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AbstractÐGraph Neural Networks (GNNs) are used for graph
data processing across various domains. Centralized training
of GNNs often faces challenges due to privacy and regulatory
issues, making federated learning (FL) a preferred solution in a
distributed paradigm. However, GNNs may inherit biases from
training data, causing these biases to propagate to the global
model in distributed scenarios. To address this issue, we introduce
F2GNN, a Fair Federated Graph Neural Network, to enhance
group fairness. Recognizing that bias originates from both data
and algorithms, F2GNN aims to mitigate both types of bias
under federated settings. We offer theoretical insights into the
relationship between data bias and statistical fairness metrics in
GNNs. Building on our theoretical analysis, F2GNN features a
fairness-aware local model update scheme and a fairness-weighted
global model update scheme, considering both data bias and local
model fairness during aggregation. Empirical evaluations show
F2GNN outperforms SOTA baselines in fairness and accuracy.

Index TermsÐGraph Neural Networks, Federated Learning,
Group Fairness

I. INTRODUCTION

Graph neural networks (GNNs) have emerged as a

formidable tool for generating meaningful node represen-

tations [14] and making accurate predictions on nodes by

leveraging graph topology [29]. Despite its success in graph

analytics, training GNNs over centralized graph data has been

limited in practice due to privacy concerns. Federated learning,

a trending distributed learning paradigm, has emerged as a

promising solution. Several federated GNNs [26], [28] have

been designed recently.

Recent studies have revealed that predictions of GNNs

(over centralized data) can be unfair and have undesirable

discrimination [3], [11]. Under the federated learning setting,

the bias in the local GNN models can be easily propagated

to the global model. While most of the prior works [5], [6]

mainly consider the federated learning models over non-graph

data, none of them have studied federated GNNs. How to

enhance the fairness of GNNs under the federated setting

remains largely unexplored.

In general, the bias of GNNs can be stemmed from two

different sources: (1) bias in graph data [11], [15], and (2) bias

in learning algorithms (e.g., the message-passing procedure

of GNNs) [2], [12]. In this paper, we aim to enhance the

group fairness of federated GNNs by mitigating both types

of bias. In particular, in terms of data bias, we group the

nodes by their sensitive attribute (e.g., gender and race). Then

we group the links between nodes based on the sensitive

attribute values of the connecting nodes: (1) the intra-group

links that connect nodes belonging to the same node groups

(i.e., the same sensitive attribute value), and (2) the inter-

group links that connect nodes that belong to different node

groups. Based on the link groups, we consider the data bias

that takes the form of the imbalanced distribution between

inter-group and intra-group links, which is a key factor to the

disadvantage of minority groups by GNNs [11]. In terms of

model fairness, we equip two well-established definitions of

group fairness definitions, namely statistical parity (SP) [1],

[2] and equalized odds (EO), with both local and global GNN

models in the federated setting.

In this paper, we propose F2GNN, one of the first federated

GNNs that enhance group fairness of both local and global

GNN models. Our contributions are summarized as follows:

1) We provide theoretical insights on the connection between

data bias (imbalanced distributions between inter-group and

intra-group links) and model fairness (SP and EO); 2) Based

on the theoretical findings, we design F2GNN which enhances

group fairness of both local and global GNN models by taking

both data bias of local graphs and statistical fairness of local

models into consideration during training of local and global

models; 3) Through experiments on two real-world datasets,

we demonstrate that F2GNN outperforms the baseline methods

in terms of both fairness and model accuracy.

II. FEDERATED GRAPH LEARNING

Notations. We consider an undirected graph G = (V, E ,X),
comprising nodes V , edges E , and node features X, with A

as its adjacency matrix. Z represents the node representations

(embedding) learned by a GNN model. This paper focuses on

node classification, using y and ŷ to represent the ground truth

and predicted labels, respectively.

Federated Graph Learning. This study explores horizontal

federated learning (HFL) setting [4], involving K clients

{C1, . . . , CK} and a server S . Each client Ci possesses a

unique private graph Gi, with different Vi and Ai, while

sharing the same set of node features.

In HFL, clients retain their local graphs, avoiding sharing

with the server S for reasons such as privacy. The goal of HFL

is to optimize the global objective function while maintaining

the privacy of local graphs:

argmin
ω

K
∑

i=1

Li(ω) = argmin
ω

K
∑

i=1

Ni
∑

j=1

ℓi(vj ,Gi;ω).



Here, Li(ω) is the loss function for client Ci, parameterized

by ω, Ni is the number of nodes in the local graph Gi, and

ℓi(vj ,Gi;ω) denotes the average loss over the local graph of

client Ci.

In this work, we adapt the SOTA FedAvg framework [18] to

our context. In FedAvg, only model parameters are exchanged

between S and each client Ci. Specifically, in each round t,
S sends the current global model parameters ωt to a selected

subset of clients for local training. Each selected client Ci

refines ωi
t locally and returns the updated parameters to S ,

which then aggregates them to form the new global model

ωt+1, subsequently broadcasted for the next round of training.

The process continues until convergence.

III. GROUP FAIRNESS AND DATA BIAS

This paper emphasizes group fairness, where the model

output should not discriminate between protected groups (e.g.,

female) and un-protected groups (e.g., male) based on a

sensitive attribute like gender [1].

Node groups. Adapting conventional group fairness, we

assume each graph node has a sensitive attribute s (e.g.,

gender) [19]. Nodes are grouped by this attribute’s values.

Considering a binary attribute, we use s = 0 and s = 1 for

protected and un-protected node groups.

Edge categorization. Edges are categorized based on node

groups into: (1) inter-group edges connecting nodes from

different groups (e.g., the edges between female and male

nodes); (2) intra-group edges connecting nodes within the

same group (e.g., the edges between male and male nodes).

Data bias in edge distribution. Recent studies indicate that

GNN unfairness can arise from imbalanced edge distributions

in training graphs [11]. We focus on the imbalance between

inter-group and intra-group edges, and define group balance

score (GBS) to quantify this type of imbalance.

Definition 1. For a graph G, with |Einter| as inter-group edges

and |Eintra| as intra-group edges, and |E| = |Eintra|+ |Einter| as

total edges, GBS (denoted as B) is defined as follows:

B = 1− (|Hintra −Hinter|), (1)

where Hintra = |Eintra|
|E| and Hinter =

|Einter|
|E| .

A higher B indicates a better balance between different edge

types. Maximum balance (B = 1) occurs when both edge

groups are equal (i.e., |Hintra| = |Hinter|).

Group fairness of models. To assess the group fairness

of the GNN model, we employ two established fairness

definitions: statistical parity (SP) [1], [2], [15] and equalized

odds (EO) [12], [24]. SP measures the difference in positive

outcome probabilities between node groups as: ∆SP = |P (ŷ =
1|s = 0) − P (ŷ = 1|s = 1)| reflecting the positive rate

difference between two node groups. EO gauges the difference

in true positive rates of node groups as: ∆EO = |P (ŷ = 1|y =
1, s = 0)−P (ŷ = 1|y = 1, s = 1)| indicating the true positive

rate difference for these groups.

In this paper, we adapt both fairness definitions to node

classification tasks. Both SP and EO provide complementary

insights into fairness in node classification. While other accu-

racy measurements exist, they are topics for future exploration.

We also consider both local fairness and global fairness.

Previous research [22] suggests that while local and global

fairness do not necessarily imply each other, global fairness

is influenced by local fairness under IID distribution. Our

empirical studies (Section VI) show that F2GNN achieves both

local and global fairness, even for non-IID distributions.

IV. CONNECTION BETWEEN DATA BIAS AND MODEL

FAIRNESS

Data bias has been identified as a significant source of model

unfairness. In this section, we investigate how the imbalanced

distribution between intra-group and inter-group links affects

the model fairness, specifically in terms of SP and EO.

Given the complexity of directly examining the impact of

data bias on SP and EO, we approach model fairness through

graph representations. Intuitively, group fairness requires that

model outputs should not differ based on sensitive attributes.

If graph representations are invariant to these attributes, group

fairness can be achieved [15]. To measure the correlation

between the graph representation and the sensitive attribute,

we utilize the Point-Biserial Correlation [9].

Definition 2 (Point-Biserial Correlation Coefficient). The

point-biserial correlation coefficient quantifies the degree of

association between a continuous variable and a dichotomous

variable. Given a dichotomous variable s (s ∈ {0, 1}) and a

continuous variable X , the point-biserial correlation coeffi-

cient ρX,s is defined as:

ρX,s =
µ0 − µ1

σX

√

N0N1

N2
,

where µ0 (µ1) is the mean value of X that are associated

with s = 0 (s = 1), N0 (N1) is the number of samples in the

class s = 0 (s = 1), N = N0 +N1, and σX is the standard

deviation of X .

The traditional point-biserial correlation is defined with a

1-dimensional variable, X . Consistent with prior work [15],

we expand this to accommodate higher-dimensional data via a

node feature matrix X, represented as X ∈ R
N×d, with N as

the node number and d the feature dimension. Here, µ0 (µ1)

is the mean of the j-th dimension of node features for nodes

with a sensitive attribute s = 0 (s = 1), where j ∈ 1, ..., d.

We will use µ0 (µ1) and µs=0
j (µs=1

j ) interchangeably. After

computing the means µ0 and µ1 for a specific column j, the

point-biserial correlation is calculated as traditionally defined.

Given a graph G, with s as its sensitive attribute and Z as its

representation (node embeddings), we analyze the relationship

between data bias (group balance score) and the correlation

ρZ,s between s and Z. Our theoretical analysis is grounded

on two assumptions:

• Model assumption: We assume the GNN model contains

a linear activation function [25].

• Data assumption: Let X
s=0
j and X

s=1
j be the j-th

feature of those data samples associated with the sensitive

attribute s = 0 and s = 1 respectively. Following prior





client Ci at epoch t (denoted as ℓifairt
) is the sum of the norm-1

of both SP and EO fairness types over Ci’s local graph Gi:

ℓ
i
fairt

= ||∆i
SPt
||1 + ||∆

i
EOt
||1.

The fairness penalty is incorporated into the local model’s

loss function as:

ℓ(ωi
t;Zi) = ℓ

i
utilt

+ α ℓ
i
fairt

, (3)

with ℓ
i
utilt

representing the utility loss (like entropy loss for

node classification) and α being an adjustable hyper-parameter.

Local model parameter updates. To finalize the local

model update, client Ci performs several SGD steps:

ωi
t ← ω̂i

t − η · ∇ℓ(ωi
t;Zi),

where ω̂i
t is the initialized local model update, η is the learning

rate, and ∇ℓ(ωi
t;Zi) is the gradient of the loss function.

Upon concluding local training, client Ci transmits its local

model parameters ωi
t, the local fairness loss ℓifairt

, and a group

balance score Bi to the server S . We remark that sharing

aggregated information of the local graphs such as ℓ
i
fairt

and

Bi with the server will make attacking individual information

harder and thus protect their privacy.

B. Server-side Fairness-weighted Global Model Update

The server-side model update scheme in each iteration

consists of four steps:

• Step 1. Calculate the data-bias weight γE t based on the

group balance scores provided by each client;

• Step 2. Derive the model-fairness weight γF t using the

fairness loss metrics uploaded by the clients, ensuring

fairness metrics are integrated into the global model

aggregation process;

• Step 3. Combine the data-bias weight and model-fairness

weight into a combined weight (γt); and

• Step 4. Aggregate the local model updates with the global

model utilizing the combined weight.

The following elaboration provides a detailed description of

each step.

Data-bias weight. Upon obtaining local parameters from

the selected subset of clients at epoch t − 1, the server first

constructs a data-bias weight γE t ∈ R
K′

, where K ′ represents

the number of clients in the subset:

γE t = softmax
(

B1, ..., BK′)

.

Each element in γE t corresponds to the group balance score

Bi for each client Ci. Given that each client Ci maintains

a graph Gi, the data-bias weight γE t effectively gauges the

equilibrium between inter- and intra-edges within each client

graph.

Model-fairness weight. While the group balance score

provides a useful measure of the balance between inter- and

intra-edges within each client graph, it is static and unable

to capture the model’s evolving learning process regarding

fairness. To address this, we also consider a dynamic fairness

metric weight γF ∈ R
K′

that evaluates the statistical parity

∆i
SPt

and equalized odds ∆i
EOt

of each client’s local model at

each iteration:

γF t = exp (softmax (γ′
F t)) .

To calculate γF t, we start by a weight vector γ′
F t

, which takes

each client’s sum of two types of group fairness metrics as the

element. Therefore, γ′
F t

can be illustrated as:

γ′
F t =

[

∆1
SPt

+∆1
EOt

, ...,∆K′

SPt
+∆K′

EOt

]

.

To magnify the effect of this dynamic model-fairness weight

γ′
F t

, we use an exponential function to rescale it after passing

through a softmax function. This expands its range while

maintaining its relative proportions as exponential functions

grow faster than linear ones.

The softmax function is crucial for normalizing the two

weight vectors, ensuring their comparability. Given the unique

nature of the group balance score B, confined to the interval

[0, 1], every component of γE t respects these boundaries. In

contrast, each element in γ′
F t

merges two statistical fairness

metrics for each client, resulting in a value within the [0, 2]
range. Through the softmax function, we align the scales of

these weights, streamlining their integration and subsequent

hyperparameter adjustments.

Combined weight. After deriving γE t and γF t, they are

merged into a single weight vector γt ∈ R
K′

as:

γt = softmax
(

(λ · γE t + γF t)/τ
)

, (4)

where λ is a hyperparameter, and τ denotes the temperature

parameter of the softmax function. This formula transforms

the weights γE t and γF t into probability distributions that

total one, resulting in the weight vector γt. The temperature

parameter modulates the distribution’s smoothness, and λ
controls the emphasis on data bias in the final combination.

Global model updating. Utilizing the consolidated weights,

the global model ωt is updated by aggregating the local models

ωi
t (i ∈ 1, ...,K ′) from K ′ clients, weighted by the vector γt:

ωt ←

K′

∑

i=1

γi
t · ω

i
t, (5)

where γi
t represents the i-th element of the combined weight

vector. The server then disseminates the refreshed global

model ωt to all clients.

VI. EXPERIMENTAL EVALUATION

In this section, we present the results of our experiments on

two real-world datasets for node classification. Our proposed

approach, F2GNN, is evaluated and compared against several

baseline schemes in terms of both utility and fairness metrics.

A. Experimental Setup

Datasets. We employ two real-world datasets, Pokec-z and

Pokec-n, that are widely used for GNN training [2], [3], [12],

[15]. Both Pokec-z and Pokec-n graphs are social network

data collected from two regions in Slovakia [21]. We pick

the region attribute as the sensitive attribute and working

fields as the label for both Pokec-z and Pokec-n graphs.

We binarize the sensitive attributes and prediction labels for

all the two datasets.

Evaluation metrics. In terms of GNN performance, we

measure Accuracy and AUC score for node classification.

Regarding fairness, we measure ∆EO and ∆SP of the predic-

tions. Intuitively, smaller ∆EO and ∆SP indicate better fairness.



TABLE I: Node classification and fairness evaluation on the test sets of the Pokec-z and Pokec-n datasets.

Global test set

Method
Pokec-z Pokec-n

Accuracy(%) ↑ AUC(%) ↑ ∆SP (%) ↓ ∆EO(%) ↓ Accuracy(%) ↑ AUC(%) ↑ ∆SP (%) ↓ ∆EO(%) ↓

FairAug+FL 64.62± 0.65 64.73± 0.67 4.01± 0.28 3.98± 0.51 64.38± 0.38 62.45± 0.47 4.31± 1.32 5.98± 1.96

FairFed 65.48± 2.63 69.72± 2.7 2.92± 1.28 3.08± 1.21 61.16± 2.46 61.97± 1.93 2.66± 1.20 3.69± 2.95

F2GNN 68.17± 0.19 73.47± 0.52 1.66± 1.02 1.49± 0.52 67.00± 0.27 69.62± 1.34 0.85± 0.31 1.00± 1.03

Local test sets

Method Local Acc(%) ↑ Local AUC(%) ↑ Local ∆SP (%) ↓ Local ∆EO(%) ↓ Local Acc(%) ↑ Local AUC(%) ↑ Local ∆SP (%) ↓ Local ∆EO(%) ↓

FairAug+FL 63.33± 4.91 57.8± 3.76 8.54± 0.53 8.54± 0.53 61.03± 5.89 52.50± 4.23 21.12± 0.65 28.11± 0.71

FairFed 59.44± 3.60 63.7± 12.13 8.12± 3.32 7.69± 1.96 56.26± 2.42 58.41± 1.75 8.38± 4.93 7.79± 4.36

F2GNN 68.43± 1.99 75.74± 2.13 7.24± 0.99 7.35± 1.58 68.19± 2.40 69.49± 3.81 8.38± 2.27 7.23± 5.11

Furthermore, we measure two kinds of trade-offs between

fairness and model accuracy as follows:

Trade-offACC = Accuracy / (∆EO +∆SP) ,

Trade-offAUC = AUC / (∆EO +∆SP) .

Intuitively, a model that delivers higher accuracy and lower

EO and SP values will lead to a better trade-off.

Baselines. To the best of our knowledge, no existing fed-

erated GNNs have been equipped with group fairness. Thus

we adapt the existing methods of fair federated learning and

fair GNNs to our setting for comparison with F2GNN. We

consider two baseline methods specifically:

• We deploy GNNs under an existing fairness-enhancing

federated learning framework named FairFed [6].

• We deploy the fairness-aware GNN model FairAug [15]

in the federated framework (denoted as FairAug+FL),

replacing local models with it.

To ensure a fair comparison between different models on

each dataset, we remove all the isolated nodes in the datasets.

GNN Setup. We deploy a 2-layer graph convolutional net-

works (GCNs), tailoring neuron configurations to each dataset.

Specifically, the GCNs are set up with 64 neurons for the

Pokec-n dataset, whereas 128 neurons per layer for the Pokec-

z dataset. We utilize the Rectified Linear Unit (ReLU) [8]

and the Adam optimizer [13]. Our F2GNN implementation is

developed using the Deep Graph Library (DGL) [23], PyTorch

Geometric [7], and NetworkX [10].

Federated learning setup. In the federated learning setting,

we randomly select a set of nodes from each graph data set

to serve as the centers of egocentric networks, which also

determine the number of clients, and we specify a certain

number of hops to grow the networks. Each network (or

subgraph) is considered as a client. We evaluate our proposed

approach on the Pokec datasets in a setting with 30 clients,

each holding a 3-hop ego-network.

B. Performance Evaluation

Tables I provide a comprehensive performance comparison

of various models on the Pokec datasets, with a particular

focus on their fairness attributes ∆SP and ∆EO.

Specifically, we evaluate the models on a global test set as

well as local test sets. Each local client has its corresponding

test set. After we get the metrics from all clients, we report

TABLE II: Trade-offs of F2GNN and baselines.

Pokec-z Pokec-n

Method Trade-offACC ↑Trade-offAUC ↑Trade-offACC ↑Trade-offAUC ↑

FairAug+FL 11.129 12.0854 8.2651 8.235

FairFed 5.6581 5.6598 5.6581 12.5286

F2GNN 21.6445 23.3264 36.2460 37.6649

the median value of these clients for each metric. Among

the evaluated methods, our proposed framework, F2GNN

consistently outperforms other methods across two datasets

in both global and local sets. In particular, F2GNN achieves

the lowest ∆SP and ∆EO values, indicating the effectiveness

of the proposed scheme in federated settings.

The trade-off performance of each model on the two datasets

is illustrated in Table II. The proposed method achieves the

highest trade-off values for all datasets, respectively, demon-

strating its exceptional ability to balance accuracy and fairness.

In summary, our proposed F2GNN framework outperforms

other baselines in terms of ∆SP, ∆EO, and trade-off values

across all datasets. These results validate the effectiveness and

robustness of F2GNN in achieving competitive performance

while maintaining group fairness in node classification tasks.

These findings also highlight the broad applicability of our

approach in the field of federated learning, suggesting its

potential for adaptation to other domains.

C. Ablation Study

In the ablation study illustrated in Figure 2, we assess the

impact of client-side fairness-aware and server-side fairness-

weighted updates in our model on the Pokec datasets. Ex-

cluding either client-side or server-side schemes results in

decreased accuracy and increased disparity in ∆SP and ∆EO,

emphasizing their role in balancing performance and fairness.

Also, neglecting the server-side fair aggregation adversely

affects fairness metrics, underscoring its crucial role in fair-

ness enhancement. The complete model, F2GNN, optimally

balances performance and fairness, proving the efficacy of all

components in federated graph learning.

VII. CONCLUSION

In this study, we design F2GNN, the first fairness-aware

federated GNNs that mitigates both data bias in the graphs
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