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Abstract

Graph Neural Networks (GNNs) experience "catastrophic forgetting" in contin-
ual learning setups, where they tend to lose previously acquired knowledge and
perform poorly on old tasks. Rehearsal-based methods, which consolidate old
knowledge with a replay memory buffer, are a de facto solution due to their
straightforward workflow. However, these methods often fail to adequately cap-
ture topological information, leading to incorrect input-label mappings in replay
samples. To address this, we propose TACQ), a topology-aware graph coarsening
and continual learning framework that stores information from previous tasks
as a reduced graph. Throughout each learning period, this reduced graph ex-
pands by integrating with a new graph and aligning shared nodes, followed by
a "zoom-out" reduction process to maintain a stable size. We have developed
a graph coarsening algorithm based on node representation proximities to effi-
ciently reduce a graph while preserving essential topological information. We
empirically demonstrate that the learning process on the reduced graph can closely
approximate that on the original graph. We compare TACO with a wide range of
state-of-the-art baselines, proving its superiority and the necessity of preserving
high-quality topological information for effective replaying. Our code is available
at: https://github.com/hanxiaoxuel114/TACO.

1 Introduction

Graph neural networks (GNNs) are oblivious: they fail to consider pre-existing knowledge or
context outside of the information they were trained on. In offline settings, this problem can be
mitigated by making multiple passes through the dataset with batch training. However, in a continual
learning (also known as incremental learning or lifelong learning) setup, [43, 20, 40, 39], the
model learns a sequence of tasks incrementally, where each fask is defined as a learning session
on a subgraph. This problem becomes more intractable as the model has no access to previous
data, resulting in drastic degradation of model performance on old tasks. To tackle the issue of
“catastrophic forgetting” in GNNSs, several approaches have been proposed. Among them, rehearsal-
based methods [18, 57, 48, 55] are the most common due to their straightforward workflow and
efficacy in consolidating old knowledge with affordable additional memory. When performing
node classification tasks, these methods utilize memory buffers to save node samples during the
rehearsal process of online graph training. However, they often fail to adequately capture topological
information which is important in downstream tasks. As demonstrated by Ziigner et al. [58], even
small changes in edges can alter the expected node labels, causing the model to learn incorrect input
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(feature, structure)-label mappings from the replay samples which creates vulnerability and security
issues in critical domains [42].

To address this, we propose a dynamic graph coarsening framework, TACQ), that efficiently preserves
high-quality topology information for experience replay. TACQO operates through a straightforward
yet effective workflow: At the end of each training task, it reduces the current graph into a compressed
form that maximally preserves its properties, allowing it to serve as a proxy for the original graph; for
the next task, the reduced graph and the new graph are combined by aligning co-existing nodes, and
the model is trained on this new combined graph. The former step preserves information from the
intra-task edges (edges connecting nodes from the same task), while the latter step allows us to retrieve
the inter-task (edges connecting nodes from different tasks) ones. Noticing that most existing graph
reduction algorithms focus solely on preserving graph topology properties and are often inefficient,
we propose an efficient graph reduction algorithm, RePro, as a component of the CGL framework.
RePro leverages the proximities between learned node representations to effectively preserve node
features and spectral properties during the reduction process. Additionally, we present a strategy,
Node Fidelity Preservation, to ensure that certain nodes are not compressed, thereby maintaining the
quality of the reduced graph. We theoretically prove that Node Fidelity Preservation can mitigate the
problem of vanishing minority classes in the process of graph reduction. We claim that the simplicity
of TACO makes it highly modular and adaptable. We conduct extensive experiments and perform
comprehensive ablation studies to evaluate the effectiveness of TACO and RePro. We also compare
our method with multiple state-of-the-art methods [20, 26, 29, 6, 57, 7, 28, 30, 55] for both CGL and
graph coarsening tasks.

2 Preliminaries

2.1 Setup explanations

We notice that most existing research on CGL [26, 57, 55] focuses on either task-incremental-
learning (task-IL) [45] or a tranductive [54, 3] setting, where the sequential tasks are independent
graphs containing nodes from non-overlapping class sets. In this setting, the model only needs to
distinguish the classes included in the current task. For instance, if there are 10 classes in total, and
this experimental setting divides these classes into 5 tasks. Task 1 focuses on classifying classes
1 and 2, while task 2 classifies classes 3 and 4, and so on. Since GNNs often forget knowledge of
old classes and show trivial performance, the improvement of the CGL framework can be easily
highlighted with large margins. However, we argue that this setting may not accurately simulate
real-life scenarios.

In this paper, we aim to tackle a more realistic inductive and Generalized Class-incremental-learning
(generalized class-IL) [32] setting. In real-world graphs, nodes and edges are often associated with a
time stamp indicating their appearing time, and graphs keep expanding with new nodes and edges. For
instance, in a citation network, each node representing a paper cites (forms an edge with) other papers
when it is published. Each year more papers are published, and the citation graph also grows rapidly.
In such cases, it is necessary to train a model in-
crementally and dynamically because saving or
retraining the model on the full graph can be pro-
hibitively expensive in space and time. So we
split a streaming graph into subgraphs based on
time periods and train a model on each subgraph
sequentially for the node classification task. In
such cases, subgraphs are correlated with each
other through the edges connecting them (e.g.
a paper cites another paper from previous time (a) Class distribution (b) F1 score
stamps). The structural information represented

by edges may change from previous tasks (in- Figure 1: Class distributions in the Kindle dataset
ductive). Also, since the tasks are divided by change over time and the model trained on new
time periods instead of class labels, there are tasks tends to forget old tasks.

overlapping classes between new tasks and old
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We further demonstrate the necessity of preserving old knowledge when learning on a streaming
graph. We take the Kindle e-book co-purchasing network [14, 31] as an example. We split the graph
into 5 subgraphs based on the first appearing time of each node (i.e., an e-book). We observe a gradual
shift of node class distribution over time, as shown in Figure 1(a). Furthermore, even for nodes in the
same class, their features and neighborhood patterns can shift [18]. Also, in real-life situations, tasks
may have different class sets (e.g. new fields of study emerge and old fields of study become obsolete),
which exacerbates the forgetting problem. The F1 scores of node classification tasks using a Graph
Convolutional Network (GCN) [19] show that the model performs significantly worse on previous
tasks when trained on new ones without strategies to alleviate forgetting, as shown in Figure 1(b).
Although this paper focuses on generalized class-IL setting, we also conduct experiments on data
splits with traditional class-IL setting to prove the generalizability of TACQO.

2.2 Problem statement

Our main objective is to construct a continual learning framework on streaming graphs to overcome the
catastrophic forgetting problem. Suppose a GNN model is trained for sequential node classification
tasks with no access to previous training data, but it can utilize a memory buffer with a limited
capacity to store useful information. The goal is to optimize the prediction accuracy of a model on all
tasks in the end by minimizing its forgetting of previously acquired knowledge when learning new
tasks. In this work, we focus on time-stamped graphs, and the tasks are defined based on the time
stamps of nodes in a graph. For each task, the GNN model is trained on a subgraph where source
nodes belonging to a specified time period, and all tasks are ordered in time. Node attributes and
class labels are only available if the nodes belong to the current time period. The aforementioned
setup closely resembles real-life scenarios. We formulate the above problems as follows.

Problem 1. Continual learning on time-stamped graphs. We are given a time-stamped expanding
graph G = (V, €, A, X,Y), where V denotes the node set, £ denotes the edge set, A € RIVIXIVI
and X € RVIxXdx denote the adjacency matrix and node features, respectively; Y is a one-hot
embedding matrix denoting class labels. Each node v € V is assigned to a time period 7(v). We
define a sequence of subgraphs, Gy, ..., Gk, such that each subgraph G; = (Vy, &, Ay, X¢) from G is
formulated based on the following rules:

» ForedgesinGy: e = (s,0) €& < ecand7(s) =1,
* FornodesinG;: veV, < 7(v) =tor ((s,v) € €and7(s) =1t),

where s is a source node and o (or v) is a target node. We can assume 7(0) < 7(s) for (s,0) € £
(e.g. in a citation network, a paper can not cite another paper published in the future). The nodes
on each subgraph G;, are divided into three sets for training, validation, and test. We implement a
GNN to perform node classification tasks and sequentially train the model on Gy, ..., Gx. When the
model is trained with a new task T3, it has no access to Gy, ..., G;—1 and Gy 1, ..., G,. However, a
small memory buffer is allowed to preserve useful information from previous tasks. The objective
is to optimize the overall performance of the model on test nodes from all tasks when the model is
incrementally trained with new tasks.

Problem 2. Graph coarsening. Given a graph G = (V, £) with n = |V| nodes, the goal of graph
coarsening is to reduce it to a target size n’ with a specific ratio ¥ where n’ = |y -n], 0 < v < L.
We construct the coarsened graph G” = (V",E") through partitioning V to n’ disjoint clusters
(C1,...,Cpr), so that each cluster becomes a node in G,.. The construction of these clusters (i.e., the
partition of a graph) depends on coarsening strategies. The node partitioning/clustering information
can be represented by a matrix ) € B 1f we assign every node ¢ in cluster C; with the same
weight, then @Q;; = 1; If node 7 is not assigned to cluster C;, Q;; = 0. Let c; be the number of node
in C; and C = diag(cy, ..., ¢p/). The normalized version of @) is P = QC/2 1tis easy to prove P
has orthogonal columns (PP~! = I), and P;; = 1/,/¢; if node i belongs to C;; P;; = 0 if node i
does not belong to C';. The detailed coarsening algorithm will be discussed in the next section.

3 Methodology

We propose TACQ, a simple yet effective continual learning framework to consolidate graph knowl-
edge learned from proceeding tasks by replaying previous “experiences” to the model. We observe
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Figure 2: An overview of TACQ. At ¢-th time period, the model takes in the coarsened graph G;_;
from the last time period and the original graph G; from the current time period, and combine them
into Gy’; for the same time period, the selected important node set is updated with the new nodes; the
model is then trained on G with both the new nodes and the super-nodes from the past; finally Gy is
coarsened to G for the next time period.

that the majority of experience replay methods, including those tailored for GNN, do not adequately
maintain the intricate graph topological properties from previous tasks. Moreover, in a streaming
graph setup they fail to capture the inter-dependencies among tasks that result from the presence
of overlapping nodes. The inter-dependencies are essential for capturing the dynamic “receptive
field” (neighborhood) of nodes and improving the performance on both new and old tasks [18]. To
overcome these limitations, we design a new replay method that preserves both the node attributes
and graph topology from previous tasks. Our intuition is that, if we store the original graphs from the
old task, minimal old knowledge would be lost, but it is also exceedingly inefficient and goes against
the initial intention of continual learning. Thus, as an alternative, we coarsen the original graphs
to a much smaller size which preserves the important properties (such as node features and graph
topologies) of the original graphs. We propose an efficient graph coarsening algorithm based on Node
Representation Proximity as a key component of TACQO. Additionally, we develop a strategy called
Node Fidelity Preservation for selecting representative nodes to retain high-quality information. An
overview of the proposed framework is provided in Figure 2. The pseudocode of TACQ is described
in Algorithm 1 and RePro is described in Algorithm 2 in Appendix D.2.

Overall framework We summarize the procedure of our framework as three steps: combine,
reduce, and generate. At task t, we combine the new graph G, with the reduced graph G; ; from
the last task. Then we reduce the combined graph Gf to a set of clusters. At last, we generate the
contributions of nodes in each cluster to form a super-node in the reduced graph G;. The last step
decides the new node features and the adjacency matrix of the reduced graph. We convey the details
of each step below.

3.1 Step 1: Combine

We use M (e.g., a hash table) to denote the mapping of each original node to its assigned cluster
(super-node) in a reduced graph G". In the beginning, we initialize G§ as an empty undirected graph
and M as an empty hash table. At task ¢, the model holds copies of G;__;, M;_; and an original
graph G; for the current task. G; contains both new nodes from task ¢ and old nodes that have
appeared in previous tasks. We first “combine” G; with G;_; to form a new graph G5 by checking the
hash table M;_; and aligning the co-existing nodes in G; and G;_;. By doing so, we retrieve the
inter-task edges. We train the model f to perform node classification tasks on the combined graph
Gf = (Af, X7,Y)°) with the objective arg ming £(f (A, X7,0),Y,), where f is a L-layer GNN
model (e.g. GCN), 6 is trainable parameters of the model, and ¢ is the loss function. In this work,
new nodes and old nodes in Gy contribute equally to the loss during the training process. However, it
remains an option to assign distinct weights to these nodes to ensure a balance between learning new
information and consolidating old knowledge. We describe a more detailed process in Appendix D.1.



3.2 Step 2: Reduce

We decide how nodes are grouped into clusters and each cluster forms a new super-node in the reduced
graph. We propose an efficient graph coarsening method, RePro, by leveraging the Representation
Proximities of nodes to reduce the size of a graph through merging “similar” nodes to a super-node.
Node representations are automatically learned via GNN models without extra computing processes.
We think two nodes are deemed similar based on three factors: 1) feature similarity, which evaluates
the closeness of two nodes based on their features; 2) neighbor similarity, which evaluates two nodes
based on their neighborhood characteristics; 3) geometry closeness, which measures the distance
between two nodes in a graph (e.g., the length of the shortest path between them). Existing graph
coarsening methods concentrate on preserving spectral properties, only taking graph structures into
account and disregarding node features. However, estimating spectral similarity between two nodes
is typically time-consuming, even with approximation algorithms, making it less scalable for our
applications where graphs are dynamically expanded and coarsened. Thus, we aim to develop a more
time-efficient algorithm that considers the aforementioned similarity measures.

To get started, we have the combined graph G to be coarsened. We train a GNN model with L
(L = 2 1in our case) layers on G, such that the node embedding of Gf at the first layer (before the
activation function) is denoted by

H e R™*4" — GNND (48, X¢,0), (1)

where d" is the size of the first hidden layer in GNN. The similarity between every connected node
pair (u,v) = e € &f is calculated based on cosine similarity as 3(e) = %, where 3(e) is the
similarity score between the two end nodes of the edge e, H; is the embedding for node ¢, and || - || is
the second norm of a vector. We then sort all edges of Gf such that 3(e1) > B(e2) > ... > B(ems).
Based on this sorted list of edges, we recursively merge two end nodes (i.e., assign the nodes to the
same cluster), until the target size is reached. The class label of the merged node is determined based
on the majority votes of the original nodes. The new adjacency matrix and node feature matrix are
discussed in Step 3. The time complexity of our coarsening process is O(d" - m§) where m¢ is the
number of edges in the current graph G;.

Node Fidelity Preservation After multiple rounds of coarsening, the quality of a graph deteriorates
as its node features and labels are repeatedly processed. Furthermore, the use of a majority vote to
determine the label of a cluster can lead to the gradual loss of minority classes and cause a “vanishing
minority class” problem.

Theorem 3.1. Consider n nodes with c classes, such that the class distribution of all nodes is
represented by p = p1,p2, ..., pe, where Y ;_, p; = 1. If these nodes are randomly partitioned into
n/ clusters such thatn' = |y - n], 0 < v < 1 and the class label for each cluster is determined via
majority voting. The class distribution of all the clusters is p' = pl, p5, ..., p,, where p}, is computed
as the ratio of clusters labeled as class i and Z;l p, = 1. Let k be one of the classes, and the rest

of the class are balanced py = ... = pp—1 = P41 = ... = P¢. It holds that:

1. If pr = 1/c and all classes are balanced py = ps = ... = p., then E[p}]| = py.

2. When p, < 1/c, E[p}| < px, and E[;;—;’:] decreases as n' decreases. There exists a p™™ such that
0 < p™n < 1, and when py, < p™", ]E[%] decrease as py, decreases.

The proof of Theorem 3.1 is provided in Appendix D.3. Theorem 3.1 shows that as the ratio of a
class decreases, its decline becomes more severe when the graph is reduced. Eventually, the class
may even disappear entirely from the resulting graph. To combat these issues, we suggest preserving
representative nodes in a “replay buffer” denoted as VJ®. We adopt three strategies from [6] to select
representative nodes, namely Reservoir Sampling, Ring Buffer, and Mean of Features. The replay
buffer has a fixed capacity and is updated as new nodes are added. During the coarsening process, we
prevent the selected nodes in V! from being merged by imposing a penalty on the similarity score
B(e) such that

Ble) = HuHo

([ HLu[[| Ho |

where € is a constant and € > 0. It is worth noting that we do not remove the edges of these nodes
from the list of candidates. Instead, we assign a high value to the penalty e. This is to prevent
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scenarios where these nodes play a critical role in connecting other nodes. Removing these nodes
entirely may lead to the graph not being reduced to the desired size due to the elimination of important
paths passing through them. We make the following observation:

Observation 3.1. Node Fidelity Preservation with buffer size b can alleviate the declination of a
minority class k when py, decreases and n' decreases, and prevent class k from vanishing when py, is
small. See Appendix D.3 for further discussions.

Note that RePro does not require any additional parameters or training time. It only relies on the
learned node embeddings from the graph neural network in the continual learning. We train a GNN
model on a combined graph at each time step for node classification tasks. The node embeddings
learned from the GNN model at different layers are representative of the nodes’ neighborhoods. We
use this fact and propose to measure the similarity of two nodes based on the distance between their
embedding vectors. However, it takes quadratic time to calculate the pair-wise distance among nodes,
thus we make a constraint that only connected nodes can be merged. Since connectivity has also been
used to estimate the geometry closeness of two nodes [36], by doing so, we are able to cover the three
similarity measures as well as reduce the time complexity to linear time in terms of the number of
edges to calculate node similarities.

Our proposed approach based on node representations seems to be distinct from spectral-based
methods, but they share a similar core in terms of the preserving of graph spectral properties. See
Appendix D.4 for more details.

3.3 Step 3: Generate

From the last step, we get the membership matrix Q; € B":*™ where n§ is the number of nodes

in the combined graph, n] = |7 - n¢] is the number of nodes in the coarsened graph and + is
the coarsening ratio. Q:[¢,j] = 1 denotes that node 7 is assigned to super-node j. Otherwise,

A simple way to normalize @); is assuming each node contributes equally to their corresponding
super-node (e.g. Q:[i, j] = 1/,/¢; for all any node i that belongs to cluster/supernode j). However,
nodes might have varying contributions to a cluster depending on their significance. Intuitively, when
a node is identified as a very popular one that is directly or indirectly connected with a large number
of other nodes, preserving more of its attributes can potentially mitigate the effects of the inevitable
“information degrading” caused by the graph coarsening procedure. To address the above issue, we
propose to use two different measures to decide a node’s importance score: 1) node degree: the
number of 1-hop neighbors of the node. 2) neighbor degree sum: the sum of the degrees of a node’s
1-hop neighbors. In this step, we propose to normalize @Q); to P; utilizing these node importance
information. We calculate the member contribution matrix P; € R™ %" Let i be a node belonging
to cluster C;; at timestamp ¢, and s; > 0 be the importance score of node 7 (node degree or neighbor

degree sum), then p; (;;) = /ﬁ It is straightforward to prove that P," P; = I still holds.
vel; v
Once we have P;, we get the new reduced graph G; = (A}, X7, Y,") as:

AV = Q[ A[Qu. X] =F'X{, Y] =argmax(P,'Y/), 3)

where the label for each cluster is decided by a (weighted) majority vote. Only partial nodes are
labeled, and the rows of Y,© for unlabelled nodes are zeros and thus do not contribute to the vote.

Through training all tasks, the number of nodes in the reduced graph G” is upper-bounded by

1777 - (nmax ), Where nyax is the largest number of the new nodes for each task (See Appendix D.5

for proof); when the reduction ratio + is 0.5, the expression above is equivalent to nyax, meaning the
size of the reduced graph is roughly the same size with the original graph for each task. The number
of edges m is bounded by n¥; .y, but we observe generally m < n2;, in practice. We claim that
such a memory buffer size is reasonable for storing topology information. For instance, the default
buffer size of the Cora-full dataset in SSM [55] is 4,200, which is approximately seven times the
average graph size.



4 Empirical evaluation

We conduct experiments on time-stamped graph datasets: Kindle [14, 31], DBLP [44] and ACM [44]
to evaluate the performance of TACQO. See Appendix E.1 for the details of the datasets and E.2 for
hyperparameter setup.

4.1 Comparison methods

We compare the performance of TACO with SOTA continual learning methods including EWC
[20], GEM [29], TWP [26], OTG [12], ERGNN [57], SSM [55], DyGrain [18], IncreGNN [48],
SSRM [41], CaT [27], and DeLoMe [33]. EWC and GEM were previously not designed for graphs,
so we train a GNN on new tasks but ignore the graph structure when applying continual learning
strategies. ERGNN-rs, ERGNN-rb, and ERGNN-mf are ERGNN methods with different memory
buffer updating strategies: Reservoir Sampling (rs), Ring Buffer (rb), and Mean of Features (mf) [6].
SSRM is an additional regularizer to be applied on top of a CGL framework; we choose ERGNN-rs
as the base CGL model. Besides, finetune provides the estimated lower bound without any strategies
applied to address forgetting problems, and joint-train provides an empirical upper bound where the
model has access to all previous data during the training process.

We also compare RePro with five representative graph coarsening SOTA methods. We replace the
coarsening algorithm in TACO with different coarsening algorithms. Alge. JC [7], Aff.GS [28], Var.
edges [30], and Var. neigh [30] are graph spectral-based methods; FGC [21] considers both graph
spectrals and node features. We follow a standard implementation [15] for the first four methods.

4.2 Evaluation metrics

We use Average Performance (AP?T) and Average Forgetting (AF]) [6] to evaluate the performance
on test sets. AP and AF are defined as
1 X

T
1
AP = — j;aT,j’ AF =2 j=1 lefn gy 407 T AT “)

where T is the total number of tasks and a; ; is the prediction metric of the model on the test set of
task j after it is trained on task 7. The prediction performance can be measured with different metrics.
In this paper, we use macro F1 and balanced accuracy score (BACC). F1-AP and F1-AF indicate the
AP and the AF for macro F1 and likewise for BACC-AP and BACC-AF. We calculate the macro F1
and BACC scores for multi-class classification [13].

4.3 Main results

We evaluate the performance of TACQO and other baselines on three datasets with three backbone
GNN models, including GCN [19], GAT [46], and GIN [49]. We only report the node classification
performance with GCN in Table 1 due to the space limit. See Appendix F.1 for results on GAT and
GIN. We report the average values and the standard deviations over 10 runs. It shows that TACO
outperforms the best SOTA CGL baseline method with high statistical significance, as evidenced
by p-values below 0.05 reported from a t-test. Additionally, we note that despite being Experience
Replay-based methods, ER-rs, ER-rb, and ER-mf do not perform as well as SSM and TACQ,
highlighting the importance of retaining graph structural information when replaying experience
nodes to the model. Furthermore, we infer that TACQO outperforms SSM due to its superior ability to
preserve graph topology information and capture task correlations through co-existing nodes.

4.4 Ablation studies

4.4.1 Graph coarsening methods

We evaluate the performance of RePro by replacing the graph coarsening module of TACQO with five
widely used coarsening algorithms while keeping all other components unchanged. For each method,
we report the average time in seconds consumed to coarsen the graph. We also report a trade-off value
which is defined as the coarsening time (in seconds) needed to increase or decrease the AP/AF by 1%
compared with fine-tuning, as shown in Table 2. For instance, the trade-off for F1-AP is defined as



Table 1: Node classification performance with GCN as the backbone on three datasets (averaged over
10 trials). Standard deviation is denoted after +.

Kindle DBLP ACM
Method F1-AP(%) 1 FI1-AF (%) | F1-AP (%) 1 FI1-AF (%) | FI-AP (%) 1 FI-AF (%) |
jointtrain ~ 87.21 +£0.55 045 £025 8633 138 077 =£0.13 7535 149 187 +£0.60
finetune 69.10 £10.85 18.99 £11.19 67.85 +8.05 2043 +£7.07 6053 +£9.35 19.09 £9.23
simple-reg  68.80 £ 10.02 18.21 +£1049 69.70 £9.16 18.69 £848 61.63 £10.09 17.83 +9.99

EWC 77.08 + 837 10.87 +8.62 7938 +4.86 885 +4.11 6648 643 12.73 £6.26
TWP 7890 + 471 899 +£493 8005 £371 823 +328 6598 £7.26 1333 £6.94
OTG 69.01 £+ 10.55 18.94 +£10.79 68.24 +10.12 20.12 +9.34 6145 +9.94 18.33 +£9.86
GEM 76.08 +£6.70 11.01 £727 80.04 +£324 790 £268 67.17 424 11.69 £3.94

ERGNN-rs  77.63 +3.61 9.64 +4.19 7802 +£579 1008 +516 6482 +7.89 1443 +£7.68
ERGNN-rb 75.87 +6.41 1146 +698 7516 +7.24 1285 +6.54 63.58 +8.82 1566 £8.71
ERGNN-mf 77.28 +591 10.15 +6.31 7742 +525 10.64 +438 64.80 +849 1459 +8.41
DyGrain 69.14 £ 1047 18.88 £+ 10.72 67.52 +10.88 20.83 +10.16 61.40 £9.57 18.47 £9.50
IncreGNN  69.45 £ 10.34 1848 £10.66 6940 +9.60 1892 +£875 6132 +£9.70 1842 £9.64

SSM 7899 +3.13 819 £3.63 8271 176 420 +126 6877 +£293 950 +247
SSRM 7737 £4.06 999 455 7743 £534 1066 =447 6439 £743 1472 £7.48
CaT 7512 £4.01 11.83 +£422 7624 +£3.78 9.06 +£3.14 6372 £221 11.86 +2.32

DeLoMe 7693 +£3.83 10.16 +4.68 77.27 £2.85 8:01 +2.16 6454 +£242 1075 £2.04
TACO 8297 +2.05 491 +190 84.60 +2.01 251 +1.03 7096 +2.68 8.02 +2.33

p-value <0.0001 <0.0001 0.002 <0.0001 0.005 0.02

Table 2: Coarsen runtime (seconds) and trade-off results of different coarsening methods on three
datasets with GCN (average over 10 trials). Boldface indicates the best result of each column.

Kindle DBLP ACM
Method  Time (s) | Tari-ap 4 Time(s) | Tapiap 4 Time(s) L Tariap |
Alge. JC 8.9 0.74 70.8 4.08 11.8 1.19
Aff. GS 65.6 7.88 237.1 14.42 96.1 12.29
Var. neigh 6.9 0.59 7.3 0.43 10.3 1.58
Var. edges 10.1 0.77 28.0 1.63 13.8 1.24
FGC 7.7 0.63 10.8 0.64 7.0 1.05
RePro 23 0.17 1.1 0.07 14 0.13

TaF1-ap = time/(F1-AP — F1-AP for fine-tuning). Complete results are provided in Appendix F.2.
The results demonstrate that RePro is considerably more efficient in computing time compared to all
other models and achieves the best trade-off across all metrics.

4.4.2 Graph reduction rates

We examine how RePro preserves original graph information. Following the setting in [15], we train
GNNs from scratch on original and coarsened graphs, then compare their prediction performance on
the test nodes from the original graph. Using subgraphs from the first task of three datasets as original
graphs, we train GCN models on coarsened graphs with different coarsening rates 1 — ~. Figure 3 (a)
shows that prediction performance is relatively stable as graphs are reduced for DBLP and ACM,
but F1 scores are more sensitive to the reduction rate on Kindle. This may be due to overfitting on
smaller datasets. Although reduced graphs may not preserve all information, they can still be used to
consolidate learned knowledge and reduce forgetting in CGL paradigm. We also test if the model
learns similar node embeddings on coarsened and original graphs. In Figure 3 (b)-(d), we visualize
test node embeddings on the DBLP dataset for different reduction rates using t-SNE. We observe
similar patterns for 0 and 0.5 reduction rates, and gradual changes as the reduction rate increases.

4.4.3 Performance after training on each task

We first investigate the performance of the model on the first task when more tasks are learned with
different CGL frameworks. We also visualize the model’s performance in terms of AP-F1 using the
four approaches on all previous tasks after training on each task on the Kindle dataset, as shown in
Figure 4. It demonstrates that the application of different CGL methods can alleviate the catastrophic
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Figure 3: (a) The test macro-F1 scores of the GCN model trained on the coarsened graphs with
different reduction rates on three datasets. (b)-(d) t-SNE visualization of node embeddings of the
DBLP test graph with a reduction rate of 0, 0.5, and 0.9 on the training graph respectively.

forgetting problem on the Kindle dataset as we point out in the introduction part to varying degrees.
Also, we observe that the performance of experience replay-based methods (SSM and TACQ) are
more stable through learning more tasks, but the regularization-based method, TWP, experiences
more fluctuations. We deduce that this is caused by the fact that regularization-based methods can
better prevent the model from drastically forgetting previous tasks even when the current task has
more distinct distributions.

4.5 Efficiency analysis

To ensure fair comparisons, for experience replay-based methods, we adjust the memory buffer size
so each model stores comparable average numbers of replay nodes. We report the average memory
usage of each model on each task in Table 10 in Appendix G.3. Since TACO needs extra space to save
topology information, its memory usage is slightly larger compared to methods that don’t preserve
graph structures. We provide memory usages of the representative methods across tasks in Table 8.

4.6 Additional studies

For those readers who are interested, we also evaluate the short-term forgetting (G.1) and the
performance of the CGL frameworks when each task is assigned with shorter time intervals (G.2). We
study the effectiveness of the Node Fidelity Preservation (G.4), and the effects of different important
node selection strategies (G.5). We also evaluate TACQO on traditional class-incremental learning
(G.6) to prove its generalizability. We present those results in Appendix G.
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Figure 4: F1 score on the test set (x-axis) after training on each task (y-axis) on Kindle dataset.

5 Related Work

Regularization, Expansion, and Rehearsal are common approaches to overcome the catastrophic
forgetting problem [43] in continual learning. Regularization methods [20, 4, 52, 10] penalize
parameter changes that are considered important for previous tasks. Although this approach is
efficient in space and computational resources, it suffers from the “brittleness” problem [43, 35]
where the previously regularized parameters may become obsolete and unable to adapt to new tasks.
Expansion-based methods [40, 51, 16, 23] assign isolated model parameters to different tasks and
increase the model size when new tasks arrive. Such approaches are inherently expensive, especially
when the number of tasks is large. Rehearsal-based methods consolidate old knowledge by replaying



the model with past experiences. A common way is using a small episodic memory of previous data
or generated samples from a generative model when it is trained on new tasks. While generative
methods [1, 2, 8, 34] may use less space, they also struggle with catastrophic forgetting problems
and over-complicated designs [38]. Experience replay-based methods [39, 5, 6, 43, 29], on the other
hand, have a more concise and straightforward workflow with remarkable performance demonstrated
by various implementations with a small additional working memory.

Continual graph learning Most existing CGL methods adapt regularization, expansion, or rehearsal
methods on graphs. For instance, [26] address catastrophic forgetting by penalizing the parameters
that are crucial to both task-related objectives and topology-related ones. [41] mitigate the impact of
the structure shift by minimizing the input distribution shift of nodes. Rehearsal-based methods [18,
57, 48] keep a memory buffer to store old samples, which treat replayed samples as independent data
points and fail to preserve their structural information. [55] preserve the topology information by
storing a sparsified L-hop neighborhood of replay nodes. However, storing topology information of
nodes through this method is not very efficient and the information of uncovered nodes is completely
lost; also it fails to capture inter-task correlations in our setup. Besides, [12] present an approach
to address both the heterophily propagation issue and forgetting problem with a triad structure
replay strategy: it regularizes the distance between the nodes in selected closed triads and open
triads, which is hard to be categorized into any of the two approaches. [27] uses a condensed
graph as the memory buffer and employs a "Training in Memory" scheme that directly learns on
the memory buffer to alleviate the data imbalance problem. However, the condensed graph contains
only sampled nodes with self-loops, resulting in the loss of valuable topology information. [33]
stores the learned representations of the sampled nodes as a memory store, which can preserve graph
structure information. However, it still cannot handle inter-task edges, and the stored representations
are inadequate for dealing with the dynamic receptive field of old nodes when new nodes form
connections with them. Some CGL work [47, 50] focuses on graph-level classification where each
sample (a graph) is independent of other samples, whereas our paper mainly tackles the problem of
node classification where the interdependence of samples plays a pivotal role.

To better highlight the advantages of our proposed method, we provide a comparison between our
method and these experience-based methods in Table 3. Our method, TACQ), is the only one that
can preserve graph topology, handle inter-task edges, and consider the growing receptive field of old
nodes.

Table 3: Comparision between experience replay-based CGL methods.

ERGNN DyGrain IncreGNN SSRM SSM SEM CaT DeLoMe PGDNN TACO
[57] [18] (48] [41] [55] [56] [27] [33] [53]
Replay buffer Node feat. Node feat. Node feat. Node feat. Sparsified Sparsified Condensed Node Decoupled Coarsend

graph graph graph repre. node repre. graph

Graph topology X X X X \/ \/ X \/ / \/
Inter-task edges X X / X X X X X X \/
Dynamic reception field X \/ X X X X X X X /

6 Conclusion

In this paper, we present a novel CGL framework, TACQ, which stores useful information from
previous tasks with a dynamically reduced graph to consolidate learned knowledge. Additionally, we
propose an efficient embedding proximity-based graph coarsening method, RePro, that can preserve
important graph properties. We present a Node Fidelity Preservation strategy and theoretically prove
its capability in preventing the vanishing minority class problem. We demonstrate the effectiveness
of TACO and RePro on real-world datasets with a realistic streaming graph setup.
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Appendix

A Limitations

This work only considers situations where nodes and edges are added to streaming graphs with
a single relation type. In the future, we plan to investigate CGL methods when nodes and edges
can be deleted or modified. Moreover, we will generalize our method to complex graphs such as
multi-relation graphs and broader graph tasks such as link prediction for recommendation systems.

B Broader impacts

By alleviating the forgetting problem in graph continual learning, the proposed TACO model retains
old knowledge while integrating new information. This is crucial for maintaining accurate and
reliable models in critical domains with constantly evolving data, such as healthcare, biomedical
informatics, and knowledge graphs.

C Related work on Graph Coarsening

Scalability is a major concern in graph learning. Extensive studies aim to reduce the number of
nodes in a graph, such that the coarsened graph approximates the original graph [17, 30, 7, 28].
In recent years, graph coarsening techniques are also applied for scalable graph representation
learning [24, 9, 11, 15] and graph pooling [37, 25, 22]. Most graph coarsening methods [17, 30, 7, 28]
aim to preserve certain spectral properties of graphs by merging nodes with high spectral similarity.
However, such approaches usually result in high computational complexity especially when a graph
needs to be repetitively reduced. Also, the aforementioned methods rely solely on graph structures but
ignore node features. [21] propose to preserve both spectral properties and node features. However,
it models the two objectives as separate optimization terms, thus the efficiency problem from the
spectral-based methods remains.

D Supplemental Methodology

D.1 Overall framework

In the proposed framework, during the training process, we use a reduced graph G" as an approximate
representation of previous graphs, and a function M(+) (e.g., a hash table) to map each original node
to its assigned cluster (super-node) in G” (e.g., if an original node i is assigned to cluster j, then
M(i) = j). Both G] and M,(-) are updated after the ¢-th task.

To get started we initialize G§; as an empty undirected graph and M as an empty hash table. At task
T}, the model holds copies of G;_;, M;_; and an original graph G, for the current task.

We combine G; with G;_; to form a new graph G; according to the following procedure:

1. Initialize the combined graph Gf = (A$, XF,Y,¢) as G/_; such that A = A} _,, Xf = X ,,and
Yo=Yl

2. Case I: new source node and new target node. For each edge (s,0) € &,if 7(s) = 7(0) = t, we
add s and o to Gf, and we add an undirected edge (s,0) to Gy ;

3. Case 2: new source node and old target node. If 7(s) = t,but 7(0) < t,and 0 € M;_1, we add
s to Gf, and we add an undirected edge (s, M;_1(0)) to G¢;

4. Case 3: deleted target node. If 7(0) < t and o ¢ M;_1, we ignore the edge.
5. When a new node v is added to Gy_, it is also added to M;_; and is assigned to a new cluster.

It is worth noting that we use directed edges to better explain the above procedure. In our implemen-

tation, the combined graph is undirected since the directness of the edges of the combined graph is
not critical in learning node embeddings in a graph like a citation network.
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D.2 Pseudocode

The pseudocode of the proposed TACQ is described in Algorithm 1 and the graph coarsening
process RePro is described in Algorithm 2

Algorithm 1 The Proposed Method TACO

1: Input: A sequence of graphs Gy, ..., Gi, (G, is only accessible at task t)
2: Output: A trained GNN node classifier f with parameter
3 G Mo, Vit — 2, (1 {}
4: fortaskt— 1 tokdo
(Gf, M;_1) < combine(G;, G 1, M;_1)
for epoch=0 to num_epoch do
Train f on Gf and update 6
end for
9: V7 < SamplingStrategy(Vi®,, G;)
10: Compute node embedding H; based on Eq. 1
11: Pi,Q¢, P(+) « GraphCoarseningAlgorithm(G;, H;, VI?)
12: Compute G; based on Eq. 3.
13: My My(v) = P(M_1(v)) forv e My
14: end for
15:
16: function COMBINE(G, G;_{, M;_1)
17: Gf + G/,
18: for each edge (s,0) € &, do

AN AN

19: if T(s) = T (o) =t then

20: Add s and o to G and M;_

21: Add an undirected edge from s to o on Gf

22: else

23: if7T(s)=tand T(s) <tando € M;_; then
24: Add s to G and M;_,

25: Add an undirected edge from s to M;_1(0) on Gf
26: end if end if

27: end for
28: Return G7, M;_;
29: end function

D.3 Node Fidelity Preservation

Theorem 4.1. Consider n nodes with c classes, such that the class distribution of all nodes is
represented by p = p1,p2, ..., pe, where Y ;_, p; = 1. If these nodes are randomly partitioned into
n' clusters such thatn' = |y - n], 0 < v < 1 and the class label for each cluster is determined via
majority voting. The class distribution of all the clusters is p' = pl, p%, ..., p,, where p), is computed
as the ratio of clusters labeled as class i and y ;_, p; = 1. Let k be one of the classes, and the rest
of the class are balanced py = ... = pp_1 = P41 = ... = Pc. It holds that:

1. If p, = 1/c and all classes are balanced p1 = ps = ... = p,, then E[p,] = pi
2. When py, < 1/c, E[p}] < px, and IE[p—:’:] decreases as n' decreases. There exists a p™™ such that
0 < p™" < 1, and when py, < p™", E[@] decrease as py, decreases.

Proof. We prove the theorem by deriving the value of E[p} ]. Since E[pj ] is invariant to the order of
the classes, for convenience, we consider ¢ = 1 without losing generability. The probability of the
first class after the partitioning is:

’

E[na]q(a, p), (5)

1
n'
a

E[p}] =

I
—



Algorithm 2 The Proposed Graph Coarsening Algorithm RePro

Input: The original graph G, node embedding matrix H, node sets V"t and the reduction rate 0%
Output: partition matrix @), normalized partition matrix P, and the mapping function P(-)
Initialize the mapping function P(-) such that P(v) = v forv € V

n" |V

ntarget . |_7" . |VH

Sort all edges e € £ in the descending order based on their similarity scores calculated according
to Eq. 2

7: for each edge e = (u,v) € £ do

8: if P(u) # P(v) then

AN AN S Sl

9: // if v and v are in different clusters
10 Merge the clusters of « and v such that P(u) = P(v)
11: n"=n"-1
12: end if
13:  ifn” < nlar&el then
14: Break
15: end if
16: end for

17: Construct @ with P(-); compute P based on p; (;;) = /ﬁ
ve j v
18: Return Q, P, P(-)

where E[n,] is the expectation of the number of clusters containing a nodes, and ¢(a, p) is the
probability that class 1 is the majority class in a cluster with size a.

Property D.1. The expectation of the number of clusters containing a node is

-1 n—n'—(a—1)
(Y (1YL
E[n,) =n' x ( w1 — 1 — :

Proof. Define I; to be the indicator random variable for the j th cluster, such that:

I _ 1 if the j*" cluster contains exactly a samples,
7710 otherwise.

We first compute the expected value of I; for a single cluster. Let’s calculate the probability that
a — 1 out of the n — n’ samples are allocated to the ;%" cluster:

!’
n—n
a—1

(a) There are ( ) ways to choose @ — 1 samples from the n — n’ remaining samples.

a—1

(b) The probability that each of these a — 1 samples is placed in the jth cluster is (&
p y p p o

(¢) The remaining n — n’ — a + 1 samples from our original pool of n — n’ should not be allocated
to the 5" cluster. The probability that all of them avoid this cluster is (1 — )" " ~(a-1),

Thus, the probability that the j*" cluster contains exactly 2 samples is:

o 1 a—1 1 n—n'—(a—1)
o O

The expected number of clusters out of all n’ clusters that contain exactly a samples is:

Ena] = > E[L;]. (M



Given that each I; is identically distributed, we can simplify the sum:

Eng] = n’ x E[I;]. ®)

Substituting the expression derived for E[I;] from step 2, we obtain:

Y, a—1 n—n'—(a—1)
L I R
a—1 n n

O
It is easy to show that when p; = ps = ... = p,, it holds that ¢(a,p) = % since all classes are
equivalent and have equal chances to be the majority class. Thus:
ol
Blp] = — " ElnJa(a, p)
a=1
1 &
1 i CEAYE! ol L1 non'=(a=1) 4 (10)
= — n _— —_ — —
n’ o a—1 n’ n’ c
11
e
1
Cc

To compute ¢(a, p), we need to consider the situations in which class 1 is the exclusive majority class
and the cases where class 1 ties with one or more other classes for having the most samples. In the
second case, we roll a die to select the majority class from all the classes that have most samples.

To start, we consider the situation when class 1 has the most nodes and no other classes tie with it.
We enumerate all possible combinations of class assignments and calculate the probability of each.

a 11—1 i1—1

=> > - Zl{zwfa}flap) (11)

Zl 112 0 C—O
where i = i1, 5...7., and
(& . .
. a—1... — 1k ; I
f(l,a,p) = H ( . )p;ck(l _pk)a i (12)
k=1 k
and
D1 ifk=1
=<9 L 13
Pk {lc_pll otherwise (13)

We then consider the situation when class 1 ties with another class. We first select another class that
ties in with class 1, and we enumerate the possibility of other classes. We multiply the whole term by
% as there is an equal chance to select either class as the majority class.

1 c a i1—1 i1 11—1 c

ql(a,p):§Z ZZ Z Zl{sz:a}f (i,a,p) | . (14)

J1=2 \11=11i2=0 15, =41 1.=0 k=1
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We extend the above equation to a general case where class 1 ties with k classes A<k<c-1.
Here we need to select k classes that tie with class 1. Class 1 now shares a kT—l chance to be selected

as the majority class with the selected & classes.

c—k+1c—k+2
J1=2 j2=j1 Jk=Jk—1 1
a i1—1 i1—1 ( )
153D 3D S o Zl{sz—a}flam
11=112=0 1 =1 ij 711 i.=0 k=1
Finally, we combine all the cases, and the probability that class 1 is the majority class is:
c—1
a,p) = qr(a,p). (16)
k=0
The expectation of % is thus:
Pl
E[n.]q(a a7n
1 pl n’ Z 'P)
To study the behavior of IE[ ] when p; changes, we derive the following derivative:
dE[%] i Elnag(a.p)
dp dp
' , 1 (18)
1 n d‘](a’P)
I E . Pp1
T
where
d(I(ﬂ p) c—1 ko(aP)
dpl =0 d
c—k+1c—k+2 i1—1 i1—1 lap)
DD SN PSP Z > ZMZ%—@} v
J1=2 je=j1  Jk=Jjr-1 \t1=112=0 (=i Gy, =i ie=0 k=1
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f(i,a,p)

To find

we first separate the terms that are independent of p;:

i,a,p 1 v (a—ii...—ig i I
f( ): H( 1‘ >pkk(1_pk)a G —...—ig

P1 1 23

:1< C%h ﬂﬁ)ﬂpl_man”mk
pr\; 5
c afil...fik i1—1 a—i
= 1 —_ 1
( ( i )) (1—p1)
k=1

« (Azh L 1=m DLy otz i
c— c— (20)
=ux pi T (1 = pr)* T (L = pr) k=2 (py ¢ — 2) k=2 07T
b

(_/9\\ a—i1+Zik
—uxpll Tl (1= py)

»

c

E a—ig... —ik

X (pl +c— 2)k:2 ;

where  is independent of p;

S fa— ... — i 1 S iR, a—in...—ik
_ _ - 21
Y (chl_[l ( ik >> (C— 1) @D

‘We observe that % demonstrates different behaviors for ¢ = 1 and a > 1 and discuss the two

cases separately.
(1) When a = 1, it holds thati; = 1,0 = 0, ¢ = 0, and ¢ = 0:
i,a,
f(pm—uxp?(lpl)o(lerc?)o—w 22)
1

aflep) . .
In such case, d;i is independent with p; and remain constant when p; changes.

(2) When a > 1, it holds thati; < 1,0 > 0,¢ > 0,7 > 0,and 0 + ¢ > O:

df(isavp)

— L =u (1 =p) T e =2, (23)
dp

where
=0(1—p)(p+c—2)+¢p(l—p)—¢p(p+c—2)

=(-0—0—)p*+ O+ ¢+ (¢—0)(c—2))p+0(c—2).

f@,a,p)

(24)

When 0 < p; < landu > 0,
is:

= 0 if and only if v = 0, and the corresponding value of p;

—(0=0-(c=)+é—v-n)—VA

0 _
p = 7090 : (25)
1_—(0-0-(c-2)+¢-¢-n)+VA

20



where
A=(0—-0(c—2)+¢—1 (c—2)" —4(—0—¢—1) (0 (c—2)). 27)

It is easy to show that A > 0, and since (—f — ¢ — 1)) < 0, v is concave, v > 0 when p} < p < p.
Also, it is observed that when p; = 0,

v=~0(c—2)>0; (28)
when p; =1,
v=—¢(c—1)<0. (29)
Thus it must be held that 0 < pJ < 1 and p? < 0, and for any (i,a > 1), there exista 0 < p1(i,a >
df(i‘arp)
1)? < 1 such that when p; < pY(i,a > 1), > 0. Let
min — 30
b1 Vae{zm i lEIpl( a), (30)
a(a,p)
where I is all possible i, then it holds that 0 < pTi" < 1, and when p; < pi™, > 0.
Next, we show that IE[ } decreases as n’ decreases when p; < 1/c. We first rewrite IE[ ] as

Pl
E[=— E[ng]q(a
1 Tpin jg: ala(a.p)

o ; (Z_Z) ( />a_1 <1 N ;/)"_"1_(“_1) q(a,p)

First, we show that g(a, p) is smaller for larger a when p; < 1/c¢. The intuition is that when a new
node is added to a cluster originally with a — 1 nodes, the new node has a higher probability of being
another class, and the likelihood of class 1 becoming the majority class decreases.

€1y

. —n’ -1 —n'—(a—1
Next, we show that when n’ increases, ("_77) (#)a (1- %)n n=(@=1) pecomes more lefi-

skewed, that it gives a smaller value for large a. The intuition is that, as the value of n’ increases, the
average cluster size is expected to decrease. As a result, a large a becomes farther from the average
cluster size, and the probability of a cluster having exactly a nodes decreases, leading to a decrease in
the ratio of clusters with size a.

With the above observations, it can be concluded that when p; < 1/¢, the value of IE[ ] decreases
as n’ decreases. O

Observation 4.1. Node Fidelity Preservation with buffer size b can alleviate the declination of a
minority class k when py, decreases and n' decreases, and prevent class k from vanishing at small
when py, is small.

The mechanism of Node Fidelity Preservation is to “hold” b clusters such that each cluster only has 1
node. We already show that when a = 1, % is independent of ¢; and so E[p}] = p;. By doing so,
we make sure that among the b nodes, class 1 does not decline as p; or n’ decline.

We demonstrate the effect of Node Fidelity Preservation with examples. We assign n = 1000,
¢=2,3,and b = |n//5]. we plot change of E[ ] and E[p]] at different »’ and p; separately in

Figure 5. We draw the trend with Node Fidelity Preservatlon (NFP) using dash lines and without
NFP using solid lines From the figure, we observe that without Node Fidelity Preservation being

applied, the ratio E[ ] approaches zero when n’ is small, resulting in a vanishing minority class.

The application of Node Fidelity Preservation prevents the ratio from approaching zero and makes
sure class 1 won’t disappear when p; is small.
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Figure 5: E[p)] and ]E[:%] against p; at different reduction rate -y for ¢ = 2 and ¢ = 3. The dashed

lines represent trends with Node Fidelity Preservation (NFP), and the solid lines represent trends
without NFP.

D.4 Node Representation Proximity

Spectral-based methods aim to preserve the spectral properties of a graph. Specifically, the Laplacian
matrices of the original graph and the reduced graph are compared with each other [30]. The
combinatorial Laplacian of a graph G, L € R™*" is defined as L = D — A, where A € R"*" is the
adjacency matrix of G, and D € R™*" is its diagonal degree matrix. The combinatorial Laplacian of

the reduced graph, L' € R™ X”/, is calculated as L' = PTLP™, where P is the pseudo inverse of

the normalized coarsening matrix P € R™*" and P¥ is the transposed pseudo inverse of P. Since
L and L’ have different sizes, they can not be directly compared. Instead, the following induced

semi-norms are defined:
lz|lL = V2T L, ||2|| = Va'T L2/, (32)

where x € R™, and 2’ is the projection of  on n’-space such that 2’ = Pz. The closeness between
L to L' can be defined as how close ||z, is to ||2||z.. L and L’ are considered equivalent if it
holds ||2'||, = ||z| L for any z € R™. We next show that a partitioning made by merging nodes
sharing the same neighborhood structure results in an equivalent Laplacian of the reduced graph as
the original graph.

Theorem D.1. Let i and j be two nodes of G, A € R™*" be the adjacency matrix of G and A = A+1,
D be the diagonal matrix of A and D=D+1 , P € R**"~1 pe the normalized coarsening matrix
by merging ¢ and j to one node, L and L’ be the combinatorial Laplacian of GG and the reduced graph.
It holds that A; = A;, D; = D; = ||2/||» = ||z||1. for any 2 € R™ and 2’ = Px, where A; is the
i-th row for a matrix A.

Proof. Given that A; = A; and D; = D;, denote these common rows as A;; and D;;, respectively.

The norm ||z||, is defined as:
|z|| = 2 Lz,
where L = D — A is the combinatorial Laplacian of G.
Similarly, for the coarsened graph, the norm ||z’|| ./ is defined as:
2’|z = (P2)" L' (Px),

where L' is the combinatorial Laplacian of the coarsened graph.
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We need to show that ||z|| 1, = ||2/||

First, consider the left-hand side norm:

|||z = 2T Le = 27(D — A)z.

Given the structure of A and l~), we have:

2]l = ZDkkwi - Zflkl:ckxl.
k k,l

When merging nodes ¢ and j, the coarsening matrix P combines these two nodes into one. Thus,
/
z’ = Px.

The matrix P is such that it preserves the sum of entries corresponding to the merged nodes,
maintaining the structure of the Laplacian. Therefore, we have:

PTP =T (except for the merged nodes).

The reduced Laplacian L’ after merging ¢ and j incorporates the sum of the rows and columns
corresponding to ¢ and j in A and D. Since A; = A; and D; = D, the rows and columns
corresponding to ¢ and j are identical, thus preserving the overall structure and norm.

Therefore, we have:
||l = (Pe)"L'(Pa) = 2" Lz = |z

O
D.5 Proof of the size of the reduced graph
Proof. The number of nodes of the reduced graph at task ¢ is:
n=(1—=9)(..((1 =y)n1 +na)... + n¢)
< (1 — ’y)(((l — 'y)nMAX =+ nMAx)... + ’nMAx)
= (=7 + (1 =)+ ..+ (1 =7))nmax
1 —
< ’ynMAX
O

D.6 Discussion on utilizing soft labels as an alternative to majority voting

Another potential solution to address the “vanishing class” problem caused by the majority voting
is to use soft labels to represent the cluster label instead. However, such an approach may come
with several drawbacks. First, using hard labels is memory-efficient, and requires only a single
digit to represent a sample’s label. In contrast, soft labels use a vector for storage, with a size
equivalent to the model’s output dimension. This distinction in memory usage is negligible for
models with few output classes. However, in scenarios where the model predicts among a large
number of classes, the increased memory demand of soft labels becomes significant and cannot be
overlooked. Second, although a model can learn to predict a soft label during the training phase, most
applications necessitate deterministic predictions in the testing or inference phase. We are concerned
that training with soft labels might lead the model towards indeterministic and ambiguous predictions,
potentially undermining its practical applicability. The last concern is that when using soft labels,
instead of a classification task, the model is performing a regression task. To predict single nodes
with deterministic labels, it is considered a suboptimal approach to model it as a regression task due
to the unaligned optimization objectives and loss functions. Also, regression is believed to be a less
difficult task to learn compared to classification task as discrete optimization is generally harder than
continuous optimization. Training the model with an easier task may restrict its performance during
the test phase.
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Table 4: Statistics of datasets. “Interval” indicates the length of the time interval for each task. “#
Item” indicates the total number of items/papers in each dataset.

Dataset Time Interval #Task #Class #Items

Kindle 2012-2016 1 year 5 6 38,450
DBLP 1995-2014 2years 10 4 54,265
ACM  1995-2014 2years 10 4 77,130

E Supplemental experiment setups

E.1 Details of the datasets

The Kindle dataset contains items from the Amazon Kindle store; each node representing an item
is associated with a timestamp indicating its release date, and each edge indicates a “frequently
co-purchased” relation between items. The DBLP and ACM datasets are citation datasets where each
node represents a paper associated with its publishing date, and a node’s connection to other nodes
indicates a citation relation. For the Kindle dataset, we select items from six categories: Religion &
Spirituality, Children’s eBooks, Health, Fitness & Dieting, SciFi & Fantasy, Business & Money, and
Romance. For the DBLP dataset, we select papers published in 34 venues and divide them into four
classes: Database, Data Mining, Al, and Computer Vision. For the ACM dataset, we select papers
published in 66 venues and divide them into four classes: Information Systems, Signal Processing,
Applied Mathematics, and Al. For each of the datasets, we select nodes from a specified time period.
We build a graph and make a constraint that the timestamp of the target node is not allowed to be
larger than the source node, which should naturally hold for citation datasets as one can not cite
a paper published in the future. Then we split each graph into subgraphs by edges based on the
timestamps of the source nodes. To simulate a real-life scenario that different tasks may have different
sets of class labels, at each task for the Kindle dataset, we randomly select one or two classes and
mask the labels of the nodes from selected class(s) during the training and the test phase; for the
DBLP and ACM datasets, we randomly select one class and mask the labels of the nodes from the
selected class during the training and the test phase. The summary of each dataset is provided in
Table 4.

E.2 Hyper-parameter setting

For each task, we randomly split all nodes into training, validation, and test sets with the ratio of
30/20/50. For the baseline CGL models the memory strengths are searched from {10%|i € [-5...5]}
or {0.1,0.2...0.9}. For baselines that utilize a memory buffer, we calibrate their memory buffer sizes
to ensure that their memory usage is on a similar scale to that of TACQO. For TACQ), by default the
reduction ratio is 0.5; memory buffer size for Node Fidelity Preservation is 200; node degree is used
to determine a node’s importance score, and Reservoir Sampling is chosen as the node sampling
strategy. We chose GCN and GAT as the GNN backbones. For both of them, we set the number of
layers as 2 and the hidden layer size as 48. For GAT, we set the number of heads as 8. For each
dataset, we generate 10 random seeds that split the nodes into training, validation, and test sets and
select the masked class. We run all models on the same random seeds and the results are averaged
over 10 runs. All experiments were conducted on a NVIDIA GeForce RTX 3090 GPU.

F Additional results

F.1 Main results

We present more results of the performance of TACQO and other baselines on three datasets and two
additional backbone GNN models, GAT (Table 5) and GIN (Table 6). The results show that our
proposed method outperforms other continual learning approaches consistently with different GNN
backbone models.
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Table 5: Performance comparison of node classification in terms of F1 and BACC with GAT on three
datasets (average over 10 trials). Standard deviation is denoted after +.

Dataset Method F1-AP (%) T F1-AF (%) | BACC-AP (%) T BACC-AF (%) |
jointtrain  88.54+0.70 0.3540.27 82.71£1.02 0.62+0.46
finetune 68.68£11.55 20.05£11.59  66.89+£4.90 16.91£5.32
simple-reg  66.20+10.89 19.26+11.18  64.61£3.98 15.24+4.48

EWC 78.95£5.62  9.924+5.79 73.49£2.76 10.30£3.33
TWP 78.17£6.67 10.85£6.71 73.23£3.06 10.78+3.58
OTG 70.09£9.66 18.78+10.02  67.50+4.24 16.53+4.65
Kindle GEM 76.46£7.14 11.86£7.61 72.52£2.56 10.97£3.49

ERGNN-rs  78.64+4.36 9.56+4.57 72.19£2.95 10.70£3.20
ERGNN-rb 75.60+7.14 12.66+£7.34  71.86+3.16 11.55£3.32
ERGNN-mf 78.144£5.22 10.35£5.59  72.9443.05 10.90£3.89
DyGrain ~ 70.65+10.05 18.284+10.44  68.16+4.05 15.77£4.89
IncreGNN  70.66+10.57 18.18+£10.76  68.06+4.50 15.92£5.06

SSM 81.84+2.10 6.58+2.59 74.64£3.10 8.81+2.62
SSRM 78.09£4.54 10.20£5.15  71.99£2.46 11.17£3.39
TACO 83.66+1.93 4.69+1.82 76.58+3.07 6.34+2.13
joint train  83.43£1.81 1.08+0.31 76.97+1.94 1.791+0.64
finetune 65.75£10.67 21.68+9.76  64.21+4.21 18.76£3.28
simple-reg  68.85+£9.68 18.49+8.58  66.21+4.01 16.81£2.75
EWC 76.33£5.71 11.12+£5.02  71.05£3.83 12.16+3.41
TWP 76.64+£4.47 10.61£3.77  70.95+3.22 12.03£2.98
OTG 67.50£10.70 20.06+£9.90  65.65+4.40 17.57+3.63
DBLP GEM 73.64+£6.07 12.76+£4.77  67.53+4.47 14.42+3.24

ERGNN-rs  75.36+5.62 11.87£4.62  70.07+3.88 12.95+3.44
ERGNN-rb 71.65+7.32 15.20£6.34  67.16+3.86 15.37+3.07
ERGNN-mf 74.62+6.16 12.55£5.29  68.97+4.20 13.90£3.61
DyGrain 65.83£10.05 21.624+8.96  63.80+4.18 19.10+2.71
IncreGNN  66.23+11.16 21.23+10.52  64.62+4.10 18.55+3.41

SSM 81.47+£2.48 4.46£1.59 74.62+2.41 6.48+1.69
SSRM 74.31£6.00 12.63+4.68  69.15+4.18 13.57£3.41
TACO 81.63£1.06 2.2940.60 76.08+1.67 2.53+1.09
jointtrain ~ 74.89£1.53 1.9140.85 65.81£1.40 2.32+1.33

finetune 61.59+£10.85 17.79+£10.44  58.05+2.18 14.24+1.91
simple-reg  59.2249.95 17.79+9.81 55.88+2.90 14.23+1.57

EWC 66.75£7.00 12.20+6.93 61.49+1.84 10.44£1.75
TWP 67.42+£7.54 11.66+7.35 61.57£1.72 10.29£1.86
OTG 62.24+£10.88 16.99+£11.02  58.55+2.37 13.70£1.41
ACM GEM 67.01£4.61 11.16+£4.47  59.53+2.44 10.68+£2.06

ERGNN-rs  64.89+7.93 13.90£7.88  59.224+2.34 12.29£1.73
ERGNN-rb 64.04+8.59 14.74+£8.64  58.701+2.48 13.10£1.84
ERGNN-mf 64.56+9.26 14.30£9.24  59.94+1.78 11.91£1.46
DyGrain 61.66+£10.58 17.72+£10.42  58.15£2.49 14.07£1.80

IncreGNN  62.25+10.70 17.22+10.60  58.37+2.41 14.01£1.55
SSM 69.83£3.16 8.10%2.81 61.15+2.65 8.93+2.77
SSRM 64.77£8.34 1421+£893  59.47+1.97 12.23£1.72
TACO 70.37+£2.70  7.64+2.43 62.59+1.51 7.524+1.94

F.2 Graph coarsening methods

We present the trade-offs in terms of all matrices of TACQO with its graph coarsening module RePro
replaced by five other widely used graph coarsening algorithms with GCN as the backbone GNN
model in Table 7.
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Table 6: Performance comparison of node classification in terms of F1 and BACC with GIN on three
datasets (average over 10 trials). Standard deviation is denoted after +.

Dataset Method F1-AP(%) 1 F1-AF (%) | BACC-AP (%) 1 BACC-AF (%) |
jointtrain  84.394+0.84 0.5540.34 77.17£0.83 1.45+1.07
finetune 64.98+£10.26 20.24+£10.77  61.81+4.53 17.91£5.24
simple-reg  65.04+10.74 20.04+11.13  62.95+4.16 16.62+5.14

EWC 75.73£4.74  9.36%5.01 69.34+£2.84 10.07+£3.47
TWP 76.14£4.35 9.14+4.72 69.12+3.06 10.49£3.51
OTG 65.18£9.97 20.08+10.29  61.98+4.79 17.70£5.35
Kindle GEM 72.10£6.29 12.40+£6.80  66.76+£2.92 12.05+3.67

ERGNN-rs  73.674+3.22 10.83£3.84  66.72+3.00 11.84£3.40
ERGNN-rb 70.25+7.35 14.3948.01 65.53+3.14 13.70+£4.38
ERGNN-mf 72.33+6.10 12.47+6.64  67.12+3.17 12.28+4.27
DyGrain 64.50£10.18 20.78£10.74  61.55+4.45 18.13£5.36
IncreGNN  65.3849.56 19.694£9.99  61.71+5.02 17.85+5.66

SSM 76.47£3.37 8.01£3.38 67.78+2.84 10.73£3.03
SSRM 73.75£3.25 10.79£3.56  66.55£3.25 12.07£3.63
TACO 78.71£1.76  6.44+1.80 70.76+1.86 8.28+2.13
joint train  84.42+1.47 1.634+0.28 77.69£1.07 2.65+0.68

finetune 65.48+£11.96 22.85+£11.28  64.59+4.86 19.65+3.87
simple-reg  66.84+£9.64 21.85+£8.97  65.04+3.77 19.76£2.80

EWC 77.45£7.06 10.79+£6.54  71.57£5.18 12.59+4.68
TWP 77.59£4.91 10.64+4.44  71.4544.11 12.75+3.81
OTG 66.37£10.66 22.114+9.93 64.62+4.19 19.77£2.96
DBLP GEM 78.71+£4.45 9.10£3.47 72.24+3.86 11.39+3.27
ERGNN-rs 76.63+£3.94 11.47+£3.29  70.45+3.51 13.67£3.18

ERGNN-rb 73.23+7.29 14.77£6.50  68.791+4.52 15.22+3.91
ERGNN-mf 75.96+5.74 12.14£4.99  70.74%3.55 13.39£3.10
DyGrain 66.89£10.10 21.354+9.36 65.06+3.77 19.10+£2.51
IncreGNN  67.814£9.09 20.56+£8.34  65.58+3.66 18.68+£2.79

SSM 80.21£7.85 6.74£7.29 73.96+5.16 8.2444.99
SSRM 76.60£4.89 11.55+4.30  70.89+4.29 13.30£3.90
TACO 84.03+2.08 3.121+0.89 78.09+2.19 3.48+1.34
jointtrain  71.86£1.54 2.99+0.74 62.65+£1.17 2.98+1.60
finetune 57.20£9.03 20.31+£8.97  53.50£3.43 16.14£2.57
simple-reg  57.86+£9.27 19.52+£9.02  53.994+3.41 15.95+2.21
EWC 65.18£5.86 12.06+£5.68  58.64+1.78 10.90£1.84
TWP 65.45£5.56 11.72+5.35 58.76£1.78 10.63£1.60
OTG 58.24+£9.38 19.37+£9.24  54.23£3.35 15.46£2.31
ACM GEM 65.03£3.71 11.69+3.15 56.94+3.43 11.65+£2.29

ERGNN-rs  61.30+7.75 15.77£7.57  55.87+2.68 13.30£2.11
ERGNN-rb 61.124+8.25 16.10£8.07  55.82+2.60 13.81£1.74
ERGNN-mf 61.86+7.85 15.49+£7.73  56.76+2.84 13.10£1.56
DyGrain 58.09£9.46 19.43+£9.27  54.26%3.06 15.36+2.45
IncreGNN  58.214+9.17 19.43£9.03  54.10+3.15 15.78+£2.03
SSM 65.73£3.15 10.64£2.79  56.81+£2.58 11.19£3.01
SSRM 61.47£7.38 15.68+£7.14  56.09+2.64 13.02£1.55
TACO 67.19+3.12  9.73+2.80 59.06+-2.40 9.13+2.92

G Additional ablation studies and analysis

G.1 Short-term forgetting

The average forgetting (AF) measures the decline in model performance after learning all tasks,
which only captures the assess the model’s long-term forgetting behavior. To evaluate the short-term
forgetting of the model, we introduce a new metric, termed "short-term average forgetting" (AF-st),
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Table 7: Coarsen runtime and trade-offs of TACQO variations with different coarsening methods on
three datasets with GCN (average over 10 trials). Boldface indicates the best result of each column.

Dataset Method Time (s) | Tari-ap | TAFI-AF 4 TaBACC-AP | TABACC-AF 4

Alge. JC 8.9 0.74 0.69 1.17 1.02
Aff. GS 65.6 7.88 6.96 14.48 12.08
Kindle Var. neigh. 6.9 0.59 0.54 0.97 0.85
Var. edges 10.1 0.77 0.70 1.23 1.08
FGC 7.7 0.63 0.58 1.00 0.88
RePro 2.3 0.17 0.15 0.24 0.22
Alge. JC 70.8 4.08 3.90 5.65 5.20
Aff. GS 237.1 14.42 14.2 20.89 20.74
DBLP Var. neigh. 73 0.43 0.41 0.55 0.50
Var. edges 28.0 1.63 1.53 1.98 1.77
FGC 10.8 0.64 0.61 0.83 0.76
RePro 1.1 0.07 0.06 0.08 0.07
Alge. JC 11.8 1.19 1.17 1.58 1.45
Aff. GS 96.1 12.29 12.5 16.07 154
ACM Var. neigh. 10.3 1.58 1.61 1.82 1.79
Var. edges 13.8 1.24 1.20 1.65 1.50
FGC 7.0 1.05 1.06 1.15 1.11
RePro 1.4 0.13 0.13 0.19 0.17

Emm with NFP == w/o NFP

kindle DBLP ACM
84

84
82 82
80 80

78 78

76 76
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Figure 6: Average performance of the TACO with and without Node Fidelity Preserving (NFP).

which measure the decline in model performance on the most recent task when it learns a new one:

T
1
AF-st= - Z2aj*17j*1 — -1,
iz

where T is the total number of task, and a; ; is the prediction metric of model on test set of task j
after it is trained on task ¢. We report the AF-st in terms of F1 score with GCN as backbone on three
datasets in Table 8.

G.2 Shorter time interval

We investigate the performance of TACQO and other baselines when each task is assigned with a
shorter time interval. For the DBLP and ACM datasets, we divided them into one-year time intervals,
resulting in a total of 20 tasks. We have included the AP-fl and AF-f1 scores of all baselines utilizing
GCN as their backbone in Table 9. Our findings indicate that, compared to our previous dataset
splitting approach, most CGL methods exhibit a slight decline in performance, but TACO continues
to outperform the other baseline models.

G.3 Efficiency Analysis
We analyze the efficiency of TACQO and other experience-replay-based CGL baselines in terms of

training time and memory usage. We report the averaged total training time (including the time to
learn model parameters and the time to store the memory/coarsen graphs), and the averaged memory
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Table 8: The averaged short-term forgetting in terms of F1 score (%) with GCN as the backbone on
three datasets (averaged over 10 trials).

Method Kindle DBLP ACM
joint train 033 037 0.69
finetune 33.15 2225 19.57
simple-reg ~ 29.91 19.39 19.07

EWC 2292 1334 15.68
TWP 21.25 14.19 15.47
OTG 32.89 20.67 19.45
GEM 1743 9.25 10.95

ERGNN-rs 1042 8.07 10.23
ERGNN-rb 15.78 930 12.72
ERGNN-mf 1395 8.72 13.72
DyGrain 3276  20.52 19.67
IncreGNN  32.85 21.42 19.68

SSM 12.18 5.15 10.26
SSRM 9.68 832 10.51
TACO 1026  0.18 6.44

Table 9: Node classification performance with GCN as the backbone on two datasets (averaged over
10 trials) with shorter time intervals and more tasks. Standard deviation is denoted after +.

DBLP ACM
Method FI-AP(%) F1-AF(%) F1-AP (%) FI-AF (%)
jointtrain  84.38 +£149 1.60 +022 73.70 +£0.71 3.04 +0.54
finetune  66.05 £11.30 22.45 +£10.62 60.16 +8.58 19.56 £8.92
simple-teg  67.25 +£7.80 21.50 +6.86 58.44 +7.62 21.10 +£7.87

EWC 79.04 £6.15 8.84 +£5.64 66.85 £4.66 11.77 £4.72
TWP 79.35 £5.83 8.56 +£541 66.52 £4.50 12.15 +4.64
OTG 67.45 £8.31 21.03 £7.33 60.28 £8.18 19.54 £8.38
GEM 79.43 £3.66 841 +£2.44 67.76 £3.01 10.58 £3.32

ERGNN-rs 75.08 +£6.32 13.13 £548 61.43 £7.76 17.64 £8.16
ERGNN-rb 71.85 £7.55 16.46 +6.51 61.23 £7.67 18.09 +7.72
ERGNN-mf 74.24 +£6.50 13.94 £5.37 63.13 £6.61 16.22 £6.83
DyGrain 67.96 £9.19 20.58 +£8.35 61.12 £8.14 18.51 £8.45
IncreGNN  66.19 +£7.88 22.34 £7.31 60.53 £8.42 19.08 £8.70
SSM 82.08 £1.99 437 =+1.12 67.22 £1.95 10.63 +2.30
SSRM 7535 £6.14 1295 £5.19 62.11 £7.61 17.09 +£7.91
TACO 83.06 +2.25 4.18 +1.69 68.31 +3.21 10.17 £3.63
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Figure 7: Average performance of the TACO with different node sampling strategies: Reservior-
Sampling (rs), Ring Buffer (rb), and Mean Feature (mf).
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Figure 8: Memory usages of different methods over tasks.

usage of the model (including the memory to store data for current task and the memory buffer
to store information of previous tasks) for each task in Table 10. We find that on average, SSM
uses less memory than TACO on the Kindle dataset. However, on the DBLP and ACM datasets,
SSM’s memory usage is either more or similar. It’s important to note that SSM maintains a sparsified
graph that expands as additional tasks are introduced. As a result, SSM’s memory continues to grow
with the increasing number of tasks. In contrast, TACQO, with its dynamic coarsening algorithm,
consistently maintains a relatively stable memory regardless of the number of tasks.

G.4 Node Fidelity Preservation

We investigate the effectiveness of the Node Fidelity Preservation strategy by removing it from TACO
and compare the average performance of the variant of TACQO with its default version. We report
the average performance of the model on the three datasets in Figure 6. We observe that on DBLP
dateset, the application of Node Fidelity Preservation improves the performance, while on the other
two datasets, the model performs comparably or marginally better without Node Fidelity Preservation.
Note that our proposal of Node Fidelity Preservation is intended as a preventative measure, not as a
means of enhancing model performance. Node Fidelity Preservation aims to prevent the situation

Table 10: The averaged memory usage (MB) for each task of experience-replay-based methods.

Method Kindle DBLP ACM

ERGNN-rs 49.5 38.0 121.1
ERGNN-rb 485 375 1194
ERGNN-mf 485 37.6 1195
DyGrain 479 37.1 118.1
IncreGNN 479 37.1 118.1

SSM 53.9 483 144.1
SSRM 50.0 384 1226
TACO 59.0 419 1444
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Table 11: Statistics of datasets. “Interval” indicates the length of the time interval for each task.
“# Item” indicates the total number of items/papers in each dataset.

Dataset #Class #Task #Class / task #Items

cora 7 3 2/3 2,708
coauthor-cs 15 5 3 18,333
corafull 70 10 7 19,793

where minority classes vanish from the reduced graph due to unbalanced class distribution. Therefore,
the improvement may not be noticeable if the class distribution is relatively balanced and node
degradation is insignificant. In such cases, preserving the selected nodes may prevent the graph from
coarsening to the optimized structure, which could even make the performance worse.

G.5 Important node sampling strategies

We investigate how different important node sampling strategies affect the performance of the model.
We report the average node classification performance of TACO with different node sampling
strategies, Reservior-Sampling, Ring Buffer, and Mean Feature on the three datasets in Figure 7. It
shows that TACO achieves better performance with Reservior-Sampling and Mean Feature. We
deduce that it is caused by the fact that Ring Buffer operates on a first in, first out (FIFO) basis, that it
only retains the most recent samples for each class, making it fail to preserve information from the
distant past.

G.6 Performance on traditional class-incremental learning setup

We also evaluate TACO on traditional class-incremental learning setup to prove its generability. We
conduct experiments on three commonly used datasets in GCL literature including cora, coauthor-cs,
and corafull. The details about their statistics and splitting are provided in Table 11. The performance
of TACO with GCN as backbone in comparison with other baselines is provided in Table 12, which
shows that the forgetting could be more severe when tasks share non-overlapping class sets, and
TACQ’s rule on alleviating the forgetting is more evidently demonstrated.
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Table 12: Node classification performance in terms of F1 and BACC with GCN on three datasets
under task-IL settings (average over 10 trials). Standard deviation is denoted after 4.

Dataset Method F1-AP (%) F1-AF (%) BACC-AP (%) BACC-AF (%)
jointtrain  82.38+1.33 5.97+0.74  73.68+2.23 9.98+0.83

finetune 32.59+1.32 61.05£1.74  31.85+0.95 60.92+1.50
simple-reg  39.11+4.75 54.30+4.86  37.12+4.48 55.18+4.75

EWC 32.13+0.80 61.32+1.31  31.33+0.55 60.93£1.15
TWP 33.34+1.85 60.02+1.85  32.29+1.74 59.92+1.69
OTG 30.46+£0.42 61.68+0.62  30.09+0.39 61.18+0.76
cora GEM 57.86+x2.42 34.15+2.42  50.50+2.81 39.09+3.02

ERGNN-rs 74.48+2.55 14.93+2.53  65.59+2.36 19.92+2.18
ERGNN-rb 69.05£1.81 21.49+1.60 61.62+1.97 25.76+1.80
ERGNN-mf 69.11£1.34 21.38+1.53  61.84+1.42 25.59+1.47
DyGrain 32.83+1.87 60.81+1.97  31.94+1.35 60.78+1.45
IncreGNN  32.57+1.33 60.85+1.57  31.65+1.04 60.63+1.31

SSM 59.61+£5.66 29.94+538  48.14+5.31 37.05+4.83
SSRM 75.16£1.38 14.17+1.65 66.15+1.44 19.48+1.70
TACO 78.16+£1.29 9.69+1.35  67.75+1.25 14.38+1.49

jointtrain  92.30+0.24 3.11+0.31 86.43+0.61 5.55+0.45

finetune 20.16x0.37 77.07+0.41  20.30+1.03 75.68+0.95
simple-reg  24.88+1.54 72.01+1.46  22.98+1.42 71.68+1.38

EWC 48.47+£7.07 41.84+8.61 36.41+5.12 46.56+6.51
TWP 45.45+11.11 38.59+9.56  33.01+£9.46 42.58+9.48
OTG 19.92+0.05 77.06+0.12  19.83+0.09 75.99+0.21
coauthor-cs GEM 69.59+4.54 26.61+4.45 62.81+4.64 31.26+4.47

ERGNN-rs  64.75+4.34 31.02+4.49  56.29+4.99 36.89+5.09
ERGNN-rb 62.18+3.05 34.13+3.15  59.95+2.78 34.17+£2.92
ERGNN-mf 46.16+£5.51 50.46+5.46  45.75+4.28 49.06+4.27
DyGrain 23.62+6.34 70.43+10.61 21.26+3.35 69.56+10.47
IncreGNN  25.30+£8.82 71.03+9.61  23.77+7.43 70.48+7.76
SSM 59.87+£3.89 35.45+3.97  48.26+2.97 43.56+2.36
SSRM 30.91+£3.09 65.85+3.21  28.26+2.79 66.71+3.03
TACO 92.84+0.85 2.22+0.76  87.24+1.72 3.39+1.56

jointtrain  74.33+0.48 4.00+0.50  58.94+0.61 6.96+0.77

finetune 7.24+0.35 76.53+0.57  6.35+0.29 72.52+0.76
simple-reg  11.18+2.10 66.65+3.13 8.01£1.28 61.04+2.70

EWC 20.47+£5.27 60.30+4.66  13.45+3.17 60.18+3.14
TWP 19.79+£3.28 61.30+£3.55  13.30+2.14 60.51+2.46
OTG 7.43+0.36  77.26x0.61 6.54+0.37 73.15+0.79
corafull GEM 26.17+£6.79 58.92+6.57  16.43+4.35 62.33+4.23

ERGNN-rs 23.82+3.88 59.97+4.24  15.11+2.48 60.57£3.05
ERGNN-rb 18.82+2.59 65.29+3.02  15.28+1.97 61.87+2.85
ERGNN-mf 19.19+£2.54 65.29+2.36  15.28+1.95 62.18+1.95
DyGrain 7.42+0.31 77.03+0.50  6.54+0.25 73.10+0.60
IncreGNN  7.58+0.24 77.18+0.51  6.69+0.24 73.20+0.84
SSM 45.77£1.76 35.59+1.85  32.37+1.60 38.53+1.73
SSRM 2246295 61.22+2.73 14.11+1.93 61.42+1.80
TACO 55.74+1.13 17.14+1.13  39.50+1.08 18.13+0.81
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NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope, as demonstrated through both theoretical analysis and
empirical study.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We include a separate section in the paper to discuss the limitations of our
works.

. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the full set of assumptions and a complete (and correct) proof for
each theoretical result.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides all necessary implementation details, including pseudocode,
to reproduce the main experimental results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submit source code, data, and comprehensive instructions to faithfully
reproduce the main experimental results.

. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all the training and test details in Appendix E.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard deviation and p-values to demonstrate statistical signifi-
cance.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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11.

12.

13.

14.

15.

Answer: [Yes]

Justification: We provide information about the GPU used for the experiments and also
report and analyze memory and time usage.

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm the research
conducted in the paper conforms with it.

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the positive social impact of this work in a separate section and do
not foresee any negative social impact.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We use open-source datasets and properly cite them.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We submit a zip file containing the code for our proposed method, along with
detailed implementation instructions.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human subjects were involved in the research conducted in this paper.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects were involved in the research conducted in this paper.
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