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Abstract—We address the problem of optimal experimental
design (OED) for Bayesian nonlinear inverse problems governed
by power flow models. The inverse problem consists of inferring
the values of the unknown (or uncertain) susceptance parame-
ters and voltage angles parameter that characterize the power
flow from available observations (i.e., power flow and potential
Phasor Measurement Units (PMU) measurements). To quantify
the uncertainties in the reconstructions, we invoke a Bayesian
framework. Under the assumption of Gaussian noise and prior
probability densities (for both susceptance and voltage angles)
and after linearizing the parameter-to-observable map (describ-
ing the power flow), the posterior density becomes Gaussian
and can therefore be characterized by its mean and covariance.
The mean is given by the solution of a nonlinear least squares
optimization problem, which is solved via an inexact Newton
method. The posterior covariance matrix is given (in this case)
by the inverse of the Hessian of the least squares cost objective
function. Following an A-optimal experimental design strategy,
we then seek to minimize the posterior variance of the parameter
estimates, which is given by the trace of the posterior covariance
(i.e., the inverse Hessian operator). To solve the A-optimal design
problem, we adopt a greedy approach to cope with the binary
structure of the weights. We demonstrate the effectiveness of
the A-optimal design approach by comparing the OED results
with random designs for 14- and 118-bus power flow problems.
The results reveal the OED’s potential to significantly reduce the
uncertainty in the estimation by optimally placing PMUs.

Index Terms—Bayesian inverse problems, Uncertainty quan-
tification, A-optimal experimental design (OED), PMU place-
ment, Power flow.

I. INTRODUCTION

Power system state estimation provides crucial information
for system controls. Failures in the state estimate have led
to catastrophic consequences. In the Northeast blackout of
2003, over 508 generating units across 265 power plants
ceased operation in various states in the US and Ontario,
Canada, affecting 55 million individuals for several hours.
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This blackout was attributed to inaccuracies in state estimation,
highlighting the severe repercussions of such failures. Phasor
Measurement Units (PMUs) offer a promising avenue for
enhancing state estimation by leveraging time synchronization.
This aligns real-time measurements from multiple remote grid
points with the assistance of GPS technology. Although PMUs
can help prevent such events, randomly placing them over a
fraction of the buses in a system is unlikely to exploit all the
benefits this technology offers.

Hybrid PMU-Supervisory Control and Data Acquisition
(SCADA) state estimation techniques have been developed to
leverage PMU measurements and enhance accuracy. Skok et
al. [1] utilized the traditional weighted least square (WLS)
method with SCADA measurements and used PMU measure-
ments to improve the transmission line parameters, which
directly enhance the WLS state estimation accuracy. Watki et
al. [2] developed a genetic algorithm that minimize the number
of PMUs needed so that the mean absolute error of state esti-
mate reached the desired threshold. While these efforts yielded
improvements, the selected PMU locations are likely to be
suboptimal. X. Li et al. [3] devised a hybrid PMU-SCADA
approach, considering convergence-observability-performance
metric in their semidefinite program with relaxed integer con-
straint to identify optimal PMU placements. Although optimal
positions were determined, the uncertainties in the estimates
were not quantified. Alternatively, Q. Li et al. [4] utilized
Optimal Experimental Design (OED) to identify optimal PMU
locations with A-, E-, and D-optimal design criteria, employ-
ing a greedy algorithm to address the OED problem. However,
their approach assumed exact knowledge of line susceptances
and used a linearized model of the state estimation problem,
neglecting the joint effect of errors in susceptance priors and
angle estimates.

This paper builds upon [5], where a Bayesian inverse
problem is used to quantify the uncertainties of their non-
linear differential-algebraic system model parameter given
noisy measurements described by an additive Gaussian noise
model. In our paper, we present a Bayesian inverse problem
formulation to quantify uncertainties in state estimation (0)
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and susceptance parameter (b), which we refer to as DC
parameters, from a nonlinear DC power flow estimation model
given noisy DC power flow measurements described by an
additive Gaussian noise model. These uncertainties are inte-
grated into the OED problem using Bayesian A-optimal design
to reduce parameter uncertainties and determine optimal PMU
locations. A greedy algorithm is employed to solve the OED
problem, with two sets: the active set comprising chosen
buses and the candidate set containing remaining buses. The
algorithm iteratively introduces PMU measurements from the
candidate set along with those from the active set to solve the
Bayesian inverse problem. The outcome is the identification
of K local optimal PMU locations with high confidence in the
DC parameters.

The remainder of this paper is structured as follows: Section
IT introduces the power flow model with Gaussian noise and
the Bayesian inverse problem for inferring 8 and b. Section
IIT outlines the OED problem formulation and the greedy
algorithm to solve the OED problem. In Section IV, defines
the pruning process, followed by the resolution of the OED
problem for IEEE 14-bus and 118-bus system. Finally, Section
V presents our conclusions and direction of future research.

II. PROBLEM FORMULATION
A. Power Flow Model

We model the power flow via the DC power flow equa-
tions [6]. In this setting, the power grid is represented as a
directed graph with a set of edges, denoted as &, as illustrated
in Fig. 1 (right). Each edge e in the graph symbolizes a power
line, while each node represents a bus.

The inverse problem consists of using available observations
Pe to infer the values of the unknown (or uncertain) suscep-
tance parameter and voltage angles that characterize the power
flow. Mathematically this inverse relationship is expressed as

Pe = be(Oi(e) — Oj(e)) +me, foralleel. (1)

Here p. represents the power flow on line e, i(e) is the from
node on e, j(e) is the to node of e, b, is the susceptance
on e, 6;.) and 0;.) are voltage angles at the endpoints of
e. The observations p. contain noise due to measurement
uncertainties and model errors [7], [8]. Hence we use an
additive Gaussian noise model to capture this, i.e., we add
a noise term 7). to each observation. In vector form, (1) reads

p=f(0,b) +n, 2)

where p, b, @ are vectors of their respective variables, and
1N ~ N(0,Typise), With Tpise € RIEIXIEl a diagonal noise
covariance matrix. The so-called parameter-to-observable map
£(0,b) is defined as diag(b)(AT@) and corresponds to the
first term in the right hand side of (1); its evaluation involves
the solution of the power flow equations given (6, b). Here,
diag(b) is a diagonal matrix with b on the diagonal, and A €
RN*I€I is the incident matrix providing a mapping between
nodes and edges, where N and |£| are the number of nodes
and edges. Specifically, for each edge e, the entry A; . =1 if
l=i(e), the entry A; . = —1 if [ = j(e), or O otherwise.

In this paper, we assume that all graphs under consideration
consist of many cycles, and may additionally have dangling
trees originating from nodes within those cycles. In the dan-
gling trees, @ can be solved for by using (1) with the power
flow measurements p, # at the root of each dangling trees and
using the prior b information. For this reason, our method
focuses solely on solving for parameters 8 and b within the
cycles, with a fixed value for 6 at the slack bus!. Thus we
remove the dangling trees by pruning, since they are not
required in our method. The pruning process is described in
Section IV.

B. Bayesian Power Flow Inverse Problem

To infer the DC parameters, b and 6, for the power flow
model and quantify the uncertainties in the reconstruction, we
invoke a Bayesian formalism. In this formulation, we state
the inverse problem as a problem of statistical inference over
the space of uncertain parameters, which are to be inferred
from data and the power flow model. The solution of the
resulting Bayesian inverse problem is a posterior probability
density function (pdf). Bayes’ Theorem states the posterior pdf
explicitly as

7Tpost(07 b) X Tiike (P| (07 b))wprior(ev b)a (3)

where 7p05:(0,b) denotes the posterior that results from
updating the prior probability (7,0 (0, b)) with information
summarized by the likelihood (7:x.(p|(€,b))) [7], [8].

The likelihood represents the probability of observing the
noisy measurement p given 8 and b. As discussed above, we
assume that the noise due to errors in measurements and model
errors are additive and Gaussian. Hence we can then express
the pdf for the likelihood model explicitly as

ke (P|(0, b)) o< exp(—[lp — £(O. D)L, ). (@)

where I';,,ise 18 the noise covariance matrix.

The prior encodes any knowledge about the parameter
space that we may wish to impose before the measurements
are considered. In this paper, we assume that @ and b are
independent and Gaussian. Therefore, we write

'/Tprior(ea b) X Wprior(e)ﬂprior(b)~ (5)
More specifically, the prior distribution for 0 is defined by
Tprior(6) o< exp(—|[|6 — é”2 )s (6)

T or
where 0 and Ty, are the mean and covariance, respectively.
The prior distribution for b is defined by

Torior(B) o exp(—[[b — B2 ), ™
sPT
where b and T, are the mean and covariance, respectively.

'We neglect dangling trees because when working with DC power flow
equations, flows on dangling trees are equivalent to transportation flows.
However, dangling trees should be considered if implementing the described
methods using AC power flow equations or approximations with voltage
magnitudes.



We recall that even if Gaussian priors and noise probability
distributions are invoked, the posterior probability distribution
may not be Gaussian due to the nonlinearity of £(6,b) [7],
[8]. In this paper, we use a Gaussian approximation of the
posterior centered at the maximum a posteriori (MAP) point
of the Bayesian inverse problem, namely we approximate the
posterior by N ((@rrap,brarap), Lpost). The MAP point is
obtained by solving

min —log mpest (6, b), (8)
and the posterior covariance I'y,,4; is given by
Tpost = H ' (Oar4p, brrap), )

where H is the Hessian of — log m,05:(0, b) [7].

III. PROPOSED APPROACH

A. A-optimal Experimental Design Problem Formulation

Following an A-optimal design strategy, we seek to mini-
mize the average posterior variance of the parameter estimates,
which is given by the trace of the posterior covariance [10]-
[13]. In particular, the design is introduced in the Bayesian
inverse problem through a vector of weights for possible PMU
locations.

In what follows, we denote by z;, 7 = 1, ..., N, the potential
locations for PMUs. The nodes are referred to as candidate
sensor locations. For each candidate location z;, we assign a
binary indicator w;, with w; = 1 indicating a PMU should
be placed at node ¢ and w; = 0 otherwise. The A-optimal
experimental design problem can be formulated as follows:
find the optimal binary indicators w = [w; ...wy] T within
the feasible space W := {0,1}"V such that the trace of the
posterior covariance (i.e., uncertainty in the reconstruction) is
minimized.

The w-weighted negative log posterior reads

J(0,b;w) =

1 0112
5”0 - HHW(W)l/QI‘a}EDW(w)l/?J'_

1
5P = f(e,b)llia 4+ (10)

1 - 1 -
0 —6|%1 +=|b—-Db|A_
310 =012 +3Ib—bBlZ, .
where 0 denotes the measurements at the PMUs, W (w) is a
diagonal matrix with the design w on the diagonal, and T'ogp
is the covariance matrix of the PMU noise measurements.

The A-optimal experimental design problem can be sum-
marized as

V{]réi)r/lv O(w) = tr(Tpost(W)),

Y

where T'yoq (W) is the inverse of the Hessian of the cost
function J with respect to (8, b).

B. Computational Methods

To compute the MAP point efficiently, we apply an inexact
Newton approach [14]. Therefore, we use gradient and Hessian
information, and hence are able to compute the covariance
apply (i.e., inverse of the Hessian apply at the MAP). For all
numerical experiments we set a tolerance for Newton’s method
of 1078, The number of iterations the Newton method took to
converge for this tolerance was about 8 and 11 for the 14-bus
and the 118-bus system.

To solve the A-optimal design problem (11), we adopt a
greedy approach, which allows us to cope with binary weights.
This approach is attractive especially when the number of
sensors is of moderate size. The reason for this is that at the
jt" step of the greedy algorithm, N — j — 1 OED objective
evaluations are required. The total cost, measured in OED
objective evaluations, for placing K PMUs is C(K,N) :=
KN — K(K — 1)/2, hence it scales with the number of
sensors. We note that one OED objective evaluation requires
solving minimizing (10). We summarize the greedy approach
in Algorithm 1.

Algorithm 1 Greedy approach for solving the OED problem.
Input: The target number of sensors K.
Output: The design vector w.

1. w<« 0.

2. Icandidate < {L e 7N}

3. Iaclive — (Z)

4. Forl=1to K:

5. Evaluate ®(w + e;) for all j € Zeundidae- {€; is the

jth coordinate vector in R™V.}

i < argminjez,, . (W +€;).
Iactive — Iactive U {Zl}
Icandidale — Icandidate \ {Zl}
W W+ €.

i

IV. NUMERICAL EXPERIMENTS
A. Problem Setup

We have two type of measurements: one type is on the
edges (p) and the other type is on nodes (PMU). To generate
measurements on the lines p we use (1), where 7 is drawn
from a normal distribution with 1% noise with the ground truth
0:,ue and by.ye. The ground truth are obtained from [15]. To
generate measurements on the nodes, we perturb 0y, with
random draws from a Gaussian distribution centered at 0 with
standard deviation 0.02, which corresponds to the 14 second
GPS synchronization accuracy (according to [4]). The voltage
angle () corresponding to reference bus is set to 0, without
loss of generality.

Next we discuss the choice of the priors needed for
Bayesian inference for b, and #. For our numerical ex-
periment we assume b and 6 are independent following
Gaussian distributions. Prior knowledge of b suggest a more
conservative variance and a known mean. In particular, we
follow [9], and choose a prior distribution N (b, Iy ), where
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OED results for the 14-bus system. Left: the plot of @ confidence intervals with no PMU (red), randomly placed PMU (blue) and optimal PMUs

placement (green). The white dot in each interval is the MAP point of their respective problems. Middle: the OED objective versus the number of PMUs
(sensors). The number (9,3, and the 7) on the graph corresponds to the optimal choice for PMU placement. Right: the optimal PMUs on the graph for the

post-pruned 14-bus system.

Ty pr = diag(oprp) With oprp = 0.12 X diag(|brye|)€ps
€, ~ N(0,Ig)), Ijg| is identity matrix of size |E], [byryel
is the vector by,,. where we take the absolute value of
each element, and b = birye + Oprp. For 6 we set a
large variance modeling no prior knowledge. In particular
we choose N(0,Ty ) where Ty, = diag(o,rg) with
opr0 = 100 X diag(|0true|)€g, €9 ~ N (0, In), Iy is identity
matrix of size N, and |@y.,.| is the vector 0., where we
take the absolute value of each element.

B. Pruning Process

For the numerical results, we will employ the 14-bus and
118-bus system. The graphs associated with the 14-bus and
118-bus system respectively resemble portions of the Amer-
ican Electric Power System (in the Midwestern US) as of
February 1962 and December 1962. This information was
obtained from [15].

Our physical model assumes that each node in the graph lies
on a cycle. Therefore we prune leaves and branches from the
dangling trees which are unnecessary components, and delete
their associated information from the vectors 6 and b. Then
we re-index the nodes so that node 1 is the slack bus. The
pruned graph for the 14-bus system is shown on the right
of Fig. 1. After applying the pruning process to the 118-bus
system, we reduced the graph from 118 nodes 186 edges to
109 nodes and 177 edges.

C. Numerical Experiments

We conduct two experiments to illustrate the OED approach.
Experiment one focuses on the 14-bus system to help visualize
the results while experiments two focus on the 118-bus system
to demonstrate that the OED approach can be scaled to a larger
system.

In the first experiment, we first solve the inverse problem
with no PMUs and illustrate the MAP estimate for 8 with their
associates uncertainties. To further reduce these uncertainties
we add PMU measurements and apply the OED procedure. On
the left of Fig. 1, we show the reduction of the OED objective
(uncertainty in the reconstruction) with three optimal PMUs.
In the center plot in Fig. 1 the corresponding MAP point and
uncertainty are shown in green. For comparison we also show

result with three random PMUs in red. These results reveal
that adding PMU measurement reduce uncertainty and optimal
is superior to random. Note that we do not show the MAP
estimates for b, since the uncertainty for these parameters
are set small and hence there is not much improvement with
additional PMUs. The right figure in Fig. 1 shows optimal
location of the PMU in the graph.
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Fig. 2. OED results for the 118-bus system. Comparison of the optimal
(green) and random (blue) PMU placement. For each number of sensors we
choose 20 random designs and show the max (blue triangles) and min (blue
circles) of the set of 20 random design OED objective evaluations.

For the second experiment, we apply the OED process to
the 118-bus system. For this problem, there are 109 possible
choices for PMUs. To compare the OED results (optimal
design) and random designs, we generate 20 random designs
for each number of sensor and evaluate the OED objective. The
results are shown in Fig. 2. The results reveal the following:
the uncertainty decays exponentially meaning there is a sig-
nificant reduction in the small number of sensors regime, but
this reduction decreases as more sensors are added. We see a
similar behavior for the random designs in the very low sensor
regime (i.e., K < 10). However as the number of sensors
increases, the uncertainty reduction with the random designs
behaves more linearly. The optimal design clearly outperforms
the random designs in the mid 75 percentile interval (i.e.,
10 < K < 80). For the large number of sensors regime (i.e.,
K > 90), where data are collected at nearly every sensor, the
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designs (blue dots) for 10 (left), 20 (center), 40 (right) sensors.

performance of the random designs and the optimal design
are comparable. Another observation from these results is the
diminishing returns as the number of sensors is increased. For
the optimal designs using more than 70 sensors results in only
negligible decrease in the OED objective.

To further assess the effectiveness of the computed A-
optimal PMU sensor placement, in Fig. 3 we compare the
relative error of the MAP point as well as the OED objective
obtained using the optimal design (green star) and 30 randomly
generated designs (blue dots) with 10 (left), 20 (center), 40
(right) sensors. These results are obtained by solving the
Bayesian inverse problem (for 8,;4p(w)) described in Sec-
tion II-B with the negative log posterior given in equation (10).
The relative error is computed using

||0MAP(W) - 9true||2
||0t7'ue||2

These results are consistent with the results shown in Fig. 2,
namely that the A-optimal sensor placement outperforms the
random designs in terms of uncertainty reduction. With respect
to the relative error, the results show that adding more sensors
the MAP point is improved. We also note that on rare occasion
the random design leads to a smaller error. This is expected
since the OED procedure does not minimize this error but the
variance.

V. CONCLUSION

In this paper, we introduce an A-optimal design of exper-
iments for nonlinear Bayesian inverse power flow problems.
The Bayesian inverse problem is formulated and solved to
infer the DC power flow parameters, e.g., voltage angle
and susceptance, and quantify the uncertainties in the recon-
struction. The OED problem is aimed at finding an optimal
PMU sensor configuration with the scope of reducing the
uncertainty. We show results for two power flow problems, one
with 14 buses and one with 118 buses. We demonstrate the
effectiveness of the A-optimal design approach, by comparing
the OED results with random designs. Future research efforts
will focus on extending the approach to more complex power
grid models.
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