
Tolerance of Reinforcement Learning
Controllers Against Deviations in Cyber

Physical Systems

Changjian Zhang1, Parv Kapoor1, Rômulo Meira-Góes2, David Garlan1,
Eunsuk Kang1(B), Akila Ganlath3, Shatadal Mishra3, and Nejib Ammar3

1 Carnegie Mellon University, Pittsburgh, PA, USA
{changjiz,parvk,dg4d,eunsukk}@andrew.cmu.edu

2 the Pennsylvania State University, State College, PA, USA
romulo@psu.edu

3 Toyota InfoTech Labs, Mountain View, CA, USA
{akila.ganlath,shatadal.mishra,nejib.ammar}@toyota.com

Abstract. Cyber-physical systems (CPS) with reinforcement learning
(RL)-based controllers are increasingly being deployed in complex phys-
ical environments such as autonomous vehicles, the Internet-of-Things
(IoT), and smart cities. An important property of a CPS is tolerance;
i.e., its ability to function safely under possible disturbances and uncer-
tainties in the actual operation. In this paper, we introduce a new, expres-
sive notion of tolerance that describes how well a controller is capable
of satisfying a desired system requirement, specified using Signal Tem-
poral Logic (STL), under possible deviations in the system. Based on
this definition, we propose a novel analysis problem, called the toler-
ance falsification problem, which involves finding small deviations that
result in a violation of the given requirement. We present a novel, two-
layer simulation-based analysis framework and a novel search heuristic
for finding small tolerance violations. To evaluate our approach, we con-
struct a set of benchmark problems where system parameters can be
configured to represent different types of uncertainties and disturbances
in the system. Our evaluation shows that our falsification approach and
heuristic can effectively find small tolerance violations.

1 Introduction

The tolerance of a CPS characterizes the ability of an engineered system to
function correctly in the presence of uncertainties. Modern cyber-physical systems
(CPS) operate in dynamic and uncertain environments, such as autonomous
vehicles, medical devices, the Internet of Things (IoT), and smart cities. The
mission-critical and safety-critical nature of CPS accentuate the need to provide
a high level of tolerance against uncertainties, as a failure to do so could result
in severe consequences, from safety hazards to economic losses.

C. Zhang, P. Kapoor—Both authors contributed equally to this research.
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 267–285, 2025.
https://doi.org/10.1007/978-3-031-71177-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_17&domain=pdf
https://doi.org/10.1007/978-3-031-71177-0_17

268 C. Zhang et al.

As CPS grow in complexity and scale, reinforcement learning (RL) techniques
are gaining popularity for learning CPS controllers. In general, these controllers
perceive the state of the CPS and take an action that maximizes the long-term
utility. The utility is captured through reward functions designed by engineers.
An RL controller is trained via a trial-and-error process where an agent takes
actions in a simulator of the CPS and uses the simulated results of the actions to
discover an optimal control strategy. Hence, the fidelity of the simulator plays a
big role in the effectiveness of a trained controller. Often, there are reality gaps
between the actual deployed environment and the simulator due to approxima-
tion and under-modeling of physical phenomena, which makes controllers trained
in simulations perform poorly in the real world [1]. This performance degradation
can also manifest as unsafe system behaviors in the actual environment.

To make an RL controller tolerant of possible errors due to these reality
gaps, existing works often focus on the training stage, such as robust RL [2,3]
and domain randomization [4–6]. They investigate the problem of training a
controller that is capable of maintaining desired system behavior in the pres-
ence of possible system deviations—environmental uncertainties, observation or
actuation errors, disturbances, and modeling errors. However, these methods
are limited in how desired system behaviors are expressed. In RL, the desired
behavior is often expressed using a reward function [2,3]; it is well-known that
encoding a high-level system requirement using a reward function is a challeng-
ing task that requires a significant amount of domain expertise and manual effort
via reward shaping [7,8]. Additionally, certain requirements cannot be directly
encoded as rewards, especially those that capture time-varying behavior (e.g.,
“the vehicle must come to a stop in the next 3 s”).

Due to the limitation in reward functions and the data-driven nature of RL,
these training-oriented methods in general do not provide formal guarantees
about tolerance. Also, there is a lack of focus on post-training analysis for the
tolerance of RL controllers, especially in the sense of maintaining a desired,
complex system specification. Moreover, a formal definition of tolerance for RL
controllers with respect to system behavior (beyond rewards) is also missing.

To fill the missing gap in post-training tolerance analysis of RL controllers,
we propose a new notion of tolerance based on specifications in Signal Temporal
Logic (STL) [9]. Our definition assumes a parametric representation of a system,
where system parameters capture the dynamics of the system (e.g., acceleration
of a nearby vehicle) that are affected by system deviations (e.g., sensor errors). A
system is initially assigned a set of nominal parameters that describe its expected
dynamics. Then, a change in parameters, denoted by δ, corresponds to a devia-
tion that may occur. Finally, a controller is said to be tolerable against certain
deviations with respect to a STL specification if and only if the controller is
capable of satisfying the specification even under those deviations.

Based on this tolerance definition, we propose a new type of analysis problem
called the tolerance falsification. The goal is to find deviations in system param-
eters that result in a violation of the desired system specification. Specifically,
we argue that identifying a violation closer to the nominal system parameters

Tolerance of RL Controllers in CPS 269

would be more valuable, since such a violation is more likely to occur in practice.
Intuitively, our system needs to tolerate these deviations before addressing the
ones that are further away from the nominal set. These identified violations could
be used to retrain the controller for improved tolerance, or to build a run-time
monitor to detect when the system deviates into an unsafe region.

In addition, we propose a novel simulation-based framework where the toler-
ance falsification problem is formulated as a two-layer optimization problem. In
the lower layer, for a given system deviation δ (representing a particular system
dynamics), an optimization-based method is used to find a falsifying signal; i.e.,
a sequence of system states that results in a violation of the given STL speci-
fication. In the upper layer, the space of possible deviations is explored to find
small deviations that result in a specification violation, repeatedly invoking the
lower-layer falsification. The results generated from the lower layer guide the
upper-layer search towards small violating deviations. Furthermore, we present
a novel heuristic that leverages the differences between the trajectories from the
normative and deviated environments, captured via cosine distances, to improve
the effectiveness of the upper layer search algorithm.

To evaluate the effectiveness of our falsification approach, we have con-
structed a set of benchmark case studies. In particular, these benchmark systems
are configurable with system parameters to generate a range of systems with dif-
ferent behaviors due to the parameters’ impact on how the system evolves. Our
evaluation shows that our approach can be used to effectively find small devia-
tions that cause a specification violation in these systems.

This paper makes the following contributions:

– We present a novel, formal definition of tolerance for RL controllers (Sect. 4),
and a new analysis problem named tolerance falsification problem (Sect. 5).

– We propose a two-layer optimization-based algorithm and a novel search
heuristic for finding small violating deviations (Sect. 6).

– We present an RL tolerance analysis benchmark and evaluate the effectiveness
of our approach through experimental results on it (Sect. 7).

2 Preliminaries

Markov Decision Process. We model the systems under study as discrete-
time stochastic systems in Markov Decision Processes (MDPs) [10]. An MDP
is a tuple M = 〈S,A, T, I,R〉, where S ⊆ R

n is the set of states, A ⊆ R
m is

the set of actions (e.g., control inputs), T : S × A × S → [0, 1] is the transition
function where T (s, a, s′) represents the probability from state s to s′ by action
a and ∀s ∈ S, a ∈ A :

∑
s′∈S T (s, a, s′) = 1, I : S → [0, 1] is the initial state

distribution, and R : S → R is the reward function. As is often the case for
real-world systems, we assume that the transition function is unknown.

We consider black-box deterministic control policies for a system. Formally,
a policy π : S → A for an MDP maps states to actions. Reinforcement learning
(RL) [11] is the process of learning an optimal policy π∗ that maximizes the
cumulative discounted reward for this MDP. Additionally, a trajectory σ of an

270 C. Zhang et al.

MDP given an initial state s0 ∼ I and a policy π is defined accordingly as
σ = (s0

a0−→ s1 . . . si
ai−→ si+1 . . .) where ai = π(si) and si+1 ∼ T (si, ai). Finally,

we use L(M||π) to represent the behavior of the controlled system, i.e., it is the
set of all trajectories of a system M under the control of π.

Signal Temporal Logic. A signal s is a function s : T → D that maps a
time domain T ⊆ R≥0 to a k real-value space D ⊆ R

k, where s(t) = (v1, . . . , vk)
represents the value of the signal at time t. Then, an STL formula is defined as:

φ := μ | ¬φ | φ ∧ ψ | φ ∨ ψ | φ U[a,b] ψ

where μ is a predicate of the signal s at time t in the form of μ ≡ μ(s(t)) > 0
and [a, b] is the time interval (or simply I). The until operator U defines that
φ must be true until ψ becomes true within a time interval [a, b]. Two other
operators can be derived from until : eventually (♦[a,b] φ := � U[a,b] φ) and
always (�[a,b] φ := ¬♦[a,b] ¬φ).

The satisfaction of an STL formula can be measured in a quantitative way as
a real-valued function ρ(φ, s, t) (also known as the STL robustness value), which
represents the difference between the actual signal value and the expected one
[9]. For example, given a formula φ ≡ s(t) − 3 > 0, if s = 5 at time t, then the
satisfaction of φ can be evaluated by ρ(φ, s, t) = s(t) − 3 = 2. The definition of
ρ is as follows (ρ for the other operators can be formulated from these):

ρ(μ, s, t) = μ(s(t)) ρ(¬φ, s, t) = −ρ(φ, s, t)
ρ(φ ∧ ψ, s, t) = min{ρ(φ, s, t), ρ(ψ, s, t)}
ρ(φ UI ψ, s, t) = sup

t1∈I+t
min{ρ(ψ, s, t1), inf

t2∈[t,t1]
ρ(φ, s, t2)}

3 Motivating Example

We use an RL system which is required to satisfy a safety specification to illus-
trate our tolerance definition and analysis. Consider the CarRun safe RL sys-
tem implemented in bullet-safety-gym1, depicted in Fig. 1. The CarRun system
has a four-wheeled agent based on MIT Racecar2 placed between two safety
boundaries. The safety boundaries are non-physical bodies that can be breached
without causing a collision. The objective is to go through the avenue between
the boundaries without penetrating them. The agent velocity also needs to be
maintained below a user-defined threshold. Formally, it can be specified by an
STL invariant: �(|ypos| < C1 ∧ |v| < C2), where C1 and C2 are the constant
thresholds for the y coordinate and the velocity, respectively.

Given the CarRun system, we can train an RL controller such that the car
agent satisfies the safety specification above using methods from safe RL [12] [13].
However, to transfer this “safe” controller to the real world, we need to account
1 https://github.com/SvenGronauer/Bullet-Safety-Gym.
2 https://github.com/mit-racecar.

https://github.com/SvenGronauer/Bullet-Safety-Gym
https://github.com/mit-racecar

Tolerance of RL Controllers in CPS 271

Fig. 1. Behavior of the CarRun system under different system parameters. In the
norminal condition (left), ypos in all trajectories is below the threshold (green line)
and thus the system is safe. However, in the deviated condition (right), there exists
a trajectory where ypos exceeds the threshold and hence the safety requirement is
violated.

for the reality gap between the simulator and the deployed environment. This
reality gap might arise due to inaccurate modeling of contact surfaces, actuator
errors, and incorrect physical parameter configuration (e.g., friction and mass).
These reality gaps can lead to the agent violating the safety specification in
the real world, despite satisfying them in simulation. Additionally, since the RL
controllers are black-box neural networks, it is extremely hard to capture their
concrete behaviors. The difficulty in reasoning about the controller’s behaviors
coupled with the stochasticity of the system leads to a challenging analysis prob-
lem of understanding their tolerance ability. This has long been one of the key
drawbacks that limit the application of these controllers in the real world [6,14].

Since it can be challenging to quantitatively measure these reality gaps, we
take a parametric approach. We approximate the reality gap between the simula-
tor and the deployed environment quantitatively using deviations as parameters.
For example, we model the CarRun system as being parametric with two control-
lable system parameters, tm (turn multiplier, a factor for the steering control)
and sm (speed multiplier, a factor for the speed control). These parameters gov-
ern the impact of the action provided by the controller, e.g., a larger sm will
result in more aggressive accelerations. The intuition behind these deviations
is to account for actuation issues that arise while deploying agents in the real
world. Figure 1 shows the behavior of CarRun under different system parame-
ters. In Fig. 1(a), the agent is deployed in the nominal condition with default
system parameters. In this scenario, the controller successfully manages to drive
the Car agent through the avenue and also maintains a safe velocity, i.e., the
safety specification is satisfied. In Fig. 1(b), we show the same controller deployed
under a deviated CarRun environment with different turn and speed multipliers.
In this scenario, the controller makes the car behave erratically, which eventually
makes the car cross the safety boundary, i.e., the safety specification is violated.

This example highlights the brittleness of these controllers concerning safety
specifications and the need for stakeholders to address pre-deployment questions

272 C. Zhang et al.

like: What are the possible deviations that these RL controllers can tolerate?
More specifically, how much change in the system parameters can the controller
tolerate before it begins to violate the given safety specification? We formulate
this question as a type of analysis problem called tolerance falsification, where
the goal is to find deviations in system parameters (e.g., the changes in the
turn and speed multiplier of CarRun) where the deviated system violates the
given specification. This analysis problem is challenging due to the stochastic,
black-box nature of the system as well as the opacity of NN-based RL controllers.

Additionally, a notion of “quality of solution” while searching for system
parameters is necessary to factor in the practical assumptions about the oper-
ating context of this system. For example, deviations that are closer to the
nominal parameters are more likely to occur in practice and hence need to be
prioritized when analyzing. This helps avoid impractically large deviation values
that might cause a violation but offers little insight to system designers. Thus,
our falsification process attempts to find violations with small deviations; i.e.,
minimal parameter changes that introduce a risk of specification violation into
the system. The output of this analysis (i.e., violations) can help the engineer
identify RL-based controller brittleness and can be used to redesign or retrain
the controller to improve its tolerance.

4 Tolerance Definition

4.1 Definition of Specification-Based Tolerance

In this work, we use STL to specify the desired properties of a system, and sys-
tem parameters to capture the deviations in system dynamics. Parameters can
represent a variety of deviations such as environmental disturbances (e.g., wind
or turbulence), internal deviations (e.g., mass variation of a vehicle), observation
errors (e.g., sensor errors), or actuation errors (e.g., errors in steering control).
Then, to capture systems with such diverse dynamics using parameters, we lever-
age the notion of parametric control systems [15,16].

A parametric discrete-time stochastic system MΔ defines a set of systems
such that Δ ⊆ R

k represents the parameter domain, and for any δ ∈ Δ, an
instance of a parametric system Mδ is an MDP Mδ = 〈S,A, T δ, Iδ, R〉, where
the initial state distribution Iδ and the state transition distributions T δ are
both defined by the parameter δ. Parameter δ represents a deviation to a system
and Δ represents the domain of all deviations of interest. In addition, we use
δ0 ∈ Δ to represent the zero-deviation point, i.e., the parameter under which
the system Mδ0 exhibits the expected, normative behavior. Then, we define a
system as being tolerable against a certain deviation as follows:

Definition 1. For a system M, a policy π, a deviation parameter δ, and an STL
property φ, we say the system can tolerate the deviation when the parametric
form of M with δ under the control of π satisfies the property, i.e., Mδ||π |= φ.

Then, the tolerance of a controller can be defined as all the possible deviations
that the system can tolerate. Formally:

Tolerance of RL Controllers in CPS 273

Definition 2. For a system M, a policy π, and an STL property φ, the tolerance
of the controller is defined as the maximal Δ ⊆ R

k s.t. ∀δ ∈ Δ : Mδ||π |= φ.

In other words, the tolerance of a control policy π is measured by the maximal
parameter domain Δ of a system where each deviated system Mδ of it still
satisfies the property under the control of π.

4.2 Strict Evaluation of Tolerance

In this work, we focus on a specific evaluation of tolerance. Specifically, Def. 1
and 2 depend on the interpretation of Mδ||π |= φ, i.e., a system satisfying a STL
property; however, STL satisfaction is computed over a single trajectory. From
the literature [17], one common evaluation criteria is that a system must not
contain a trajectory that violates the STL property. In other words, even in the
worst-case scenario that is less likely to occur in a stochastic system, it should still
guarantee the property. This interpretation enforces a strong guarantee of the
system, and thus we call it the strict satisfaction of STL in this work. Formally:

Definition 3. A discrete-time stochastic system M strictly satisfies an STL
property φ under the control of a policy π iff every controlled trajectory pro-
duces a non-negative STL robustness value, i.e., M||π |= φ ⇔ ∀σ ∈ L(M||π) :
ρ(φ, sσ, 0) ≥ 0, where sσ is the signal of state values of trajectory σ.

With this interpretation, we can then restate Def. 2 as:

Definition 4. The tolerance of a policy π that strictly satisfies an STL property
φ is the maximal Δ s.t. ∀δ ∈ Δ, σ ∈ L(Mδ||π) : ρ(φ, sσ, 0) ≥ 0

Although this definition delineates a strong tolerance guarantee, it can also be
extended to more relaxed notions with probabilistic guarantees. In that case,
other evaluation techniques for STL specification satisfaction such as [18–20]
can be leveraged. We leave this as an extension of our work in the future.

5 Tolerance Analysis

5.1 Tolerance Falsification

According to Def. 4, to compute the tolerance of a controller, we need to: (1)
(formally) show that a stochastic system does not contain a trajectory that
violates the STL property, and (2) compute the maximal parameter set Δ, which
could be in any non-convex or even non-continuous shape, where all system
instances Mδ should satisfy step (1). This exhaustive computation is intractable
due to the black-box RL controllers coupled with the stochasticity in system.

Therefore, in this work, instead of computing or approximating the tolerance
Δ, we consider the problem of falsifying a given estimation of tolerance Δ̂, i.e.,
finding a deviation δ ∈ Δ̂ that the system cannot tolerate for a given controller.

274 C. Zhang et al.

Problem 1 (Tolerance Falsification). For a system M, a policy π, and an
STL property φ, given a tolerance estimation Δ̂ ⊆ R

k, the goal of a tol-
erance falsification problem F(M, π, φ, Δ̂) is to find a deviation δ ∈ Δ̂ s.t.
∃σ ∈ L(Mδ||π) : ρ(φ, sσ, 0) < 0.

5.2 Minimum Tolerance Falsification

Intuitively, a larger deviation (i.e., a deviation that is far away from the expected
system parameter) would likely cause a larger deviation in the system behav-
ior leading to a specification violation. However, controllers are generally not
designed to handle arbitrarily large deviations in the first place, and analyzing
their performance in these situations offers limited insight to the designer. More-
over, if the designer decides to improve the tolerance of a controller (which is a
costly endeavor), deviations closer to the nominal system are given high priority
due to their higher likelihood of occurrence. In light of these practical design
and deployment assumptions, we focus on the minimum deviation problem.

Problem 2. Given a minimum tolerance falsification problem Fmin(M, π, φ, Δ̂),
let δ0 ∈ Δ̂ be the zero-deviation point, the goal is to find a deviation δ ∈ Δ̂ s.t.
Mδ||π �|= φ and δ minimizes a distance measure ‖δ − δ0‖p.

5.3 Falsification by Optimization

Since the satisfaction of STL can be measured quantitatively, the tolerance fal-
sification problem can be formulated as an optimization problem. Consider a
real-valued system evaluation function Γ (M, π, φ) ∈ R. We assume that if this
function’s value is negative, the controlled system violates the property, i.e.,
Γ (M, π, φ) < 0 ⇔ S||π �|= φ, and the smaller the value, the larger the degree of
property violation. Then, a tolerance falsification problem F(M, π, φ, Δ̂) can be
formulated as the following optimization problem:

argmin
δ∈ ̂Δ

Γ (Mδ, π, φ) (1)

i.e., by finding a parameter δ ∈ Δ̂ that minimizes the evaluation function Γ
and observing this value can give information about system’s property satisfac-
tion. Concretely, if the minimum function value is negative, then the associated
parameter δ indicates a deviation where the system violates the property φ.
Specifically, in the case of strict evaluation of tolerance, the system evaluation
function Γ is defined as:

Γ (M, π, φ) = min{ρ(φ, sσ, 0) | σ ∈ L(M||π)} (2)

Note that Eq. 2 is a typical formulation for solving a CPS falsification problem
that intends to find a trajectory that violates an STL specification [17].

Tolerance of RL Controllers in CPS 275

Finally, we can formulate a minimum tolerance falsification problem Fmin(M,

π, φ, Δ̂) as a constrained optimization problem:

argmin
δ∈ ̂Δ

‖δ − δ0‖p s.t. Γ (Mδ, π, φ) < 0 (3)

Equation 1 and 3 can both be seen as a bi-level optimization problem [21];
the upper-layer task searches for deviation parameters (δ) and the lower-layer
searches for system trajectories. The problem of finding any tolerance violation
(Eq. 1) can also be formulated as a min-min optimization problem, which can
be solved by existing CPS falsifiers such as Breach [22] and PsyTaLiRo [23,24].

However, the minimum falsification problem (Eq. 3) features multi-objective
optimization or min-max optimization characteristics—minimizing the devia-
tion distance (‖δ−δ0‖p) would likely cause a larger system evaluation value (Γ).
Since these objectives are inherently conflicting, nuanced techniques are required
to find solutions. Although, existing CPS falsifiers can be configured to repre-
sent this additional cost/objective function (either via specification modification
or through explicit cost function definition), the underlying optimization tech-
niques do not have a multi-layer setup to handle this off the shelf. Therefore, we
present a novel two-layer search for solving the tolerance falsification problems,
particularly effective in finding minimum violating deviations.

Fig. 2. Overview of the two-layer falsification algorithm.

6 Simulation-Based Tolerance Analysis Framework

In this section, we outline our analysis framework to solve the tolerance falsi-
fication problems for black-box CPS and RL controllers (as shown in Fig. 2).
We first explain our novel two layer falsification algorithm and then present a
heuristic for more effective solving of the minimum falsification problem.

6.1 A Two-Layer Falsification Algorithm

Algorithm 1 describes our two-layer framework. Lines 3–13 indicate the upper-
layer search. In each iteration, the upper-layer searches a set of deviation samples.
For a deviation δ, it instantiates a deviated system Mδ (line 6), computes the
system evaluation value γ (line 7), and then computes the objective function

276 C. Zhang et al.

Algorithm 1: A Two-Layer Tolerance Falsification Algorithm
Input : M, π, φ, ̂Δ, and objective function f
Output: violation δbest ∈ ̂Δ

1 δbest ← nil;
2 X ← initial candidates from ̂Δ ;
3 while termination criteria = false do
4 V ← 〈〉 ;
5 for δ ∈ X do
6 Mδ ← Instantiate(M̂Δ, δ) ;
7 γ ← CPSFalsification(Mδ, π, φ) ;
8 v ← f(δ, γ) ; // heuristic computation.
9 V ← V � 〈v〉 ;

10 end
11 δbest ← UpdateBest(X, V) ;
12 X ← NextCandidates(f, X, V, ̂Δ) ;
13 end

value v (line 8). The objective value indicates the quality of a deviation sample,
e.g., whether it causes a violation and has a small distance to the zero-deviation
point. Finally, the objective values are used to update the best result so far (line
11) and generates the next candidate solutions (line 12). In particular, line 7
indicates the lower-layer task. It corresponds to the system evaluation function
Γ (which is the minimal STL robustness value according to Eq. 2).

Given the characteristics of our falsification problem, we propose this two-
layer structure for multiple reasons: First, the separation of deviations and the
lower-layer CPS falsification allows us to define richer evaluation metrics and
heuristics that are solely relevant for deviation searching. These heuristics, if
used in a single layer objective, would lead to an ill-posed optimization problem
exacerbated by the highly non-convex landscapes of traditional CPS falsification.
Second, this separation of concerns allow us to find deviations closer to nominal
points even for systems with high-dimensional state spaces, complex dynamics,
and rugged robustness landscapes with multiple local minimas. In these set-
tings, an one-layer search would converge to local solutions without exploring
the search space extensively. Finally, this two-layer structure provides us enough
extensibility to:

– Integrate many off-the-shelf optimization methods for the upper-layer like we
have for Uniform Random, CMA-ES [25], NSGA-II [26], and Ant Colony [27].

– Integrate state-of-the-art CPS falsifiers (we integrated CMA-ES, Breach [22],
and PsyTaLiRo [24]) and simulation platforms (we used OpenAI-Gym [28],
PyBullet [29], and Matlab Simulink).

– Extend to other STL evaluation methods (function Γ), e.g., evaluation with
probabilistic guarantees [18–20], cumulative STL [30], or mean STL [31].

Tolerance of RL Controllers in CPS 277

6.2 Heuristic for Efficient Minimum Tolerance Falsification

We present a novel heuristic for more effective discovery of minimum violating
deviations. Our heuristic is based on the known issues of RL policy overfitting. It
has been highlighted in related literature that RL policies can overfit to the spe-
cific paramterized system used for training and this dependence can reduce their
applicability to real-world scenarios [4–6]. We exploit this over-fitting tendency
to guide the search for δ that leads to a violation. Our heuristic is the cosine sim-
ilarity between a deviated system’s worst-case trajectory and a nominal system’s
worst-case trajectory. Formally:

dist(δ) =
Trδ · Trδ0

‖Trδ‖ · ‖Trδ0‖
Specifically, when computing the objective function value v (line 8), we add

the similarity value dist(δ) to the system evaluation value γ. Our intuition is that
once a controller has been trained in a system parameterized by δ0, it overfits to
that specific system. Then, when the controller is deployed in a deviated system,
its worst-case trajectory will be similar to the nominal worst-case trajectory
if the distance between the two MDPs, measured by the Euclidean distance
between the parameters, is small. We measure the similarity between trajectories
using cosine similarity. Thus, as the distance from the nominal MDP increases,
the similarity score between the worst-case trajectories decreases. This heuristic
provides more information about the search space: i.e. in the case there are two
deviations where the robustness values are similar (which is possible due to the
worst case semantics of STL robustness), cosine similarity can help in directing
the search toward more violating directions.

A more in-depth discussion of this heuristic, along with an example, can be
found in the extended version of this paper [32].

7 Evaluation

We implemented our proposed framework in a Python package3 and evaluate
our technique through comprehensive experimentation. Our evaluation focuses
on the minimum tolerance falsification problem. Specifically, we measure our
technique’s effectiveness through three key metrics: (1) the number of violations
found, (2) the minimum distance of violations, and (3) the average distance of
violations. Based on these metrics, we formulate the following research questions:

– RQ1: Is our two-layer falsification framework more effective than leveraging
an existing CPS falsifier?

– RQ2: Does our heuristic improve the effectiveness for finding minimum vio-
lating deviations, compared to off-the-self optimization algorithms?

3 https://github.com/SteveZhangBit/STL-Robustness.

https://github.com/SteveZhangBit/STL-Robustness

278 C. Zhang et al.

Although existing CPS falsifiers [22–24] cannot directly solve our minimum
tolerance falsification problem (Problem 2), they allow customizing the objec-
tive function to optimize for both the deviation distance and STL robustness
value to find minimum deviations. We call this technique one-layer search. For
RQ1, we benchmark against the one-layer search baseline for the minimum toler-
ance falsification problem. For RQ2, we evaluate whether our proposed heuristic
described in Sect. 6.2 further improves the effectiveness of our two-layer search,
specifically the minimum distance.

7.1 Experimental Setup and Implementational Details

To answer these research questions, we first present a benchmark with systems
and controllers trained to satisfy complex safety specifications. The benchmark
contains six systems with non-linear dynamics adopted from OpenAI-Gym,
PyBullet, and Matlab Simulink. We extend the interfaces of these systems so
that users can configure their behavior for tolerance analysis by changing the
system parameters. Details about the benchmark problems can be found in the
extended version of this paper [32].

Then, we solve the corresponding minimum tolerance falsification problems
for them. For each problem, we conduct the following experiments:

– One-layer search leveraging an existing CPS falsifier by modifying the objec-
tive function to factor in the deviation distance and STL robustness value,

– Two-layer search with CMA-ES for both the upper and lower layers,
– Two-layer search with CMA-ES+Heuristic for the upper layer and CMA-ES

for the lower layer.

Specifically, for the one-layer search, we employ the state-of-the-art CPS falsi-
fiers, Breach [22] (with CMA-ES) and PsyTaLiRo [24] (with dual annealing).
We replace their default objective functions with the sum of the normalized
deviation distance and STL robustness value.

For the two-layer search, due to the complexity of the CPS and the non-
convex nature of STL robustness, the upper-layer optimization is also non-convex
and has multiple local minima. Additionally, we assume black-box systems and
controllers. Thus, due to these two considerations, we made the decision to adopt
derivative-free evolutionary algorithms. Specifically, we primarily utilized CMA-
ES as the upper-layer algorithm because it is widely used for black-box opti-
mization and in our preliminary experiments outperformed other evolutionary
methods. However, other algorithms can also be integrated. Furthermore, we also
use CMA-ES for the lower-layer search as it is a widely used in CPS falsification
tools [17,22] and works competitively for both Python and Matlab environments.
Finally, we implement our heuristic and use it alongside the evaluation function
for the upper-layer search.

Each problem was run three times on a Linux machine with a 3.6 GHz CPU
and 24 GB memory. For fair evaluation, we set the budget in terms of the
number of interactions with the simulator for all our techniques. Specifically, for

Tolerance of RL Controllers in CPS 279

one run, the budget for the one-layer search is 10,000 simulations; and the budget
for the two-layer search is 100 for the upper-layer and 100 for the lower-layer
falsification.

7.2 Results

Table 1 summarizes the results for solving the minimum tolerance falsification
problems. The Viol. column shows the number of violations found in total from
the three runs. The Min Dst. and Avg. Dst. columns show the minimum and
average normalized l-2 distance to the zero-deviation point (i.e., ‖δ−δ0‖2) of the
found violations, respectively. The performance of our approach heavily depends

Table 1. Minimum tolerance falsification results.

One-layer search CMA-ES CMA-ES w/ Heuristic
Viol. Min Dst. Avg. Dst. Viol. Min Dst. Avg. Dst. Viol. Min Dst. Avg. Dst.

Cartpole 90 0.300 0.399 69 0.285 0.449 79 0.256 0.417
LunarLander – – – 74 0.026 0.222 84 0.020 0.293
CarCircle 11 0.143 0.255 22 0.102 0.219 57 0.068 0.454
CarRun 25 0.191 0.249 68 0.161 0.449 109 0.156 0.399
ACC N/A N/A N/A 43 0.110 0.323 110 0.138 0.415
WTK 300 0.299 0.443 54 0.296 0.454 45 0.319 0.533

Fig. 3. Search spaces, deviation samples and violations processed by each algorithm. In
each graph, the axes are the parameter domains. A red cell is a positive STL robustness
value and a blue cell is a negative value. A grey cross is a deviation sample that is not
falsified in the given budget; a yellow cross is a violation. (Color figure online)

280 C. Zhang et al.

on the underlying simulation time of a system that vastly outweighs the over-
head added by our evolutionary search algorithms. Thus, we share comparable
performance, measured by total run time, as tools like Breach and PsyTaLiRo
given the same budget of simulation calls.

In addition, to qualitatively exhibit our approach’s effectiveness in finding
deviations, we visualize the search space landscape for different problems in
heat maps. Each heat map is generated by slicing the space (i.e., the estimated
domain of system parameters) into a 20×20 grid and using a CPS falsifier to find
the minimum STL robustness value for each grid cell. However, this processing is
only done for visualization purposes and is not used in any of the algorithms. This
brute force sampling requires far more resources than our falsification approach.
Finally, we draw the deviation samples and violations from our analysis on the
heat maps. The final results are illustrated visually in Fig. 3.

Answer to RQ1. From the table, the one-layer search fails to find violations
in LunarLander, and it cannot represent the type of system parameters we need
in ACC (due to falsification tool implementation). On the other hand, our two-
layer search with CMA-ES solves all the problems and finds smaller deviations
than the one-layer search in all problems. Moreover, from the heat maps, since
the distance value is directly added to the STL robustness value in the one-layer
search, it fails to find small deviations that barely violate the property because
it would result in a larger objective value. Thus, it is hard for it to converge
to the minimum violating deviations. On the other hand, our two-layer search
can better converge to the boundary of safe and unsafe regions. However, it also
causes it to find fewer violations because it searches for more samples in the safe
region close to the boundary where violations can be rare.

Answer to RQ2. Our two-layer search with CMA-ES+Heuristic finds smaller
violating deviations than the original CMA-ES in 4/6 problems. It also finds
more violations in 5/6 problems. However, the average distances also increase in
4/6 problems due to more exploration of violations encouraged by our heuristic.
Despite that, from the heat maps, our CMA-ES+Heuristic approach can still
converge to small violating deviations on the safe and unsafe boundary while also
finding more violations. Our heuristic helps in guiding the search and provides
additional information to the algorithm when STL robustness is not enough to
provide directionality. Concretely, a small similarity value would likely lead to
a violation (even when the robustness value is similar) and thus results in more
violations found and faster convergence to a small violation.

8 Related Work

There exists similar CPS tolerance notions from a control theory perspective
such as [33,34]. For example, Saoud et al. [33] present a resilience notion of CPS
based on LTL w.r.t. a real-valued disturbance space, which forms a ball around a
particular trajectory. Then, they present a method to approximate the maximum
set of disturbances that maintain a desired LTL property for linear control sys-
tems. These notions target traditional controllers with a white-box assumption

Tolerance of RL Controllers in CPS 281

of systems and controllers, whereas we employ a black-box assumption which is
more practical regarding complex CPS and NN-based RL controllers.

Falsification of CPS [17] is a well-studied problem in the literature. It finds
trajectories that violate a STL property by mutating the initial states or sys-
tem inputs. A related application is parameter synthesis [35] that finds system
parameters where the system satisfies the property. It can be seen as a dual prob-
lem to the falsification problem. Tools like Breach [22] and PSY-TaLiRo [23,24]
support both types of analysis. However, our tolerance falsification problem can
be seen as solving these two problems at the same time. Our upper-layer search
finds system parameters that lead to a violation of the system specification, and
the lower-layer search finds initial states or system inputs that lead to a violating
trajectory. Although our problem can be reduced to a CPS falsification problem
with system parameters, it is not effective in solving our minimum tolerance
falsification problem compared to our two-layer structure.

A two-layer optimization structure has also been applied in CPS falsification
such as in [36–38]. However, these approaches still target traditional falsification
of a CPS (the lower-layer in our case), whereas our approach aims to separate
the problems of finding small deviation parameters from system falsification.

VerifAI [39,40] applies a similar idea to us where they consider abstract fea-
tures for a ML model that can lead to a property violation of a CPS. Differ-
ent from us, they assume a CPS with a ML perception model (such as object
detection) connecting to a traditional controller, and the abstract features are
environmental parameters that would affect the performance of the ML model
(e.g., brightness). In other words, they focus on deviations that affect the ML
model whereas our deviation notion is more general that includes any external
or internal deviation or sensor error which changes the system dynamics.

Robust RL studies the problem to improve the performance of controllers
in the presence of uncertainties [2,3]. Also, domain randomization [4–6] studies
how to train a controller that works across various systems with randomized
parameters. However, our work is different in that: (1) we focus on tolerance
evaluation whereas they focus more on training; and (2) we focus on system
specifications in STL properties, while they rely on rewards where maximizing
the reward does not necessarily guarantee certain system specification.

9 Conclusion

In this paper, we have introduced a specification-based tolerance definition for
CPS. This definition yields a new type of analysis problem, called tolerance
falsification, where the goal is to find small changes to the system dynamics
that result in a violation of a given STL specification. We have also presented
a novel optimization-based approach to solve the problem and evaluated the
effectiveness of it over our proposed CPS tolerance analysis benchmark.

Since our analysis framework is extensible, as part of future work, we plan
to explore and integrate other types of evaluation functions Γ (e.g., evaluation
with probabilistic guarantees [18–20]), different semantics of STL robustness

282 C. Zhang et al.

(e.g., cumulative robustness [30]), or leveraging decomposition of STL for more
effective falsification of complex specifications [41]. Moreover, we currently use l-2
norm to compute the deviation distances. In the future, we also plan to explore
other distance notions such as Wasserstein Distance [42–44], which computes
distribution distance between system dynamics.

Acknowledgements. We are grateful to our anonymous reviewers for their com-
ments and Georgios Fainekos for a discussion on an earlier version of this paper. This
research was sponsored by InfoTech Labs, Toyota Motor North America. This work was
also supported in part by the NSF awards 2144860 and 2319317, and the NSA grant
H98230-23-C-0274. Any views, opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the organizations.

Data Availability Statement. The source code of our tool and all the experimental
results are available at the following URL: https://doi.org/10.5281/zenodo.12144853.

References

1. Collins, J.J., Howard, D., Leitner, J.: Quantifying the reality gap in robotic manip-
ulation tasks. 2019 International Conference on Robotics and Automation (ICRA),
pp. 6706–6712, (2018). https://api.semanticscholar.org/CorpusID:53208962

2. Moos, J., Hansel, K., Abdulsamad, H., Stark, S., Clever, D., Peters, J.: Robust rein-
forcement learning: a review of foundations and recent advances. Machine Learning
and Knowledge Extraction, vol. 4, no. 1, pp. 276–315 (2022). https://www.mdpi.
com/2504-4990/4/1/13

3. Xu, M., et al.: Trustworthy reinforcement learning against intrinsic vulnerabilities:
robustness, safety, and generalizability (2022)

4. Peng, X.B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Sim-to-real transfer of
robotic control with dynamics randomization. In: 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 3803–3810 (2018)

5. Sadeghi, F., Levine, S.: CAD2RL: real single-image flight without a single real
image (2017)

6. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain
randomization for transferring deep neural networks from simulation to the real
world. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 23–30 (2017)

7. Ng, A.Y., Harada, D., Russell, S.J.: Policy invariance under reward transforma-
tions: theory and application to reward shaping. In: Proceedings of the Sixteenth
International Conference on Machine Learning, ser. ICML 1999, pp. 278–287. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc. (1999)

8. Booth, S., Knox, W.B., Shah, J., Niekum, S., Stone, P., Allievi, A.: The perils
of trial-and-error reward design: Misdesign through overfitting and invalid task
specifications. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 37, no. 5, pp. 5920–5929 (2023). https://ojs.aaai.org/index.php/AAAI/article/
view/25733

https://doi.org/10.5281/zenodo.12144853
https://api.semanticscholar.org/CorpusID:53208962
https://www.mdpi.com/2504-4990/4/1/13
https://www.mdpi.com/2504-4990/4/1/13
https://ojs.aaai.org/index.php/AAAI/article/view/25733
https://ojs.aaai.org/index.php/AAAI/article/view/25733

Tolerance of RL Controllers in CPS 283

9. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued sig-
nals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol.
6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15297-9_9

10. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model Checking Probabilistic
Systems, pp. 963–999. Springer International Publishing, Cham (2018). https://
doi.org/10.1007/978-3-319-10575-8_28

11. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press
(2018)

12. García, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res. 16(1), 1437–1480 (2015)

13. Gu, S.:et al.: A review of safe reinforcement learning: methods, theory and
applications. arXiv, vol. abs/2205.10330, (2022). https://api.semanticscholar.org/
CorpusID:248965265

14. Yu, W., Liu, C.K., Turk, G.: Policy transfer with strategy optimization. In: Inter-
national Conference on Learning Representations (2019). https://openreview.net/
forum?id=H1g6osRcFQ

15. Bhattacharyya, S.P., Chapellat, H., Keel, L.H.: Robust Control: The Parametric
Approach, 1st edn. Prentice Hall PTR, USA (1995)

16. Weinmann, A.: Uncertain Models and Robust Control. Springer, Vienna(2012)
17. Corso, A., Moss, R., Koren, M., Lee, R., Kochenderfer, M.: A survey of algorithms

for black-box safety validation of cyber-physical systems. J. Artif. Intell. Res. 72,
377–428 (2021)

18. Fan, C., Qin, X., Xia, Y., Zutshi, A., Deshmukh, J.: Statistical verification of
autonomous systems using surrogate models and conformal inference (2021)

19. Pedrielli, G., et al.: Part-X: a family of stochastic algorithms for search-based test
generation with probabilistic guarantees. IEEE Trans. Autom. Sci. Eng. 21(3),
4504–4525 (2024). https://doi.org/10.1109/TASE.2023.3297984

20. Lindemann, L., Matni, N., Pappas, G.J.: STL robustness risk over discrete-time
stochastic processes. In: 2021 60th IEEE Conference on Decision and Control
(CDC), pp. 1329–1335 (2021)

21. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann.
Oper. Res. 153, 235–256 (2007)

22. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6_17

23. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9_21

24. Thibeault, Q., Anderson, J., Chandratre, A., Pedrielli, G., Fainekos, G.: PSY-
TaLiRo: a python toolbox for search-based test generation for cyber-physical sys-
tems. In: Lluch Lafuente, A., Mavridou, A. (eds.) FMICS 2021. LNCS, vol. 12863,
pp. 223–231. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85248-
1_15

25. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in
evolution strategies: the covariance matrix adaptation. In: Proceedings of IEEE
International Conference on Evolutionary Computation, pp. 312–317 (1996)

26. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://api.semanticscholar.org/CorpusID:248965265
https://api.semanticscholar.org/CorpusID:248965265
https://openreview.net/forum?id=H1g6osRcFQ
https://openreview.net/forum?id=H1g6osRcFQ
https://doi.org/10.1109/TASE.2023.3297984
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-030-85248-1_15
https://doi.org/10.1007/978-3-030-85248-1_15

284 C. Zhang et al.

27. Schlüter, M., Egea, J.A., Banga, J.R.: Extended ant colony optimiza-
tion for non-convex mixed integer nonlinear programming. Comput. Oper.
Res. 36(7), 2217–2229 (2009). https://www.sciencedirect.com/science/article/pii/
S0305054808001524

28. Brockman, G., et al.: OpenAI gym (2016)
29. Coumans, E., Bai, Y.: Pybullet, a python module for physics simulation for games,

robotics and machine learning (2016). http://pybullet.org
30. Haghighi, I., Mehdipour, N., Bartocci, E., Belta, C.: Control from signal temporal

logic specifications with smooth cumulative quantitative semantics. In: 2019 IEEE
58th Conference on Decision and Control (CDC), pp. 4361–4366 (2019)

31. Mehdipour, N., Vasile, C.-I., Belta, C.: Arithmetic-geometric mean robustness for
control from signal temporal logic specifications. In: 2019 American Control Con-
ference (ACC), pp. 1690–1695 (2019)

32. Zhang, C., et al.: Tolerance of reinforcement learning controllers against deviations
in cyber physical systems (2024). https://arxiv.org/abs/2406.17066

33. Saoud, A., Jagtap, P., Soudjani, S.: Temporal logic resilience for cyber-physical
systems. In: 2023 62nd IEEE Conference on Decision and Control (CDC), pp.
2066–2071 (2023)

34. Fainekos, G.E., Pappas, G.J.: MTL robust testing and verification for LPV systems.
In: 2009 American Control Conference, pp. 3748–3753 (2009)

35. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5_5

36. Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P., Hasuo, I.: Two-layered falsification
of hybrid systems guided by monte Carlo tree search. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 37(11), 2894–2905 (2018)

37. Zutshi, A., Deshmukh, J.V., Sankaranarayanan, S., Kapinski, J.: Multiple shoot-
ing, CEGAR-based falsification for hybrid systems. In: Proceedings of the 14th
International Conference on Embedded Software, ser. EMSOFT 2014. New York,
NY, USA: Association for Computing Machinery, (2014). https://doi.org/10.1145/
2656045.2656061

38. Wang, J., Bu, L., Xing, S., Li, X.: PDF: path-oriented, derivative-free approach for
safety falsification of nonlinear and nondeterministic CPS. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 41(2), 238–251 (2022)

39. Dreossi, T., et al.: VerifAI: A Toolkit for the Formal Design and Analysis of
Artificial Intelligence-Based Systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019.
LNCS, vol. 11561, pp. 432–442. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25540-4_25

40. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. J. Autom. Reason. 63, 1031–1053
(2019)

41. Kapoor, P., Kang, E., Meira-Góes, R.: Safe planning through incremental decom-
position of signal temporal logic specifications. arXiv preprint arXiv:2403.10554
(2024)

42. Lecarpentier, E., Rachelson, E.: Non-stationary Markov decision processes, a
worst-case approach using model-based reinforcement learning. In: Wallach,
H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 32. Curran Associates,
Inc. (2019)

https://www.sciencedirect.com/science/article/pii/S0305054808001524
https://www.sciencedirect.com/science/article/pii/S0305054808001524
http://pybullet.org
https://arxiv.org/abs/2406.17066
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1145/2656045.2656061
https://doi.org/10.1145/2656045.2656061
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-25540-4_25
http://arxiv.org/abs/2403.10554

Tolerance of RL Controllers in CPS 285

43. Abdullah, M.A., et al.: Wasserstein robust reinforcement learning (2019)
44. Yang, I.: A convex optimization approach to distributionally robust Markov deci-

sion processes with Wasserstein distance. IEEE Control Syst. Lett. 1(1), 164–169
(2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Tolerance of Reinforcement Learning Controllers Against Deviations in Cyber Physical Systems
	1 Introduction
	2 Preliminaries
	3 Motivating Example
	4 Tolerance Definition
	4.1 Definition of Specification-Based Tolerance
	4.2 Strict Evaluation of Tolerance

	5 Tolerance Analysis
	5.1 Tolerance Falsification
	5.2 Minimum Tolerance Falsification
	5.3 Falsification by Optimization

	6 Simulation-Based Tolerance Analysis Framework
	6.1 A Two-Layer Falsification Algorithm
	6.2 Heuristic for Efficient Minimum Tolerance Falsification

	7 Evaluation
	7.1 Experimental Setup and Implementational Details
	7.2 Results

	8 Related Work
	9 Conclusion
	References

