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Abstract—Graph Neural Networks (GNNs) are used for graph
data processing across various domains. Centralized training
of GNNs often faces challenges due to privacy and regulatory
issues, making federated learning (FL) a preferred solution in a
distributed paradigm. However, GNNs may inherit biases from
training data, causing these biases to propagate to the global
model in distributed scenarios. To address this issue, we introduce
F2GNN, a Fair Federated Graph Neural Network, to enhance
group fairness. Recognizing that bias originates from both data
and algorithms, FZGNN aims to mitigate both types of bias
under federated settings. We offer theoretical insights into the
relationship between data bias and statistical fairness metrics in
GNNs. Building on our theoretical analysis, F2GNN features a
Jfairness-aware local model update scheme and a fairness-weighted
global model update scheme, considering both data bias and local
model fairness during aggregation. Empirical evaluations show
F2GNN outperforms SOTA baselines in fairness and accuracy.

Index Terms—Graph Neural Networks, Federated Learning,
Group Fairness

I. INTRODUCTION

Graph neural networks (GNNs) have emerged as a
formidable tool for generating meaningful node represen-
tations [14] and making accurate predictions on nodes by
leveraging graph topology [29]. Despite its success in graph
analytics, training GNNs over centralized graph data has been
limited in practice due to privacy concerns. Federated learning,
a trending distributed learning paradigm, has emerged as a
promising solution. Several federated GNNs [26], [28] have
been designed recently.

Recent studies have revealed that predictions of GNNs
(over centralized data) can be unfair and have undesirable
discrimination [3], [11]. Under the federated learning setting,
the bias in the local GNN models can be easily propagated
to the global model. While most of the prior works [5], [6]
mainly consider the federated learning models over non-graph
data, none of them have studied federated GNNs. How to
enhance the fairness of GNNs under the federated setting
remains largely unexplored.

In general, the bias of GNNs can be stemmed from two
different sources: (1) bias in graph data [11], [15], and (2) bias
in learning algorithms (e.g., the message-passing procedure
of GNNs) [2], [12]. In this paper, we aim to enhance the
group fairness of federated GNNs by mitigating both types
of bias. In particular, in terms of data bias, we group the
nodes by their sensitive attribute (e.g., gender and race). Then
we group the links between nodes based on the sensitive

attribute values of the connecting nodes: (1) the intra-group
links that connect nodes belonging to the same node groups
(i.e., the same sensitive attribute value), and (2) the inter-
group links that connect nodes that belong to different node
groups. Based on the link groups, we consider the data bias
that takes the form of the imbalanced distribution between
inter-group and intra-group links, which is a key factor to the
disadvantage of minority groups by GNNs [11]. In terms of
model fairness, we equip two well-established definitions of
group fairness definitions, namely statistical parity (SP) [1],
[2] and equalized odds (EO), with both local and global GNN
models in the federated setting.

In this paper, we propose F°GNN, one of the first federated
GNNs that enhance group fairness of both local and global
GNN models. Our contributions are summarized as follows:
1) We provide theoretical insights on the connection between
data bias (imbalanced distributions between inter-group and
intra-group links) and model fairness (SP and EO); 2) Based
on the theoretical findings, we design F*GNN which enhances
group fairness of both local and global GNN models by taking
both data bias of local graphs and statistical fairness of local
models into consideration during training of local and global
models; 3) Through experiments on two real-world datasets,
we demonstrate that F2GNN outperforms the baseline methods
in terms of both fairness and model accuracy.

II. FEDERATED GRAPH LEARNING

Notations. We consider an undirected graph G = (V, £, X),
comprising nodes V, edges £, and node features X, with A
as its adjacency matrix. Z represents the node representations
(embedding) learned by a GNN model. This paper focuses on
node classification, using y and ¢ to represent the ground truth
and predicted labels, respectively.

Federated Graph Learning. This study explores horizontal
federated learning (HFL) setting [4], involving K clients
{C1,...,CKk} and a server S. Each client C; possesses a
unique private graph G;, with different V; and A;, while
sharing the same set of node features.

In HFL, clients retain their local graphs, avoiding sharing
with the server S for reasons such as privacy. The goal of HFL
is to optimize the global objective function while maintaining
the privacy of local graphs:
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Here, £;(w) is the loss function for client C;, parameterized
by w, N; is the number of nodes in the local graph G;, and
£;(vj,G;;w) denotes the average loss over the local graph of
client C;.

In this work, we adapt the SOTA FedAvg framework [18] to
our context. In FedAvg, only model parameters are exchanged
between S and each client C;. Specifically, in each round ¢,
S sends the current global model parameters w; to a selected
subset of clients for local training. Each selected client C;
refines w! locally and returns the updated parameters to S,
which then aggregates them to form the new global model
w1, subsequently broadcasted for the next round of training.
The process continues until convergence.

III. GROUP FAIRNESS AND DATA BIAS

This paper emphasizes group fairness, where the model
output should not discriminate between protected groups (e.g.,
female) and un-protected groups (e.g., male) based on a
sensitive attribute like gender [1].

Node groups. Adapting conventional group fairness, we
assume each graph node has a sensitive attribute s (e.g.,
gender) [19]. Nodes are grouped by this attribute’s values.
Considering a binary attribute, we use s = 0 and s = 1 for
protected and un-protected node groups.

Edge categorization. Edges are categorized based on node
groups into: (1) inter-group edges connecting nodes from
different groups (e.g., the edges between female and male
nodes); (2) intra-group edges connecting nodes within the
same group (e.g., the edges between male and male nodes).

Data bias in edge distribution. Recent studies indicate that
GNN unfairness can arise from imbalanced edge distributions
in training graphs [11]. We focus on the imbalance between
inter-group and intra-group edges, and define group balance
score (GBS) to quantify this type of imbalance.

Definition 1. For a graph G, with |Eiper| as inter-group edges

and |Eirra| as intra-group edges, and |E| = |Einmra| + |Einter| as
total edges, GBS (denoted as B) is defined as follows:
B=1- (|Hintra - Him‘erDa (1)
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A higher B indicates a better balance between different edge
types. Maximum balance (B = 1) occurs when both edge
groups are equal (i.e., |Hinga| = |Hinter|)-

Group fairness of models. To assess the group fairness
of the GNN model, we employ two established fairness
definitions: statistical parity (SP) [1], [2], [15] and equalized
odds (EO) [12], [24]. SP measures the difference in positive
outcome probabilities between node groups as: Agp = |P(§ =
1ls = 0) — P(§ = 1|s = 1)| reflecting the positive rate
difference between two node groups. EO gauges the difference
in true positive rates of node groups as: Agp = |P(y = 1y =
1,s =0)—P(y = 1|y = 1, s = 1) indicating the true positive
rate difference for these groups.

In this paper, we adapt both fairness definitions to node
classification tasks. Both SP and EO provide complementary

insights into fairness in node classification. While other accu-
racy measurements exist, they are topics for future exploration.
We also consider both local fairness and global fairness.
Previous research [22] suggests that while local and global
fairness do not necessarily imply each other, global fairness
is influenced by local fairness under IID distribution. Our
empirical studies (Section VI) show that F>GNN achieves both
local and global fairness, even for non-IID distributions.

IV. CONNECTION BETWEEN DATA BIAS AND MODEL
FAIRNESS

Data bias has been identified as a significant source of model
unfairness. In this section, we investigate how the imbalanced
distribution between intra-group and inter-group links affects
the model fairness, specifically in terms of SP and EO.

Given the complexity of directly examining the impact of
data bias on SP and EO, we approach model fairness through
graph representations. Intuitively, group fairness requires that
model outputs should not differ based on sensitive attributes.
If graph representations are invariant to these attributes, group
fairness can be achieved [15]. To measure the correlation
between the graph representation and the sensitive attribute,
we utilize the Point-Biserial Correlation [9].

Definition 2 (Point-Biserial Correlation Coefficient). The
point-biserial correlation coefficient quantifies the degree of
association between a continuous variable and a dichotomous
variable. Given a dichotomous variable s (s € {0,1}) and a
continuous variable X, the point-biserial correlation coeffi-
cient px s is defined as:
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where o (1) is the mean value of X that are associated
with s =0 (s = 1), Nog (N1) is the number of samples in the
class s =0 (s =1), N = Ng + Ny, and ox is the standard
deviation of X.

The traditional point-biserial correlation is defined with a
1-dimensional variable, X. Consistent with prior work [15],
we expand this to accommodate higher-dimensional data via a
node feature matrix X, represented as X € RN*4 with N as
the node number and d the feature dimension. Here, pg (141)
is the mean of the j-th dimension of node features for nodes
with a sensitive attribute s = 0 (s = 1), where j € 1,...,d.
We will use po (1) and p5=° (u5=") interchangeably. After
computing the means pg and p; for a specific column 7, the
point-biserial correlation is calculated as traditionally defined.

Given a graph G, with s as its sensitive attribute and Z as its
representation (node embeddings), we analyze the relationship
between data bias (group balance score) and the correlation
pz.s between s and Z. Our theoretical analysis is grounded
on two assumptions:

o Model assumption: We assume the GNN model contains
a linear activation function [25].

o Data assumption: Let X5=0 and X3=' be the j-th
feature of those data samples associated with the sensitive
attribute s = 0 and s = 1 respectively. Following prior
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Fig. 1: The overview of F2GNN. In each iteration, client C; receives
the global model, calculates the Jensen-Shannon (JS) divergence st
and updates its local model w; using a 2-layer GCN over several
epochs. The updated model w; and the group balance score B; are
sent to the server. The server then computes the data-bias and model-
fairness weights, integrates them, and updates the global model w;
using the combined weight.

works [12], [17], we assume the data values of X; follow
a Gaussian distribution N (%, 0%), where 2 and of are
the mean and variance of X7.

Based on these assumptions, we derive the following:

Lemma 3. Given a graph G and a GNN model that satisfies
the data and model assumptions respectively, the Point-biserial
correlation (denoted as pz, s) between the graph representation
Z and the sensitive attribute s is measured as the following:
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where Hjyyq and H iy, are defined by Definition 1, Ny (N1)
is the number of nodes associated with s =0 (s = 1), oz is
the standard deviation of Z, N is the total number of nodes of
G, and pg (u1) is the mean value of nodes that are associated
with s =0 (s = 1).

When pz ; = 0 (indicating graph representation’s indepen-
dence from the sensitive attribute), it implies Nopg = Njpg
or Hipgra = Hiner. Given that Ny and N, are constants for a
graph, we present the subsequent theorem:

Theorem 4. Let G be a graph that satisfies the given data
assumption, and Z be the representation of G learned by
a GNN model that satisfies the given model assumption.
Then, the Point-biserial correlation pz s between the graph
representation Z and the sensitive attribute s is positively
correlated/monotonically increasing with |Hiyy — Hiper|- In
particular, pz s = 0 when Hipyqg = Hipger.

The Theorem 4 suggests that the balance between inter-
group and intra-group links is crucial for the correlation
between graph representations and the sensitive attribute. A
balanced distribution should lead to a fairer model. This insight
guides the design of our method.

V. DETAILS OF F2GNN ALGORITHM

In a nutshell, F?GNN follows the principles of FedAvg [18]:
in each round ¢, the server S uniformly samples a set of clients.
Each selected client C; receives the current global parameters
wy, and updates its local model w! by learning over its local
graph G; with w; as the initialized model parameters. Then,
each client C; sends w! back to S. The server aggregates all

received local model updates on w; to obtain w;y1. To ensure
both local and global fairness within the federated learning
framework, F2GNN comprises two main components:

o Client-side fairness-aware local model update scheme:
Each client C; determines w! by incorporating local
fairness into the loss function of its local model as a
penalty term.

o Server-side fairness-weighted global model update
scheme: When S aggregates all local model updates from
the clients, it considers both the fairness metrics of local
models (like SP or EO) and the data bias of local graphs
as aggregation weights.

Figure 1 illustrates the framework of F2GNN. Next, we present
the details of each component.

A. Client-side Fairness-aware Local Model Update

Intuitively, the local model update scheme pursues two
objectives: 1) Ensuring convergence of both the local models
on clients and the global model on the server, particularly
when client data is non-iid, and 2) Integrating fairness (both SP
and EO) into local models by seamlessly adding the fairness
constraint during training. To meet these goals, we employ two
techniques: (i) model interpolation using the Jensen-Shannon
(JS) divergence [20], and (ii) introducing fairness as a penalty
in the local models’ loss function. Next, we discuss the details
of each technique.

JS divergence between global and local models. In
federated GNN training, a challenge arises when local client
data is not IID [16]. This data distribution variance can hinder
the global model’s convergence due to conflicting goals of
minimizing local and global empirical losses. Inspired by
Zheng et al. [30], FGNNaddresses this problem by evaluating
the disparity between local and global models, incorporating
this difference during local model parameter updates.

Specifically, consider w; as the global model parameters at
epoch t and w!_; as the local parameters for client C; at epoch
t — 1. The distributions of node labels in C;’s local graph,
predicted by the global and local models, are represented as

Y v and Dy, respectively. When client C; regeives Wi,
it computes the Jensen-Shannon (JS) divergence, js;, between
these distributions: jsi=1J S(DYEM)&] |1Dy,...)-

A higher js; suggests a significant difference between the
global and local models. Using this, client C; determines its
initial local model update, &}, as:

Wy <= (1 —jsy) - wi_y + s - we 2)
From Eqn. (2), if the global model diverges considerably from
the local one, w; gains prominence over w} As a result, wé
aligns more with wy, aiding the global model’s convergence
to a stationary point.

Fairness penalty term. To instill fairness in local models,
we adopt an in-process approach to integrate fairness during
training. This is commonly done by adding a fairness con-
straint or penalty to the objective function [27]. Instead of
using sensitive features as GNN inputs, they are incorporated
during training as a disparity penalty. The fairness penalty for



client C; at epoch t (denoted as Zﬁairt) is the sum of the norm-1
of both SP and EO fairness types over C;’s local graph G;:
e, = |1 Asp, [l + [[Ago, |1
The fairness penalty is incorporated into the local model’s
loss function as:
wis Z) = Ly, + by, 3)
with Efmlt representing the utility loss (like entropy loss for
node classification) and « being an adjustable hyper-parameter.
Local model parameter updates. To finalize the local
model update, client C; performs several SGD steps:
wp = &f =1~ V(Wi Zy),
where @ is the initialized local model update, 7 is the learning
rate, and V&(w!; Z;) is the gradient of the loss function.
Upon concluding local training, client C; transmits its local
model parameters w!, the local fairness loss £, » and a group
balance score B® to the server S. We remark that sharing
aggregated information of the local graphs such as Kz’airt and
B with the server will make attacking individual information
harder and thus protect their privacy.

B. Server-side Fairness-weighted Global Model Update

The server-side model update scheme in each iteration
consists of four steps:

o Step 1. Calculate the data-bias weight ¢, based on the
group balance scores provided by each client;

e Step 2. Derive the model-fairness weight v, using the
fairness loss metrics uploaded by the clients, ensuring
fairness metrics are integrated into the global model
aggregation process;

e Step 3. Combine the data-bias weight and model-fairness
weight into a combined weight (v;); and

o Step 4. Aggregate the local model updates with the global
model utilizing the combined weight.

The following elaboration provides a detailed description of
each step.

Data-bias weight. Upon obtaining local parameters from
the selected subset of clients at epoch ¢ — 1, the server first
constructs a data-bias weight v¢, € RE ', where K’ represents
the number of clients in the subset:

~Ye, = softmax (Bl, s BK').

Each element in g, corresponds to the group balance score
B' for each client C;. Given that each client C; maintains
a graph G, the data-bias weight vg, effectively gauges the
equilibrium between inter- and intra-edges within each client
graph.

Model-fairness weight. While the group balance score
provides a useful measure of the balance between inter- and
intra-edges within each client graph, it is static and unable
to capture the model’s evolving learning process regarding
fairness. To address this, we also consider a dynamic fairness
metric weight vr € RE " that evaluates the statistical parity
Afp, and equalized odds Af,, of each client’s local model at
each iteration:

Yr, = exp (softmax (v%,)) .

To calculate v£,, we start by a weight vector 79_-t, which takes
each client’s sum of two types of group fairness metrics as the
element. Therefore, y’f , can be illustrated as:

Ve = [Asp, + Afo, - Af, + Afp, |-

To magnify the effect of this dynamic model-fairness weight
Y’F,» We use an exponential function to rescale it after passing
through a softmax function. This expands its range while
maintaining its relative proportions as exponential functions
grow faster than linear ones.

The softmax function is crucial for normalizing the two
weight vectors, ensuring their comparability. Given the unique
nature of the group balance score B, confined to the interval
[0, 1], every component of 7¢, respects these boundaries. In
contrast, each element in 'y’]_- , merges two statistical fairness
metrics for each client, resulting in a value within the [0, 2]
range. Through the softmax function, we align the scales of
these weights, streamlining their integration and subsequent
hyperparameter adjustments.

Combined weight. After deriving v¢, and vr,, they are
merged into a single weight vector v; € RX " as:

~¢ = softmax (()\ “Yey + ’}/]:t)/T), )
where )\ is a hyperparameter, and 7 denotes the temperature
parameter of the softmax function. This formula transforms
the weights ¢, and 7yr, into probability distributions that
total one, resulting in the weight vector 7,. The temperature
parameter modulates the distribution’s smoothness, and A
controls the emphasis on data bias in the final combination.

Global model updating. Utilizing the consolidated weights,
the global model w; is updated by aggregating the local models
wi (i €1,..,K') from K’ clients, weighted by the vector 7;:

K/
=1

where 7} represents the i-th element of the combined weight
vector. The server then disseminates the refreshed global
model w; to all clients.

VI. EXPERIMENTAL EVALUATION

In this section, we present the results of our experiments on
two real-world datasets for node classification. Our proposed
approach, FGNN, is evaluated and compared against several
baseline schemes in terms of both utility and fairness metrics.

A. Experimental Setup

Datasets. We employ two real-world datasets, Pokec-z and
Pokec-n, that are widely used for GNN training [2], [3], [12],
[15]. Both Pokec-z and Pokec-n graphs are social network
data collected from two regions in Slovakia [21]. We pick
the region attribute as the sensitive attribute and working
fields as the label for both Pokec-z and Pokec-n graphs.
We binarize the sensitive attributes and prediction labels for
all the two datasets.

Evaluation metrics. In terms of GNN performance, we
measure Accuracy and AUC score for node classification.
Regarding fairness, we measure Agop and Agp of the predic-
tions. Intuitively, smaller Ago and Agp indicate better fairness.



TABLE I: Node classification and fairness evaluation on the test sets of the Pokec-z and Pokec-n datasets.

Global test set

Pokec-z Pokec-n
Method
Accuracy(%) T AUC(%) 1t Agp (%) 4 Ago(%) 4 Accuracy(%) T AUC(%) 1t Agp (%) Ago(%) |
FairAug,r;, 64.62 £ 0.65 64.73 + 0.67 4.01 £0.28 3.98 £ 0.51 64.38 +0.38 62.45 +0.47 4.31+1.32 5.98 + 1.96
FairFed 65.48 + 2.63 69.72 + 2.7 2.92 +1.28 3.08+1.21 61.16 4+ 2.46 61.97 +1.93 2.66 £ 1.20 3.69 £2.95
F2GNN 68.17 +£0.19 73.47+0.52 1.66 + 1.02 1.49+0.52 67.00+0.27 69.62+1.34 0.85+0.31 1.00£1.03
Local test sets

Method Local Acc(%) T Local AUC(%) 1T Local Agp (%) | Local Ago(%) | Local Acc(%) T Local AUC(%) T Local Agp (%) J Local Ago(%) |
FairAug,r;, 63.33 £4.91 57.8+ 3.76 8.54 + 0.53 8.54 + 0.53 61.03 + 5.89 52.50 +4.23 21.124+0.65 28.11 £0.71
FairFed 59.44 + 3.60 63.7 £ 12.13 8.12 + 3.32 7.69 + 1.96 56.26 + 2.42 58.41 £ 1.75 8.38 + 4.93 7.79 + 4.36
F2GNN 68.43+1.99 7574+2.13 7.24 +£0.99 7.35+1.58 68.19+240 69.49 1+ 3.81 8.38 +2.27 7.23+5.11

Furthermore, we measure two kinds of trade-offs between
fairness and model accuracy as follows:
Trade-off acc = Accuracy / (Ago + Asp) ,
Trade-offAUc = AUC / (AEO =+ ASP) .
Intuitively, a model that delivers higher accuracy and lower
EO and SP values will lead to a better trade-off.

Baselines. To the best of our knowledge, no existing fed-
erated GNNs have been equipped with group fairness. Thus
we adapt the existing methods of fair federated learning and
fair GNNs to our setting for comparison with F>\GNN. We
consider two baseline methods specifically:

o We deploy GNNs under an existing fairness-enhancing

federated learning framework named FairFed [6].

« We deploy the fairness-aware GNN model FairAug [15]
in the federated framework (denoted as FairAug.pr),
replacing local models with it.

To ensure a fair comparison between different models on

each dataset, we remove all the isolated nodes in the datasets.

GNN Setup. We deploy a 2-layer graph convolutional net-
works (GCNs), tailoring neuron configurations to each dataset.
Specifically, the GCNs are set up with 64 neurons for the
Pokec-n dataset, whereas 128 neurons per layer for the Pokec-
z dataset. We utilize the Rectified Linear Unit (ReLU) [8]
and the Adam optimizer [13]. Our F2GNN implementation is
developed using the Deep Graph Library (DGL) [23], PyTorch
Geometric [7], and NetworkX [10].

Federated learning setup. In the federated learning setting,
we randomly select a set of nodes from each graph data set
to serve as the centers of egocentric networks, which also
determine the number of clients, and we specify a certain
number of hops to grow the networks. Each network (or
subgraph) is considered as a client. We evaluate our proposed
approach on the Pokec datasets in a setting with 30 clients,
each holding a 3-hop ego-network.

B. Performance Evaluation

Tables I provide a comprehensive performance comparison
of various models on the Pokec datasets, with a particular
focus on their fairness attributes Agp and Ago.

Specifically, we evaluate the models on a global test set as
well as local test sets. Each local client has its corresponding
test set. After we get the metrics from all clients, we report

TABLE II: Trade-offs of F2GNN and baselines.

Pokec-z Pokec-n
Method  Trade-off ascc 1 Trade-off ayc T Trade-off acc TTrade-off asuc T
FairAug,pL 11.129 12.0854 8.2651 8.235
FairFed 5.6581 5.6598 5.6581 12.5286
F2GNN 21.6445 23.3264 36.2460 37.6649

the median value of these clients for each metric. Among
the evaluated methods, our proposed framework, F?GNN
consistently outperforms other methods across two datasets
in both global and local sets. In particular, F’GNN achieves
the lowest Agp and Ago values, indicating the effectiveness
of the proposed scheme in federated settings.

The trade-off performance of each model on the two datasets
is illustrated in Table II. The proposed method achieves the
highest trade-off values for all datasets, respectively, demon-
strating its exceptional ability to balance accuracy and fairness.

In summary, our proposed F2*GNN framework outperforms
other baselines in terms of Agp, Ago, and trade-off values
across all datasets. These results validate the effectiveness and
robustness of F°GNN in achieving competitive performance
while maintaining group fairness in node classification tasks.
These findings also highlight the broad applicability of our
approach in the field of federated learning, suggesting its
potential for adaptation to other domains.

C. Ablation Study

In the ablation study illustrated in Figure 2, we assess the
impact of client-side fairness-aware and server-side fairness-
weighted updates in our model on the Pokec datasets. Ex-
cluding either client-side or server-side schemes results in
decreased accuracy and increased disparity in Agp and Ago,
emphasizing their role in balancing performance and fairness.
Also, neglecting the server-side fair aggregation adversely
affects fairness metrics, underscoring its crucial role in fair-
ness enhancement. The complete model, F’GNN, optimally
balances performance and fairness, proving the efficacy of all
components in federated graph learning.

VII. CONCLUSION

In this study, we design FZGNN, the first fairness-aware
federated GNNs that mitigates both data bias in the graphs
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Fig. 2: Ablation Study

and model bias in the training process of local and global
GNN models. Our experiments demonstrate that FZGNN can
balance fairness and model accuracy. For the future work,
we will explore how to enhance security and privacy of
F2GNN by employing privacy-enhancing mechanisms such as
homomorphic encryption.
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