
A Metric for Measuring the Impact of Rare Paths

on Program Coverage

Leo St. Amour

Dept. of Computer Science

Virginia Tech

Blacksburg, USA

lstamour@vt.edu

Eli Tilevich

Dept. of Computer Science

Virginia Tech

Blacksburg, USA

tilevich@cs.vt.edu

Muhammad Ali Gulzar

Dept. of Computer Science

Virginia Tech

Blacksburg, USA

gulzar@cs.vt.edu

Abstract—Fuzzing has become a popular technique for dis-
covering bugs and vulnerabilities. To increase the probability
of finding bugs, developers should apply fuzzers that maximize
program coverage. Program coverage typically measures the
percentage of program lines or branches a fuzzer executes.
However, these metrics fail to communicate the value of hitting
a particular line, branch, or path. Many bugs manifest only
within non-trivial control flows. To improve software quality,
fuzzing non-trivial program paths should be more important than
fuzzing trivial ones. This paper introduces rare-path coverage
(RP-Coverage), a novel program coverage metric that conveys
the value of discovering an unlikely control flow path. We have
developed a new technique for estimating the probability of
taking an execution path, which relies on probabilistic logic
programming to declaratively express the logic for constructing
and analyzing a probabilistic control flow graph. Our evaluation
indicates RP-Coverage’s promise as a metric for measuring
fuzzing efficacy. Specifically, we observe that defects along
rare paths—intuitively—substantially impact the effectiveness of
fuzzers. However, we argue that existing fuzzing metrics fall
short when conveying this significance. We also observe that
the value of uncovering an unlikely path is better reflected
by increases in RP-Coverage than existing metrics. Specifically,
the average coverage increases are up to 49.5%, 11.1%, and
15.4% for RP-Coverage, line coverage, and branch coverage,
respectively. This finding indicates that RP-Coverage is more
elastic, or sensitive, to path probabilities and thus capable of
more effectively quantifying a fuzzer’s ability to discover unlikely
program paths. As such, RP-Coverage demonstrates promise as
a program coverage metric that enhances fuzzer fitness measures
when supplementing standard criteria.

Index Terms—Analysis metrics, Program coverage, Static anal-
ysis, Fuzzing

I. INTRODUCTION

Two roads diverged in a wood, and I – I took the one
less traveled by, and that has made all the difference.

Robert Frost

Software defects, omnipresent in any non-trivial code base,

threaten the system’s safety and security. Software main-

tenance is concerned with improving software quality by

detecting and eliminating these defects before or after they are

discovered in a live environment [1]. However, effective defect

detection remains an open problem. While some defects are

triggered during typical program execution, others manifest

along an uncommon subset of the program’s semantics and

occur under atypical execution scenarios.

Consider the program depicted in Figure 1, which executes

an important function only if get_rand_letter returns

a lowercase or uppercase “z”. This program contains two

defects. Defect � causes the program to crash if it is not

provided with a command line argument. This bug exemplifies

a common defect, likely to be captured in a test suite or

discovered through routine program use. Defect � results

from an off-by-one error on line four. If get_rand_letter

returns a lowercase “z”, the important function does execute.

This bug exemplifies a rare defect. The unintended behav-

ior manifests only for one of the potential 52 values that

get_rand_letter can return, suggesting that this bug has

a 1/52, or less than 2%, probability of triggering.

1 i n t main(i n t argc, char *argv[]) {

2� char *arg = argv[1];

3 char c = get_rand_letter();

4 i f (97 <= c && c <= 121) {

5 c = make_uppercase(c);

6 }

7 i f (c == ’Z’) {

8� important_function();

9 }

10 ...

11 }

Fig. 1: Common and rare program defects

The coverage achieved by a fuzzer and its ability to find

bugs is strongly correlated [2]. To improve mutation-based

fuzzing, recent research efforts focus on increasing program

coverage by biasing fuzzers towards “rare” execution paths

[3], [4]. Nevertheless, existing coverage criteria may not be

able to fully convey the value these efforts contribute to

fuzzer performance. Consider Fuzzer A and Fuzzer B, which

cover 50% and 51% of a program’s branches, respectively.

Fuzzer B has demonstrated a 1% improvement over Fuzzer

A. However, suppose the additional branch Fuzzer B uncovers

is an unlikely branch containing a rare bug. We argue that

the slight increase in branch coverage does not convey the

significance of uncovering this additional branch.

1 char *CUR;

2 i n t important = 1;

3 i n t a = 1;

4 # d e f i n e CMP3(s, c1, c2, c3) \

5 (((unsigned char *) s)[0] == c1 && \

6 ((unsigned char *) s)[1] == c2 && \

7 ((unsigned char *) s)[2] == c3)

8 i n t main (i n t argc, char **argv) {

9 CUR = argv[1];

10 i f (CMP3(CUR, ’D’, ’O’, ’C’)) {

11 CUR = CUR + 3;

12 parse_cmt();

13 i f (parse_att()) {

14 important *= a; /* BUG */

15 ...

16 }

17 }

18 assert(important != 0);

19 re turn 0;

20 }

21 void parse_cmt() {

22 i f (*CUR == ’<’ || *CUR == ’>’) {

23 a = 0;

24 CUR++;

25 }

26 }

27 i n t parse_att() {

28 i f (CMP3(CUR, ’A’, ’T’, ’T’))

29 re turn 1;

30 re turn 0;

31 }

Fig. 2: Path-specific defect adapted from parser.c of libxml.

Only one path causes the assertion on line 18 to fail.

In this paper, we propose accentuating the value of explor-

ing a rare program path through a new coverage criterion:

rare-path coverage or RP-Coverage. Intended to supplement

existing coverage criteria, RP-Coverage quantifies a fuzzer’s

ability to explore unlikely program paths. RP-Coverage is a

weighted form of path coverage in which each control-flow

edge is weighed with the probability of that edge being taken,

and the weight of a particular path is the product of its edges’

weights. The paths with the lower probabilities are likely to

significantly influence fuzzer efficacy and are more valuable

to uncover.

To demonstrate the practical applicability of RP-Coverage,

we have implemented and evaluated Rare-Path Probability

Hound (RPP-HOUND), a tool for statically estimating program

path probabilities. As a way to streamline this potentially

cognitively taxing process, RPP-HOUND takes advantage of

probabilistic logic programming as a means to declaratively

encode the analysis rules. The rules’ expressive and compre-

hensible nature makes them readily amenable to fine-tuning,

auditing, and reuse. To evaluate RP-Coverage, we explore the

RP-Coverage attained by state-of-the-art fuzzers and assess

how RP-Coverage correlates with the fuzzer’s ability to ex-

plore unlikely paths.

Our key finding is that RP-Coverage is more sensitive to rare

paths than line or branch coverage. Specifically, we observe

that RP-Coverage better reflects the value of uncovering rare

paths with average increases up to 49.5%, 11.1%, and 15.4%

for RP, line, and branch coverage, respectively. Additionally,

we have shown the potential of RP-Coverage to identify

fuzzing scenarios in which interesting rare paths remain un-

explored. A fuzzer’s RP-Coverage is noticeably smaller in

these scenarios than line or branch coverage. The promise

of RP-Coverage to supplement existing fuzzer fitness criteria

is indicated by our experiments with state-of-the-art fuzzers,

whose performance mostly converged across our benchmarks.

This paper makes the following contributions:

• It introduces RP-Coverage, a new criterion for measuring

a program’s rare execution path coverage.

• It concretely applies RP-Coverage to implement RPP-

HOUND, a tool for estimating path probabilities; RPP-

HOUND’s design relies on probabilistic logic program-

ming to express program analysis rules.

• It presents the findings of our empirical evaluation that

applies RP-Coverage to state-of-the-art fuzzers to ascer-

tain the utility of this coverage criterion to express a

fuzzer’s efficacy.

The rest of this paper is organized as follows. Section II

presents a motivating example and describes the key elements

of our approach; Section III discusses the design and imple-

mentation of RPP-HOUND; Section IV presents our evaluation

results; Section V discusses the implication of our evaluation;

Section VI compares our approach with the related state of

the art; and Section VII presents concluding remarks.

II. MOTIVATION AND APPROACH

A key technical underpinning of RP-Coverage is a new

treatment of path coverage and its calculation. Recall that ex-

isting notions of path coverage involve calculating the ratio of

paths executed to total paths [5]. The traditional path coverage

criterion assumes that all paths have equal weight. However,

we observe that the probabilities of executing specific paths

can vary widely. Driven by this observation, our insight is

that path coverage should be calculated based on a weighted

control flow graph (CFG) and that probability is a natural

metric to represent the weights.

To motivate the need for a new type of coverage and

its applicability to real-world scenarios, consider the C code

snippet in Figure 2. This code snippet has been adapted

from libxml and was used as a motivating example in [4].

We further adjust the snippet to introduce a critical post-

condition invariant for the important global variable and

an intentional bug that violates that invariant. Specifically, on

line 14, the variable important is multiplied by variable a

and updated, an assertion is added on line 18, and variable a

is set to zero on line 23.

A violation of this invariant comprises a critical bug that

must be detected before the software is released. However,

modern fuzzers face challenges generating inputs that can

trigger deep but serious bugs like this one. Notice that only

three inputs would cause the control flow to pass through

line 14. Furthermore, the control flow must pass through lines

23 and 14 in strict sequence for the assertion on line 18 to

fail, triggering the bug. Consider the inputs “DOC>X” and

Program JOERN

Relational

Translator

(JOERN)

PITA/

ProbLog

ABC

Problog

rules

Path

probabilities

Phase 1 Phase 2 Phase 3

CPG

Branch

constraints

Branch

probabilities

CFG

Relations

Fig. 3: RPP-HOUND system overview and data-flow diagram

“DOCATT”. If a fuzzer generates both, the line coverage

would include lines 14 and 23, albeit without triggering the

bug. This scenario highlights a shortcoming of line and branch

coverage criteria in quantifying how effective a fuzzer is in

triggering this class of bugs. Path coverage would capture this

scenario, but it treats identifying this specific path with the

same value as any other.

We introduce RP-Coverage to express the influence of

discovering new paths on program coverage. To that end,

we assign each path a weight of 1

P
, where P is the path’s

probability. Thus, RP-Coverage is defined as the ratio of the

total weights of covered paths to the total weights of all

possible paths.

Our approach to calculating RP-Coverage starts from stati-

cally estimating the probability of a program path. We build on

a technique presented in [4], which applies branch selectivity

as a heuristic for estimating branch probabilities [6]. However,

the approach implemented in RPP-HOUND simplifies the

problem space and offers a declarative programming model.

Specifically, the novelty of our technique lies in taking ad-

vantage of probabilistic logical programming as our analysis

engine. Logic programming has been shown as a highly effec-

tive mechanism for performing scalable program analysis [7],

[8]. Our technique uses probabilistic reasoning to concisely

express path program paths and calculate their probabilities.

Similarly to prior logic programming techniques for program

analysis, we model the analyzed program’s statements and

structure as relational facts, but we also assign probabilities

to the facts as appropriate. Then, we rely on the language

engine to infer the overall path probabilities.

III. IMPLEMENTATION

We reify our approach as RPP-HOUND, depicted in Fig-

ure 3. RPP-HOUND comprises three distinct phases: (1) it con-

verts a program into an intermediate analysis representation,

(2) it translates the program into a database of probabilistic

control-flow facts, and (3) it applies ProbLog rules to the facts

to estimate probabilities for program paths. We detail each

phase next.

A. Phase I: Generating Code Property Graph

A code property graph (CPG) represents a program by

merging its abstract syntax tree (AST), CFG, and program

dependency graph (PDG) [9]. The AST provides information

on the program’s source code; the CFG captures how the

statements in the AST are connected; and the PDG represents

the data dependencies within the statements. The power of

CPGs lies in providing the advantage of all three graphs in a

single convenient representation. While designed for concisely

describing software vulnerabilities as graph traversals, CPGs

provide a convenient intermediate representation for many

program analysis problems.

RPP-HOUND’s approach for calculating path probabilities

involves constructing the program’s probabilistic control flow

graph. A CPG is an appropriate intermediate representation

for approaching this task because it encodes control-flow

relationships in the CFG and branch predicates in the PDG

and AST. RPP-HOUND employs JOERN, an open-source CPG

framework, for executing this phase.

B. Phase II: Translating CPGs into Prolog Facts

RPP-HOUND’s second phase translates a given CPG into

logical facts representing the program’s probabilistic control

flow, or probabilistic control flow graph (Prob-CFG) [4]. As its

logic engine, RPP-HOUND uses ProbLog [10], a probabilistic

extension of Prolog. The structure of the relational facts of

ProbLog was amenable to concisely expressing Prob-CFGs.

A separate Prob-CFG is generated for each program method.

Following the commonly used terminology for specifying

CPGs, we will use the term method to refer to both meth-

ods in object-oriented languages and functions in imperative

languages. The logic required for generating a Prob-CFG

is implemented in approximately 500 lines of Scala code.

RPP-HOUND constructs a Prob-CFG for each method by

labeling outgoing edges from control structure nodes (e.g., if,

else, loops, etc.). The labels represent the probability that the

control flow will take the given edge.

Probabilities are calculated with branch selectivity, as de-

fined in Equation 1.

P (b) =
|Tb|

|Db|
, 0 ≤ P (b) ≤ 1. (1)

The branch condition domains are identified by querying the

control structure’s data dependencies in the PDG and AST

components of the CPG. The conditions and the domains of

the variables that comprise them are represented as satisfia-

bility modulo theory (SMT) constraints. The size of Db and

Tb are determined using the automata-based model counter

(ABC) SMT solver [11]. This definition of probability assumes

the variables in branch conditions are uniformly distributed.

Invoking an SMT solver is expensive. This approach is

vulnerable to a performance bottleneck for programs with

many branches or overly complex branch conditions. To

mitigate the impact of this bottleneck, we further simplify

the problem space. Instead of constructing SMT constraints

representing a variable’s actual domain—often as large as

232—we constrain the domains to 28. A statistical rule of

thumb is that an event may be considered rare if its probability

is less than 0.05 [12]. When implementing RPP-HOUND, we

observed that many branch conditions produced probabilities

less than 0.05 regardless of whether the domain size was 232

or 28. In some conditions, this simplification over or under-

approximates the branch’s probability. We plan to evaluate the

validity of this assumption more formally; however, we believe

the performance gained from constraining the SMT problems

outweighs the potential inaccuracies.

RPP-HOUND traverses the CPG for each method and

outputs a set of ProbLog facts representing the program’s

probabilistic control flow. The output of this phase is the

following control-flow relations:

• cfg_edge(X, Y): a direct control flow edge between

nodes X and Y.

• P::cfg_edge(X, Y): a direct control flow edge be-

tween nodes X and node Y with a probability P.

• branch(X, Y, TF): node X is a branch with an edge

to Y when the condition evaluates to TF (1 for true or 0

for false).

• loop(X): node X is the control structure for a loop.

• method(X, Name): node X is the entry point for a

method called Name.

• calls(Caller, Callee, Call): Caller calls

method Callee at node Call.

• returns(Meth, Ret): Meth returns at node Ret.

This phase outputs a set of facts representing an intra-

procedural Prob-CFG for each method. The declarative

ProbLog rules infer the set of inter-procedural edges and

context-sensitive paths, demonstrating another advantage of

using declarative probabilistic programming for this analysis.

To achieve the necessary level of scalability, RPP-HOUND

implements two optimizations that minimize the size of the

Prob-CFG database. First, adjacent nodes with single incoming

and outgoing control-flow edges are merged. Second, the anal-

ysis ignores any methods that are unreachable by user inputs.

(1) icfg_edge(X,Y) :-

cfg_edge(X,Y),

\+calls(_,_,X).

(2) icfg_edge(X,Y) :- calls(_,Y,X).

(3) icfg_edge(X,Y) :-

calls(_,M,Z),

returns(M,X),

cfg_edge(Z,Y).

Fig. 4: Inter-procedural Prob-CFG rules

We manually specify functions that accept user input (e.g.,

fread, scanf, getopt, etc.) and then identify methods

that are reachable by the return values of those functions.

Both of these optimizations reduce the graph size and ProbLog

memory overhead.

C. Phase III: Estimating Path Probabilities

RPP-HOUND’s third and final phase employs ProbLog

to identify context-sensitive inter-procedural program paths

and calculate their corresponding probabilities. Specifically,

RPP-HOUND uses PITA [13], a ProbLog library for SWI-

Prolog[14], a popular Prolog engine. We selected PITA be-

cause it fully supports the ProbLog syntax while simultane-

ously providing the mature functionality of SWI-Prolog.

Inter-procedural control edges are inferred from the intra-

procedural control flow facts extracted in the previous phase.

The rules in Figure 4 specify the relationship that infers an

inter-procedural control-flow edge between nodes X and Y.

Rule (1) represents intra-procedural edges. Any existing

CFG edges not originating from a call should be included in

the inter-procedural CFG. Rule (2) represents edges between

functions. There is an edge between nodes X and Y if X is

a call site and Y is the callee. Note that icfg_edge facts

are not inherently context-sensitive. Context sensitivity will

be introduced when constructing execution paths. Rule (3)

establishes a back-edge from a called function to its call site.

There is an edge between nodes X and Y if X is the return

site of a function that was called by the node immediately

preceding Y.

The rules in Figure 4 are integrated into additional rules

for traversing the graph and capturing the visited nodes.

Notice that using the existing icfg_edge(X, Y) rules to

create an icfg_path(X, Y) rule would fail to calculate

the probability of two nodes being connected by a particular

path. Instead, we used the rules that appear in Figure 5.

These rules provide an expressive and comprehensible analysis

specification for identifying particular execution paths.

Rules (1) and (2) indicate that the path has reached its

endpoint—or reached the depth limit—and must be returned in

the Path out variable. Rules (3-5) mirror the rules in Figure 4.

Rules (4) and (5) also demonstrate how the analysis handles

context sensitivity. The third term of get_path represents

the calling context history. The head of the list represents the

most recent call site. In rule (4), the analysis encounters a

new call; the call node is pre-pended to the calling context

% Rule (1) Reached the end of the path

get_path(X,X,[Ctx|_],Visited,Path) :-

reverse([(X,Ctx)|Visited],Path).

% Rule (2) Reached the depth limit

get_path(X,_,[Ctx|_],Visited,Path) :-

\+db(less_than_depth(Visited)),

reverse([(X,Ctx)|Visited],Path).

% Rule (3) Standard intra-procedural CFG edge

get_path(X,Z,[Ctx|Calls],Visited,Path) :-

db(less_than_depth(Visited)),

cfg_edge(X,Y),

\+call_edge(X,Y),

not(member((X,Ctx),T)),

get_path(Y,Z,[Ctx|Calls],[(X,Ctx)|Visited],

Path).

% Rule (4) Call edge; update the callsite context

get_path(X,Z,[Ctx|Calls],Visited,Path) :-

db(less_than_depth(Visited)),

calls(_,Y,X),

not(member((X,Ctx),Visited)),

get_path(Y,Z,[X,Ctx|Calls],[(X,Ctx)|T],Path).

% Rule (5) Call back-edge; update the callsite context

get_path(X,Z,[Ctx|Calls],Visited,Path) :-

db(less_than_depth(Visited)),

calls(_,Method,Ctx),

returns(Method,X),

cfg_edge(Ctx,Y),

not(member((X,C),Visited)),

get_path(Y,Z,Calls,[(X,Ctx)|Visited],Path).

% Rules (6) and (7) Loops are treated as single path

get_path(X,Z,[Ctx|Calls],Visited,Path) :-

db(less_than_depth(Visited)),

in_loop_cond(X,L),

loop(L),

branch(L,Y,1),

not(member((L,Ctx),Visited)),

get_path(Y,Z,[Ctx|Calls],[(L,Ctx)|Visited],Path).

get_path(X,Z,[Ctx|Calls],Visited,Path) :-

db(less_than_depth(Visited)),

in_loop_cond(X,L),

loop(L),

branch(L,Y,0),

member((L,Ctx),T),

get_path(Y,Z,[Ctx|Calls],[(L,Ctx)|Visited],Path).

Fig. 5: Inferring context-sensitive, inter-procedural program paths in ProbLog

list. In rule (5), the analysis encounters a method return and

subsequently pops the current context off of the head of the

list. As the analysis visits nodes, it is added to a visited list

with its calling context. Rules (6) and (7) are included to

prevent infinite loops. Our approach assumes that all loops

will terminate and treats them as a single path instead of a

branch. In Rule (6), if node X is a loop and that loop has not

been visited, the path will always follow the true edge. In Rule

(7), if node X is a loop that has already been visited, the next

node will follow the false edge.

Using the Prolog findall predicate, RPP-HOUND finds

all of the paths between the program’s main method entry and

exit nodes, capturing those paths with their probabilities. Each

path is saved to a file that details the nodes in the path, with

their associated source file and line number, and the path’s

aggregate probability. Similar to all path-based analyses, our

approach must adequately manage the issue of path explosion.

We limit the path depth to achieve a reasonable trade-off be-

tween resource consumption and obtaining meaningful results.

As in [4], we selected 60 as the depth limit.

Currently, calculating RP-Coverage is an offline process.

As a result, programs must be instrumented to output program

execution traces. After RPP-HOUND has calculated path prob-

abilities, we calculate RP-Coverage by ingesting the program

traces and using them to identify what paths were executed.

The probabilities of executed paths are used to calculate the

paths’ weights and overall RP-Coverage.

IV. EVALUATION

This work aims to answer the following research questions:

• RQ1: What is the utility of RP-Coverage as a metric for

measuring fuzzer performance?

• RQ2: How does RP-Coverage correlate with existing

coverage criteria for state-of-the-art fuzzers?

• RQ3: Does probabilistic logic programming offer viable

machinery for constructing effective and maintainable

rare-path analysis?

We evaluate the efficacy of RP-Coverage by applying it to

four benchmark programs. To capture the program’s execution

trace dynamically, we instrument each program. In particular,

we inject a function call at each point in the program that

involves a change in control flow (e.g., branches, loops, and

return statements). The injected function records the branch’s

line number and whether the control flow follows the branch’s

true or false edge. We calculate RP-Coverage by comparing

the program’s traces to its corresponding set of paths.

We introduce a post-condition invariant violation into our

benchmark programs to study how program coverage and rare

path execution correlate. We increment two global variables at

the beginning of each basic block influenced by user input. For

each pair of variables, we generate a mutation of the program

that decrements one of the global variables. When the program

has finished executing, we check whether the global variables

are equal. If not, the path of interest has been executed, and

we note that in the program trace. Each program mutation

represents a mechanism for testing a distinct program path.

Our evaluation uses four benchmark programs: a reg-

ular expression program (regex) from an example in the

KLEE project repository [15], a password checking program

(pwcheck) from an example in the Symbolic PathFinder

project [16], a program that checks if a string is a pangram

(pangram) from a programming tutorial website [17], and a

modified version of the program in Figure 2 (parser). Some

program constructs make it difficult to match an execution

(a) pangram

(b) pwcheck

(c) regex

(d) parser

Fig. 6: Evaluation results; Column One: RP, line, and branch coverage achieved by executing AFL++ for 200,000 iterations;

Column Two: Change in coverage when the fault is triggered in each benchmark mutation; Column Three: RP-Coverage

achieved by executing AFL++ and FAIRFUZZ for 200,000 iterations

TABLE I: Cumulative RP, line, and branch coverage achieved

when each fault is triggered

Fault # Rare-path Line Branch

pangram

1 8.0e-10 71.0 60.0

2 7.6e-4 87.0 80.0

3 4.8e-4 81.2 73.3

4 8.0e-10 71.0 60.0

5 8.0e-10 71.0 60.0

6 31.4 100.0 100.0

7 8.0e-10 71.0 60.0

pwcheck

1 3.0e-6 86.7 84.2

2 3.0e-6 74.7 63.2

3 3.0e-6 74.7 63.2

4 3.0e-6 74.7 63.2

5 3.0e-6 86.7 84.2

6 3.0e-6 74.7 63.2

7 3.0e-6 74.7 63.2

8 49.1 100.0 100.0

9 3.0e-6 74.7 63.2

10 49.1 100.0 100.0

11 3.0e-6 74.7 63.2

Fault # Rare-path Line Branch

regex

1 2.3e-08 63.4 52.9

2 0.0030 93.0 94.1

3 0.0015 93.0 94.1

4 2.3e-08 63.4 52.9

5 4.7e-08 81.7 64.7

6 3.6e-13 63.4 47.1

7 99.9 100.0 100.0

8 3.6e-13 63.4 47.1

parser

1 0.0015 86.1 84.6

2 0.0015 86.2 84.6

3 0.0030 100.0 100.0

4 0.0015 81.5 76.9

5 2.3e-08 78.5 76.9

6 0.0015 92.3 92.3

7 2.3e-08 78.5 76.9

8 9.1e-11 35.4 30.8

parser (path-based bug)

9 99.2 100.0 100.0

trace to its corresponding path, such as recursive function

calls within a loop. We manually modify our subject programs

to remove such troublesome constructs while preserving the

program’s original semantics as much as possible. In addition,

we manage the input size for some programs to improve

the likelihood that a fuzzer would maximize the number of

execution paths it can take.

For this evaluation, we estimate the probabilities of all

paths in the benchmark programs. These programs are small

enough to identify all paths exhaustively—assuming all loops

are treated as single iterations. In other words, we calculate

the RP-Coverage by accounting for all paths.

We fuzz each original (unmutated) benchmark program with

AFL++ [18] 200,000 times and each mutation 100,000 times.

We track the line, branch, and RP coverage the fuzzer achieves

over time for each program and mutation. The changes in

coverage over time for the unmutated programs appear in the

first column of Figure 6. Due to the nature of calculating RP-

Coverage, if the program covers a common path, RP-Coverage

increases only negligibly. As a result, at a given point, the

cumulative RP-Coverage can potentially be smaller than 1%.

The graphs in this column partition the results into two sub-

graphs to represent these minimal changes. The top sub-graph

presents the coverage percentages greater than 10% on a linear

scale, and the bottom sub-graph presents the percentages less

than 10% on a logarithmic scale.

Each program mutation can be interpreted as including a po-

tential program fault. The purpose of these faults is to represent

a particular program path. For each program fault, we identify

the final line, branch, and RP coverage and the increase in

coverage upon discovering the fault. Table I presents the final

coverage metrics for each fault in the benchmark programs.

The shaded rows in gray represent bugs that we consider

rare. We define a rare bug as occurring along a path with

a probability less than 1e-5. The changes in coverage at the

Fig. 7: Change in coverage when the path-based fault (fault

#9) in parser is triggered

Fig. 8: Sensitivity analysis of the impact of coverage changes

in response to variation in rarity thresholds

time of each fault appear in the second column of Figure 6. A

dedicated graph in Figure 7 depicts the changes in coverage

for the path-based fault in parser detailed in Section II, as

the only subject in which the fault depends on a specific

statement execution order. Note that the same bug exists across

all mutations of parser. The graph in Figure 7 presents results

for the same bug evaluated multiple times.

To compare the cumulative RP-Coverage achieved by

AFL++ and FAIRFUZZ, we fuzz each unmutated program

for 200,000 iterations using FAIRFUZZ [3], with the results

appearing in the third column of Figure 6.

To understand the correlation between path rarity and its

impact on coverage metrics, we conduct a sensitivity analysis

that calculates the average increases in line, branch, and RP

coverage for different rarity thresholds. We present the average

increases in coverage for thresholds ranging from 1% to 1e-

10% in Figure 8.

To evaluate the benefits of RPP-HOUND’s optimizations,

we measure the number of ProbLog facts generated for each

benchmark after enabling or disabling each optimization. Ta-

ble II showcases the total number of facts, methods analyzed,

control-flow edges, and method calls, as well as the average

reduction achieved by applying the optimizations.

TABLE II: Impact of RPP-HOUND optimizations on ProbLog

database size

Program and Opts Facts Methods Edges Calls

pangram-no-opts 247 11 148 24

pangram-no-reach 181 11 82 24

pangram-no-folding 168 2 115 1

pangram-optimized 98 2 45 1

pwcheck-no-opts 258 12 159 26

pwcheck-no-reach 184 12 85 26

pwcheck-no-folding 177 3 125 2

pwcheck-optimized 99 3 47 2

regex-no-opts 242 12 148 28

regex-no-reach 180 12 86 28

regex-no-folding 161 3 115 3

regex-optimized 94 3 48 3

parser-no-opts 208 14 134 20

parser-no-reach 148 14 74 20

parser-no-folding 134 5 99 4

parser-optimized 79 5 44 4

Average decrease 61.3% 74.0% 68.7% 89.3%

V. DISCUSSION

In this section, we discuss the results of our evaluation based

on the research questions articulated in the previous section.

A. Utility of RP-Coverage

To answer RQ1 and describe the utility of RP-Coverage, we

take inspiration from economics, in which the term elasticity

refers to how one variable responds to a change in another

variable [19]. For example, if an increase in price for a

commodity significantly lowers its demand, then demand is

considered elastic or inelastic otherwise. By analogy, our

evaluation confirms that RP-Coverage is indeed elastic to path

probabilities. Discovering a path with a lower probability re-

sults in a greater increase in RP-Coverage than discovering one

with a higher probability. In contrast, line and branch coverage

lack that kind of elasticity. In all benchmarks, we observe

a period during which a fuzzer achieves high levels of line

and branch coverage (greater than 80%) but simultaneously

achieves less than 1% RP-Coverage. This result confirms the

elasticity of RP-Coverage and the lack thereof existing criteria.

Rare mutations are marked for each benchmark as follows:

pangram: 2, 3, and 6; pwcheck: 8 and 10; regex: 2, 3, and

7; parser: 1, 3, 4, 6, and 9 (path-based). The corresponding

graph shows that we observe one of the following two trends

for most of these mutations. (1) RP-Coverage increases at a

larger rate than line or branch; (2) the changes in line and

branch coverage are relatively small compared to the less

rare mutations. The path-based fault in the parser benchmark

most strongly supports the second trend. When the fault is

discovered, the increases in line and branch coverage range

from 3-23%, yet the increase in RP-Coverage is over 99%.

This large increase stems from the fuzzer discovering the

specific fault-containing path. Inputs generated by the fuzzer

previously covered the individual lines and branches along that

path but were not in the strict order required to trigger the bug.

The probability associated with this specific path is very low

and thus greatly impacts the increase in coverage.

The results of the sensitivity analysis appearing in Figure 8

present further evidence of the elasticity of RP-Coverage. For

higher probability thresholds, the line and branch coverage

changes are high (30-40%), while RP-Coverage is low (less

than 10%). Based on this analysis, a threshold of 1e-5 is the

inflection point where the changes in all three coverage metrics

are similar. At thresholds less than 1e-7, RP-Coverage starts

growing much faster than line or branch. This dissimilarity

in the coverage criteria for different probability thresholds

indicates the usefulness of RP-Coverage in describing the

behavior of fuzzers not currently covered by existing criteria.

When combined with these existing criteria, RP-Coverage can

provide a more complete picture of a fuzzer’s effectiveness.

We observe that line and branch coverages adequately

measure a fuzzer’s ability to discover bugs on common paths.

However, discovering bugs that manifest along a rare path pro-

duces a smaller increase in these coverages than RP-Coverage.

We conclude that a large increase in RP-Coverage suggests

that the fuzzer is more adequately exploring the program’s

less likely—and potentially more interesting—paths.

B. RP-Coverage Performance and Applicability

Our evaluation suggests that RP-Coverage has the potential

to provide additional insights into the performance of fuzzers.

To answer RQ2, we aim to understand the ability of RP-

Coverage to reveal the peculiarities of fuzzer performance not

identified by existing metrics. In all benchmarks, we observe

that the achieved percentage of RP-Coverage is strictly less

than line or branch. While regex and parser achieve high

levels of RP-Coverage, pangram and pwcheck stagnate at

approximately 50%. Additionally, in our pwcheck benchmark,

we observe noticeable increases in RP-Coverage thousands of

iterations after seeing a similar increase in line or branch.

Furthermore, we observe similar RP-Coverage trends for

each benchmark when utilizing different fuzzers. The rate at

which the RP-Coverage is achieved varies slightly. However, in

all four benchmarks, the final level of RP-Coverage achieved

converges. This convergence suggests that RP-Coverage has

promise to be a consistent metric across multiple fuzzers.

Contrary to our intuition, FAIRFUZZ’s RP-Coverage increases

exhibited neither a faster rate nor a larger amount. Despite

FAIRFUZZ’s design to bias towards rare paths, our experiments

show no noticeable performance improvements. In contrast, its

coverage increases slower than AFL++ in three benchmarks.

One explanation is the peculiarity of FAIRFUZZ’s allocation

of computational cycles to mutate inputs selectively, as this

strategy would impact the number of iterations it can complete

per second. The observed divergences in RP-Coverage and

existing criteria suggest that the former can reveal additional

insights about fuzzer performance.

C. Rare Path Analysis with ProbLog

Although seemingly of only engineering significance, the

design and implementation of RPP-HOUND answers RQ3

by offering valuable insights for related efforts in creating

advanced program analysis infrastructures. While traditional

approaches for fuzzing rare paths require a serious effort to

understand and modify mature program analysis infrastruc-

tures, our experiences show that the same functionality can be

provided as declarative rules that mature probabilistic engines

can efficiently execute. Logic languages require a database

of facts, whose construction in RPP-HOUND is accomplished

via the power of functional programming techniques of Scala,

with the entire implementation comprising less than 500 LOC

of Scala and seven ProbLog rules.

A naive implementation of our approach would not achieve

the desired performance. We quantify the value of our op-

timizations in Table II. We observe that merging adjacent

nodes largely impacts the total number of facts and control

flow edges. Incorporating user input reachability similarly

impacts the total number of methods analyzed. We gain the

benefits of both optimizations by applying them in tandem.

Across our benchmarks, we observe that applying both opti-

mizations decreases the number of facts, methods, edges, and

calls by 61.3%, 74%, 68.7%, and 89.3%, respectively. These

results highlight the importance of properly optimizing even

the most declarative implementation to achieve the desired

performance. Based on these observations and our experiences,

we conclude that probabilistic logic programming provides a

promising mechanism for specifying and rare paths.

D. Limitations and Threats to Validity

As a proof-of-concept, RPP-HOUND and its implemen-

tation are subject to several limitations. First, the analysis

only explores paths to a depth of 60 nodes. This depth limit

may cause the analysis to overestimate path probabilities.

However, we selected the depth limit demonstrated as effective

by existing literature [4].

To estimate the probability of control-flow paths, we rely on

a heuristic applied successfully in prior rare path analyses [6],

[4]. Nevertheless, this heuristic, branch selectivity, assumes

the values assigned to variables are distributed uniformly.

Although this condition rarely holds in practice, the simplicity

of the heuristic allows for efficient implementation. Despite

the chance for misestimated probabilities, this limitation is an

artifact of our implementation, not the RP-Coverage concept.

Our evaluation is subject to both internal and external

validity threats, which we outline next. Our findings depend

on the correctness of RPP-HOUND’s probability calculations.

In lieu of established correctness benchmarks, we had to rely

on applying our testing discipline to check our implementation

logic and its performance in the field. To further mitigate this

threat, we manually check the calculated probabilities at the

branch level, relying on the maturity of ProbLog inferencing

to correctly calculate probabilities at the path level.

As is commonly the case, our selection of evaluation

subjects is subject to bias. To mitigate this bias, we limited our

selection exclusively to third-party programs, which we only

adapted to meet the specific objectives of our experiments.

Some facets of our evaluation depend on artificially injected

faults that are always introduced at the basic block level. Had

the faults been introduced elsewhere, our evaluation findings

might differ. However, following the basic block-level strategy

reduces the bias inherent in determining where to inject faults.

In determining whether a mutation path is rare, we apply the

probability threshold 1e-5. Although this particular threshold

may seem arbitrary, its selection relies on sensitivity analysis

presented in Figure 8.

Due to the number and size of our evaluation subjects,

our findings may not generalize to a real-world code base,

posing an external threat to validity. Only future work can

help determine how serious this threat is. However, we focus

on achieving manageable analysis workloads when selecting

our subjects.

E. Future Directions

In addition to answering the three research questions above,

our evaluation suggests that RP-Coverage can be a starting

point for several future lines of inquiry. In conveying program

coverage, combining coverage criteria generally proves more

successful than when taken in isolation [20]. An interesting

future research effort may integrate RP-Coverage into a fuzzer

to study RP-Coverage’s ability to guide fuzzing more effec-

tively. Further, RP-Coverage can provide value by supplement-

ing other domains that use program coverage metrics. For

example, evaluating the comprehensiveness of test suites or

generating automated test cases.

The analysis techniques presented herein are not specific

to any particular language. Our design leverages CPGs as an

intermediate representation and can potentially be applied to

other language environments or multilingual programs simply

by supplying small language-specific bindings.

ProbLog’s performance as an inference engine proves suf-

ficient for our subject applications. If scalability and per-

formance become an issue in subsequent efforts, one may

explore the applicability of probabilistic dialects of Datalog,

a logic language designed explicitly for efficiently handling

large volumes of data.

VI. RELATED WORK

RP-Coverage and RPP-HOUND are related to several areas

of the related state of the art. Next, we describe the most

closely related prior works.

Guided fuzzing and fuzzing coverage metrics: Several prior

efforts demonstrate the benefits of biasing fuzzers toward

rare program paths. FAIRFUZZ [3] dynamically updates a

path’s rarity based on the frequency of the fuzzer hitting each

branch. In contrast, [4] introduces a static heuristic based on

branch selectivity [6]. Our approach takes inspiration from

[4] but differs in its implementation strategy. In addition

to proposing a new coverage criterion, our system design

streamlines the analysis by offloading complicated calculations

to a probabilistic logic engine.

Additional works have studied methods for improving path

coverage. PathAFL [21] uses h-paths to assist fuzzers in

identifying interesting paths to explore further. CollAFL [22]

introduces a coverage-sensitive fuzzer and new seed selection

strategies that increase overall path coverage. Our work takes

a different focus by supplementing these techniques with an

additional metric to assess their performances.

Combining coverage criteria is stronger at detecting faults

than any individual criterion [20]. As a result, prior work

has explored introducing new coverage metrics to fill in the

gaps left by existing ones. DeepXplore [23] introduces neuron

coverage, which addresses the shortcomings of traditional

coverage metrics when analyzing deep learning systems. [24]

introduces program state coverage. Although analogous to

these prior works in proposing a new coverage criterion, the

uniqueness of our approach lies in its treatment of path weight.

Declarative program analysis: This work draws on the

extensive prior research that applies logic languages to various

problems in program analysis. Extensive literature demon-

strates the efficacy of using such languages for declaratively

specifying sophisticated analyses for their highly efficient

execution [25], [26]. Specific applications range from low-

level analyses, such as points-to analysis [7], [27], [8], to

higher-level problems, like identifying structural program de-

pendencies [28] or code property violations [29]. Numerous

frameworks use logic languages to specify analyses, including

DOOP [8], PETABLOX [30], and SOUFFLE [31]. Our approach

also benefits from the power of logic programming to express

complex program analysis logic concisely, but we differ in the

logic language we use. Given the increasing applicability of

probabilistic reasoning in various software engineering prob-

lems [32], our approach opens up promising opportunities for

expressing the solutions to these problems using probabilistic

logic languages.

VII. CONCLUSIONS

We have presented Rare-Path Coverage, or RP-Coverage

for short, a new program coverage metric that accounts for

the probabilities of control-flow paths. We have demonstrated

the potential of RP-Coverage as a viable means of evaluating

fuzzing efficacy and performance. Based on our findings, we

proposed RP-Coverage to supplement existing coverages to

provide developers with a more complete picture.

Our empirical evaluation demonstrates that RP-Coverage is

sensitive, or elastic, to path probabilities. As such, it indicates

a fuzzer’s ability to discover less likely but potentially more

interesting portions of the program. Based on our experiences

and evaluation, we anticipate that RP-Coverage can provide

meaningful insights for any software engineering domain that

uses program coverage as a performance metric.

We have concretely demonstrated how RP-Coverage can

be implemented using cutting-edge program analysis ap-

proaches. In particular, the novel aspect of our proof-of-

concept implementation—Rare-Path Probability Hound—is

applying probabilistic logic programming for expressing pro-

gram representation and analysis rules. Our experiences in-

dicate that probabilistic logic programming offers an elegant

approach to solving other software engineering problems.

RPP-HOUND’s source code is available at https://github.com/

SoftwareInnovationsLab/rpp-hound.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers, whose insight-

ful comments helped improve the quality of this paper. This

research is supported by NSF grants #2232565 and #2106420.

REFERENCES

[1] ISO/IEC/IEEE, “International Standard - Software engineering - Soft-
ware life cycle processes - Maintenance,” ISO/IEC/IEEE 14764:2022(E),
pp. 1–46, 2022.

[2] M. Böhme, L. Szekeres, and J. Metzman, “On the reliability of coverage-
based fuzzer benchmarking,” in Proceedings of the 44th International

Conference on Software Engineering, ser. ICSE ’22. New York, NY,
USA: ACM, 2022, pp. 1621–1633.

[3] C. Lemieux and K. Sen, “FairFuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,” in Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineer-

ing. New York, NY, USA: ACM, 2018, pp. 475–485.

[4] S. Saha, L. Sarker, M. Shafiuzzaman, C. Shou, A. Li, G. Sankaran, and
T. Bultan, “Rare path guided fuzzing,” in Proceedings of the 32nd ACM

SIGSOFT International Symposium on Software Testing and Analysis.
New York, NY, USA: ACM, 2023, pp. 1295–1306.

[5] R. Bierig, S. Brown, E. Galván, and J. Timoney, Essentials of Software

Testing. Cambridge University Press, 2021.

[6] S. Saha, M. Downing, T. Brennan, and T. Bultan, “PReach: A heuristic
for probabilistic reachability to identify hard to reach statements,” in Pro-

ceedings of the 44th International Conference on Software Engineering.
New York, NY, USA: ACM, 2022, pp. 1706–1717.

[7] J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams,” in Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and

Implementation. New York, NY, USA: ACM, 2004, pp. 131–144.

[8] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification of
sophisticated points-to analyses,” in Proceedings of the 24th ACM SIG-

PLAN Conference on Object Oriented Programming Systems Languages

and Applications. New York, NY, USA: ACM, 2009, pp. 243–262.

[9] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discov-
ering vulnerabilities with code property graphs,” in IEEE Symposium on

Security and Privacy, 2014, pp. 590–604.

[10] L. De Raedt, A. Kimmig, and H. Toivonen, “ProbLog: A probabilistic
Prolog and its application in link discovery,” in Proceedings of the 20th

International Joint Conference on Artificial Intelligence. San Francisco,
CA, USA: Morgan Kaufmann Publishers, 2007, pp. 2462–2467.

[11] A. Aydin, L. Bang, and T. Bultan, “Automata-based model counting for
string constraints,” in Computer Aided Verification, D. Kroening and
C. S. Păsăreanu, Eds. Cham: Springer International Publishing, 2015,
pp. 255–272.

[12] S. Tenny and I. Abdelgawad, Statistical significance. StatPearls
Publishing, 2023.

[13] F. Riguzzi and T. Swift, “The pita system: Tabling and answer sub-
sumption for reasoning under uncertainty,” Theory and Practice of Logic

Programming, vol. 11, no. 4-5, pp. 433–449, 2011.

[14] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager, “SWI-Prolog,”
Theory and Practice of Logic Programming, vol. 12, no. 1-2, pp. 67–
96, 2012.

[15] KLEE, “regex,” https://github.com/klee/klee/tree/master/examples/
regexp.

[16] jpf-symbc, “PassCheck,” https://github.com/SymbolicPathFinder/
jpf-symbc/blob/master/src/examples/strings/PassCheck.java.

[17] GeeksforGeeks, “C program to check if string is pangram,” https://www.
geeksforgeeks.org/c-program-to-check-if-string-is-pangram/.

[18] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop on

Offensive Technologies (WOOT 20), 2020.

[19] S. A. Greenlaw, D. Shapiro, and D. MacDonald, Principles

of Economics 3e. OpenStax, 2022. [Online]. Available: https:
//openstax.org/books/principles-economics-3e/pages/1-introduction

[20] H. Hemmati, “How effective are code coverage criteria?” in 2015 IEEE

International Conference on Software Quality, Reliability and Security.
IEEE, 2015, pp. 151–156.

[21] S. Yan, C. Wu, H. Li, W. Shao, and C. Jia, “PathAFL: Path-coverage
assisted fuzzing,” in Proceedings of the 15th ACM Asia Conference on

Computer and Communications Security. New York, NY, USA: ACM,
2020, pp. 598–609.

[22] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “CollAFL:
Path sensitive fuzzing,” in 2018 IEEE Symposium on Security and

Privacy. IEEE, 2018, pp. 679–696.
[23] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox

testing of deep learning systems,” in proceedings of the 26th Symposium

on Operating Systems Principles, 2017, pp. 1–18.
[24] K. E. Someoliayi, S. Jalali, M. Mahdieh, and S.-H. Mirian-Hosseinabadi,

“Program state coverage: A test coverage metric based on executed
program states,” in IEEE 26th International Conference on Software

Analysis, Evolution and Reengineering. IEEE, 2019, pp. 584–588.
[25] S. Dawson, C. R. Ramakrishnan, and D. S. Warren, “Practical program

analysis using general purpose logic programming systems—a case
study,” in ACM SIGPLAN Notices, vol. 31. New York, NY, USA:
ACM, 1996, pp. 117–126.

[26] S. S. Huang, T. J. Green, and B. T. Loo, “Datalog and emerging
applications: an interactive tutorial,” in Proceedings of the 2011 ACM

SIGMOD International Conference on Management of Data. New
York, NY, USA: ACM, 2011, pp. 1213–1216.

[27] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots, M. Carbin,
and C. Unkel, “Context-sensitive program analysis as database queries,”
in Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems. New York, NY, USA:
ACM, 2005, pp. 1–12.

[28] M. Eichberg, S. Kloppenburg, K. Klose, and M. Mezini, “Defining and
continuous checking of structural program dependencies,” in Proceed-

ings of the 30th International Conference on Software Engineering.
New York, NY, USA: ACM, 2008, pp. 391–400.

[29] L. St. Amour, “Interactive synthesis of code-level security rules,” Mas-
ter’s thesis, Northeastern University Boston, 2017.

[30] M. Naik, “Petablox: Large-scale software analysis and analytics using
Datalog,” Tech. Rep., 2020.

[31] H. Jordan, B. Scholz, and P. Subotić, “Soufflé: On synthesis of program
analyzers,” in Computer Aided Verification. Cham: Springer Interna-
tional Publishing, 2016, pp. 422–430.

[32] L. St. Amour and E. Tilevich, “Toward declarative auditing of java
software for graceful exception handling,” in Proceedings of the 21st

ACM SIGPLAN International Conference on Managed Programming

Languages and Runtimes. New York, NY, USA: ACM, 2024, pp. 90–
97.

