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A1664 N. ALGER, T. HARTLAND, N. PETRA, AND O. GHATTAS

approximation [54, 55, 57, 58, 59]. These methods (which we do not use here) have
been used to approximate Hessians in PDE-constrained inverse problems [7, 45]. Al-
though these methods are promising, the required number of operator applications
is still large (e.g., hundreds to thousands). For example, using the method in [55],
the required number of operator applies to construct an H1 matrix with hierarchical
rank r for problems in a two-dimensional domain discretized with a regular grid is
\#levels \cdot 64 \cdot (r + c), where \#levels is the depth of the hierarchical partitioning, r is
the rank of the blocks (hierarchical rank), and c is an oversampling parameter (see
[55, section 2.4]). On a 64\times 64 grid with depth 4, hierarchical rank 10, and oversam-
pling parameter c = 5, this works out to 4 \cdot 64 \cdot (10 + 5) = 3840 operator applies. In
section 7.3, we see numerically that the randomized hierarchical off-diagonal low-rank
(HODLR) method in [58] requires hundreds to thousands of matrix-vector products
to construct approximations of the integral kernel for a blur problem example with
modest (e.g., 10\%) relative error. Matrix-free H-matrix construction is currently an
active area of research; hence, these costs may decrease as new algorithms are devel-
oped. In this paper, we also form an H-matrix approximation. However, to reduce the
required number of operator applications, we first form a PSF approximation of the
data misfit Hessian by exploiting locality and nonnegative integral kernel properties,
then form the H-matrix using classical techniques. Using this two-stage approach, we
reduce the number of operator applications to a few dozen at most.

Not all data misfit Hessians satisfy the local nonnegative integral kernel proper-
ties. We note, in particular, that the wave inverse problem data misfit Hessian and
Gauss--Newton Hessian have a substantial proportion of negative entries in their inte-
gral kernels. In this case, more specialized techniques have been developed using, e.g.,
pseudodifferential operator theory [21, 71] and sparsity in the wavelet domain [46].
However, many data misfit Hessians of practical interest do satisfy the local nonneg-
ative integral kernel properties (either exactly or approximately), and the PSF-based
method we propose is targeted at approximating these Hessians.

3. Preliminaries. Let \Omega \subset Rd be a bounded domain (typically d = 1, 2, or 3).
We seek to approximate integral operators \scrA :L2(\Omega )\rightarrow L2(\Omega )\prime of the form

(3.1) (\scrA u)(w) :=
\int 
\Omega 

\int 
\Omega 

w(y)\Phi (y,x)u(x)dxdy.

The linear functional \scrA u \in L2(\Omega )\prime is the result of applying \scrA to u \in L2(\Omega ), and the
scalar (\scrA u) (w) is the result of applying that linear functional to w \in L2(\Omega ). The
integral kernel, \Phi : \Omega \times \Omega \rightarrow R, exists but is not easily accessible. In this section, we
describe how to extend the domain of \scrA to distributions, which allows us to define
impulse responses (section 3.1); we then state the conditions on \scrA that the PSF-based
method requires (section 3.2) and detail finite element discretization (section 3.3).

3.1. Distributions and impulse responses. The operator \scrA may be applied
to distributions3 if \Phi is sufficiently regular. Given \rho \in L2(\Omega )\prime , let \rho \ast \in L2(\Omega ) denote
the Riesz representative of \rho with respect to the L2(\Omega ) inner product. We have

(\scrA \rho \ast ) (w) =
\int 
\Omega 

\int 
\Omega 

w(y)\Phi (y,x)\rho \ast (x)dx dy(3.2a)

=

\int 
\Omega 

w(y)

\int 
\Omega 

\Phi (y,x)\rho \ast (x)dx dy=

\int 
\Omega 

w(y)\rho (\Phi (y, \cdot ))dy,(3.2b)

3That is, generalized functions such as the Dirac delta distribution. See, for example, [8,
Chapter 5].
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HIGH-RANK PSF HESSIAN APPROXIMATION A1665

where \Phi (y, \cdot ) denotes the function x \mapsto \rightarrow \Phi (y,x). Now let \scrD (\Omega )\subset L2(\Omega ) be a suitable
space of test functions, and let \rho : \scrD (\Omega )\rightarrow R be a distribution. In this case, \rho \ast may
not exist, so the derivation in (3.2) is not valid. However, if \Phi is sufficiently regular
such that the function y \mapsto \rightarrow \rho (\Phi (y, \cdot )) is well-defined for almost all y \in \Omega and if this
function is in L2(\Omega ), then the right-hand side of (3.2b) is well-defined. Hence, we
define the application of \scrA to the distribution \rho to be the right-hand side of (3.2b).
We denote this operator application by ``\scrA \rho \ast ,"" even if \rho \ast does not exist.

Let \delta x denote the delta distribution4 (i.e., point source, impulse) centered at the
point x\in \Omega . The impulse response of \scrA associated with x is the function \phi x : \Omega \rightarrow R,

(3.3) \phi x := (\scrA \delta \ast x)
\ast 
,

that is formed by applying \scrA to \delta x (per the generalized notion of operator ``appli-
cation"" defined above), then taking the Riesz representation of the resulting linear
functional. Using (3.2b) and the definition of the delta distribution, we see that \phi x
may also be written as the function \phi x(y) =\Phi (y,x).

3.2. Required conditions. We focus on approximating operators that satisfy
the following conditions:

1. The kernel \Phi is sufficiently regular so that \phi x is well-defined for all x\in \Omega .
2. The supports of the impulse responses \phi x are contained in localized regions.
3. The integral kernel is nonnegative5 in the sense that

\Phi (y,x)\geq 0 for all (y,x)\in \Omega \times \Omega .

The PSF-based method may still perform well if these conditions are relaxed slightly.
It is acceptable if the support of \phi x is not perfectly contained in a localized

region (violating assumption 2) as long as the bulk of the ``mass"" of \phi x is contained
in a localized region. In principle, the PSF-based method can be applied even if the
impulse responses are widely dispersed. However, in this case, only a small number
of impulse responses can be computed per batch, which means that more batches and
hence more operator applies are needed to form an accurate approximation.

If there are negative numbers in the integral kernel (violating assumption 3), the
ellipsoid estimation procedure may incur errors or fail, leading to poor performance
or failure of the PSF-based method. In Figure 7, we investigate the robustness of the
ellipsoid support estimation procedure to violations of assumption 3. We study two
integral kernel examples, both of which are parameterized by a quantity that controls
how negative the kernels are. We make the following observations:

\bullet The larger and more numerous the negative numbers are, the more inaccurate
the ellipsoid support estimate is.

\bullet The farther away from the center of the ellipsoid the negative numbers are,
the more influence they have on the quality of the ellipsoid support estimate.
This is because moment formulas ((4.2) and (4.3)) assign more weight to
entries in the kernel that are farther from the center.

\bullet Negative numbers affect the ellipsoid estimation method more if they are
isolated and less if they are balanced by nearby positive numbers.

4Recall that the delta distribution \delta x :\scrD (\Omega )\rightarrow R is defined by \delta x(w) =w(x) for all w \in \scrD (\Omega ).
5Note that having a nonnegative integral kernel is different from positive semidefiniteness. The

operator \scrA need not be positive semidefinite to use the PSF-based method, and positive semidefinite
operators need not have a nonnegative integral kernel.
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A1666 N. ALGER, T. HARTLAND, N. PETRA, AND O. GHATTAS

Fig. 7. Illustration of the influence of negative numbers in the integral kernel on the robustness
of the ellipsoid estimates for the supports of impulse responses. Left two columns: Blur kernel given
in (7.4). Right two columns: Ricker wavelet type of kernel given by \Phi (y,x) = (1 - a\gamma ) exp( - \gamma /2),
where \gamma = (y  - x)T\Sigma  - 1(y  - x) and \Sigma = diag(0.0025,0.01). Ordered from top to bottom, the results
are obtained with a \in \{ 1.0,20.0,27.0\} for the left two columns and a \in \{ 0.0,0.23,0.249\} for the
right two columns. Columns 1 and 3: Impulse responses with estimated support ellipsoids indicated
by the black ellipses. Red and blue represent positive and negative numbers in the integral kernel,
respectively. Columns 2 and 4: One-dimensional slice along the horizontal line indicated in the
two-dimensional plots. The dashed gray line is at zero.

\bullet As kernels become more negative, the ellipsoid estimation performs well up
to a certain threshold that depends on the spatial distribution of negative
and positive entries. After that threshold is crossed, the estimation rapidly
transitions to performing poorly and ultimately failing.

For the kernel in the left two columns of Figure 7, negative numbers are interspersed
with positive numbers, allowing us to include a large amount of negative numbers
before the ellipsoid estimation fails. For the kernel in the right two columns, the
ellipsoid estimate fails with tiny amounts of negative numbers because the negative
numbers are far away from the mean and not balanced by positive numbers at similar
distances and angles. In the bottom two rows, we see the aforementioned threshold
effect, in which the ellipsoid estimation method rapidly transitions from performing
reasonably well to performing poorly with only a small change to the integral kernel.

3.3. Finite element discretization. In computations, functions are discretized
and replaced by finite-dimensional vectors and operators mapping between infinite-
dimensional spaces are replaced by operators mapping between finite-dimensional
spaces. In this paper, we discretize the functions that \scrA and \scrA T are applied to using
continuous finite elements satisfying the Kronecker property (defined below). With
minor modifications, the PSF-based method could be used with more general finite
element methods or other discretization schemes, such as finite differences or finite
volumes. These restrictions on discretization only apply to functions u that \scrA and \scrA T

are applied to. Other functions that arise internally during the process of computing

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

3/
24

 to
 1

69
.2

36
.2

36
.7

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



HIGH-RANK PSF HESSIAN APPROXIMATION A1667

actions of \scrA , such as state variables in a PDE that is solved in a subproblem, may be
discretized with any method.

Let \psi 1,\psi 2, . . . ,\psi N be a set of continuous finite element basis functions used to dis-
cretize the problem on a mesh with mesh size parameter h, let Vh := span(\psi 1,\psi 2, . . . ,
\psi N ) be the corresponding finite element space under the L2 inner product, and let
pi \in Rd, i = 1, . . . ,N , be the Lagrange nodes associated with the functions \psi i. We
assume that the finite element basis satisfies the Kronecker property, i.e., \psi i(pi) = 1
and \psi i(pj) = 0 if i \not = j. For uh \in Vh, we write u\in Rm

M to denote the coefficient vector

for uh with respect to the finite element basis, i.e., uh(x) =
\sum N

i=1ui\psi i(x). Linear
functionals \rho h \in V \prime 

h have coefficient dual vectors \bfitrho \in Rm
M - 1 , with entries \bfitrho i = \rho h(\psi i)

for i = 1, . . . ,m. Here, M \in RN\times N denotes the sparse finite element mass matrix,
which has entries Mij =

\int 
\Omega 
\psi i(x)\psi j(x)dx for i, j = 1, . . . ,N . The space RN

M is RN

with the inner product (u,w)M := uTMw, and RN
M - 1 is the analogous space with

M - 1 replacing M. Direct calculation shows that RN
M and RN

M - 1 are isomorphic to Vh
and V \prime 

h as Hilbert spaces, respectively.
After discretization, the operator \scrA : L2(\Omega )\rightarrow L2(\Omega )\prime is replaced by an operator

Ah : Vh \rightarrow V \prime 
h, which becomes an operator A :RN

M \rightarrow RN
M - 1 under the isomorphism dis-

cussed above. The PSF-based method is agnostic to the computational procedure for
approximating \scrA with A. What is important is that we do not have direct access to
matrix entries Aij . Rather, we have a computational procedure that allows us to com-
pute matrix-vector products u \mapsto \rightarrow Au and w \mapsto \rightarrow ATw, and computing these matrix-
vector products is costly. The PSF-based method mitigates this cost by performing
as few matrix-vector products as possible. Of course, matrix entries can be computed
via matrix-vector products as Aij = (Aej)i, where ej = (0, . . . ,0,1,0, . . . ,0)T is the
length N unit vector with one in the jth coordinate and zeros elsewhere. But comput-
ing the matrix-vector product ej \mapsto \rightarrow Aej is costly and therefore wasteful if we do not
use other matrix entries in the jth column of A. Hence, methods for approximating
A are computationally intractable if they require accessing scattered matrix entries
from many different rows and columns of A.

The operator Ah : Vh \rightarrow V \prime 
h can be written in integral kernel form, (3.1), but with

\Phi replaced by a slightly different integral kernel, \Phi h, which we do not know and which
differs from \Phi due to discretization error. Since the functions in Vh are continuous at
x, the delta distribution \delta x is a continuous linear functional on Vh, which has a discrete
dual vector \bfitdelta x \in RN

M - 1 with entries (\bfitdelta x)i = \psi i(x) for i= 1, . . . ,N . Additionally, it is
straightforward to verify that the Riesz representation, \rho \ast h \in Vh, of a functional \rho \in V \prime 

h

has coefficient vector \bfitrho \ast = M - 1\bfitrho . Therefore, the formula for the impulse response
from (3.3) becomes \bfitphi x = (Ah\delta 

\ast 
x)

\ast 
=M - 1AM - 1\bfitdelta x, and the (y,x) kernel entry of \Phi h

may be written as \Phi h(y,x) = \bfitdelta Ty \bfitphi x = \bfitdelta Ty M
 - 1AM - 1\bfitdelta x. Now define \Phi \in RN\times N to be

the following dense matrix of kernel entries evaluated at all pairs of Lagrange nodes:

(3.4) \Phi ij := \Phi h(pi, pj).

Because of the Kronecker property of the finite element basis, we have \bfitdelta pi
= ei. Thus,

we have \Phi h(pi, pj) =
\bigl( 
M - 1AM - 1

\bigr) 
ij
, which implies that

(3.5) A=M\Phi M.

Broadly, we will construct an H-matrix approximation of A by forming an H-matrix
approximation of \Phi , then multiplying \Phi by M (or a lumped mass version of M) on
the left and right using H-matrix methods. Classical H-matrix construction methods
require access to arbitrary matrix entries \Phi ij , but these matrix entries are not easily
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A1668 N. ALGER, T. HARTLAND, N. PETRA, AND O. GHATTAS

accessible. The bulk of the PSF-based method is therefore dedicated to forming
approximations of these matrix entries that can be evaluated rapidly.

Lumped mass matrix. At the continuum level, \Phi is assumed to be nonnegative.
However, entries of \Phi involve inverse mass matrices, which typically contain negative
numbers. We therefore recommend replacing the mass matrix, M, with a positive
diagonal lumped mass approximation. Here, we use the lumped mass matrix in which
the ith diagonal entry of the lumped mass matrix is the sum of all entries in the ith
row of the mass matrix. Other mass lumping techniques may be used.

4. Key innovations. In this section, we present two key innovations that the
PSF-based method is based on. First, we define moments of the impulse responses,
\phi x, then show how these moments can be computed efficiently and use these moments
to form ellipsoid-shaped a priori estimates for the supports of the impulse responses
(section 4.1). Second, we describe an improved method to approximate impulse re-
sponses from other nearby impulse responses, which we call ``normalized local mean
displacement invariance"" (section 4.2).

4.1. Impulse response moments and ellipsoid support estimate. The
impulse response \phi x may be interpreted as a scaled probability distribution because
of the nonnegative integral kernel property. Let V : \Omega \rightarrow R,

V (x) :=

\int 
\Omega 

\phi x(y)dy,(4.1)

denote the spatially varying scaling factor, and for i, j = 1, . . . , d, define \mu : \Omega \rightarrow Rd

and \Sigma : \Omega \rightarrow Rd\times d as follows:

\mu i(x) :=
1

V (x)

\int 
\Omega 

\phi x(y)y
i dy,(4.2)

\Sigma ij(x) :=
1

V (x)

\int 
\Omega 

\phi x(y)
\bigl( 
yi  - \mu i(x)

\bigr) \bigl( 
yj  - \mu j(x)

\bigr) 
dy,(4.3)

where \mu i(x) and yi denote the ith components of the vectors \mu (x) and y, respectively,
and \Sigma ij(x) denotes the (i, j) entry of the matrix \Sigma (x). The quantities \mu (x)\in Rd and
\Sigma (x)\in Rd\times d are the mean and covariance of the normalized version of \phi x, respectively.

The direct approach to compute V (x), \mu (x), and \Sigma (x) is to apply \scrA to a point
source centered at x to obtain \phi x per (3.3). Then one can post process \phi x to determine
V (x), \mu (x), and \Sigma (x). However, this direct approach is not feasible because our
algorithm for picking sample points (section 5.1 and Figure 4) needs to know V (x),
\mu (x), and \Sigma (x) before we compute \phi x. Computing \phi x in order to determine V (x),
\mu (x), and \Sigma (x) would be extremely computationally expensive and defeat the purpose
of the PSF-based method, which is to reduce the computational cost by computing
impulse responses in batches. Fortunately, it is possible to compute V (x), \mu (x), and
\Sigma (x) indirectly, for all points x \in \Omega simultaneously, by applying \scrA T to one constant
function, d linear functions, and d(d+1)/2 quadratic functions (e.g., 6 total operator
applications in two spatial dimensions and 10 in three spatial dimensions). This may
be motivated by analogy to matrices. If A \in RN\times N is a matrix with ith column ai
and w \in RN , then

ATw=

\left[   aT1
...

aTN

\right]   w=

\left[   a
T
1 w
...

aTNw

\right]   .
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HIGH-RANK PSF HESSIAN APPROXIMATION A1669

By computing one matrix-vector product of AT withw, we compute the inner product
of each column of A with w simultaneously. The operator case is analogous, with \phi x
taking the place of a matrix column. We have

(4.4)
\bigl( 
\scrA Tw

\bigr) \ast 
(x) =

\int 
\Omega 

\Phi (y,x)w(y)dy= (\phi x,w)L2(\Omega ) .

By computing one operator application of \scrA T to w, we compute the inner product of
each \phi x with w for all points x simultaneously.

Let C, Li, and Qij be the constant, linear, and quadratic functions

C(x) := 1, Li(x) := xi, Qij(x) := xixj

for i, j = 1, . . . , d. Using the definition of V in (4.1) and using (4.4), we have

V (x) =

\int 
\Omega 

\phi x(y)C(y) dy= (\phi x,C)L2(\Omega ) =
\bigl( 
\scrA TC

\bigr) \ast 
(x).

Hence, we compute V (x) for all x simultaneously by applying \scrA T to C. Analogous
manipulations show that \mu (x) and \Sigma (x) may be computed for all points x simultane-
ously by applying \scrA T to the functions Li and Qij , respectively. We have

V =
\bigl( 
\scrA TC

\bigr) \ast 
,(4.5a)

\mu i =
\bigl( 
\scrA TLi

\bigr) \ast 
/V,(4.5b)

\Sigma ij =
\bigl( 
\scrA TQij

\bigr) \ast 
/V  - \mu i \cdot \mu j(4.5c)

for i, j = 1, . . . , d. Here, u/w denotes pointwise division, (u/w) (x) = u(x)/w(x), and
u \cdot w denotes pointwise multiplication, (u \cdot w)(x) = u(x)w(x).

We approximate the support of \phi x with the ellipsoid

(4.6) Ex := \{ x\prime \in \Omega : (x\prime  - \mu (x))T\Sigma (x) - 1(x\prime  - \mu (x))\leq \tau 2\} ,

where \tau is a fixed constant (see Figure 3). The ellipsoid Ex is the set of points
within \tau standard deviations of the mean of the Gaussian distribution with mean
\mu (x) and covariance \Sigma (x), i.e., the Gaussian distribution which has the same mean
and covariance as the normalized version of \phi x. The quantity \tau is a parameter that
must be chosen appropriately. The larger \tau is, the larger the ellipsoid Ex is and the
more conservative the estimate is for the support of \phi x. However, in section 5.1, we
will see that the cost of the PSF-based method depends on how many nonoverlapping
ellipsoids Ex we can ``pack"" in the domain \Omega (more ellipsoids is better), and choosing
a larger value of \tau means that fewer ellipsoids will fit in \Omega . In practice, we find
that \tau = 3.0 yields a reasonable balance between these competing interests and use
\tau = 3.0 in all numerical results, except for Figure 14, where we study the effects of
varying \tau . The fraction of the ``mass"" of \phi x residing outside of Ex is less than 1/\tau 2

by Chebyshev's inequality, though this bound is typically conservative.

4.2. Local mean displacement invariance. Let x and x\prime be points in \Omega that
are close to each other, and consider the following approximations:
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A1670 N. ALGER, T. HARTLAND, N. PETRA, AND O. GHATTAS

\phi x(y)\approx \phi x\prime (y),(4.7)

\phi x(y)\approx \phi x\prime (y - x+ x\prime ),(4.8)

\phi x(y)\approx \phi x\prime (y - \mu (x) + \mu (x\prime )) ,(4.9)

\phi x(y)\approx \phi x\prime (y - \mu (x) + \mu (x\prime ))V (x)/V (x\prime ).(4.10)

These are four different ways to approximate an impulse response by a nearby impulse
response, with each successive approximation building on the previous ones. The PSF-
based method uses (4.10), which is the most sophisticated. Approximation (4.7) says
that \phi x can be approximated by \phi x\prime when x and x\prime are close. Operators satisfying (4.7)
can be well approximated via low-rank CUR approximation. However, the required
rank in the low-rank approximation can be large, which makes algorithms based on
(4.7) expensive. Operators that satisfy (4.8) are called ``locally translation invariant""
because integral kernel entries \Phi (y,x) for such operators are approximately invariant
under translation of x and y by the same displacement, i.e., x\rightarrow x+h and y\rightarrow y+h.
It is straightforward to show that if equality holds in (4.8), then \scrA is a convolution
operator. Locally translation invariant operators act like convolutions locally and can
therefore be well approximated by PC approximations.

Approximation (4.9) improves on (4.7) and (4.8) and generalizes both. On the one
hand, if (4.7) holds, then \mu (x)\approx \mu (x\prime ), and so (4.9) holds. On the other hand, trans-
lating a distribution translates its mean, so if (4.8) holds, then \mu (x\prime ) - \mu (x)\approx x\prime  - x,
so again (4.9) holds. But approximation (4.9) can hold in situations where neither
(4.7) nor (4.8) holds. For example, because the expected value commutes with affine
transformations, (4.9) will hold when \scrA is locally translation invariant with respect
to a translated and rotated frame of reference, while (4.8) will not. Additionally, (4.9)
generalizes to operators \scrA : L2(\Omega 1)\rightarrow L2(\Omega 2)

\prime that map between function spaces on
different domains \Omega 1 and \Omega 2 and even operators that map between domains with
different spatial dimensions. In contrast, (4.8) does not naturally generalize to op-
erators that map between function spaces on different domains because the formula
y  - x+ x\prime requires vectors in \Omega 2 and \Omega 1 to be added together. We call (4.9) ``local
mean displacement invariance"" and illustrate (4.9) in Figure 1(b).

We use approximation (4.10), which is the same as (4.9), except for the factor
V (x)/V (x\prime ). This factor makes the approximation more accurate if V (x) varies widely.
Approximation (4.10) is equivalent to (4.9), but with \phi x replaced by its normalized
version, \phi x/V (x). We call (4.10) normalized local mean displacement invariance.

5. Operator approximation algorithm. Before presenting the technical de-
tails of the algorithm in sections 5.1--5.5, we first provide an overview.

We use (4.5) to compute V , \mu , and \Sigma by applying \scrA T to polynomial functions.
Then we use (4.6) to form ellipsoid-shaped estimates for the support of the \phi x's,
without computing them (see Figure 3). This allows us to compute large numbers of
\phi xi

in ``batches,"" \eta b (see Figures 1(a) and 4). We compute one batch, denoted \eta b,
by applying \scrA to a weighted sum of point sources (Dirac comb) associated with a
batch, Sb, of points xi scattered throughout \Omega (section 5.2). The batch of points,
Sb, is chosen via a greedy ellipsoid packing algorithm so that, for xi, xj \in Sb, the
support ellipsoid for \phi xi

and the support ellipsoid for \phi xj
do not overlap if i \not = j

(section 5.1). Because these supports do not overlap (or do not overlap much), we
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HIGH-RANK PSF HESSIAN APPROXIMATION A1671

Algorithm 1: Construct PSF H-matrix approximation.
Input : Linear operator \scrA , parameter nb
Output: H-matrix AH

1 Compute V,\mu , and \Sigma ((4.5) in section 4.1)
2 for k= 1,2, . . . , nb do
3 Choose a batch of sample points, Sk (section 5.1)
4 Compute impulse response batch \eta k by applying \scrA to the Dirac comb for Sk

(section 5.2)
5 Form H-matrix approximation \Phi H of integral kernel (sections 5.3 and 5.4)
6 Form H-matrix approximation AH of \scrA (section 5.4)
7 (optional) Modify AH to make it symmetric and remove negative eigenvalues

(section 5.5)

can post process \eta b to recover the functions \phi xi associated with all points xi \in Sb.
With one application of \scrA , we recover many \phi xi

(section 5.2). The process is repeated
until a desired number of batches is reached.

Once the batches \eta b are computed, we approximate the integral kernel \Phi (y,x)
at arbitrary points (y,x) by interpolation of translated and scaled versions of the
computed \phi xi (section 5.3 and Figure 5). The key idea behind the interpolation is the
normalized local mean displacement invariance assumption discussed in section 4.2.
Specifically, we approximate \Phi (y,x) = \phi x(y) by a weighted linear combination of the

values V (x)
V (xi)

\phi xi
(y - \mu (x)+\mu (xi)) for a small number of sample points xi near x. The

weights are determined by radial basis function (RBF) interpolation.
The ability to rapidly evaluate approximate kernel entries \Phi (y,x) allows us to

construct an H-matrix approximation, \Phi H \approx \Phi , using the conventional adaptive
cross H-matrix construction method (section 5.4). In this method, one forms low-rank
approximations of off-diagonal blocks of the matrix by sampling rows and columns of
those blocks. We then convert \Phi H into an H-matrix approximation AH \approx A.

When \scrA is symmetric positive semidefinite, AH may be nonsymmetric and indef-
inite due to errors in the approximation. In this case, one may optionally symmetrize
AH , then modify it via low-rank updates to remove erroneous negative eigenvalues
(section 5.5). The complete algorithm for constructing AH is shown in Algorithm 1.
The computational cost is discussed in section 6.

5.1. Sample point selection via greedy ellipsoid packing. We choose sam-
ple points, xi, in batches Sk. We use a greedy ellipsoid packing algorithm to choose
as many points as possible per batch while ensuring that there is no overlap between
the support ellipsoids, Exi

, associated with the sample points within a batch.
We start with a finite set of candidate points X and build Sk incrementally with

points selected from X. For simplicity of explanation, here Sk and X are mutable sets
that we add points to and remove points from. First, we initialize Sk as an empty set.
Then we select the candidate point xi \in X that is the farthest away from all points
in previous sample point batches S1 \cup S2 \cup \cdot \cdot \cdot \cup Sk - 1. Candidate points for the first
batch S1 are chosen randomly from X. Once xi is selected, we remove xi from X.
Then we perform the following checks:

1. We check whether xi is sufficiently far from all of the previously chosen points
in the current batch in the sense that Exi \cap Exj = \{ \} for all xj \in Sk.

2. We make sure that V (xi) is not too small by checking whether V (xi) >
\epsilon V Vmax. Here, Vmax is the largest value of V (xj) over all points q in the
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A1672 N. ALGER, T. HARTLAND, N. PETRA, AND O. GHATTAS

initial set of candidate points, and \epsilon V is a small threshold parameter (we use
\epsilon V = 10 - 5).

3. We make sure that all eigenvalues of \Sigma (xi) are positive and that the aspect
ratio of Exi

(square root of the ratio of the largest eigenvalue of \Sigma (xi) to the
smallest) is bounded by a constant 1/\epsilon \Sigma (we use 1/\epsilon \Sigma = 20). Negative integral
kernel entries due to discretization error can cause \Sigma (xi) to be indefinite or
highly ill-conditioned.

If xi passes these checks, then we add xi to Sk. Otherwise, we discard xi. This process
repeats until there are no more points in X. We repeat the point selection process to
construct several batches of points S1, S2, . . . , Snb

. For each batch, X is initialized as
the set of all Lagrange nodes for the finite element basis functions used to discretize
the problem, except for points in previous batches.

We check whether Exi \cap Exj = \{ \} in a two-stage process. First, we check whether
the axis-aligned bounding boxes for the ellipsoids intersect. This quickly rules out
intersections of ellipsoids that are far apart. Second, if the bounding boxes intersect,
we check if the ellipsoids intersect using the ellipsoid intersection test in [39].

5.2. Impulse response batches. We compute impulse responses, \phi xi
, in

batches by applying \scrA to Dirac combs. The Dirac comb, \xi k, associated with a batch of
sample points, Sk, is the following weighted sum of Dirac distributions (point sources)
centered at the points xi \in Sk:

\xi k :=
\sum 

xi\in Sk

\delta xi
/V (xi).

We compute the impulse response batch, \eta k, by applying \scrA to the Dirac comb:

(5.1) \eta k := (\scrA \xi \ast k)
\ast 
=

\sum 
xi\in Sk

\phi xi
/V (xi).

The last equality in (5.1) follows from linearity and the definition of \phi xi
in (3.3). Since

the points xi are chosen so that the ellipsoid Exi
that (approximately) supports \phi i

and the ellipsoid Exj
that (approximately) supports \phi j do not overlap when i \not = j, we

have (approximately)

(5.2) \phi xi
(z) =

\Biggl\{ 
\eta k(z)V (xi), z \in Exi

0, otherwise

for all xi \in Sk. By applying the operator once, \xi k \mapsto \rightarrow (\scrA \xi \ast k)
\ast 
, we recover \phi xi

for every
point xi \in Sk.

Each point source, \delta xi , is scaled by 1/V (xi) so that the resulting scaled impulse
responses within \eta k are comparable in magnitude. Without this scaling, the portion of
\phi xi

outside of Exi
, which we neglect, may overwhelm \phi xj

for a nearby point xj if V (xi)
is much larger than V (xj). Note that we are not in danger of dividing by zero because
the ellipsoid packing procedure from section 5.1 excludes xi from consideration as a
sample point if V (xi) is smaller than a predetermined threshold.

5.3. Approximate integral kernel entries. Here, we describe how to rapidly
evaluate arbitrary entries of an approximation to the integral kernel by performing
RBF interpolation of translated and scaled versions of nearby known impulse re-
sponses. In section 5.4, we use this procedure for rapidly evaluating kernel entries to
construct the H-matrix approximation of A.
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HIGH-RANK PSF HESSIAN APPROXIMATION A1673

Given (y,x)\in \Omega \times \Omega , let zi := y - \mu (x) + \mu (xi), and define

(5.3) fi :=
V (x)

V (xi)
\phi xi

(zi)

for i= 1, . . . , kn, where \{ xi\} kn
i=1 are the kn nearest sample points to x, excluding points

xi for which zi /\in \Omega . Here, kn is a small user-defined parameter, e.g., kn = 10. We
find the kn nearest sample points to x by querying a precomputed kd-tree [11] of all
sample points. We check whether zi \in \Omega by querying a precomputed axis-aligned
bounding box tree (AABB tree) [26] of the mesh cells used to discretize the problem.

Note that \phi xi
(zi) is well-defined because zi \in \Omega and that V (x)

V (xi)
is well-defined because

the sample point choosing procedure in section 5.1 ensures that V (xi) > 0. Per the
discussion in section 4.2, we expect \Phi (y,x) \approx fi for i = 1, . . . , kn. The closer xi is to
x, the better we expect the approximation to be. We therefore approximate \Phi (y,x)
by interpolating the (point, value) pairs \{ (xi, fi)\} kn

i=1 at the point x. Interpolation is
performed using the following RBF [77] scheme:

(5.4) \Phi (y,x)\approx \widetilde \Phi (y,x) := kn\sum 
i=1

ci \varphi (\| x - xi\| ) ,

where ci are weights and \varphi (r) := exp

\biggl( 
 - 1

2

\Bigl( 
CRBF

r
r0

\Bigr) 2
\biggr) 

is a Gaussian kernel RBF.

Here, r0 := diam
\Bigl( 
\{ xi\} kn

i=1

\Bigr) 
is the diameter of the set of sample points used in the

interpolation, and CRBF is a user-defined shape parameter that controls the width
of the kernel function. The vector of weights, c = (c1, c2, . . . , ckn

)T , is found as the
solution to the kn \times kn linear system

(5.5) Bc= f,

where B \in Rkn\times kn , Bij :=\varphi (\| xi  - xj\| ) , and f \in Rkn has entries fi from (5.3).
To evaluate fi, we check whether zi \in Exi

using (4.6). If zi /\in Exi
, then zi is

outside the estimated support of \phi xi , so we set fi = 0. If zi \in Exi , we look up the
batch index b such that xi \in Sb and evaluate fi via the formula fi = V (x)\eta b (zi)
per (5.2). Note that zi is typically not a gridpoint of the mesh used to discretize
the problem, even if y, x, and xi are gridpoints. Hence, evaluating \eta b (zi) requires
determining which mesh cell contains zi, then evaluating finite element basis functions
on that mesh cell. Fortunately, the mesh cell containing zi was determined as a side
effect of querying the AABB tree of mesh cells when we checked whether zi \in \Omega .

The shape parameter, CRBF, mediates a trade-off between accuracy and stability.
Small CRBF is required for RBF interpolation with Gaussian kernels to achieve high
accuracy, but small CRBF also makes RBF interpolation less robust to errors or non-
smoothness in the function being interpolated. For our numerical results involving
Hessians in inverse problems governed by PDEs (sections 7.1 and 7.2), high accuracy
is not required because the PSF-based method is used to construct a preconditioner.
Hence, for these Hessian approximations, we use a conservative choice of CRBF = 3.0
to ensure robustness. For our numerical results for the blur problem example (sec-
tion 7.3), we use a smaller value of CRBF = 0.5 so that the RBF interpolation accuracy
is not a limiting factor as we study convergence of the PSF-based method.

5.4. Hierarchical matrix construction. We form an H-matrix approximation
AH \approx A by forming an H-matrix representation \Phi H of \Phi , then multiplying \Phi with
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A1674 N. ALGER, T. HARTLAND, N. PETRA, AND O. GHATTAS

mass matrices M per (3.5) to form AH =M\Phi HM. Here, we use a diagonal lumped
mass matrix, so these matrix-matrix multiplications are trivial. If a nondiagonal mass
matrix is used, one may form an H-matrix representation of the mass matrix, then
perform the matrix-matrix multiplications in (3.5) using H-matrix methods. We use
H1 matrices in the numerical results, but any other H-matrix format could be used
instead. For more details on H-matrices, see [43].

We form\Phi H using the standard geometrical clustering/adaptive cross method im-
plemented within the HLIBpro software package [51]. For details about the algorithms
used for geometrical clustering, H-matrix construction, and H-matrix operations in
HLIBpro, we refer the reader to [13, 41, 52]. Although \Phi is a dense N\times N matrix, con-
structing \Phi H only requires evaluation of O(khN logN) kernel entries \Phi ij = \widetilde \Phi (pi, pj)
(see [10]), and these entries are computed via the RBF interpolation method described
in section 5.3. Here, kh is the rank of the highest rank block in the H-matrix. We
emphasize that the dense matrix \Phi is never formed.

5.5. Symmetrizing and flipping negative eigenvalues (optional). In many
applications, one seeks to approximate an operator \scrH =\scrA +\scrR , where \scrA is a symmet-
ric positive semidefinite operator that we approximate with the PSF-based method
to form an H-matrix AH and \scrR is a symmetric positive definite operator that may
be easily converted to an H-matrix RH without using the PSF-based method. For
example, in inverse problems, \scrH is the Hessian; \scrA is the data misfit term in the Hes-
sian, which is dense and available only matrix-free; and \scrR is the regularization term,
which is typically an elliptic differential operator that becomes a sparse matrix after
discretization.

The PSF-based approximationAH and thereforeAH +RH may be nonsymmetric
and indefinite because of approximation error. This is undesirable because symmetry
and positive semidefiniteness are important properties which should be preserved if
possible. Also, lacking these properties may prevent one from using highly effective
algorithms to perform further operations involving AH+RH , such as using AH+RH

as a preconditioner in the conjugate gradient method.
We modify AH to make it symmetric and remove negative eigenvalues via the

following procedure. First, we symmetrize AH via Asym
H := 1

2

\bigl( 
AH +AT

H

\bigr) 
. Next,

we find negative eigenvalues and their corresponding eigenvectors for the generalized
eigenvalue problem Asym

H u= \lambda RH using a Cayley shift-and-invert Krylov scheme [53].
We flip the signs of these eigenvalues to be positive instead of negative (i.e., \lambda \rightarrow | \lambda | ) by
performing a low-rank update to Asym

H . We observe that the eigenvectors associated
with large erroneous negative eigenvalues tend to be directions that are nevertheless
``important"" to \scrA , so flipping the eigenvalues instead of setting them to zero tends to
yield better approximations. The primary computational task in the Cayley shift-and-
invert scheme is the solution of shifted linear systems of the form (Asym

H + \mu iRH)x= b
for a small number of positive shifts \mu i. We solve these linear systems by factorizing
the matrices Asym

H + \mu iRH using fast H-matrix methods. We compute and flip all
eigenvalues \lambda < \epsilon flip which are less than some threshold \epsilon flip \in ( - 1,0]. By choosing
\epsilon flip >  - 1, we ensure that the modified version of Asym

H + RH is positive definite.
Choosing \epsilon flip = 0 would remove all erroneous negative eigenvalues. However, this
is computationally infeasible if \scrA has a large or infinite cluster of eigenvalues near
zero, a common situation for Hessians in ill-posed inverse problems. We therefore
recommend choosing \epsilon flip < 0. In our numerical results, we use \epsilon flip = - 0.1.

6. Computational cost. The computational cost of the PSF-based method
may be divided into the costs to perform the following tasks: (1) computing impulse
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HIGH-RANK PSF HESSIAN APPROXIMATION A1675

Table 1
Symbols used for variables in computational cost estimates, and approximate ranges for their

sizes in practice.

Symbol Typical size Variable name

N 103--109 Number of finite element degrees of freedom

nb 1--25 Number of batches

kh 5--50 H-matrix rank
kn 5--15 Number of nearest neighbors for RBF interpolation

d 1--3 Spatial dimension
m 101--104 Total number of sample points (all batches)

| Si| 1--500 Number of sample points in the ith batch

response moments and batches (lines 1 and 4 in Algorithm 1), (2) building the H-
matrix (lines 5 and 6 in Algorithm 1), and (3) performing linear algebra operations
with the H-matrix. This may optionally include the symmetric positive semidefinite
modifications described in section 5.5. In target applications, (1) is the dominant cost
because applying \scrA to a vector requires an expensive computational procedure such
as solving a PDE, and (1) is the only step that requires applying \scrA to vectors. All
operations that do not require applications of \scrA to vectors are polylog linear (i.e.,
O(N log(N)b) for some b) and therefore scalable in the size of the problem, N . We
now describe these costs in detail. For convenience, Table 1 lists variable symbols and
their approximate sizes.

(1) Computing impulse response moments and batches. Computing V , \mu , and \Sigma 
requires applying \scrA T to 1, d, and d(d+ 1)/2 vectors, respectively. This works out to
3 applications of \scrA T in one spatial dimension, 6 in two dimensions, and 10 in three
dimensions. Computing each \eta i requires applying \scrA to one vector, so computing
\{ \eta i\} nb

i=1 requires nb operator applications. In total, computing all impulse response
moments and batches therefore requires

1 + d+ d(d+ 1)/2 + nb operator applications.

In a typical application, one might have d= 2 and nb = 5, in which case a modest 11
operator applications are required.

Computing the impulse response batches also requires choosing sample point
batches via the greedy ellipsoid packing algorithm described in section 5.1. Choosing
the ith batch of sample points may require performing up to N | Si| ellipsoid intersec-
tion tests, where | Si| is the number of sample points in the ith batch. Choosing all
of the sample points therefore requires performing at most

Nm ellipsoid intersection tests,

where m is the total number of sample points in all batches. The multiplicative
dependence of N with m is undesirable since m may be large, and reducing this cost
is possible with more involved computational geometry methods. However, from a
practical perspective, the cost of choosing sample points is small compared to other
parts of the algorithm, and hence such improvements are not pursued here.

(2) Building the H-matrix. Classical H-matrix construction techniques require
evaluating O(khN logN) matrix entries of the approximation [10], where kh is the H-
matrix rank, i.e., the maximum rank among the blocks of the H-matrix. To evaluate
one matrix entry, first one must find the kn nearest sample points to a given point,
where kn is the number of impulse responses used in the RBF interpolation. This is
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A1676 N. ALGER, T. HARTLAND, N. PETRA, AND O. GHATTAS

done using a precomputed kd-tree of sample points, and requires O(kn logm) floating
point and logical elementary operations. Second, one must find the mesh cells that
the points \{ zi\} kn

i=1 reside in. This is done using an AABB tree of mesh cells and
requires O(kn logN) elementary operations. Third, one must evaluate finite element
basis functions on those cells, which requires O(kn) elementary operations. Finally,
the RBF interpolation requires solving a kn\times kn linear system, which requires O(k3n)
elementary operations. Therefore, building the H-matrix requires

O
\bigl( 
(khN logN)

\bigl( 
kn logN + k3n

\bigr) \bigr) 
elementary operations.

(3) Performing linear algebra operations with the H-matrix. It is well known that
H-matrix methods for matrix-vector products, matrix-matrix addition, matrix-matrix
multiplication, matrix factorization, matrix inversion, and low-rank updates require
performing O

\bigl( 
kahN log(N)b

\bigr) 
elementary operations, where a, b \in \{ 0,1,2,3\} are con-

stants which depend on the type of H-matrix used and the operation being per-
formed [40], [52, section 2.1]. For our numerical results involving Hessians (sections 7.1
and 7.2), we use one matrix-matrix addition to add the H-matrix approximation of
the data misfit term in the Hessian to the regularization term in the Hessian. Sym-
metrizing AH requires one matrix-matrix addition. Flipping negative eigenvalues to
be positive requires a handful (typically around 5) of matrix-matrix additions and
matrix factorizations to factor the required shifted linear systems and a number of
factorized solves that is proportional to the number of erroneous negative eigenvalues.

In summary, computing all the necessary ingredients to evaluate kernel entries of
the PSF-based approximation requires a handful of operator applications (e.g., 6+nb
operator applications in two dimensions or 10 + nb operator applications in three di-
mensions, with nb typically in the range 1--25) plus comparatively cheap additional
overhead costs, most notably performing ellipsoid intersection tests while choosing
sample point batches. Once these ingredients are computed, no more operator appli-
cations (and thus PDE solves) are required, and approximate kernel entries can be
evaluated rapidly. Constructing the H-matrix from kernel entries requires a number
of elementary operations that scales polylog linearly in N . Using the H-matrix to
perform linear algebra operations also scales polylog linearly in N , though the details
of these costs depend heavily on the type of H-matrix and operation being performed.

7. Numerical results. We use the PSF-based method to approximate the New-
ton (or Gauss--Newton) Hessians in inverse problems governed by PDEs which model
steady-state ice sheet flow [64] (section 7.1) and advective-diffusive transport of a con-
taminant [63] (section 7.2) and to approximate the integral kernel in a blur problem
that is not based on PDEs (section 7.3). These problems are described in detail in
their respective sections.

In both PDE-based inverse problems (sections 7.1 and 7.2), to reconstruct the
unknown parameter fields, denoted q, the inverse problems are formulated as nonlinear
least squares optimization problems, whose objective functions consist of a data misfit
term (between the observations and model output) and a bi-Laplacian regularization
term following [75]. The regularization is centered at a constant function q0(x). To
mitigate boundary effects, we use a constant coefficient Robin boundary condition
as in [65]. The parameters for the bi-Laplacian operator are chosen so that Green's
function of the Hessian of the regularization has a characteristic length of 0.25 of the
domain radius. For the specific setup, we refer the reader to [75, section 2.2]. In all
numerical results, we choose the regularization parameter (which controls the overall
strength of the regularization) using the Morozov discrepancy principle [76].
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HIGH-RANK PSF HESSIAN APPROXIMATION A1677

We solve the ice sheet inverse problem with an inexact Newton preconditioned
conjugate gradient (PCG) scheme and a globalizing Armijo line search [61]. The
Newton search directions, \widehat q, are obtained by solving

(7.1) H\widehat q= - g or Hgn\widehat q= - g,

wherein we choose the initial guess as the discretization of the constant function q0.
Here, g, H, and Hgn are the discretized gradient, Hessian, and Gauss--Newton Hes-
sian of the inverse problem objective function, respectively, evaluated at the current
Newton iterate. To ensure positive definiteness of the Hessian, we use Hgn for the
first five iterations and H for all subsequent iterations. The Newton iterations are
terminated when \| g\| < 10 - 6\| g0\| , where g0 is the gradient evaluated at the initial
guess. Systems (7.1) are solved inexactly using an inner PCG iteration, which is ter-
minated early based on the Eisenstat--Walker [24] and Steihaug [69] conditions. The
inverse problem governed by the advection-diffusion PDE is linear; hence, Newton's
method converges in one iteration. In this case, the Newton linear system, (7.1), is
solved using PCG and termination tolerances described in section 7.2.

We use the framework described in this paper to generate Hessian preconditioners.
We build H-matrix approximations, AH , of the data misfit Gauss--Newton Hessian
(the term in Hgn that arises from the data misfit). The approximations are indicated
by ``PSF (nb),"" where nb is the number of impulse response batches used to build the
approximation. The Hessian of the regularization term is a combination of stiffness
and mass matrices, which are sparse. Therefore, we form H-matrix representations
of these matrices and combine them into an H-matrix approximation of the regular-
ization term in the Hessian, RH , using standard sparse H-matrix techniques. Then
H-matrix approximations of the Gauss--Newton Hessian, Hgn \approx \widetilde H :=AH +RH , are

formed by adding AH to RH using fast H-matrix arithmetic. We modify \widetilde H to be
(approximately) symmetric positive semidefinite via the procedure described in sec-
tion 5.5. We factor \widetilde H using fast H-matrix methods, then use the factorization as
a preconditioner. We approximate Hgn rather than H because H more often has

negative values in its integral kernel. The numerical results show that \widetilde H is a good
preconditioner for both Hgn and H.

7.1. Example 1: Inversion for the basal friction coefficient in an ice
sheet flow problem. For this example, we consider a sheet of ice flowing down a
mountain (see Figure 8(a)). Given observations of the tangential component of the
ice velocity on the top surface of the ice, we invert for the logarithm of the unknown
spatially varying basal friction Robin coefficient field, which governs the resistance
to sliding along the base of the ice sheet. The setup, which we briefly summarize,
follows [48, 64]. The region of ice is denoted by \scrD \subset R3. The basal, lateral, and top
parts of the boundary \partial \scrD are denoted by \Gamma b, \Gamma l, and \Gamma t, respectively. The governing
equations are the linear incompressible Stokes equations,

 - \nabla \cdot \sigma (v, p) = f and \nabla \cdot v= 0 in \scrD ,(7.2a)

\sigma (v, p)\nu = 0 on \Gamma t,(7.2b)

v \cdot \nu = 0 and T (\sigma (v, p)\nu + exp(q)v) = 0 on \Gamma b,(7.2c)

\sigma (v, p)\nu + sv= 0 on \Gamma l.(7.2d)
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(a) Ice sheet model geometry

(b) qtrue (c) vtrue

Fig. 8. (Ice sheet) (a) Bird's-eye view of the ice sheet discretized by a mesh of tetrahedra. Color
indicates the height of the base of the ice sheet (i.e., the mountain topography). The radius of the
domain is 104 meters, the maximum height of the mountain is 2.1\times 103 meters, and the average
thickness of the ice sheet is 250 meters. (b) True parameter, qtrue. (c) True velocity, v\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}. Arrows
indicate the direction of v\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}, and color indicates the magnitude of vtrue.

The solution to these equations is the pair (v, p), where v is the ice flow velocity field6

and p is the pressure field. Here, q is the unknown logarithmic basal friction field
(large q corresponds to large resistance to sliding) defined on the surface \Gamma b. The
quantity f is the body force density due to gravity, s = 106 is a Robin boundary
condition constant, \nu is the outward unit normal, and T is the tangential projection
operator that restricts a vector field to its tangential component along the boundary.
We employ a Newtonian constitutive law, \sigma (v, p) = 2\eta \.\varepsilon (v) - Ip, where \sigma is the stress
tensor and \.\varepsilon (v) = 1

2

\bigl( 
\nabla v+\nabla v\top 

\bigr) 
is the strain rate tensor [48]. Here, \eta is the viscosity,

and I is the identity operator. Note that while the PDE is linear, the parameter-to-
solution map, q \mapsto \rightarrow (v, p), is nonlinear.

The pressure, p, is discretized with first-order scalar continuous Galerkin finite
elements defined on a mesh of tetrahedra. The velocity, v, is discretized with second-
order continuous Galerkin finite elements on the same mesh. The parameter q is
discretized with first-order scalar continuous Galerkin finite elements on the mesh of
triangles that results from restricting the tetrahedral mesh to the basal boundary, \Gamma b.
Note that \Gamma b is a two-dimensional surface embedded in three dimensions due to the
mountain topography. The PSF-based method involves translating impulse responses.
Hence, it requires either a flat domain or a notion of local parallel transport. We
therefore generate a flattened version of \Gamma b, denoted by \Omega \subset R2, by ignoring the
height coordinate. The parameter q is viewed as a function on \Gamma b for the purpose of
solving the Stokes equations and as a function on \Omega for the purpose of building Hessian
approximations and defining the regularization. The observations are generated by

6We do not use bold to denote vector or tensor fields to avoid confusion with vectors that arise
from finite element discretizations, which are already denoted with bold.
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HIGH-RANK PSF HESSIAN APPROXIMATION A1679

Table 2
(Ice sheet) Convergence history for solving the Stokes inverse problem using inexact Newton

PCG to tolerance 10 - 6. Preconditioners shown are the PSF-based method with five batches (PSF
(5)) constructed at the third iteration, regularization preconditioning (REG), and no preconditioning
(NONE). Columns \#CG show the number of PCG iterations used to solve the Newton system for\widehat q. Columns \| g\| show the l2 norm of the gradient at q. Columns \#Stokes show the total number of
Stokes PDE solves performed in each Newton iteration. Under PSF (5) and in row Iter 3, we write
6+22 to indicate that 6 Stokes solves were used during the standard course of the iteration and that
22 Stokes solves were used to build the PSF (5) preconditioner.

PSF (5) REG NONE

Iter \#CG \#Stokes \| g\| \#CG \#Stokes \| g\| \#CG \#Stokes \| g\| 
0 1 4 1.9e+ 7 3 8 1.9e+7 1 4 1.9e+7
1 2 6 6.1e+6 8 18 8.4e+6 2 6 6.1e+6

2 4 10 2.6e+6 16 34 4.1e+6 4 10 2.6e+6

3 2 6+22 6.9e+5 34 70 1.8e+6 14 30 6.9e+5
4 3 8 4.4e+4 52 106 5.6e+5 29 60 1.3e+5

5 5 12 2.2e+3 79 160 9.4e+4 38 78 1.0e+4

6 0 2 1.1e+1 102 206 6.5e+3 58 118 1.8e+2
7 --- --- --- 151 304 1.2e+2 0 2 5.5e-1

8 --- --- --- 0 2 2.9e-1 --- --- ---

Total 17 70 --- 445 908 --- 146 308 ---

Table 3
(Ice sheet) Condition number for \widetilde H - 1H for the PSF-based preconditioners with 1, 5, and 25

batches (PSF (1), PSF (5), and PSF (25), respectively), no preconditioner (NONE), and regulariza-
tion preconditioning (REG). All operators are evaluated at the soutions of the inverse problems for
their respective noise levels.

noise COND( \widetilde H - 1H)

level REG NONE PSF (1) PSF (5) PSF (25)

25\% 1.01e+3 2.96e+3 1.34e+0 1.30e+0 1.18e+0

11\% 7.40e+3 1.05e+3 2.27e+0 1.55e+0 1.31e+0

5.0\% 3.29e+4 4.96e+2 5.61e+0 3.06e+0 1.92e+0
2.2\% 1.66e+5 8.89e+2 1.58e+1 8.07e+0 4.03e+0

1.0\% 5.36e+5 1.61e+3 7.17e+1 1.93e+1 9.19e+0

adding multiplicative Gaussian noise to the tangential component of the velocity field
restricted to the top surface of the geometry. We use 5\% noise in all cases, except for
Figure 9 and Table 3, where the noise is varied from 1\% to 25\% and the regularization
is determined by the Morozov discrepancy principle for each noise level. The true basal
friction coefficient and resulting velocity fields, which are obtained by solving (7.2),
are shown in Figure 8.

Table 2 shows the performance of the preconditioner for accelerating the solution
of the optimization problem to reconstruct q from observations with 5\% noise. We
build the PSF (5) preconditioner in the third Gauss--Newton iteration and reuse it for
all subsequent Gauss--Newton and Newton iterations. No preconditioning is used in
the iterations before the PSF (5) preconditioner is built. We compare the PSF-based
method with the most commonly used existing preconditioners: no preconditioning
(NONE) and preconditioning by the regularization term in the Hessian (REG). The
results show that using PSF (5) reduces the total number of Stokes PDE solves to 70,
as compared to 908 for regularization preconditioning and 308 for no preconditioning,
a reduction in cost of roughly 5\times --10\times . For problems with a larger physical domain
and correspondingly more observations, such as continental-scale ice sheet inversion,
the speedup will be even greater. This is because the rank of the data misfit Hessian
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A1680 N. ALGER, T. HARTLAND, N. PETRA, AND O. GHATTAS

Fig. 9. (Ice sheet) The log basal friction parameter, with color scale as in Figure 8(b), computed
from the PDE-constrained optimization problem with noise levels: 25\% (left), 5.0\% (middle), and
1.0\% (right).

0 200 400 600
10−13
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10−1

j, CG iteration
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CG convergence
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NONE

PSF (1)

PSF (5)

PSF (25)

0 300 600 900 1,200
10−1

101

103

105

107

k, generalized eigenvalue #

λ
k

Generalized eigenvalues

Fig. 10. (Ice sheet) Left: Convergence history for solving Hx= b using PCG, where b has i.i.d.
random entries drawn from the standard Gaussian distribution and H is evaluated at the solution
of the inverse problem. Results in these figures are shown for the PSF-based preconditioners with
1, 5, and 25 batches (PSF (1), PSF (5), and PSF (25), respectively), regularization precondition-
ing (REG), and no preconditioning (NONE). The preconditioner is constructed using Hgn. Right:

Generalized eigenvalues for generalized eigenvalue problem Huk = \lambda k
\widetilde Huk. Here, H is the Hessian,

and the matrices \widetilde H are the same Hessian approximations used in the left subfigure, with NONE
corresponding to the identity matrix.

will increase, while the locality of the impulse responses will remain the same. In
Figure 9, we show reconstructions for 1\%, 5\%, and 25\% noise.

Next, we build PSF (1), PSF (5), and PSF (25) preconditioners based on the
Gauss--Newton Hessian evaluated at the converged solution q (note that k in PSF
(k) refers to the number of batches; this is not to be confused with the noise levels,
which range over the same numerical values). We use PCG to solve a linear system
with the Hessian as the coefficient operator and a right-hand-side vector with ran-
dom independent and identically distributed (i.i.d.) entries drawn from the standard
Gaussian distribution. In Figure 10 (left), we compare the convergence of PCG for
solving this linear system using the PSF (1), PSF (5), PSF (25), REG, and NONE
preconditioners. PCG converges fastest with the PSF-based preconditioners, with
PSF (25) converging fastest, followed by PSF (5), followed by PSF (1), as expected.
In Figure 10 (right), we show the generalized eigenvalues for the generalized eigen-
value problem Hu = \lambda \widetilde Hu. The matrix \widetilde H is one of the PSF (1), PSF (5), or PSF
(25) Gauss--Newton Hessian approximations, the regularization Hessian (REG), or
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HIGH-RANK PSF HESSIAN APPROXIMATION A1681

the identity matrix (NONE). With the PSF-based preconditioners, the generalized
eigenvalues cluster near one, with more batches yielding better clustering.

In Table 3, we show the condition number of the preconditioned Hessian for noise
levels ranging from 1\% to 25\%. Note that the condition number using PSF-based
preconditioners is extremely small (ranging between 1 and 10) and relatively stable
over this range of noise levels. As expected, PSF (25) outperforms PSF (5), which
outperforms PSF (1). All PSF-based preconditioners outperform regularization and
no preconditioning by several orders of magnitude for all noise levels.

7.2. Example 2: Inversion for the initial condition in an advective-
diffusive transport problem. Here, we consider a time-dependent advection-
diffusion equation in which we seek to infer the unknown spatially varying initial
condition, q, from noisy observation of the full state at a final time, T . This PDE
models advective-diffusive transport in a domain \Omega \subset Rd, which is depicted in Fig-
ure 11. In this case, the state, c(x, t), could be interpreted as the concentration of
a contaminant. The problem description below closely follows [63, 75]. The domain
boundaries \partial \Omega include the outer boundaries as well as the internal boundaries of the
rectangles, which represent buildings. The parameter-to-observable map \scrF in this
case maps an initial condition q \in L2(\Omega ) to the concentration field at a final time,
c(x,T ), through solution of the advection-diffusion equation given by

(7.3)

ct  - \kappa \Delta c+ v \cdot \nabla c= 0 in \Omega \times (0, T ),

c(\cdot ,0) = q in \Omega ,

\kappa \nabla c \cdot \nu = 0 on \partial \Omega \times (0, T ).

Here, \kappa > 0 is a diffusivity coefficient, \nu is the boundary unit normal vector, and T > 0
is the final time. The velocity field, v : \Omega \rightarrow Rd, is computed by solving the steady-state
Navier--Stokes equations for a two-dimensional flow with Reynolds number 50, with
boundary conditions v(x) = (0,1) on the left boundary, v(x) = (0, - 1) on the right
boundary, and v(x) = (0,0) on the top and bottom boundaries, as in [63, section 3].
We use a checkerboard image for the initial condition (Figure 11(a)) and add 5\%
multiplicative noise to generate a synthetic observation at the final time, T . The
initial condition, velocity field, noisy observations, and reconstructed initial condition
are shown in Figure 11. We use \kappa = 3.2e - 1 and T = 1.0 for all results, except for
Table 4 and Figure 12, where we vary \kappa and T .

Table 4
(Advective-diffusive transport) Number of PCG iterations required to solve the Newton linear

system to tolerance | | \widehat qj  - \widehat q| | < 10 - 6| | \widehat q| | , where \widehat qj is the jth iterate and \widehat q is the solution of the
Newton linear system. Iteration counts are shown for a variety of different diffusion parameters \kappa ,
simulation times T , and preconditioners.

\kappa REG NONE PSF (1) PSF (5) PSF (25)

1.0e-4 584 317 311 151 56
T = 0.5 3.2e-4 685 311 233 140 44

1.0e-3 702 324 122 71 33

1.0e-4 634 449 539 288 100

T = 1.0 3.2e-4 681 459 350 202 90
1.0e-3 574 520 266 260 208

1.0e-4 609 591 548 520 165
T = 2.0 3.2e-4 524 645 318 379 170

1.0e-3 349 786 381 262 158
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(a) True q (b) v (c) Noisy observations (d) Reconstructed q

Fig. 11. (Advective-diffusive transport) (a) True initial condition. (b) Velocity field. Color
indicates magnitude of velocity vector. (c) Noisy observations of concentration at the final time. (d)
Reconstructed initial condition.

T = 0.5 T = 2.0

κ = 1.0e−4

κ = 1.0e−3

Fig. 12. (Advective-diffusive transport) Impulse responses for small and large diffusion param-
eters \kappa and simulation times T .

In Table 4, we show the number of PCG iterations, j, required to solve the Newton
linear system to a relative error tolerance of \| \widehat q - \widehat qj\| < 10 - 6\| \widehat q\| . The solution of the
Newton system to which we compare, \widehat q, is found via another PCG iteration with a
relative residual tolerance of 10 - 11. We show results for T ranging from 0.5 to 2.0
and \kappa ranging from 10 - 4 to 10 - 3 using the PSF-based preconditioners with 1, 5, and
25 batches, regularization preconditioning, and no preconditioning. The results show
that PSF-based preconditioning outperforms regularization preconditioning and no
preconditioning in all cases except one. The exception is T = 2.0 and \kappa = 1.0e - 3, in
which PSF (1) performs slightly worse than regularization preconditioning but better
than no preconditioning. Adding more batches yields better results, and the impact
of adding more batches is more pronounced here than in the ice sheet example. For
example, in the midrange values T = 1.0 and \kappa = 3.2e - 4, PSF (1), PSF (5), and PSF
(25) require 1.3\times , 2.3\times , and 5.1\times fewer PCG iterations, respectively, as compared to
no preconditioning and exhibit greater improvements as compared to regularization
preconditioning. The PSF preconditioners perform best in the high-rank regime where
T is small, which makes sense given that short simulation times yield more localized
impulse responses (see Figure 4). For example, for \kappa = 3.2e - 4, using the PSF (5)
preconditioner yields 140, 202, and 379 iterations for T = 0.5, 1.0, and 2.0, respectively.
The performance of the PSF preconditioners as a function of \kappa does not have as clear
of a trend. Reducing \kappa makes the impulse responses thinner and hence easier to fit in
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Fig. 13. (Advective-diffusive transport) Left: Convergence history for solving Hx = b using
PCG, where b has i.i.d. random entries drawn from the standard Gaussian distribution. Right:
Generalized eigenvalues for generalized eigenvalue problem Huk = \lambda k

\widetilde Huk. Here, H is the Hessian,
and the preconditioner, \widetilde H, is the PSF-based approximation for 1, 5, or 25 batches (PSF (1), PSF
(5), or PSF (25), respectively), the regularization Hessian (REG), or the identity matrix (NONE).

batches but also increases the complexity of the impulse response shapes, which may
reduce the accuracy of the RBF interpolation. The greatest improvements are seen for
T = 0.5 and \kappa = 1e - 3, for which PSF (25) requires roughly 10\times and 20\times fewer PCG
iterations than no preconditioning and regularization preconditioning, respectively.

In Figure 13 (left), we show the convergence of PCG for solving Hx = b, where
b has i.i.d. random entries drawn from a standard Gaussian distribution. The pre-
conditioners used, \widetilde H, are the PSF-based preconditioners with 1, 5, or 25 batches,
the regularization Hessian, and the identity matrix (i.e., no preconditioning). The re-
sults show that PCG converges fastest with the PSF-based preconditioners, with more
batches yielding faster convergence. In Figure 13 (right), we show the eigenvalues for
the generalized eigenvalue problem Hu= \lambda \widetilde Hu, where the \widetilde H are the preconditioners
stated above. With the PSF-based preconditioners the eigenvalues cluster near one,
and more batches yield better clustering. With the regularization preconditioner, the
trailing eigenvalues cluster near one, while the leading eigenvalues are amplified.

7.3. Example 3: Spatially varying blurring problem. Here, we define a
PDE-free spatially varying blur problem in which the impulse response, \phi x, is a bumpy
blob that is centered near x and is rotated and scaled in a manner that depends on
x (see Figure 2). This blur problem is used in sections 1 and 3 to visually illustrate
various stages and aspects of the PSF-based method and the robustness (or lack
thereof) of the PSF-based method to violations of the nonnegative kernel assumption
(section 3.2). In this section, the blur problem is used to compare the PSF-based
method to the HODLR and global low-rank (GLR) methods, to study convergence of
the PSF-based method, and to investigate the effect of the ellipsoid size parameter \tau .
The closed-form expression for the integral kernel is given by

\Phi (y,x) = (1 - af(y,x))g(x) exp

\biggl( 
 - 1

2
(h(y,x)TC - 1h(y,x)

\biggr) 
,(7.4)

where f(y,x) = cos
\Bigl( 
h1(y,x)/

\sqrt{} 
c1/2

\Bigr) 
sin

\Bigl( 
h2(y,x)/

\sqrt{} 
c2/2

\Bigr) 
, with hi(y,x) the ith com-

ponent of R(\theta (x))(y  - x), with R(\theta (x)) a two-dimensional rotation matrix by angle
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Table 5
(Blur) Comparison of cost to approximate the blur kernel from (7.4) using the PSF-based

method, the randomized HODLR method, and GLR approximation using randomized SVD. The
quantity L scales the width of the impulse responses; hence, it influences the rank of the operator.
Large L means low rank, and small L means high rank. The second column (``Error tol"") is the rela-

tive error in the approximation of the kernel measured in the Frobenius norm, | | \Phi  - \widetilde \Phi | | Fro/| | \Phi | | Fro.
The remaining three columns show the number of operator applies required to achieve the given error
tolerances, using the PSF, HODLR, and GLR methods.

Error tol. \#applies PSF \#applies HODLR \#applies RSVD

20\% 11 592 354

L= 1 10\% 16 772 520
5\% 22 924 674

20\% 8 852 1316
L= 1/2 10\% 9 1144 1916

5\% 12 1404 2456

20\% 7 932 2624

L= 1/3 10\% 8 1264 3734
5\% 8 1520 4660

\theta (x) = (x1 + x2)\pi /2, g(x) = x1(1 - x1)x2(1 - x2), and with C = L2 diag(c1, c2). The
constant L controls the width of the blob, and c1/c2 controls its aspect ratio. The
constant a represents deviation from a Gaussian. When a= 0, \phi x is a Gaussian and
as a increases, \phi x becomes non-Gaussian. When a > 1, the integral kernel contains
negative values, which allows us to study the robustness of the PSF-based method to
violations of Assumption 3 (section 3.2).

In Table 5, we compare the cost to approximate the blur kernel from (7.4) using
the PSF-based method, the randomized HODLR method [58, 45] with 8 levels, and
GLR approximation using double-pass randomized SVD [44]. For these results, we
vary the quantity L to scale the width of the impulse responses and hence the rank of
the operator. For each case, we calculate the relative error in the approximation of the
kernel measured in the Frobenius norm, | | \Phi  - \widetilde \Phi | | Fro/| | \Phi | | Fro, and show the number
of operator applications required to achieve 20\%, 10\%, and 5\% relative error by each
method. The results reveal superior performance of the PSF method as compared to
the HODLR and GLR methods for all cases. We note that as we increase the rank
and decrease the error tolerance, the performance of the HODLR and GLR methods
deteriorates.

In Figure 14, we show the convergence of the PSF-based method on the blur
kernel as a function of the total number of impulse responses (left) and the number of
batches (right). We show convergence for several ellipsoid size parameters \tau , ranging
from 2.0 to 4.0. The results in Figure 14 (left) show that the relative error decreases
as constant\times (\#impulse responses)

 - 1
, suggesting linear convergence. The linear con-

vergence stalls at a limit that depends on \tau . Increasing \tau lowers this limit, allowing
the PSF-based method to achieve higher accuracy. In Figure 14 (right), the results
show that before this limit is reached, the convergence is faster for smaller \tau in terms
of the number of batches. This is expected because smaller \tau results in more impulse
responses per batch. Larger \tau causes the PSF-based method to converge more slowly
than smaller \tau , but with larger \tau , the PSF-based method stalls at a lower level of
error than it does with smaller \tau (see, e.g., \tau = 4.0 vs. \tau = 2.5).

8. Conclusions. We presented an efficient matrix-free PSF-based method for
approximating operators with locally supported nonnegative integral kernels. The
PSF-based method requires access to the operator only via application of the opera-
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Fig. 14. (Blur) Relative error for different ellipsoid size parameters, \tau , vs. the total number
of impulse responses (left) and the number of batches (right). The dashed gray lines show linear
convergence rates, i.e., constant\times (\#impulse responses) - 1 on the left and constant\times \#batches - 1

on the right.

tor to a small number of vectors. The idea of the PSF-based method is to compute
batches of impulse responses by applying the operator to Dirac combs of scattered
point sources, then interpolate these impulse responses to approximate entries of the
operator's integral kernel. The interpolation is based on a new principle we call ``local
mean displacement invariance,"" which generalizes classical local translation invari-
ance. The ability to quickly approximate arbitrary integral kernel entries permits us
to form an H-matrix approximation of the operator. Fast H-matrix arithmetic is then
used to perform further linear algebra operations that cannot be performed easily with
the original operator, such as matrix factorization and inversion. The supports of the
impulse responses are estimated to be contained in ellipsoids, which are determined
a priori via a moment method that involves applying the operator to a small number
of polynomial functions. Point source locations for the impulse response batches are
chosen using a greedy ellipsoid packing procedure in which we choose as many impulse
responses per batch as possible while ensuring that the corresponding ellipsoids do
not overlap. We applied the PSF-based method to approximate the Gauss--Newton
Hessians in an ice sheet flow inverse problem governed by a linear Stokes PDE and
an advective-diffusive transport inverse problem governed by an advection-diffusion
PDE. We saw that preconditioners based on the PSF-based approximation cluster the
eigenvalues of the preconditioned Hessian near one and allow us to solve the inverse
problems using roughly 5\times --10\times fewer PDE solves. For larger domains with more
observations, the rank of the data misfit Hessian will increase, while the locality of
impulse responses will remain the same. Hence, we expect that the speedup will be
even greater for such problems. Although the PSF-based method is not applicable to
all Hessians, it is applicable to many Hessians of practical interest. For these Hessians,
the PSF-based method offers a data scalable alternative to conventional low-rank ap-
proximation due to the ability to form high-rank approximations of an operator using
a small number of operator applications and thus PDE solves.
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