
DoughNet: A Visual Predictive Model for
Topological Manipulation of Deformable Objects

Dominik Bauer1 , Zhenjia Xu1,2 , and Shuran Song1,2

1 Columbia University
2 Stanford University

Corresponding Author: dominik.bauer@columbia.edu

Abstract. Manipulation of elastoplastic objects like dough often in-
volves topological changes such as splitting and merging. The ability to
accurately predict these topological changes that a specific action might
incur is critical for planning interactions with elastoplastic objects. We
present DoughNet, a Transformer-based architecture for handling these
challenges, consisting of two components. First, a denoising autoencoder
represents deformable objects of varying topology as sets of latent codes.
Second, a visual predictive model performs autoregressive set predic-
tion to determine long-horizon geometrical deformation and topological
changes purely in latent space. Given a partial initial state and desired
manipulation trajectories, it infers all resulting object geometries and
topologies at each step. Our experiments in simulated and real environ-
ments show that DoughNet is able to significantly outperform related
approaches that consider deformation only as geometrical change. Our
code, data and videos are available at https://dough-net.github.io.

Keywords: Geometric Deep Learning · Robotic Manipulation

1 Introduction

From kneading to cutting, our interactions with elastoplastic objects such as
dough or clay constantly involve actions that, beyond their overall geometry,
manipulate the topology of objects. For example, changing the number of com-
ponents allows to portion a roll of dough. By increasing its genus, we may form
a doughnut from it. Different end-effector (EE) geometries applying the same
action to the same object, however, may yield drastically different topologies.

In this paper, we focus on this challenging task of topological manipulation
with a learned visual predictive model, illustrated in Fig. 1. Specifically, we infer
the sequence of geometrical and topological changes of an elastoplastic object
– given a single RGB-D observation of its initial geometry, EE geometry, and
planned actions. Such a visual predictive model equips robots with the ability
to plan their actions and choice of EE tools for achieving diverse topological
manipulation goals, while still forming the desired object geometries.

Most prior works on elastoplastic manipulation represent objects by a single
global geometry [18, 32, 36, 37], or rely on additional post processing [12, 13, 24]

https://orcid.org/0000-0002-1260-1319
https://orcid.org/0000-0002-8217-4818
https://orcid.org/0000-0002-8768-7356
https://dough-net.github.io

2 D. Bauer et al.

Fig. 1: Topological Manipulation. We predict the outcome of a series of ac-
tions from a single partial view. Beyond deformation, DoughNet considers topological
changes (components c and genus g) conditioned on the end-effector geometry.

to handle a specific topological change (i.e., splitting into two components); they
are unable to predict more general forms of topological change. We conjecture
that the exclusive focus on object geometry prevents a deeper investigation of
topological manipulation. In the example of doughnut forming, while the geom-
etry may be very similar, a roll with touching ends insufficently solves the task.
Rather, they must also stay dynamically connected when the object is moved.
Determining these dynamic changes is, however, non-trivial. In the real world,
conducting such a “topology check” destroys the geometrical state. In simula-
tion, particle-based approaches [13,14,25] may implicitly represent topology but
the information is not readily available; mesh-based approaches [2, 6, 12] have
explicit access to the topology but no trivial way to change it.

Aiming at a general solution to these challenges, we present DoughNet, a
visual predictive model that infers objects’ geometrical deformation and topolog-
ical changes. DoughNet consists of two main parts: First, an autoencoder that
represents geometries of different topological connectivity as sets of latent codes.
These codes may be decoded into occupancy maps for connected components,
for each of which we predict its genus. Second, a topology-aware dynamics
model learns the objects’ geometrical deformation and topological changes in an
autoregressive set prediction task. Multi-step prediction is performed completely
in the learned latent space, with both parts trained exclusively on simulated data.
To generate training data with ground-truth topological structure, we propose
a set of topological-checking operations for particle-based simulation. They en-
able us to reliably determine dynamic connectivity between (merging, splitting)
and within components (self-merging). Given a partial observation from a single
RGB-D camera and a desired EE trajectory, DoughNet allows to determine all
resulting geometries and topologies to guide topological manipulation.

In summary, our main contribution is DoughNet, a visual predictive model
for the novel task of topological manipulation of elastoplastic objects. It is en-
abled by 1) a topology-aware dynamics model that jointly reasons about objects’
geometrical deformation and topological changes under different physical inter-
actions, and 2) a synthetic data generator that yields volumetric geometry and
topological structure for training such models. Our experiments in simulated and
real robotic environments show that DoughNet outperforms previous approaches
for predicting manipulation of deformables, especially in long-horizon tasks.

DoughNet 3

2 Related Work

We compare related predictive models for deformable objects along the axes of
time, as well as geometry and topology.

Temporal Abstraction. While simulation step sizes may critically affect
predictions, learning-based methods may explore different temporal abstractions.

One end of the spectrum is to consider whether a skill will eventually achieve
the desired goal [23,24,43]. While this prevents error propagation of incremental
prediction, it requires single-step prediction of high-DoF deformation. Differen-
tiable simulation may allow to improve upon these predictions [18,43].

On the other end of the temporal spectrum, Li et al. [20, 21] train a GNN
with data from particle-based simulation, predicting the corresponding graph’s
deformation in small increments. Similarly, Shi et al. [36,37] predict manipulation
using different tool geometries. MPM simulation [38] is the template for a NeRF-
based [28] dynamics model in [19]. Our approach yields more consistent shapes
over longer manipulation horizons than incremental point-based predictions by
learning a direct mapping between latent shapes at different time steps.

Spatial Abstraction and Topological Change. Whereas most analyti-
cal methods use particle, grid or tetrahedral representations, learned predictive
models may be built upon a range of explicit and implicit shape representations.

Considering depth observations as input, for example, a common representa-
tion choice are point clouds and derived neighborhood graphs [17,20,21,26,36,37].
While points may diffuse over longer prediction horizons, the added regulariza-
tion due to nearest-neighbor graphs or mesh-like constraints hinders (keeping
track of) topological change. For the latter, Heiden et al. [12] demonstrate that
splitting may still be achieved by carefully designed geometrical processing.

Prediction methods [1, 9, 18, 24, 27, 34] that build upon recent advances in
neural implicit representations [28, 29, 31, 44], in contrast, may exploit that the
used occupancy or signed-distance fields naturally handle varying topologies.
Commonly though, single objects [1, 41, 42] or whole scenes [9, 11, 35] are rep-
resented by a global implicit shape. This may require the number of objects to
remain unchanged, or does not allow to easily determine if such a change indeed
happened. For example, objects may be extracted in an initial step and embed-
ded separately to discern them [9, 24]. Inspired by Cheng et al. [5], our method
dynamically deals with varying connectivity – and thereby topology – during ma-
nipulation and makes these changes explicitly observable in distinct occupancy
maps. No additional postprocessing of the predicted shapes is required.

3 Method

Prior works commonly focus on the geometrical changes that result from manip-
ulation of deformable objects. However, few works [12,24] consider the topological
changes that occur when deformation leads to splitting or merging of objects.
We argue that a joint consideration of both, geometry and topology, is impor-
tant as it allows to minimize unwanted geometrical deformation when trying to
achieve a topological goal (and vice-versa).

4 D. Bauer et al.

Fig. 2: DoughNet Pipeline. We encode the initial partial observation X0 to a set of
latent codes [z0] using a learned geometry embedding Φ. The given interaction a0 yields
the next latent codes [z1], which serve as input in subsequent time steps t → T . The
latent codes may be reconstructed into components using a learned topology embedding
θ. This allows DoughNet to reconstruct the objects’ geometry X̃t at sample locations
[zs]. In addition, we may extract their topology G̃t (i.e., the number of components
and their genera) from the per-component latents [zθ].

For this joint reasoning, DoughNet (presented in Fig. 2) is designed to per-
form two nested learning tasks, namely:

– Learning a latent representation of deformable shapes with the encoder
and decoder network, Secs. 3.1 and 3.3.

– Dynamics prediction in the learned latent space, that infers objects’ de-
formation and topological changes under different interactions, Sec. 3.2.

Tying these learning objectives together, we describe the losses and training
procedure of our method in Sec. 3.4. While the autoencoder is supervised using
a permutation-invariant reconstruction loss, the predictive model solely considers
its prediction error in the latent shape space.

3.1 Shape Encoder

We hypothesize that repeated decoding, resampling and encoding would accu-
mulate error and thus should be avoided. We therefore want to predict directly
in latent space. As illustrated in Fig. 2, we achieve such a latent representation
of the observed points X ∈ RN×(3+1) by a set of latent codes [z] ∈ R257×512 in
two main steps, based on the architecture proposed by Zhang et al. [44].

Embed Partial Observation. To embed the observed point cloud, we apply
the feature transformation from [44]. Each such feature is concatenated with its
location xxyz, fed through a linear layer and appended with the one-hot encoded
component label l ∈ IP to create the set of per-point features [ze].

Spatial Aggregation. A learned query set [ϕ] of 256 latent codes aggregates
over these per-point features via cross attention [40], [zagg] = CrossAttn([ϕ], [ze]).
To add further global information, inspired by [45], we add an average-pooled
latent code by [z] = [[zagg], [zagg]]. The spatial aggregation to the latent set [z]
allows us to work with point clouds of varying size and contains the quadratic

DoughNet 5

memory complexity of the following attention-based components by producing a
latent shape set of small and fixed number. To further process the latent shape,
i.e., learning to denoise and complete the partial observation, we leverage a stack
of self-attention layers and their ability to consider global dependencies between
the latents. While such a module is part of the decoder in [44], we observe signif-
icantly better performance when used in the encoder. Thereby, it already serves
as input to the predictive model as compared to “postprocessing” its predictions.

3.2 Dynamics Model

Given a set of latent codes [zt] in time step t, our model in Fig. 2 predicts a new
set [zt+1] in time step t + 1. Its prediction is conditioned on the manipulator’s
interaction, i.e., its shape in both time steps. We assume this representation to
be more general than an action space that depends on a specific kinematic chain.

Embed Manipulator Geometry. The manipulator’s geometry is repre-
sented by a set of points uniformly sampled on its surface, combined for two time
steps to describe its action at = [M t,M t+1]. We conjecture that embedding the
manipulator analogous to the observation facilitates finding interacting regions,
e.g., for determining collisions that are implicitly required for dynamics predic-
tion. The latent representation of the interaction is thus given by [zt

m, zt+1
m].

Dynamics Prediction. The embedded points are concatenated, forming the
context [zt,t+1

m] ∈ R257×1024 for prediction based on the current object shape [zt].
We use four stacks that alternate two self- and with one cross-attention blocks
to yield the next object shape [zt+1]. This module is autoregressively applied to
predict the outcome of long-horizon manipulations, including topological change.

3.3 Geometry Decoder and Components

To complete the autoencoder, we require a shape decoder that extracts both,
geometry and topology, from the latent shape [z]. We jointly represent this
information in the form of a set of K+1 occupancy masks P (pk|z, si) for samples
[si] ∈ RSx3 and components [pk]k∈K . An additional mask represents samples
that lie outside all shapes in the scene (outliers).

Interpolate Latents. To decode the latent shape information at each sam-
ple location, samples are first transformed by zf (si), concatenated with si it-
self and fed through a linear layer to yield [zs]. Note that the linear layer is
different from the one used by the encoder since we have no label informa-
tion for samples. Next, analogous to the spatial aggregation, we employ a cross
attention layer to interpolate the latent codes [z] at the sample locations by
[zI] = CrossAttn([zs], [z]).

Segment Samples. As shown in Fig. 2, we combine this local decoder with
a component prediction branch that is inspired by 2D segmentation [5]; instead
of binary 2D masks, however, we predict a set of 3D occupancy masks. Corre-
spondingly, we use a learned query set [θ] of K + 1 latent codes to compute a
global component representation [zθ] = CrossAttn([θ], [z]). The dot product of
the globally and locally decoded shape information is interpreted as the logits of

6 D. Bauer et al.

the component occupancy probability P (pk|z, si) for component pk at sample
location si. We prescribe each sample to belong to exactly one component (or
the outliers) and extract the label that maximizes P .

Predict Topology. We integrate topology prediction as a classification task
into our pipeline. In contrast to previous work [4], we simplify this task by
leveraging the “pre-segmented” components. Classifying each component latent
zi
θ to either a class corresponding to its genus or an empty class allows us to

additionally obtain the number of components using the same network head. As
a practical benefit, moreover, one does not need to query the occupancy for the
latent geometry of the corresponding components.

3.4 Training Procedure and Losses

Since the required ground-truth components are infeasible to obtain for real
observations (i.e., determining a topological change without intervention and
thus without destroying the state of the deformable object), we base our training
on synthetic data described in Sec. 4. We assume that component meshes are
available for each time step of the manipulation trajectories in the training set.

Generate Synthetic Observations. To generate realistic training data,
we render depth images of these meshes from jittered camera poses. Sensor
noise is added as a normally distributed per-pixel offset, by random pixel shifts
and by removing pixels with large depth difference [8, 39]. Rendering at a lower
resolution and upscaling via bilinear interpolation introduces smoothing of the
depth image, creating “flying pixels” that further reduce the domain gap.

Reconstruct and Complete the Observations. The order of the K occu-
pancy masks is ambiguous; the component label has no semantic meaning since it
only encodes distinct connectivity. Therefore, similar to Cheng et al. [5], we com-
pute the reconstruction loss using the matching Lrec! = minK∈K! Lrec(K,Ktrue),
where K! is the set of all permutations of the K predicted components and Ktrue

their true permutation. An additional component for outliers at a fixed index
facilitates its rejection. We use the Focal Loss [22] to score these permutations.
This considers the imbalance of occupied to empty space. The best-component
permutation is reused in the cross-entropy loss for the topology classifier.

While the encoder is only given a partial and noisy observation, the targets
are computed from the true shapes and labels by computing the signed distance
with respect to the component meshes at the sample locations [si]. Assuming
non-intersecting meshes, a sample is assigned to the outliers if all signed distances
are positive (outside all meshes) and to the component for which it is ≤ 0 else.

Predict the Next Shapes. We want our prediction model to iteratively
find the shapes that follow from the given interactions in the next time step, i.e.,
the latent codes that would decode to the complete ground-truth shape at the
respective time step. Therefore, we directly supervise the predictive model in
latent space by the Huber loss [15] between the latent set of the prediction zpred
and the corresponding encoder output z. We combine this loss for two time steps,
namely t, t + 1. In the first time step, the prediction [zt

pred] is computed from
the encoded shape [zt−1]. To reduce the exposure bias commonly observed in

DoughNet 7

Fig. 3: Data Distribution. The scales of the objects and EE geometry, where test
samples are held-out from regions inside and outside the training boundaries.

autoregressive models [3,33], we use [zt+1
pred] computed from [zt

pred] in the second
time step. Thereby, the predictive model must learn to map latents from the
encoder as well as itself to the same shape. The topology classifier is also trained
on latents from both sources. We find training to be more stable if we pretrain
the autoencoder using the reconstruction loss and, in a second stage, freeze it
and only train the predictive model using the latent loss.

4 Topological Manipulation Environment

Synthetic data generated with an MPM-based simulator is used for training. The
simulation setup is presented in Sec. 4.1. Ground-truth information is extracted
as training supervision, including both geometry and topology structure via a
set of topological-checking operations (Sec. 4.2). Finally, the model trained with
synthetic data is directly evaluated on a real-world platform (Sec. 5.2).

4.1 Simulation Setup

The simulation environment consists of one or two objects made of soft mate-
rial and an end-effector (i.e., parallel-jaw gripper) with varying finger geometry.
The initially opened gripper closes gradually until reaching the minimal opening
width at a varying in-plane pose. Within the process, full object particle and
manipulator mesh states are recorded at constant intervals (“keyframes”).

The soft material is represented using an elastoplastic continuum model sim-
ulated with MLS-MPM [13] and von Mises yield criterion. MPM-based methods
naturally support arbitrary deformation and topology change. The rigid gripper
fingers are expressed as time-varying signed distance fields (SDFs), derived from
external meshes. Contact between soft and rigid materials is modeled through
the computation of surface normals of the SDFs.

We create simulation environments that are visually simple scenes, yet un-
dergo complex topological changes in terms of the number of components (c) and
genera (g). Scenes with two “rolls of dough” side-by-side (initially c = 2) may
merge (to c = 1) and split (to c = 2, 3 or 4). Scenes with a “doughnut” (initially
g = {1}) may self-merge (to g = {0} or {2}) and split (to any combination of
g = {0, 1}), where the resulting topology is highly sensitive on the EE’s geome-
try and pose. For each type of scene, we randomly sample 1000 training and 100
testing instances for a total of 2000 and 200 scenes. Five faulty test scenes are
discarded. Each scene is subsampled to 13 frames for larger displacements.

8 D. Bauer et al.

We vary the end effector geometry from thin “scissors” to a wide “vise”, start-
ing from a random in-plane pose and closing its fingers to a minimal distance.
We hold out a range of scales around the test geometries, as shown in Fig. 3.
For the EE and scenes, the sampled parameter regions for training and testing
are disjoint and include cases requiring interpolation and extrapolation.

4.2 Topological Check

Topological connectivity is implicit in MPM-based simulation; it operates on a
set of particles and a corresponding grid, not on well-separated objects. There-
fore, (self-)merging and splitting are ill-defined from particle locations alone. For
example, distance-based connectivity cannot distinguish two cylinders lying next
to each other (in contact) from ones that have been squeezed (merged). Instead,
we define their connectivity by the counterfactual argument that “they would
not stay in contact when moved apart, if they had not merged or had split”.

Fig. 4: Topology Check. Left: Two
components are considered merged iff
they remain connected after opposite
velocities are applied. Right: A com-
ponent is considered split into two iff
they have no connection after checking.

To this end, we propose a physically
plausible topology annotation by focusing
on connectivity changes induced by the
EE. We derive the object regions between
the EE fingers where a merge or split may
occur from the kNN graph of particles at
rest and their current locations. As shown
in Fig. 4, our simulation-based topology
check involves adjusting particle veloci-
ties to move these object regions oppo-
site to the end effector’s closing direction
(merge) or orthogonal to it (split). If the
distance between these regions after perturbation by the checking action falls
below (merge) or above (split) a threshold, this topological change is recorded in
both the particle-connectivity graph and the scene-topology graph. The latter
is the objects’ initial topology in terms of a simple planar graph. Each recorded
change alters this graph using merge, split, and remove graph operations. To
support, e.g., complex self-merge events, our operations also take the particles
surrounding the check regions into account. This scene-topology graph is easily
evaluated in terms of the number of connected components and cycles, where
the number of cycles is equivalent to the genus of the corresponding object.

While the particle representation lends itself to simulation, for further pro-
cessing such as resampling the object geometry’s surface or interior, a surface
mesh representation is more flexible. Equipped with the dense labeling in the
particle-connectivity graph, we can select all particles that belong to an indi-
vidual component and compute its corresponding surface mesh. To this end, we
compute the signed distance with respect to the each component’s particles in
a regular grid and apply Dual Contouring [10, 16], which is designed to main-
tain sharp features – such as cuts in deformable objects. Our final processed
dataset minimally consists only of color-coded component meshes and manipu-
lator meshes with poses, as well as the scene-topology graph.

DoughNet 9

5 Experiments

Going beyond predicting deformation of geometry, in this section, we show that
DoughNet is able to also accurately predict the resulting changes in connectivity
as components merge and split during manipulation.

Procedure and Metrics. A single step prediction observes the scene in
every step and predicts one step into the future. For full sequence prediction,
only a single initial observation is given and methods need to generate subsequent
future states from their own output. We measure performance using the following
four metrics, computed per frame and reported as mean over all frames:

– Voxel IoU (VIoU) compares the predicted and true scene occupancy (i.e.,
over all components). It thus only measures the geometrical quality. Occu-
pancy is evaluated on a grid with the equivalent of a 1mm spacing, ignoring
points below the plane or within the EE since they are assumed to be known.

– Component IoU (CIoU) compares the occupancy per true component.
It shows both geometrical and topological quality. We report the mean over
the best matching components’ IoU.

– Accuracy of the Number of Components (AccC) is the percentage
for which methods are able to predict the correct number of components.

– Accuracy of the Genus (AccG) is the equivalent metric for the genera
of these components. For consistency, the permutation found for the CIoU
metric is reused here to match the components.

Baselines. We compare DoughNet with different approaches to (1) geom-
etry representation (particle point cloud or occupancy), (2) topology (post-hoc
static or dynamic check), and (3) prediction (simulation- or learning-based):

– VPM (Visual Predictive Model) is a variant of our approach that discards
the predicted components and instead computes the topology from scratch.
These results motivate the inclusion of topology into our joint prediction.

– MLS-MPM [13] is a predictive model using the MPM simulator and our
initial geometry reconstruction. This algorithm would provide a performance
oracle for the dynamics prediction. However, the simulation could be sensi-
tive to initialization and less robust to partial and noisy observations.

– RoboCook [36] is a GNN-based predictive model of object deformation.
Building upon a line of previous works [20, 21, 37], it is representative of
learned models that closely follow the design of particle-based simulators.
Our comparison therefore shows the benefit of reasoning on an object level.

We furthermore augment these baselines by post-hoc topology checks:

– Static topology check extracts the connected components from the nearest-
neighbor graph [30]. A mesh is computed for each, using the Euler character-
istic to obtain its genus. This baseline illustrates the necessity of considering
dynamic connectivity; beyond using only static Euclidean distances.

– Dynamic topology check uses the same approach used for our synthetic
data generation. As this requires repeated simulation, it is combined with
the MLS-MPM baseline and highlights the computational burden of both.

10 D. Bauer et al.

Table 1: Performance on Simulated Data. Results for all 194 test scenes (13 time
steps each). + with a static topological check, ‡ with our proposed dynamic topological
check and ours () with predicted topology. Frame rates (fps) are for geometry and
topology prediction, without exploiting parallel simulation or batched prediction, on a
system equipped with an Intel Xeon Gold 6248 and an NVIDIA Geforce RTX 2080 Ti.

full sequence at final time step
VIoU↑ CIoU↑ AccC↑ AccG↑ VIoU↑ CIoU↑ AccC↑ AccG↑ fps↑

DoughNet 92.0 90.5 97.9 98.6 84.1 75.1 92.3 90.3 22.1
VPM+ 92.0 88.5 92.8 94.8 83.3 70.7 68.7 79.7 0.4
MLS-MPM [13]‡ 87.2 86.2 97.2 98.9 82.0 79.4 91.8 95.6 0.2
RoboCook [36]+ 60.8 59.2 91.5 95.6 44.1 37.4 64.1 80.9 4.5

7 11

50

100

VIoU
3 7 11

LIoU
3 7 11

AccC
3 7 11

AccG

DoughNet VPM MLS-MPM RoboCook

frame

Fig. 5: Performance on Simulated Sequences. Mean performance per frame;
dashed for the static topology check (+), and solid for dynamic (‡) and predicted ().

5.1 Results

As indicated in Tab. 1, DoughNet significantly outperforms the baselines in full
sequence prediction, retraining high accuracy over a long prediction horizon.
In Tab. 2, we compare the effect of key design decisions on prediction quality.

Comparison to Post-hoc Topology Prediction. The significant perfor-
mance drop of using a static topology check for VPM illustrates that the effects
of topological manipulation go beyond geometrical changes. Our approach, in-
stead, learns to exploit the observations generated by the proposed dynamic
check in simulation to jointly reason about such topological change, rather than
relying on post-hoc clustering of predicted points.

Comparison to Simulation-based Prediction. As shown in Tab. 1, only
in the final time step, MLS-MPM – the simulation initialized with our recon-
struction and using our proposed check as topology oracle – performs better on
the CIoU and AccG metrics, while still being outperformed by ours in terms of
VIoU and AccC. This drop may be attributed to DoughNet at times requiring
additional steps to cleanly resolve a topological change in the per-component
occupancy. Still, we achieve better or comparable results but magnitudes faster.

Comparison to GNN-based Prediction. While DoughNet maintains
high performance over subsequent predictions, RoboCook’s performance dete-
riorates over time in Fig. 5. It is further diminished by the downsampling to a
sparse point cloud as input for the GNN, necessitating costly meshing for up-
sampling to a dense (yet still lossy) prediction again in each frame. DoughNet
achieves a 31.3% higher CIoU than RoboCook. This comparison supports our
choice of an implicit representation that may be evaluated at any resolution,
jointly handling geometrical and topological change without loss in quality.

DoughNet 11

Table 2: Ablation Study on Design Decisions. In each row, we replace one design
decision with an alternative described in Sec. 5.1. We note the significant challenge of
long-horizon prediction of topological manipulation, as compared to single steps.

single step full sequence
VIoU↑ CIoU↑ AccC↑ AccG↑ VIoU↑ CIoU↑ AccC↑ AccG↑

DoughNet 94.3 93.0 98.2 98.8 92.0 90.5 97.9 98.6
one-step prediction 94.1 92.7 98.1 98.8 90.8 89.0 97.4 98.4
explicit supervision 94.8 93.7 98.0 98.7 76.3 75.4 91.7 93.1
relative prediction 94.4 93.2 98.4 99.0 73.1 74.2 80.4 81.6
complete observation 77.0 75.3 95.5 98.1 75.8 73.4 95.7 96.9

Effect of Training Multi-step Prediction. Prior works [3,33] observe that
autoregressive models, as ours, suffer from an exposure bias ; training on ground-
truth inputs but using own predictions as input in subsequent steps at test time.
Shi et al. [36] are able to reduce this effect by predicting two time steps during
training. Following this observation, we predict one step from reconstruction of
the true state and one step from the prediction of the next step. As compared
to only training the first time step, there is a slight improved performance in
the single step setting that increases to a bit over 1% on the IoU metrics when
moving to full sequences, as shown in Tab. 2.

Effect of Latent Space Supervision. In RoboCook [36], prediction is su-
pervised by the reconstruction’s distances to the ground truth – a small error
in latent space is not penalized during training as long as the reconstruction is
similar. We hypothesize that this is an additional source for error accumulation
in sequential prediction. Indeed, we find that directly supervising the prediction
of the latents is more robust as this forces the predictive model to map to the
space learned by the autoencoder, further avoiding degenerate reconstructions.
Quantiatively, we observe a significantly improved long-horizon performance us-
ing our approach, achieving about 15% higher IoU scores in Tab. 2.

Effect of Set-to-set Prediction An approach in previous visual predic-
tive models, perhaps inspired by a Lagragian view on dynamics, is to learn the
relative change between states. Like any iterative procedure without error cor-
rection, we conjecture that this approach is prone to error accumulation. Rather,
we directly predict the next state – from one set of latents to the next. The re-
sults in Tab. 2 quantify the benefit of this, specifically a 18.9% VIoU increase
and 17.5% AccC increase compared to the relative variant. Further supporting
our decision, we observe that our predictive model is able to correct, e.g., initial
reconstructions in terms of topological errors and geometrical inaccuracies.

Effect of Training on Partial Observations. Rather than assuming a
complete initial state (as for MLS-MPM [13]) or a multi-view reconstruction (as
in [36]), we conjecture that a single partial observation is sufficient. To bridge the
domain gap between synthetic and real point-cloud observations, we introduce
common artefacts of depth sensing, namely incompleteness, oversmoothing, and
fringing at transitions to the background. Experiments on synthetic partial data

12 D. Bauer et al.

Fig. 6: Qualitative Comparison on Real Sequences. Full-sequence predictions
from an initial partial observation. Results are shown at time steps t = {5, 10, 15}.
Erroneous topology predictions (white boxes, top right) feature a dark red border.

in Tab. 2 show an expected yet significant improvement using our data prepa-
ration pipeline as compared to training on complete observations. Importantly,
as shown in Fig. 6, this robustness to partial input carries over to experiments
on the robot and enables successful sim-to-real transfer. We want to highlight
that, predicting from a single partial observation, we even achieve plausible re-
constructions of components that are eventually hidden from direct observation.

5.2 Real-world Evaluation

Fig. 7: Real-world Setup. a) Intel
RealSense D415 (and depth image),
b) Weiss Robotics WSG50 (with three
held-out 3D-printed tools), attached to
c) a Universal Robots UR5 to manipu-
late d) molded Play-Doh objects.

We further evaluate our model on a real-
world platform as shown in Fig. 7. The
scene setup and placement strategy fol-
lows the synthetic dataset. The setup is
observed using a single camera, which pro-
vides the initial partial and noise-afflicted
observation for our model. A total of 60
scenes (interactions) of 15 frames each
are recorded. In a preprocessing step, we
segment the objects of interest by color
and crop the resulting point cloud by the
known table plane. Statistical outlier re-
moval and voxel downsampling reduce the
gap between synthetic and real data. Fur-
thermore, for two-roll scenes, PCA-based reorientation and centering along the
median axis between the objects bring the observation to a (noise-afflicted)
canonical frame, in which we can easily determine the initial components. The
qualitative results are shown in Fig. 6, demonstrating that our model trained
on purely synthetic data is able to generate plausible deformation and topology
changes from single RGB-D images in real robotics experiments.

DoughNet 13

Fig. 8: Planning Topological Manipulation. Two examples, each defined by an
initial partial observation and a partial goal observation (color-coded topology). We
visualize DoughNet’s predictions for the top-K sampled actions (top) and the best one
selected based on our latent representation (bottom) after 1, 5, and 10 CEM iterations.

5.3 Planning for Topological Manipulation

We leverage DoughNet to plan topological manipulations. Goals may be pro-
vided as a (partial) point cloud with color-coded components (Fig. 8), or a
desired topology (see the supplementary). Specifically, DoughNet is used to roll-
out sampled actions in a CEM planner [7]. We use the cosine similarity between
the goal and our predictions in the learned latent space, naturally capturing
geometrical and topological fitness for resampling and selection. We initialize
K = 64 actions; in-plane translation and rotation from Gaussian distributions
tx, ty ∼ Nt(0, I · 8) ∈ [−40, 40]2mm and θz ∼ Nθ(0, 10) ∈ [−10, 10]deg, as well
as the gripper from a multinomial distribution x ∼ Mx(narrow = 1

3 , regular =
1
3 ,wide = 1

3). After each rollout, the sampled actions are scored by similarity,
the best Ktop = 8 are kept and used to re-fit the distributions. The best ac-
tion is selected after ten CEM iterations. The results in Fig. 8 visualize the
distribution of the top-K and the best samples over multiple CEM iterations, as
predicted and reconstructed by DoughNet. The large initialization variance of
in-plane actions and EE geometries quickly reduces and we are able to fulfill both
goal aspects, also finding a well-suited EE. Quantitatively, the action parameters
generating the goal observations in Fig. 8 are accurately estimated by our best
plans, achieving translation and rotation errors of 1.6 / 1.1mm and 0.4 / 0.5deg,
respectively; close to the grid resolution of 1mm used for the reconstructions
during evaluation. A comparison to baselines is provided in the supplementary.

5.4 Limitation and Failure Case

Fig. 9: Failure Cases. Inconsistency be-
tween occupancy and topology (left) and
within components (right).

As shown in Fig. 9, we observe two
common failure cases in DoughNet’s
predictions. First, since this is not en-
forced, the predicted component oc-
cupancy and topology may be incon-
sistent. For example, in Fig. 9 (left),
two geometrical components but three
topological ones are predicted. This is
related to an observed tendency to de-
layed, or even missed, splitting events.

14 D. Bauer et al.

Second, topological changes may result in inconsistency within the occu-
pancy prediction. In the example in Fig. 9 (right), the new components are still
partially assigned to one another. However, we observe that this mistake is typ-
ically resolved in subsequent steps, presumably as such erroneous shapes (i.e.,
their latents) are mapped back to the learned manifold of shapes.

Stemming from our dataset design, targeted at providing a minimal test bed
for topological manipulation, we only consider individual squeezing actions and a
single set of material properties. While these added complexities are beyond the
scope of this work, we hope that the release of our data generator will facilitate
future work on topological manipulation. Future tasks may involve repeated
topological and geometrical changes; such as splitting material into multiple
components, deforming each with a sequence of actions, and merging them into
an intricate shape that would not be attainable by deformation alone.

Finally, we do not anticipate any negative societal impact of this work, if
responsibly incorporated in robotic systems such that potentially unreliable or
erroneous predictions may be considered via verification before open-loop exe-
cution, or via reinitialization of short prediction horizons in closed-loop control.

6 Conclusion

We propose DoughNet, a visual predictive model that jointly reasons about
geometrical deformation and resulting topological changes. In our experiments
using simulated and real robotics interactions, our approach accurately predicts
splitting and merging of deformable objects, manipulated by varying end-effector
shapes. In addition, we propose a synthetic data generator to facilitate further
research into this task of topological manipulation, where a geometrical or topo-
logical goal may be constraint by the respective other.

The successful sim-to-real transfer of our experimental setup should moti-
vate future work extending it towards more complex, sequential topological ma-
nipulation tasks. As a predictive model, DoughNet lends itself to be employed
in robotic planning pipelines; its general notion of interactions via a tuple of
“manipulator” geometries moreover extends its application possibilities beyond
robotics, while its speed and differentiability opens up integration into existing
end-to-end trained or optimization-based approaches.

Acknowledgements

This work was supported in part by the Toyota Research Institute, NSF Award
#2143601, and Microsoft Fellowship. We would like to thank Google for the UR5
robot hardware. Dominik Bauer is partially supported by the Austrian Science
Fund (FWF) under project No. J 4683. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of the sponsors.

DoughNet 15

References

1. Bartsch, A., Avra, C., Farimani, A.B.: Sculptbot: Pre-trained models for 3d de-
formable object manipulation. arXiv preprint arXiv:2309.08728 (2023)

2. Bathe, K.J.: Finite element procedures. Klaus-Jurgen Bathe (2006)
3. Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N.: Scheduled sampling for sequence

prediction with recurrent neural networks. NIPS 28 (2015)
4. Chen, Q., Nguyen, V., Han, F., Kiveris, R., Tu, Z.: Topology-aware single-image 3d

shape reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops. pp. 270–271 (2020)

5. Cheng, B., Schwing, A., Kirillov, A.: Per-pixel classification is not all you need for
semantic segmentation. NeurIPS 34, 17864–17875 (2021)

6. Coumans, E., Bai, Y.: Pybullet, a python module for physics simulation for games,
robotics and machine learning (2016)

7. De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-
entropy method. Annals of operations research 134, 19–67 (2005)

8. Denninger, M., Winkelbauer, D., Sundermeyer, M., Boerdijk, W., Knauer, M.,
Strobl, K.H., Humt, M., Triebel, R.: Blenderproc2: A procedural pipeline for
photorealistic rendering. Journal of Open Source Software 8(82), 4901 (2023).
https://doi.org/10.21105/joss.04901

9. Driess, D., Huang, Z., Li, Y., Tedrake, R., Toussaint, M.: Learning multi-object
dynamics with compositional neural radiance fields. pp. 1755–1768 (2023)

10. Gibson, S.F.F.: Constrained elastic surfacenets: Generating smooth models from
binary segmented data. TR99 24 (1999)

11. Hafner, D., Lillicrap, T., Ba, J., Norouzi, M.: Dream to control: Learning behaviors
by latent imagination. In: ICLR (2019)

12. Heiden, E., Macklin, M., Narang, Y.S., Fox, D., Garg, A., Ramos, F.: DiSECt:
A Differentiable Simulation Engine for Autonomous Robotic Cutting. In: RSS.
Virtual (July 2021). https://doi.org/10.15607/RSS.2021.XVII.067

13. Hu, Y., Fang, Y., Ge, Z., Qu, Z., Zhu, Y., Pradhana, A., Jiang, C.: A moving least
squares material point method with displacement discontinuity and two-way rigid
body coupling. ACM Transactions on Graphics (TOG) 37(4), 150 (2018)

14. Hu, Y., Li, T.M., Anderson, L., Ragan-Kelley, J., Durand, F.: Taichi: a language
for high-performance computation on spatially sparse data structures. ACM TOG
38(6), 201 (2019)

15. Huber, P.J.: Robust estimation of a location parameter. The Annals of Mathemat-
ical Statistics 35(1), 73–101 (1964)

16. Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of hermite data. In:
Proceedings of the 29th annual conference on Computer graphics and interactive
techniques. pp. 339–346 (2002)

17. Le Cleac’h, S., Yu, H.X., Guo, M., Howell, T., Gao, R., Wu, J., Manchester, Z.,
Schwager, M.: Differentiable physics simulation of dynamics-augmented neural ob-
jects. RAL 8(5), 2780–2787 (2023)

18. Li, S., Huang, Z., Chen, T., Du, T., Su, H., Tenenbaum, J.B., Gan, C.: Dexde-
form: Dexterous deformable object manipulation with human demonstrations and
differentiable physics. arXiv preprint arXiv:2304.03223 (2023)

19. Li, X., Qiao, Y.L., Chen, P.Y., Jatavallabhula, K.M., Lin, M., Jiang, C., Gan,
C.: Pac-nerf: Physics augmented continuum neural radiance fields for geometry-
agnostic system identification. In: ICLR (2022)

https://doi.org/10.21105/joss.04901
https://doi.org/10.21105/joss.04901
https://doi.org/10.15607/RSS.2021.XVII.067
https://doi.org/10.15607/RSS.2021.XVII.067

16 D. Bauer et al.

20. Li, Y., Lin, T., Yi, K., Bear, D., Yamins, D.L., Wu, J., Tenenbaum, J.B., Torralba,
A.: Visual grounding of learned physical models. In: ICML (2020)

21. Li, Y., Wu, J., Tedrake, R., Tenenbaum, J.B., Torralba, A.: Learning particle
dynamics for manipulating rigid bodies, deformable objects, and fluids. In: ICLR
(2019)

22. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: ICCV. pp. 2980–2988 (2017)

23. Lin, X., Huang, Z., Li, Y., Tenenbaum, J.B., Held, D., Gan, C.: Diffskill: Skill
abstraction from differentiable physics for deformable object manipulations with
tools. In: ICLR (2022)

24. Lin, X., Qi, C., Zhang, Y., Huang, Z., Fragkiadaki, K., Li, Y., Gan, C., Held,
D.: Planning with spatial-temporal abstraction from point clouds for deformable
object manipulation. In: CoRL (2022)

25. Macklin, M., Müller, M., Chentanez, N., Kim, T.Y.: Unified particle physics for
real-time applications. ACM Transactions on Graphics (TOG) 33(4), 1–12 (2014)

26. Matl, C., Bajcsy, R.: Deformable elasto-plastic object shaping using an elastic hand
and model-based reinforcement learning. In: IROS. pp. 3955–3962 (2021)

27. Van der Merwe, M., Berenson, D., Fazeli, N.: Learning the dynamics of compliant
tool-environment interaction for visuo-tactile contact servoing. In: CoRL. pp. 2052–
2061 (2023)

28. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commu-
nications of the ACM 65(1), 99–106 (2021)

29. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation. In: CVPR. pp. 165–
174 (2019)

30. Pearce, D.J.: An improved algorithm for finding the strongly connected components
of a directed graph. Victoria University, Wellington, NZ, Tech. Rep (2005)

31. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional
occupancy networks. In: ECCV. pp. 523–540. Springer (2020)

32. Qi, C., Lin, X., Held, D.: Learning closed-loop dough manipulation using a differ-
entiable reset module. RAL 7(4), 9857–9864 (2022)

33. Schmidt, F.: Generalization in generation: A closer look at exposure bias. arXiv
preprint arXiv:1910.00292 (2019)

34. Seo, Y., Hafner, D., Liu, H., Liu, F., James, S., Lee, K., Abbeel, P.: Masked world
models for visual control. In: CoRL. pp. 1332–1344 (2023)

35. Shen, B., Jiang, Z., Choy, C., Savarese, S., Guibas, L.J., Anandkumar, A., Zhu, Y.:
Acid: Action-conditional implicit visual dynamics for deformable object manipu-
lation. In: RSS (2022)

36. Shi, H., Xu, H., Clarke, S., Li, Y., Wu, J.: Robocook: Long-horizon elasto-plastic
object manipulation with diverse tools. arXiv preprint arXiv:2306.14447 (2023)

37. Shi, H., Xu, H., Huang, Z., Li, Y., Wu, J.: Robocraft: Learning to see, simulate,
and shape elasto-plastic objects with graph networks. In: RSS (2022)

38. Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent mate-
rials. Computer methods in applied mechanics and engineering 118(1-2), 179–196
(1994)

39. Tölgyessy, M., Dekan, M., Chovanec, L., Hubinskỳ, P.: Evaluation of the azure
kinect and its comparison to kinect v1 and kinect v2. Sensors 21(2), 413 (2021)

40. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. NeurIPS 30 (2017)

DoughNet 17

41. Wi, Y., Florence, P., Zeng, A., Fazeli, N.: Virdo: Visio-tactile implicit representa-
tions of deformable objects. In: ICRA. pp. 3583–3590 (2022)

42. Wi, Y., Zeng, A., Florence, P., Fazeli, N.: Virdo++: Real-world, visuo-tactile dy-
namics and perception of deformable objects. In: CoRL (2022)

43. You, Y., Shen, B., Deng, C., Geng, H., Wang, H., Guibas, L.: Make a donut:
Language-guided hierarchical emd-space planning for zero-shot deformable object
manipulation. arXiv preprint arXiv:2311.02787 (2023)

44. Zhang, B., Tang, J., Nießner, M., Wonka, P.: 3dshape2vecset: A 3d shape represen-
tation for neural fields and generative diffusion models. ACM Trans. Graph. 42(4)
(jul 2023). https://doi.org/10.1145/3592442

45. Zhao, Z., Liu, W., Chen, X., Zeng, X., Wang, R., Cheng, P., Fu, B., Chen, T., Yu,
G., Gao, S.: Michelangelo: Conditional 3d shape generation based on shape-image-
text aligned latent representation. arXiv preprint arXiv:2306.17115 (2023)

https://doi.org/10.1145/3592442
https://doi.org/10.1145/3592442

	DoughNet: A Visual Predictive Model for Topological Manipulation of Deformable Objects

