Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs

Sebastian Angel* Eleftherios loannidis*

*University of Pennsylvania

Abstract

This paper presents Reef, a system for generating publicly ver-
ifiable succinct non-interactive zero-knowledge proofs that
a committed document matches or does not match a reg-
ular expression. We describe applications such as proving
the strength of passwords, the provenance of email despite
redactions, the validity of oblivious DNS queries, and the
existence of mutations in DNA. Reef supports the Perl Com-
patible Regular Expression syntax, including wildcards, al-
ternation, ranges, capture groups, Kleene star, negations, and
lookarounds. Reef introduces a new type of automata, Skip-
ping Alternating Finite Automata (SAFA), that skips irrel-
evant parts of a document when producing proofs without
undermining soundness, and instantiates SAFA with a lookup
argument. Our experimental evaluation confirms that Reef
can generate proofs for documents with 32M characters; the
proofs are small and cheap to verify (under a second).

1 Introduction

Regular expressions (regex) are used to represent and match
patterns in text documents in a variety of applications: content
moderation, input validation, firewalls, biology, and more.
Existing use cases assume that the regex and the document
are both readily available to the querier so they can match the
regex on their own with standard algorithms. But what about
situations where the document is actually held by someone
else who does not wish to disclose to the querier anything
about the document besides the fact that it matches or does not
match a particular regex? While slightly unusual, the ability
to prove such facts enables interesting new applications:

e Proving strong passwords. Asymmetric or Augmented Pass-
word Authenticated Key Exchange (aPAKE) [48, 75, 78, 83]
allow clients to register and authenticate to a server without
disclosing their password to the server. However, aPAKE
protocols have no mechanism for the server to confirm that
the client chose a “strong password”. This feature is crucial
in corporate settings where password policies help prevent
account compromise. Clients could convince the server of
this fact with a proof that their secret password satisfies a
password strength regex chosen by the server (e.g., at least 10
alphanumeric and one special character).

e Disclosing content with redactions. DomainKeys Identi-
fied Email (DKIM) [46] is a protocol whereby a sending

mail server signs the header and payload of an email so that
recipients can verify its authenticity. Journalists use DKIM

Elizabeth Margolin*

Srinath Setty’ Jess Woods*

tMicrosoft Research

signatures to establish the veracity of leaked emails. It might
often be desirable to release a redacted version of an email
(e.g., an email without a name) while allowing the public to
confirm, via DKIM, the authenticity of the redacted email.
By creating a regex that expresses the public content of the
email, with redactions being expressed as wildcards with
Kleene star, it is possible to show that the redacted email is
derived from an email whose DKIM signature verifies under
the sending mail server’s public key. A similar idea is that
of selectively disclosing fields in JSON web tokens [50] or
verifiable credentials [15, 62] by “redacting” all other entries.

e ODoH blocklisting. Oblivious DNS over HTTPS [54] al-
low clients to obtain a domain’s IP address without revealing
which domain they are accessing. This technology improves
privacy for users, but network administrators within organi-
zations lose the ability to block certain sites (e.g., known
malware domains) as they can no longer see which domains
users query. One can reintroduce this functionality by asking
clients to generate ZKPs showing that their DNS queries do
not match a set of forbidden regexes before those packets are
allowed through to the ODoH proxy. The same idea applies
more generally to TLS traffic through middleboxes [45].

e Proofs about genes. DNA is used to establish ancestry or
the presence of particular mutations. If sequencing companies
(e.g., 23andme) were to provide users a signed commitment
to their sequenced genome, users would be able to prove prop-
erties of their DNA (expressed as a regex) without having to
disclose it in full. For instance, users could prove the presence
of a certain genetic mutation when they order personalized
medicine online or sign up to clinical trials.

In theory, the above applications can be designed with some
suitable combination of encryption, commitments, signatures,
and zero-knowledge proofs. In practice, creating efficient
proofs over arbitrary unstructured text is far from trivial.

This is precisely the problem we tackle with Reef, a com-
piler and runtime system that allows an entity to commit to a
secret document and then subsequently prove that the docu-
ment matches or does not match one or more public regexes
without revealing anything else about the document. Building
Reef requires answering the following research questions:

1. How should one commit to a text document D?

2. Given a commitment to a document D, how can one arith-
metize (i.e., express as some type of circuit) the statements
“D matches/does not match a regex R”?

3. What regex features are needed to enable realistic applica-
tions (e.g., quantifiers, alternation, lookarounds, etc.) and
what is the best way to arithmetize these features?

4. What kind of zero-knowledge proof systems work well
with the chosen commitment and arithmetization schemes?

To answer these questions, Reef marries new theoretical
ideas and low-level techniques into a compiler that automati-
cally arithmetizes arbitrary regexes. In particular, Reef:

Exploits NP checkers. Reef uses the common observation
that checking the answer of a computation is often cheaper
than finding the answer in the first place (either asymptotically
or concretely). As a result, Reef does not arithmetize algo-
rithms for finding regex matches/non-matches (e.g., Thomp-
son’s NFA [79], recursive backtracking). Instead, the prover
in Reef computes the answer (i.e., finds the match and the
relevant locations within the document, or establishes that
there is no match) with a fast regex engine we built, and then
proves that this answer satisfies criteria that implies the docu-
ment has a match (or no match). Only this NP checker needs
to be arithmetized and proven with a ZK proof system.
Reef’s NP checker supports a wider class of regexes than
all prior works, while also producing smaller arithmetizations.
In particular, some works [16, 37] transform the regex into
a DFA or NFA, and then prove that if one feeds the entire
document into the automaton the final state is accepting/non-
accepting. This approach results in O(|D| - |Qpm| - |X])
constraints (or gates in some arithmetic or boolean circuit)
to prove that there is a match, where D is the secret doc-
ument, Oppy is the set of states in the DFA, and X is
the alphabet. Three recent proposals, ZK-Regex [61], Zom-
bie [84], and zkreg [69] reduce these costs: ZK-Regex
and Zombie leverage Thompson’s NFA (TNFA) and pro-
duce O(|D| - |Qrwra|) constraints, while zkreg’s use of Aho-
Corasick DFA (ADFA) leads to O(|D| + |Qapra|) constraints.
Reef’s NP checker is fundamentally different from the
above approaches: it does not require feeding the entire doc-
ument into the automata, only the relevant characters. This
allows the prover to skip vast amounts of unnecessary work.

Introduces skipping automata. Above we allude to the idea
of “skipping” irrelevant characters whenever possible. But
how do we rigorously define this notion and what does “when-
ever possible” mean? To answer these questions, we introduce
anew type of finite automata for regexes that we call Skipping
Alternating Finite Automata (SAFA). SAFA generalize NFA
to include the ability to change the cursor (i.e., the index of
the next character to read in the input) following certain rules.
SAFA allow Reef’s prover to skip processing entire chunks
of a document when the regex contains wildcard ranges such
as “.*” or “.{4,100}” and let Reef handle lookarounds,
which are common in password strength regexes and which
no prior work supports.

Compared to prior works, Reef’s NP checker can be ex-
pressed in O(alog(|D| + |Qsam| - |X|)) constraints, where

|Osam| < |Qmvia| < |Qapra| and o = O(|D| - L), where L is
the number of lookarounds in the regex. There are two points
worth emphasizing about the complexity of Reef’s checker.
First, SAFA have exponentially fewer states than TNFA and
ADFA for many common regexes (§3.2). Second, « is much
smaller than the above worst-case upper bound whenever
Reef can skip characters. For instance, if ¥ = {a, b, ¢}, the
regex R = “a.*b” (meaning D has “a” eventually followed
by “b”) results in @ = 2 regardless of the size of D be-
cause Reef can skip all the wildcard characters. In contrast,
R = “*[a-b]*$” (meaning D can contain any number of
“a” or “b” characters but no “c”) results in @ = |D| because we
fundamentally have to check every character in the document
to make sure it is not “c”.

Leverages recursion. We observe that Reef’s NP checker
essentially performs the same high-level operations (looking
up a character in the document and then transitioning to a
new state) over and over. Such repeated structure is suitable
for recursive ZkSNARKSs such as Nova [57], where the prover
establishes that it ran some step function F, each time on a
different input, until some terminating condition holds. Reef’s
termination condition is designed to allow the prover to safely
stop proving as soon as the SAFA reaches an accepting state
and the cursor points to the last character. This frees the
prover from having to process the entire document (since in
many SAFA the prover can skip to the last character without
changing states) while hiding how many times F executes.

Commits to the document. Before Reef can be used, the
document D needs to be committed in a form that allows
Reef’s NP checker to cheaply read arbitrary entries in D. Who
generates the commitment depends on the application. In
the gene example, the commitment is generated and signed
by a trusted party (23andme). In the other applications, the
commitment is generated by the user who must also supply
a proof that ties the underlying document to the data in the
application (e.g., the DKIM signature).

Reef uses a polynomial commitment [18, 27,42, 59, 81, 85]
for multilinear polynomials to commit to D, and a lookup
argument [56] compatible with recursive proof systems. A
lookup argument is a cryptographic protocol for proving that
some entry exists in a public or committed table (polynomial)
without revealing the entry. When the lookup argument is
integrated into the step function F, it allows F to access any
entries in D without revealing them to the verifier.

Supports table projections. Reef modifies the nlookup ar-
gument [56] to support lookup operations on fable projections.
Given a commitment to a table such as the document D, a
projection is a smaller table D,,,,; derived from one or more
contiguous chunks of D (the choice of which chunks of D
are projected is public information). Reef then runs nlookup
on D,,,;, which incurs costs that are proportional to |D,.
The verifier can still check that all lookups to D,,,; were done
correctly by using the original commitment to D.

r{m}/r{m,}/r{m,n}
(?2=r) / (?2<=r)

repetition ranges
lookahead / lookbehind

Lsi= « a € X
| A/S document start / end
| wildcard character
| rs concatenation
I rls alternation
I r2lrx/r+ quantifiers
I [ai — o] character classes
I [Mai...of] negation of characters ¢; . . . ;
|
|

FIGURE 1—Reef supports the entire PCRE syntax [7] except for
backreferences and subroutine references.

Table projections are a powerful construct in Reef and
might be of independent interest. For example, a DNA chro-
mosome results in a document D with tens of millions of
entries. However, regexes on DNA usually have the form:
R = “.{1000}TT(T|C).{5000}CT(T|C|A|G) .*”,
which says that the first thousand entries are irrelevant, but
right after we should see TTT or TTC, and 5000 entries later
we should see CTT, CTC, CTA, or CTG; beyond that is ir-
relevant. SAFA allows Reef to skip all the irrelevant entries.
However, in each step of the recursive proof system, nlookup
internally invokes the sum-check protocol [60] which incurs
costs linear in |D| (millions of entries) in order to prove the ta-
ble accesses. With projections, nlookup runs the sum-check
protocol over D, (under 10 entries).

Combines private and public tables. To efficiently express
the state transitions and complex skipping rules in SAFA,
Reef again uses a lookup argument. In particular, Reef stores
SAFA'’s states, transitions, and skipping rules in a public table
that both the prover and the verifier can derive from the regex.
Given this table, the prover can, with one lookup, prove that
it transitioned to the next state in the SAFA and advanced the
cursor following the prescribed rules.

Having both a private table and a separate public table is
undesirable because lookup arguments amortize their costs
over many lookups (i.e., the more lookups to a table, the
cheaper the per-lookup cost). If one has two tables, then
queries to one table do not apply towards the amortization
of queries to the other table. To remedy this situation, Reef
shows how to combine both private and public tables into a
single hybrid table (without leaking the contents of the private
table) so that all lookups can be done on this combined table,
improving amortization and eliminating repeated fixed costs.

We evaluate Reef on the applications described earlier and
find that it can generate small proofs (tens of KB) in a few sec-
onds, even for large documents such as DNA chromosomes.

2 Background

This section reviews regex matching, rank-1 constraint satis-
fiability (R1CS), NP checkers, and zero knowledge succinct
non-interactive arguments of knowledge (zkSNARKS).

2.1 Regular Expression Matching

Given an alphabet 3, a regex R is a pattern matching a set
of strings, called the language of R or L[R] C ¥*. Figure 1
outlines the basic syntax for the creation and combination of
regexes that Reef supports.

Regexes are converted to deterministic finite automata
(DFA) with known techniques [20, 26, 43, 51, 65, 77]. One
can determine if a document matches a regex R by starting
with the initial state and transitioning states on each character
of the document until reaching a final state. If the final state
an accepting states in the DFA, the document matches XK.

A common extension to regexes that Reef supports is
lookarounds (e.g., positive or negative lookaheads and

lookbehinds), a way to only match a pattern if is lead
(or followed) by another pattern. For example, a pass-
word strength regex with two lookaheads might look like
A(2=.x[A-Z]) (?=. %[@#S$&"*]).{10,}, meaning
it contains an upper case letter ([A-Z]), a special charac-
ter from {!,@,#,$,&,",*}, and has length at least 10
characters. The way to think about a lookaround such as
“A(?=R)” for some regex R is that R should be matched
against the input string in the usual way, but once the match
has been found, the cursor (i.e., the next position to process
in the input string) should be reset back to what it was before
the lookaround was processed. DFA/NFA have no notion of
“resetting the cursor” and hence must simulate it by increasing
the number of states exponentially [36].

2.2 zKkSNARKSs

A zero-knowledge succinct non-interactive argument of

knowledge (zkSNARK) is a cryptographic protocol where

a prover P, convinces a verifier V, that it knows a satisfying

witness to some NP statement without revealing the witness.

zkSNARKS typically target some variant of the NP complete

problem of circuit satisfiability (e.g., R1CS [41, 72], Plonk-

ish [40], AIR [21], CCS [73]), as one can represent arbitrary

computations in this form. Informally, zkSNARKSs are:

1. Zero-knowledge: The proof reveals no information to VV
beyond the fact that P knows a satisfying witness.

2. Succinct: The size of the proof and its verification is sub-
linear in the size of the satisfiability instance.

3. Non-interactive: No interaction between P and) besides
the transferring of the computation’s output and proof.

4. Argument of knowledge: P must convince) that it
knows a witness that satisfies the instance. This argument
is complete and computationally sound.

* Perfect completeness: If P knows a satisfying witness, P
can always generate a proof that convinces V.

Knowledge Soundness: If P does not know a satisfying
witness, it cannot produce a proof that) will accept, except
with negligible probability.

2.3 Rank-1 Constraint Satisfiability (R1CS)

We focus on rank-1 constraint satisfiability (R1CS) as this is
the arithmetization supported by the particular implementa-
tion of the zkSNARK we use [57], but all of our ideas apply
to more general arithmetizations (e.g., CCS [73]). R1CS gen-
eralizes arithmetic circuit satisfiability, and an R1CS instance
is given by a tuple (F, A, B, C, io, rows, cols), where F is a
finite field, io is the public input and output of the instance,
A,B, C € [Fo"s*<ls are matrices, and cols > |io| + 1. The
instance is satisfiable if and only if there exists a witness
w € Feols=liel=1 that makes up a solution vector z = (io, 1, w)
such that (A-z)o (B-z) = (C-z), where - is the matrix-vector
product and o is the Hadamard product. The entry of z fixed
at 1 allows constants to be encoded.

R1CS Arithmetization. Here we briefly explain how to turn
a simple program into R1CS. Other works [19, 72, 74] have
more complex examples. Suppose that P holds two elements
Xo,x1 € [and wishes to convince V that y is the output of the
following computation without leaking anything about x(or
x1 beyond what is implied by the result.
field foo(field x0, field x1) {

field y;

if (x0 == 30) { y = x1; } else { y = x0/x1; }

return y;

To do so, we first express this function as a set of con-
straints (or equations) over elements in [that contain addi-
tions, subtractions, multiplications by constants, and at most
one multiplication between variables. The result is:

guard x (xo — 30) =
guard X (y — x1) =
(1 — guard) x (y — prod)

Xo X inv — prod =

Il
© o o o o

x1 X inv — 1 =

To see why this represents the original computation, ob-
serve that we introduced auxiliary variables called guard, inv,
and prod. Here, P is allowed to assign any values it wishes to
y and the auxiliary variables, but let us assume that P provides
the right values for xy and x; (this is usually enforced through
the use of commitments). The only way that all six constraints
are simultaneously satisfied is when: (1) xo = 30, y = x;, and
guard = 1 (there are many suitable values for the remaining
variables); or (2) xyg # 30, guard = 0, y = prod = xy X inv,
and inv = xl_l. As aresult, if P claims that the output is y,
and P can convince V that it knows a satisfying assignment
for variables in the constraints given y, then) is assured that
y is correct.

Appendix F shows how to convert these constraints into
matrices A, B, and C. The solution vector z is (y, 1, w), where
w = (xo, X1, guard, prod, inv) is P’s secret witness.

2.4 NP checkers

While the above example is relatively simple it employs some
clever tricks. In particular, it leverages non-determinism to
transform expensive computations (branches and inverses)
into cheap checkers that merely confirm the answers. For
instance, if F = Z,,, computing 1/x with only additions and
multiplications requires log(p) constraints via Fermat’s little
theorem (basically computing x*~2). But in R1CS, we can just
ask P to supply the inverse of x, inv, and simply check that inv
is indeed the multiplicative inverse of x with one constraint:
“inv X x — 1 = 0”. This is an example of an NP checker. There
are many others used in SNARKSs [19, 25, 49, 74, 82, 86].
In this work, we construct a novel NP checker for regex
matching/non-matching based on a new type of automata.

3 Goals and standard approach

In Reef there are three parties: a committer G, a prover P, and
a verifier V (in many cases G and P are the same entity). G
generates a commitment comm for document D using random
blind r, and provides (comm,D,r) to P, and comm to V.
Later, P wishes to prove that D either does or does not match
aregex R that is public and known to both P and V. Given
this setting, Reef has the following goals:

¢ Completeness, Soundness, Succinctness, ZK. These are
analogs of the definitions given for zkSNARKSs (§2.2) for
the concrete RI1CS instance that represents the statement
“I know an opening of comm, and it matches R” (or not).

¢ Public verifiability: The proof should be verifiable by
anyone who has a commitment of the document and R.

* Expressiveness: Reef should be able to support any regex
written in PCRE syntax [7].

Additionally, our implementation of Reef achieves the fol-
lowing goal, though some settings might not need this and
could use more efficient cryptographic primitives.

* Transparency: All cryptographic parameters for Reef
should be generated without requiring a trusted setup.

3.1 A standard approach

As mentioned in Section 2.1, one can convert a regex into a
DFA and then arithmetize its transition function 4. It boils
down to a chain of if statements that takes as input the current
state and current character in the document (both represented
as field elements) and outputs the next state. For example, if
the alphabet is ¥ = {qa, b}, and the regex is R = “a+b.*”,
the corresponding DFA would be:

b a {a, b}

(OO0

13

Assuming that “a” maps to the field element 0, and “b” to
1, the corresponding ¢ transition is given by:

field delta(field state, field cur_char) {

if (state == 0 && cur_char == 0) return 1;
if (state == 0 && cur_char == 1) return 0;
if (state == 1 && cur_char == 0) return 1;
if (state == 1 && cur_char == 1) return 2;
if (state == 2 && cur_char == 0) return 2;
if (state == 2 && cur_char == 1) return 2;

return —1; // invalid state or character

To express the computation of finding whether a commit-
ted document matches the regex, one would then: (1) open
the commitment to obtain the document (an array of field
elements); (2) call é once for every character in the document
in order; and (3) add a check at the end to see if the final state
is one of the accepting states (another chain of if statements).
The resulting match function is:
field match(field commit, field blind) {

// commit s public input, blind is secret

field[SIZE] document = open(commit, blind);
field state = 0; // initial state

for (i = 0; i < SIZE; +i++) {
state = delta(state, document[i]);
}

if (state == 2) { // accepting state in example
return 1; // match

} else {
return ©@; // no match

}

One would then arithmetize this match function like in the
example in Section 2.3. Indeed, this what some prior works
do [16, 37]. Two recent works [61, 84] improve upon this de-
sign by converting the regex to a Thompson NFA (TNFA) [79]
and performing additional optimizations.

3.2 Limitations of the standard approach

The previous standard approach has many drawbacks. We list
the most salient ones here.

Insufficient Regex Expressiveness. Directly arithmetizing
traditional finite state machines such as DFA, TNFA or Aho-
Corasick DFA (AC-DFA) [17] fails to meet Reef’s expressive-
ness goals. The most recent works in this area lack support
for several common regex features.

For example, Zombie [84] lacks support for lookarounds.
ZK-Regex [61] does not handle lookarounds, negations in
character classes such as “a[*[:space:]b”, or nega-
tions of entire matches (i.e., proving a non-match). Finally,
zkreg [69], which is based on AC-DFA, only supports
matching on a fixed set of strings. Unbounded repetition
such as “ab*c” is unsupported, and negation of character
classes, negation of entire matches, or wildcard ranges such as
“a.{100}b” lead to an exponential number of states (2'%9).

Poor scalability. The number of R1CS constraints produced
by the standard approach for proving that a document D

matches is O(|D|- |Opg|-|2]), where |Qpr| is the number of
states of the corresponding DFA. Zombie [84] improves this
to O(|D|-|Qrnr|)- But for applications where the document is
millions of characters this still results in billions of constraints,
even when the regex is small. In contrast, Reef’s NP checker—
based on SAFA (§5)—has O(alog(|D] 4 |Qsaral - |X])) con-
straints, where |Qsam| < |Qrwm|. As we discuss in Sec-
tion 6.2, in the worst case & = O(|D| - L), where L is the
number of lookarounds in the regex; but in practice « is small
(under 100 for even our largest document).

4 Improving the standard approach

One way to improve on the standard approach is to observe
that the match function is well suited for a recursive proof
system (this observation has been made many times in the
context of other state machines such as blockchain rollups).
In a recursive zkSNARK [22-24, 28-30, 55, 56], instead of
arithmetizing the entire match function, we arithmetize one
step of it. The result is:

field[3] match_step(field[] commit, field[] blind,
field state, field cursor) {

field cur_char = open_at(commit, blind, cursor);

// accepting state and end of document (EOD)
if (cur_char == EOD && state == 2) {

return {0, 0, 1}; // match
}

state = delta(state, cur_char);
return {state, cursor + 1, 0}; // not yet

The above match_step function takes as input a public
polynomial [18,27,42,52, 59, 81, 85] or vector [64] commit-
ment (which could consist of multiple field elements) and the
corresponding secret blind(s). These types of commitments
have the nice property that they allow opening a particular
entry within the commitment rather than having to open the
entire document at once. match_step additionally takes the
current state and the current cursor. If the current state is ac-
cepting and the cursor points to the end of D (“$” in PCRE
syntax, denoted by a special field element that the committer
G appends to D to mark the end), D is a match and the return
value is [0, O, 1]. Else, match_step executes the DFA’s ¢
function and returns the tuple [state, cursor + 1, 0].

A prover P in a recursive zkSNARK would then take the
R1CS instance representing the match_step function, and
produce a proof 7 that establishes that running match_step
correctly on a public commitment, private blinds, state = 0,
and cursor = 0, produces the output out. Of course, proving a
single step is not very useful (we could have done this without
recursion); the key benefit is that a recursive proof system
allows P to prove that it verified a prior proof (mp in this
context) in addition to proving another match_step on the
same public commitment, but the state and cursor returned

O——)>——)>

FIGURE 2—AFA forregex R = A (?=.*a) (?=.%b).{2,61}S.

by the prior step (out) which are bound by 7. In this way,
‘P can prove that, starting with state = 0 and cursor = 0,
if P runs match_step some number of times, eventually
out = [0,0, 1]. The verifier V only learns this final value of
out (and none of the intermediate values), in addition to a
proof 7s, that establishes that P checked all prior proofs
and the last step was executed correctly.

This approach has four benefits. First, there is no need to
unroll the loop and therefore the number of R1CS constraints

is no longer fundamentally tied to the size of the document.

This enables the second benefit: P can stop proving as soon
as match_step outputs [0, 0, 1]. While in the construction
presented so far P can only “stop” once it has gone through
the entire document sequentially (so as to reach the EOD
special character), Reef has the ability to skip many characters
(possibly all the way to the end)—allowing the prover to stop
without accessing the entire document. Third, breaking up the
proof into small steps means that P can work on one step at a

time, significantly reducing the amount of memory needed.

Last, with recursive zkSNARKSs like Nova [57], if P wants to
prove the same step function many times (which is the case
with match_step), there are significant performance gains.

S Skipping Alternating Finite Automata

The use of recursion is a necessary first step in Reef, but it
still falls short of our goals of expressiveness and efficiency.

In this section we introduce a new type of finite automaton
called SAFA. The motivation for SAFA is twofold; avoid the
state explosion problem for regex with lookarounds (§2.1)
and capture the smallest set of characters within a document
that must be checked in order to confirm that it matches a
regex. We start by reviewing Alternating Finite Automata
(AFA) which are a generalization of NFA. SAFA extend AFA
to include the notion of skips.

5.1 Alternating Finite Automata (AFA)

AFA [32] are finite automata that generalize NFA by labeling
states with an existential (3) or a universal (V) quantifier. An
T state is identical to a state in an NFA; the AFA merely reads
the character at the current cursor, advances the cursor, and
then transitions to any one of its possible next states. A V
state is very different. First, the AFA creates a copy of the
remaining characters in the input string (starting at the current
cursor until the end of the string) for each of its transitions
(i.e., if there are 10 transitions it will create 10 copies of the
input string). Then, in parallel, it transitions to every next state,
and feeds each of those states their own independent copy of
the input. For the AFA to accept an input string, all of the
parallel branches need to end in accepting states. Intuitively,
V states capture the conjunction of multiple sub-automata,
each of which operates independently on the provided input.

Formally, an AFA [32] is a 6-tuple (Q,3,qo, A, 0, F),
where Q is the set of all states; X is the alphabet; gy € Q is

the initial state; A\, : O — {V, J}isa labeling that assigns
each state g either V or 3; 0 C QO x ¥ x Q 1s a transition

relation that defines final states with respect to initial states
and input characters; F C Q is the set of accepting states.

Example. Suppose we want to match documents of
length between 2—6 that contain “a” and “b” defined
over ¥ = {a,b,c}. This is given by the regex R =
“A(2?2=.%a) (?=.%xb).{2,6}$”. Representing R as an
NFA requires creating an automaton that accepts the alterna-
tion of all strings that contain both “a” and “b” and have length
between 2 to 6 (“ab”, “.ab”, “a..b”, “.a.b.”, etc.). The
minimal NFA for this has 17 states (the 16 shown here [10]
plus a sink state for all invalid characters). In contrast, one
can match R with the 11-state AFA given in Figure 2.

To understand this AFA, first recall epsilon transitions,
which AFA inherit from NFA and which mean that the au-
tomaton can take any transition with an e label without advanc-
ing the cursor or reading any character from the document.
Second, notice the state at the top is labeled V, which means
that after processing the document, all of its transitions (the
3 vertical branches) should end in an accepting state. The
transitions of V states are special in that each creates a private
copy of the cursor initialized to the value of the cursor when
the V state is reached. As a result, states 1, 3, and 5 will all
have their own cursors (i.e., advancing the cursor of the left
branch does not affect the cursor of the right branch).

Consider for example the document D = acbce which is
accepted since the three branches out of state O run in parallel
and each branch terminates in an accepting state. If instead
D = bccebb, the middle and right branches both terminate in
accepting states, but the left branch does not.

The above example immediately shows that AFA could
provide savings over the automata considered by prior works.
Indeed, if a regex requires n states to be represented in an
AFA, the same regex may require 22" states in a DFA [36].

Skip(*) Skip(*)

FIGURE 3—SAFA forregex R = A (?=.%a) (?=.%b) .{2,6}$
over alphabet > = {a, b, c}. Skip(*) means the skip {[0, +-00)}.

5.2 SAFA: Supporting Skips

AFA are a great way for Reef to increase the expressiveness
of the supported regexes without incurring exponential costs,
but AFA—just like DFAs and NFAs—are designed from the
lens of “computation” rather than the lens of “verification”.
This fundamental distinction between compute and checking
leaves a lot of opportunities unexplored.

As a concrete example, consider the regex R =“. *xab$”
and the document D =“aaab”. AFA (much like NFA) rep-
resent ““. *” by a single, non-accepting state, with the option
to loop or progress forward with an e transition. Finding the
solution to the question “is D € L[R]”? (meaning is D in
the language defined by R) requires computing both the case
in which the first “a@” in D matches the “. *” in R and the
case in which it matches the “a” in R. Confirming a match is
simpler: given a path through the AFA for D, we just need to
check that the path leads to an accepting state.

We can even take this concept further. When computing,
bounded wildcard matching has to be explicitly unrolled.
“oA{m,n}”, “. {n}”,and “. {n, }” all require at least n tran-
sitions in an NFA or AFA. We see this in the right branch of
the AFA in Figure 2 (states 4 through 10), where each state
in “. {2,613} has to be included explicitly.

But when checking, what if we could simply move the
cursor forward by a number between 2—6 (inclusive), and
carry on? Since “. {2,6}” is a wildcard, the content does
not matter; what matters is that a wildcard region of the
appropriate length exists. To express wildcard regions, we
introduce skips. A skip is a finite set of non-overlaping in-
tervals, s = {ij,...,i,}, where each interval is of the form
i = [start, end) or i = [start, o). Both start and end are non-
negative integers and start < end; for [start, 00), the interval
is unbounded on the right.

The idea is that when we reach a state that has a skip tran-
sition defined by some skip s, instead of reading a character
from the input and transitioning to the next state based on the
read value, the automaton advances the cursor by any amount
within the intervals in s, and then moves to the next state.

Note that we need s to be a set rather than a single interval
because of regexes such as “(.{2,6}|.{8,10})a” that
have multiple acceptable disjoint wildcard regions. Also, ob-
serve that skips generalize epsilon transitions: we can simply

define skip e = {[0,0]}. Third, we can support Kleene-star
wildcard regions with Skip(x) = {[0, c0)}, meaning any cur-
sor less-than the length of the document works. The use of the
oo symbol allows the separation of SAFA from the document
to which it is applied.

SAFA. With the above notion of skips we can then de-
fineSkipping Alternating Finite Automaton (SAFA) as the 8-
tuple (Q, E, 2, qo, Ag» Ae, 0, F), where Q is the set of all states
(nodes); E is the set of all transitions (edges); X is the alpha-
bet; go € Q is the initial state; \, : Q — {V, 3} defines the
label for each node g to be either Vor 3; \, : E — Skip W X
sets the label for each edge e as either a skip s or a € X

6 C Q x E x Q is the transition relation; and F C Q is the
set of accepting states. The symbol W is the set disjoint union.

Much of this definition should look similar to the AFA
in Section 5.1. The only difference is the addition of two
new fields: E and .. E is simply the set of all transitions.
Ac can be thought of as an analog of), but over transitions
instead of states. It labels each transition e € E as taking a
single step via a character (as is the case in AFA and NFA),
or as a skip, which does not consume any characters from the
document but increases the cursor non-deterministically by
some amount in s.

Example. We defer the formal definition of skips and the
various transitions to Appendix C.4 . In Figure 3 we show
the SAFA that corresponds to the AFA from Figure 2. The
SAFA replaces the long chain of states (4—10) in the AFA
with Skip{[2, 6]}. This compression is possible because ¢ (the
identity element) followed by skip s is just s.

The examples in Figures 2 and 3 provide the intuition
for why SAFA might be cheaper to represent in an NP
checker than AFA, while also being computationally equiv-
alent (though SAFA requires the automaton to “know” how
much to skip ahead of time). We formalize the equivalence
between SAFA and AFA by direct translation.

Theorem 5.1. Let S denote a SAFA. There exists an AFA A
such that the language L[S] = L[A] is regular.

The proof is in Appendix C.6.
5.3 Designing the SAFA match_step Function

Section 4 introduces a match_step function that is appro-
priate for recursive proof systems. Reef modifies this step
function to support SAFA. Reef’s match_step takes in two
additional arguments: cursor_move, which is the quantity
by which P plans on advancing the cursor in the next transi-
tion, and a stack. One can represent a stack very cheaply with
a simple hash chain (a single field element). A new stack is
simply the value stack = 0. To push a value val just append it
to the hash chain stack = H(stack||val). To pop a value from
stack, P must supply a preimage of stack; the first part of the
pre-image will be the new stack, the other part is the popped
value. That said, in our specific setting we can implement an

field[4] match_step(field[] commit, field[] blind,
field state, field cursor, field cursor_move,
field stack) {

field cur_char = open_at(commit, blind, cursor);

if (cur_char == EOD) { // end of the document
if !is_accept(state) {
return {0, 0, 0, 0}; // no match
}

if (dis_empty(stack)) {
return {0, 0, 0, 1}; // match

} else {
// reached accepting state in one branch
// but there are other branches.
// process next branch
stack, (state, cursor) = pop(stack);
return {state, cursor, stack, 0};

}

}
// special handling for forall state
if (is_forall(state)) {
for child in children(state) {
stack = push(stack, (child, cursor));

3
stack, (state, cursor) = pop(stack);
return {state, cursor, stack, 0};

}

// perform character or skip transition

state, cursor = delta(state, cursor, cur_char,
cursor_move) ;

return {state, cursor, stack, 0};

FIGURE 4—Reef’s step function using SAFA.

even more efficient version since we know ahead of time the
maximum depth of the stack (which depends on the number
of nested forall states and the number of transitions). The
details are provided in Appendix H.

Reef’s match_step function is given in Figure 4. A key
attribute for SAFA is that for a document D to be considered a
match for regex R, all children of a forall state must reach
accepting states. Additionally, all of these children must start
from the same cursor position, which is private. In Reef’s
match_step function, when a forall node is reached a
copy of the cursor and the state ID is pushed onto the stack for
each of the node’s children. When one of the child branches
terminates in an accepting state, its sibling and the original
cursor position are popped from the stack.

Reef’s delta function is then:
field[2] delta(field state, field cursor,

field cur_char, field cursor_move) {

field state, min, max = lookup(state, cur_char);

assert(min <= cursor_move <= max);

assert(cursor <= cursor + cursor_move);

CUrsor = cursor + cursor_move;
return {state, cursor};

Reef relies on lookup tables for determining whether a tran-
sition is valid. This is discussed more in-depth in Section 6,

but in the context of our delta function, they work as fol-
lows: given a current state, character, and proposed quantity
by which to move the cursor, we use a lookup table to validate
the next state, as well as the minimum and maximum quantity
the cursor is allowed to move, based on the type of skip. For
example, if the transition is a skip “{ [n,m] }”, then min=n
and max= m. If the transition is Skip (), then min= 0 and
max= |F| — 1. In addition, we check that the new cursor po-
sition is greater than or equal to the current cursor position
(i.e., that the prover did not decrement the cursor through an
arithmetic overflow). In all other cases max=min= 1.

6 SAFA and Document Lookup Tables

Reef uses two lookup tables. One lookup table is public and
represents the SAFA character and skip transitions;)V can
derive this public table from the regex. The other lookup
table represents the document and is private (i.e., its contents
cannot be revealed to the verifier). In each invocation of Reef’s
match_step (§5.3), the document table is accessed to read
the character at the current cursor, and then the transition
table is accessed to determine the next state.

This section reviews lookup arguments (§6.1), how Reef
organizes the SAFA transitions table (§6.2); how it commits
to the private table representing the document (§6.3); how it
supports table projections that help filter which entries in the
private table are relevant to a particular regex (§6.4); and how
it combines both the public and private tables into one hybrid
table that reduces the fixed costs of the lookup argument and
improves its amortization (§6.5).

6.1 Lookup arguments

There are cases where one would want to check that a value
v in an RICS instance is contained in some table T of size n.
A way to do this when T is public is to “hardcode” T in the
R1CS instance by expressing it as a cascade of i f statements
similar to how we arithmetized the DFA’s § function (§3.1).
Then, we check that v matches one of these 1 f statements and
not the final return. This requires O(|T|) constraints per
lookup. An asymptotically cheaper (but sometimes concretely
more expensive) solution is to use a Merkle Tree where the
leaves represent 7. One passes the root of the tree as a public
input and a secret Merkle proof; the RICS instance computes
log(n) hashes to confirm there is a path to the root given v.

Lookup arguments [35, 39, 56, 76] generalize this idea:
given m values {vo, . .., v,,—1 } each in F, lookup arguments
check that all m values are entries in a table 7 € F". Crucially,
lookup arguments amortize the costs over the m checks such
that as m increases, the per-lookup cost decreases.

nlookup [56]. We briefly describe nlookup, which is de-
signed for recursive proof systems such as the one we use (§4).
For now, assume that the table is public. Section 6.3 describes
additional techniques to handle private tables.

Let T be a table with n = 2¢ elements and let 7 be a multi-
linear polynomial in ¢ variables such that for all i € {0, 1}¥,

T(i) = Tlto-int(i)], where to-int : {0,1}* — {0,1,...,n—1}
is a function that maps ¢-sized bit strings to £-bit integers in
a natural manner. Given 7, one can then prove that a value
v € T by producing a point g € {0, 1}¢ such that T(g) = v.
nlookup’s core idea is to reduce the task of checking m of
these lookup proofs to evaluating T at a single point. To do
this, the nlookup prover proves:

S hv= 34 Y aan) T0)

i=1..m i=1..m j€{0,1}¢

where v; € F is the i-th value claimed by the prover to be in 7,
p € F is arandom challenge chosen by the nlookup verifier,
and eq is a designated multilinear polynomial for performing
Boolean equality checks. This equality can be proven using
the sum-check protocol [60].

On its own, this is sufficient for proving membership of
a set of elements in 7. However, nlookup is particularly
beneficial in the case where we would want to look up m
elements multiple times (e.g., during different iterations of the
step function of a recursive proof system). Readers familiar
with the sum-check protocol can recall that in the above
description, the verifier has to evaluate 7 at a random point at
the end of the sum-check protocol.

In the case where we want to lookup m elements, k sepa-
rate times, nlookup leverages a folding scheme to fold all k
evaluations of T into a single one. It does this by initializing a
running claim v, = T(gq,) where g,,v, € F*, and ¢, is chosen
arbitrarily. To incorporate new lookup claims (i.e., polyno-
mial evaluations) into this running claim, nlookup makes a
slight modification to the polynomial above. In particular, the
sum-check protocol is now run over the polynomial:

vt Y pev=
i=1l..m
S alan) - TO+ Y MY alan) T0)
je{0,1}¢ i=l..m je{0,1}¢

which incorporates the running claim over foldings.

Integrating nlookup into Nova. To use nlookup with
Nova, we encode nlookup’s verifier as an R1CS NP checker.
This involves implementing the sum-check verifier and the as-
sociated Fiat-Shamir transform involving hash computations
as RICS. We then invoke this NP checker inside Reef’s step
function whenever we want to enforce that a group of R1CS
variables are set to values contained in a table.

The cost to represent the above NP checker is as follows. To
look up m entries in a table of size n within a step function, the
number of constraints depends on the above two components:
(1) sumcheck verifier and variable assignment, which requires
O(m - logn) constraints with small constant; and (2) Fiat-
Shamir transform which requires representing O(log n) hash
function evaluations in constraints, and each hash function

requires hundreds of constraints.
Since expressing the hash functions is the dominant cost,

lookup arguments are designed to amortize this component

over the batch of m lookups. This is in contrast to using
Merkle Trees which requires O(m logn) hash functions rep-
resented as constraints to handle m lookups.

Since the nlookup verifier is encoded as an NP checker in
RI1CS, the Nova prover actually needs to know the witness
for this checker so that it can prove the satisfiability of the
statement. To compute this witness, the Nova prover has to
do O(n) finite field operations per series of m lookups. Also,
outside of R1CS (after the Nova verifier has checked the
proof), the verifier performs an additional O(n) finite field
operations at the very end of the protocol. A more detailed
explanation of the protocol can be found in [56, §7] and in
Appendix in Figure 27.

6.2 SAFA Lookup table

The lookup table T that Reef uses to encode the SAFA has a
row for each transition in the SAFA and 5 columns—current
state, character, next state, minimum cursor move, and max-
imum cursor move. The function of each of these columns
is covered in Section 5.3. To convert this into the multilinear
polynomial T needed for nlookup we manifest T as a vector
of elements; each element represents an entire row and is
computed by hashing the corresponding 5 columns to pro-
duce a value in F. After a lookup takes place in Reef’s step
function, the result is therefore a single hash digest. To obtain
the columns, the step function has constraints that allow the
prover to supply the five values of the column entries, fol-
lowed by a check that confirms that the hash of these values
matches the looked up digest.

Constraints for SAFA lookups. As we discuss in Sec-
tion 6.1, the number of constraints required for m lookups in
a table of size n using nlookup is O(m - logn) constraints
plus O(log) hash functions expressed as constraints. Each
of the m lookups represents one SAFA transition. The SAFA
table is of size O(|Qsam| - |X]|) in the worst case—a transi-
tion for every character from every state. If the step function
processes one SAFA transition at a time then m = 1 and
the number of constraints to represent the single lookup is
O(log(|Qsam| - |X])) plus O(log(|Qsara| - [X])) hashes.

Constraints across all steps. While it may seem that the
total number of transitions (and therefore steps) should be at
most O(|D|), that is not always the case. With no lookarounds,
the total number of transitions is < |D|. However, because
SAFA may have multiple branches for lookarounds, certain
parts of D may be looked up more than once. We thus upper
bound the number of transitions by o = O(|D| - L), where
L is the number of lookarounds in the regex. The number
of constraints needed to check all of the transitions is thus
O(alog(|Qsam| - |2])) plus O(alog(|Qsar - |X])) hashes.
Of course, the whole point of using a lookup argument is
to benefit from its amortization, which is why Reef places
multiple SAFA transitions within a single step function based

on the results of our optimizing compiler (§7). As a result,
m > 1, so each step function has m transitions but Reef needs
to run m times fewer steps. In this case, the total number
of constraints across all steps is O(alog(|Qsam| - |X])) plus
O(%10og(|Qsam - |X|)) hash functions. One might think that
the optimal case is to have all lookups in a single step (which
maximizes the amortization), but this is not so because there
are other considerations as we explain in Appendix H .

6.3 Committing to a document

To commit to a document D over an alphabet ¥, the committer
G first maps each character in 3 to an element in . Then,
G simply treats D as a vector in F". At this point, G can
commit to D using any vector or polynomial commitment [27,
59, 67, 81]. That said, we choose a polynomial commitment
since Reef uses a lookup argument to access SAFA transitions
anyway, so using a lookup argument to access D allows us to
combine both lookup tables to get lower costs (§6.5).

Note that if the optional transparency goal is desired, then
the commitment scheme must be transparent (§3).

Polynomial comNmitment. G treats the vector D as a mllltilin-
ear polynomial 7 in evaluation form and commits to T with
a polynomial commitment. A polynomial commitment is a
tuple of algorithms (Setup, Commit, ProveEval, VerifyEval).
Informally, Sefup outputs public parameters pp; Commit takes
pp. a polynomial 7', and outputs a hiding and binding com-
mitment to T', C5; ProveEval takes pp, T, a point g, value v,
and outputs a proof m,,, that T(Q) = v; VerifyEval takes pp,
C5, 4, Tpory, and v and outputs whether T(q) =.

In our implementation we use the Hyrax polynomial com-
mitment (Hyrax-PC) [81, §6.1], but one could make other
choices to get different tradeoffs (e.g., Dory [59] has smaller
commitments but its ProveEval algorithm results in larger
proofs and is more expensive).

Let the Pedersen commitment for a vector x € " be:

Pedersen(x,b) = h” - H g
i=1

where g1, ..., g, and h are public random generators of the
group over which the zkSNARK is defined (Pallas elliptic
curve [47] in our case) and b € F is a secret random blind.
Hyrax-PC treats T as the column-major order of a \/n-by-\/n
matrix M, and commits to each row of M using a Perdersen
vector commitment. This means that the commitment in Reef
is y/n group elements, and there are y/n random blinds.

Making nlookup zero-knowledge. nlookup [56] does not
explicitly discuss a way to guarantee zero-knowledge during
lookups. Here we give a concrete proposal, based on standard
techniques [34, 71, 81]. As we describe in Section 6.1, the
output of the recursive proof system will include an nlookup
running value v, purported to be the evaluation of the multi-
linear polynomial 7 at a public random point g, € [specified
by the Fiat-Shamir transform. When T is public, V can simply

compute T(g,) and check if it equals v,. This is what we do
with the SAFA table (§6.2). However, when T is private, there
are two issues: (1) P cannot give V the claim v, in the clear,
as v, is a weighted sum of the contents of 7" and would leak
information; and (2) V does not have access to 7 and hence
cannot compute 7'(g,) on its own.

‘We address these issues as follows. First, instead of out-
putting v, in the clear, we have the match_step function
output d, where d = H(v,||s;) and s, is a random secret value
that P chooses. P can make d available to)V without revealing
anything about v assuming H heuristically instantiates a ran-
dom oracle. P then computes another proof, Tconsistency, With
a separate non-recursive zZkSNARK (we use Spartan [71])
for the statement: “given commitment ¢ and public input d,
I know a v, such that d = H(v,||s1) and ¢ = g"h* for some
s1 and 5,7, where g and h are appropriate generators of the
polynomial commitment. In effect, 7 onsisiency €stablishes that
‘P correctly transformed one type of commitment (d) that is
cheap to compute in R1CS but is not useful to verify poly-
nomial evaluations, into another type of commitment (c¢) for
the same value v, that can be used to verify polynomial eval-
uations. Furthermore, 7 ongisiency 1S very cheap to compute
(=~ 300 constraints) as we make ¢ an outer commitment [33]
(i.e., a commitment that is native to the underlying proof
system) and does not need to be expressed in R1CS at all.

Second, recall that V' has access to a polynomial com-
mitment of 7, C5. P can then give V a proof m,,; =
ProveEval(i", gr,Vr), Which V can use alongside ¢,, ¢, and G5

to confirm that T(q,) = v,. The key idea is to realize that,
in Hyrax [81] and similar polynomial commitments [27, 59],
the first step of VerifyEval(Cs, gy, Tpoiy, vy) is for V to turn
the claim v, into the Pedersen commitment g" 7% for some
s3. However, V already has ¢ = g""h* and a proof mcopsistency
that establishes that c is a valid Pedersen commitment for v,.

Hence, V can simply use c instead.

Security. Observe that the verifier sees d, ¢, C5, gr, Teonsistency
and 7,,;y. From this information, the verifier learns nothing
about v, beyond the fact that d and ¢ commit to the same
value, and that ¢ is a commitment to a correct evaluation
of a polynomial underneath the commitment C5 at point g,.
This is because T onsisiency and Tp0p are both zero-knowledge
arguments, and the three commitments d, ¢, and C are hiding.

6.4 Table projections

For proving m lookups over a committed document of size n,
nlookup’s prover incurs O(n) operations over F. Although
these are not expensive group operations, when n is large
(e.g., billions), this can be expensive. On the other hand, in
some applications, it is public information that lookups will
be made to particular portion of the document (though the
actual content within that portion of the document is private).
For example, a study may just care about DNA regions that
start at publicly known offsets.

To address this, we describe an approach to run nlookup
on a projected table (one that contains one or more “chunks”
of an original table) such that the prover incurs costs pro-
portional to the size of the projected table. Furthermore, the
verifier still only needs a commitment to the original table.
The core idea is to leverage certain basic facts about multilin-
ear polynomials to reduce claims about a projected table to
claims about the original table.

We begin with an overview, which we then generalize. Let
T be the original table with n = 2¢ elements, and T be its
multilinear extension as described in Section 6.1. Suppose
we project T into a smaller table 7"; 7" is then a multilinear
polynomial in ¢/ < £ variables. It turns out that 77 and T are
related in a fundamental way. This is what enables us to run
nlookup on 7". At the end of nlookup, the verifier is left
with a claim about 7, of the form 77(g,) = v,. However, the
verifier only has a commitment to the original table T. To
address this, we transfoim this claim to an equivalent claim
about an evaluation of T, allowing the verifier to check the
claim about T using a commitment to 7. We now elaborate.

We use a concrete example, to provide intuition. Suppose
that T = [a,b,c,d, e,f, g, h], so T is a multilinear polynomial
in ¢ = 3 variables. Suppose the projected table is 77 = [c, d],
$0 U = l.for this example, it follows that for all g, € =4
T'(¢q,) = T(s,q,), where s = 01 € {0,1}* = {0,1}¢~¢.
In the context of nlookup, to check that T'(q,) = v,, the
verifier can instead check T'(s,g,) = v,, where s = 01. A
key take-away here is that for 0 < ¢ < /¢, observe that a
specified prefix s € {0, 1}¢~¢ “selects” a unique chunk of T
and specifies a particular projection of size 2t

Note that this approach generalizes to project non-
contiguous chunks of 7. For simplicity, suppose that we
want to project two chunks of 7, specified with two selectors
s; € {0,1}* and 5, € {0,1}*, where 0 < ¢’ < /. The pro-
jected table T" = (L, R) is a vector of size 2¢~¢'*! and L and
R are vectors of size 2=, so T" is a multilinear polynomial in
£—{' +1 variables. When we run nlookup with the projected
table 7", the verifier ends up with a claim about the projected
table of the form 7'(g,) = v,, where ¢, € F/=¢+!. Again,
derived from the properties of multilinear polynomials,

T'(g,) = (1 — ¢,[0]) - L(g,[1..]) + ¢,[0] - R(q,[1..])

(1 =g,[0]) - T(s1,4-[1.]) + ¢,[0] - (2, ¢/[1..])

Thus to check if T (q-) = v, the verifier can instead check
if (1 —q,[0]) - T(s1,¢,[1.]) +¢,[0] - T(s2, ¢,[1..]) = v, which
makes two evaluation queries to 7. Note that this idea gener-
alizes to projecting k > 2 non-contiguous chunks of 7'

Low-cost padding to hide document size. In many settings,
one would like to hide not just the content of D, but also
its size. For example, if D is a password, revealing its size
reveals the password’s length. Projections allow the commit-
ment generator G to pad the document to some upper bound
(essentially for free) while allowing P to perform operations

proportional to the unpadded document and without having
to reveal the selector s to V. Appendix G has the details.

6.5 Hybrid private/public lookup argument

Reef’s step function (§5.3) looks up values from two tables:
the public SAFA table (S) and the private document table
(D). We can do this with two separate instances of nlookup,
one for each table. However, this requires m log(|D| - |S|) +
On(log(|D| - |S])) constraints where m is the number of
lookups to each table per step.

Instead, we combine both tables into a single hybrid table,
all while preserving the privacy requirements of the document
table. Accessing this hybrid table requires only 2m log(|D| +
|S]) + On(log(|D| +1S])) constraints. This optimization does
not pay off only when one of the tables is multiple orders of
magnitude larger than the other. But we never encountered
an imbalance between |D| and |S| large enough to nullify the
benefits in any of our experiments.

P has access to S and D and can merge the tables by pre-
tending they are two halves of a large table 7" and running
the nlookup prover. At the end, VV will end up with a single
claim about the multilinear extension of T: T(g,) = v,, where
g, € F¥ and ¢ = log(2 - max(|D|, |S])). Since T in this case
includes private data,)V should not see v, in the clear, and
instead receives: d = H(v,||s1), C,, (a Pedersen commitment
to v,), and a proof Teonsisiency as We discuss in Section 6.3.

To verify T(q,) = v,, V must treat the public and private
parts of the large table as separate “indexable” chunks, similar
to the way projections work. We define T'(g,) as:

T(gr) = (1 = q,[0]) - S(g-[1..]) + ¢,[0] - D(g/[1.]) = v

Notice that this means we need to arrange 7 such that it
can be divided equally into a public half (indexed by ¢,[0] =
0) and a private half (g,[0] = 1). The smaller of the two
tables will be padded to the size of the other, which is why
¢ = log(2 - max(|D|,|S])) above, and why the hybrid table
becomes inefficient if one table is extremely larger than the
other. Lookups to the public half of the table use exactly the
same indices as before. Lookups to the private half will use
the same indices as before added to 2 - max(|D|, |S]).

Given this structure, P evaluates D at the point ¢,[1..] and
obtains a value v; € F. P then generates a commitment
C,, t0 v4, and a proof m,,, = ProveEval(D, g,[1..],v,) that
establishes that D(g,[1..]) = v,. For its part, V computes
g(q,[l..]) = v, on its own, and runs VerifyEval on ,, using
the document commitment, Cy, and C,,,.

So far, we have proceeded very similarly to the verification
of the running claim in the non-hybrid model. But notice that
V must still relate v; and C,, to C,, in the following way:

(1 - qr[O]) “vs + Qr[O] *Vd = Vr

This is done as follows. V computes C;, which is a Ped-
ersen commitment to the value on the left-hand-side of the

above equation using vs; and C,, (this requires only linear
operations on Pedersen commitments, which are linearly ho-
momorphic). P then proves that C;, and C,, commit to the
same value using a Schnorr [70] zero-knowledge proof of
equality 7.

Security. When the verifier computes the commitment Cy,
it does not learn any additional information about v, as the
operations are done using C,, (C,, is a commitment that
hides the underlying value v,). Furthermore, 7., proves that
the values under the commitments C; and C,, are the same
without revealing any additional information.

7 Implementation

Reef is implemented in 14K lines of Rust and is open
source [8]. We discuss the main components here and op-
timizations in Appendix H .

7.1 Compilation: from regex to R1CS

Reef has two levels of compilation. First, Reef compiles
regexes written in standard PCRE syntax [7] (Figure 1)
and produces a SAFA. From this SAFA, Reef generates the
SAFA’s transition lookup table and the match_step func-
tion discussed in Section 5.3. Since the match_step function
uses lookups it also contains the checks that the nlookup
verifier [56] must perform in each step. In particular, it con-
tains a series of Fiat-Shamir challenges that we generate with
the Poseidon hash function [44] using the Neptune library [3].
Finally, Reef uses the CirC [66] compiler to output R1CS
instances that we convert to Bellman [1] instances.

7.2 Solving: finding the satisfying witness

Reef, given a document D, finds the witness to the RICS
instance representing match_step in two parts. First, Reef
derives which paths in the SAFA to take, the skip values, the
entries in D to read, and the rows in the transition table to
look up. Reef’s solver might be of independent interest and
we discuss it in Appendix E.4. This solver only needs to run
once and tells P how many steps to prove.

Second, for each step, Reef runs the nlookup prover,
which we implement as there was no prior implementation, to
generate the values that will satisfy the nlookup checks that
were inserted in the corresponding match_step. The result
of this and the SAFA solver are sufficient to construct the
entire solution vector z; = (y;, 1, w;) where w; is the witness
and y; is the output of step i.

7.3 Proving knowledge of the witness

For the proving and verifying, we use Nova [4], which we
modify to make it zero-knowledge (the existing implementa-
tion was only succinct). This required changing 1.6K lines of
Rust to hide the number of steps executed, and making the
commitments hiding, and the folding scheme, sumcheck pro-
tocol, inner product argument, and SNARK zero-knowledge.
Our modified version of Nova is open source [5].

8 Costs and Complexity analysis

In this section we discuss the asymptotic costs of all of the
components of Reef. The analysis below considers the case
where Nova [57] uses Pedersen commitments to commit to
vectors, and Spartan [71] uses an [PA-based polynomial com-
mitment scheme to compress incrementally generated proofs.
Furthermore, for nlookup [56], the analysis considers the
case where documents are committed with Hyrax’s poly-
nomial commitment scheme [81]. Finally, one of the basic
operations of the above proof systems are multiexponentia-
tions: given generators g, . . ., g,, and exponents ey, . . ., €y,
compute g{' - g5 - - - g&. These are also called multi-scalar
multiplications (MSM). These proof systems typically use
Pippenger’s algorithm [68] which can compute a size-n MSM
in O(n\/log(n)\)) group operations. We will ignore the secu-
rity parameter A and just treat a size-n MSM as O(n/ logn)
group operations.

For simplicity, let 7 = |D| + |Qsar4| be the sum of the size
of both the document and the SAFA lookup tables.

Committer’s costs. Committing to a document D with
Hyrax’s polynomial commitment [81] requires the committer
G to perform O(|D|/log 1/|D|) group operations.

Prover’s costs. Ignoring the distinction between the arith-
metization of hash functions and other operations, the
contribution of the lookup argument towards Reef’s step
function is O(mlogT) RICS constraints; Reef requires
a total of O(«a/m) steps to finish processing a docu-
ment. Nova performs O(mlog(T)/log(mlogT)) group op-
erations per step. This results in P performing a total of
O(alog(T)/log(mlogT)) group operations. The resulting
proof 7 is of size O(log(mlogT)).

In addition, during each step, Reef needs to run the
nlookup prover in order to generate the relevant portion
of the satisfying witness for the R1CS instance. This re-
quires computing the sumcheck protocol over the hybrid table,
which necessitates O(T) field operations. If projections are
used, then D is substituted with D,,,; in the definition of T'.

At the end of the protocol P needs to compute ProveEval
in order to generate T, so that V can verify the private
component of the hybrid table. This requires P to perform
O(+/ID]/ log 1/|DJ) group operations. The proof, 7o, is of
size O(log |D|).

Finally, our zero-knowledge extension to the lookup argu-
ment for D requires generating the proof Teonsistency, Which is
done with a constant-size R1CS instance, and therefore O(1)
group operations in Spartan [71].

P performs O(a log(T)/log(mlog T) + +/|D|/ log /|D])
group and O(T) finite field operations in total.

Verifier’s costs. The cost to the verifier V s

O(mlog(T)/log(mlogT)) group operations in Nova
to verify 7. Further, V must invoke Hyrax’s VerifyEval

to check o, which requires O(y/|D|/log+/|D|) group

Application Document Size SAFA States SAFA
Transitions

Redactions

Small Email 415 331 42,318

Large Email 1,000 908 116,751

ODoH 128 36 4,012

Passwords

Match 12 21 1,188

Non-Match 9 21 1,188

DNA

Match 32.3 x 10° 976 4,861

Non-Match 32.3 x 109 976 4,861

FIGURE 5—Document and SAFA size for evaluated applications

operations. Lastly, the verifier needs to evaluate the public
component of the hybrid table which requires O(|Qsal)
finite field operations.

V performs O(mlog(T)/log(mlog T)+ +/|D|/log +/|D|)
group and O(|Qsar|) finite field operations in total.

Alternate approach. In Appendix I we discuss how if we
instantiate the SAFA table and the document commitment
using a Merkle tree, the asymptotic costs of Reef are much
lower (logarithmic number of group and finite field opera-
tions). However, the lower asymptotics do not translate to
lower concrete costs due to much higher constants.

9 Evaluation

This section answers Reef’s motivating questions: is prov-
ing general regular expression matching in zero knowledge
practical for various applications and do Reef’s optimizations
meaningfully reduce the costs? Our results indicate that this
is indeed the case.

9.1 Experimental Setup

Reef runs fine on a laptop (Intel Core i7 1.9 GHz, 16GB
RAM) since its use of recursion means that P proves one
step at a time and therefore uses little memory; at most 5.1
GB in our largest experiment. However, in order to run the
baselines which require more memory, we run all of our ex-
periments (including Reef) on a 16-core Intel Xeon Platinum
8253 CPU (2.20GHz) with 764 GB of RAM. We evaluate
Reef over the applications discussed in Section 1: proving
password strength, disclosing redacted emails, ODoH block-
listing, and genetic proving. For each of our use cases we
evaluate documents and regexes of varying sizes. Figures 5
and 6 report the document sizes, SAFA sizes, and results for
the largest instances based on SAFA size. However, full re-
sults, all document sizes, and a list of all regexes can be found
in Appendix J.

9.2 Overall Performance

We start by showing the end-to-end results of Reef on our

applications, averaged over 10 runs, and then later break down
some of these costs to show the benefits of each of Reef’s

optimizations.

Compilation. Compiling a regex to R1CS is the most time
consuming part since it requires parsing the regex and gen-
erating the SAFA, lookup tables, and R1CS matrices. This
includes the generation of the document commitment. How-
ever, this is typically a one-time cost and can be done in
advance since the regex is public.

Solving (witness generation). Reef’s witness generation in-
cludes the time to find the regex match, the right values for
all the skips in SAFA, running the nlookup prover (whose
output becomes a witness value to the step function), and
finding the satisfying assignment to all R1CS variables. In
most cases, all of this can be done in a few milliseconds; the
exceptions are large documents (e.g., DNA or large emails)
which require considerable time.

Proving. Proving time depends on document length, the
regex complexity, how many steps the prover needs to run,
and the size of each step. It includes the time to generate all
the proofs, including the consistency and equality proofs of
the hybrid table (§6.5). In Appendix H we discuss how Reef
often batches many character and skip transitions into one
step (leading to a larger step function but fewer total steps).
Reef generally performs worse on regexes where the regex
is similar to the document, as it gives Reef’s prover fewer
opportunities to skip and stop early. For example, the email
redaction regexes are very similar to the original document,
and hence result in more proving steps than some of the other
regexes, and consequently larger proving time.

Reef’s benefits are best exemplified with the DNA match-
ing application, in which the document has over 32 million
characters. Reef is able to generate succinct proofs for DNA
in under 30 seconds (including both solving and proving)
because it can avoid processing most of the document, thanks
to its use of skips and projections.

Verification. The verifier’s costs depend on the number of
RICS constraints for a single step (since Nova folds all steps
into one), as well as the cost to evaluate the SAFA polynomial
at a random point, and check the consistency polynomial eval-
uation, and the equality proof. Nova’s current implementation
uses Bulletproofs’s [27] linear-time inner product argument
on the folded instance (which we made zero-knowledge in
our evaluation); so while it has logarithmic proofs it still has
verification linear in the size of one step. This could be expen-
sive when the step function is large, but our step functions are
relatively small (under 100K constraints). As a result, verifica-
tion in Reef takes less than 1 second in all of our applications
and workloads.

Proof size. The proof column includes all materials needed
for the verifier to check the prover’s claim. This includes all
commitments and auxiliary proofs (e.g., Teonsistency> Tpolys Teq)-
Reef is succinct so all proof sizes are sublinear (logarithmic)
in the size of the statement being proven. However, Reef’s

Application Constraints # of Steps Compiler Solver Time Prover Time Verifier Proof Size Commitment
per step Time (s) (s) (s) Time (s) (KB) Size (KB)

Redactions

Small Email 46,655 4 36.947 0.760 3.169 0.553 32.609 0.512

Large Email 65,727 7 217.628 3.221 5.923 0.701 33.361 1.024

ODoH 22,692 2 19.650 0.213 1.709 0.435 31.889 0.512

Passwords

Match 19,982 5 17.960 0.067 2.573 0.418 31.665 0.128

Non-Match 20,728 6 18.636 0.357 2.963 0.416 31.761 0.128

DNA

Match 81,722 8 62.351 12.830 17.708 0.908 34.417 131.072

Non-Match 81,722 1 62.357 3.006 10.838 0.915 34.417 131.072

FIGURE 6—Summary of all costs for the largest instance of each application evaluated in Reef. R1CS Constraints are for one step in Nova.
Proof sizes include all the Nova zZkSNARK proof as well as all auxiliary proofs (e.g., Teonsisiency). Commitment size measures the size of
the document commitment. Reported times are the mean across 10 runs, and the standard deviation was less than 5% of the mean for all

components and applications.

Application DFA DFA + SAFA + Reef
Recursion nlookup

Redactions

Small Email 76.300 1.721 0.760 0.733
Large Email — 5.848 1.067 1.051
ODoH 2.064 0.640 0.409 0.362
Passwords

Match — — 0.351 0.347
Non-Match — — 0.343 0.330
DNA

Match — — 9.392 5.091
Non-Match — — 8.389 5.032

FIGURE 7—Maximum memory used (GB) by the Prover in Reef
and baselines for our applications. Verifier's memory use is lower.

use of Hyrax means that document commitments consist of
+/|D| group elements. When the document is very large, such
as in DNA, this can be sizable.

9.3 Comparative Performance

To contextualize the benefits of Reef, we compare it against
several alternatives:

* DFA. This is the standard approach articulated in Sec-
tion 3.1. To our knowledge, this is also the approach taken
by the ZK-Email project [16]. We use Circom [2] to com-
pile the match function and solve the corresponding R1CS
instance since CirC [66] is not presently capable of com-
piling such large statements due to memory issues.

* DFA + recursion. This is the approach described in Sec-
tion 4, which adds recursion and processes one character at
a time. It uses a hash-chain as a vector commitment, which
we believe is optimal (exactly one hash invocation) when
accessing entries in the committed document sequentially.
We use Circom and NovaScotia [6] to compile the step
function and connect it with our zero-knowledge version
of Nova (§7.3). Again, we are unable to compile these
RICS instances with CirC since they require expressing

the (large) DFA delta function in constraints.

* SAFA + lookup. This is our implementation of Reef (§7)
with SAFA and nlookup, but without projections (§6.4)
or the hybrid table optimization (§6.5).

The metrics that we will consider in this section are mem-
ory usage and end-to-end completion time for the Prover,
which includes both the time to solve and generate all wit-
ness values, and prove the satisfiability of the R1CS instance.
Appendix J has additional graphs for these same experiments
but separates the time for solving and proving for readers
interested in understanding the contribution of each compo-
nent towards the end-to-end time. One thing to consider is
that Reef pipelines the generation of a proof for step i with
the generation of the witness for step i + 1 in parallel, as
we discuss in Appendix H. As a result, the end-to-end time
can sometimes be lower than the sum of the corresponding
proving and solving times.

Results. Figure 7 shows the maximum memory use of Reef
and the baselines for the same documents and regexes found
in Figure 6. We are unable to run the password matching
application with either of the DFA baselines due to its use
of lookaheads, and the DNA application due to the massive
R1CS instances (or number of steps) that are required. There
are two observations: (1) using a recursive proof system has
significant benefit in keeping the amount of memory required
by the prover small since the prover only needs to prove one
step at a time; and (2) the use of table projections in the DNA
application means that the prover does not need to compute
an expensive and memory-intensive sumcheck over the entire
document, but rather works only over the projected table. This
is why Reef uses less memory than SAFA + nlookup.
Figure 8 shows the end-to-end performance results. Across
the board, SAFA +nlookup and Reef both dramatically out-
perform the DFA and DFA+Recursion approaches. Take for
example Redactions Small. SAFA +nlookup and Reef took
3.55 and 3.51 seconds generate witnesses and prove, while the

o

mmm Alternative

“ 8372.75 8617.21 mmm Our Work

I I 351

DFA DFA*Recurs\on SAFA+n\ooKup Reev DFA+Recursion SAFA+nlookup Reef
Small Sm Small Large Large Large

10

5

Total Time (s

=

6.44 6.68

(a) Proof that a (small / large) committed email matches a redaction
regex. DFA was unable to handle the large email.

10°
107

SAFA+nlookup SAFA+nlookup Reef
Non-Match Non Match Match Match

Total Time (s)

(c) Proof that a committed password matches/does not match a password

strength regex.

Approach
mmm Alternative

o mmm Our Work
o 18.63 17.95
E
o
35 10
<)
1.85 1.86
DFA DFA+Recursion SAFA+nlookup Reef

(b) Proof that a committed document matches an ODoH regex.

17695.30

329.94

Total Time (s)
>

26.40
14.20
—

SAFA+nlookup Reef SAFA+nlookup Reef
Non-Match Non-Match Match Match

(d) Proof that a committed DNA document matches/does not match a
DNA regex. Neither DFA nor DFA+recursion can handle this application.

FIGURE 8—Mean end-to-end completion time (which includes witness and proof generation) across 10 runs for proving that some committed
document matches/does not match a regex with Reef and various alternatives. Standard deviations were less than 5% of the mean. Each
subfigure describes a different application (regex) and type of document. The corresponding document sizes are found in Figure 6.

DFA baselines took over an hour. This suggests that Reef’s
ability to skip irrelevant parts of the document and the use of
our zero-knowledge version of nlookup provides benefits.

One might notice that DFA + recursion actually performs
worse than just DFA in the case of small email redactions.
There are a few reasons for this. First, while each step can
process multiple characters, because the circuit still relies
on for loops, it can only process a few characters per step
before the circuit becomes too large. Second, in each step,
there is some non-trivial work that is performed to check if
the document is a match (§3.1). Third, each step of Nova adds
a check to ensure foldings are correct (20,000 constraints).

Note that Reef also suffers from the latter two overheads
(though the specific invariants for checking a match in a SAFA
are different than in a DFA). However, Reef’s use of lookup
tables allow it to efficiently process large numbers of charac-
ters per step, which amortizes the latter two overheads over
a batch of characters. Indeed, one of our optimizations (Ap-
pendix H) is to process the optimal number of characters per
step for a given regex in the SAFA’s match_step, which
amortizes these costs over the batch. We find this optimal
value with a cost model that we have implemented in Reef’s
compiler.

The final impact to consider is that of Reef’s additional
optimizations. As discussed in Section 6.5, using hybrid tables
reduces the number of constraints needed. This reduction is
usually 1K-3K fewer constraints in the step function; full
results are in Appendix J. This reduction in the size of the
step function results in some small performance gains.

More significant is the impact of document projections
in our DNA applications. Because common variants in the
genome occur at known, fixed locations, by using projections

(§6.4) Reef can skip over large parts of the genome directly to
the start of the variant of interest. In the case of DNA match-
ing, this results in a 50% reduction in proving time, and an
over 99% reduction in solving time. While SAFA +nlookup
can avoid the costs of a large document when it comes to
proving, it still has to evaluate the sum-check protocol on
the entire document for each step. When working with a
document as large as DNA, this rapidly becomes prohibitive.

Takeaway. Reef handles a wide class of regexes at reason-
able cost while producing succinct proofs. Each of Reef’s
optimizations provide benefits: SAFA allows expressing com-
plicated regexes and skipping irrelevant parts of the docu-
ment; recursion unleashes the power of SAFA by allowing
the prover to prove only for as long as needed, and requiring
much fewer memory; Reef’s compiler picks the optimal num-
ber of characters to process per step for a regex to reduce the
penalty of non-uniformity during recursion; hybrid lookup
tables reduce the size of the step function; and projections
make it possible for the prover to solve more efficiently when
the location of relevance within the document is public.

10 Related Works

Reef relates to a series of very recent works on building proof
systems for regexes [16, 61, 69, 84]. Reef aims to be as gen-
eral as possible—targeting complex PCRE expressions and
arbitrarily long documents. Reef achieves this by introducing
SAFA, a brand new automata. In contrast, these other works
target particular applications (middlebox packet inspection,
malware hash membership tests) and use existing automata
(DFAs or NFAs) enhanced with various encoding optimiza-
tions for their application domains. Reef can also handle these
applications (and many others). It is unclear whether Reef

would achieve better performance on these applications over
these tailored proposals as we have not yet done an empiri-
cal comparison (they were all developed concurrently with
Reef). One exception is ZK Regex from the ZK Email Verify
project [16], which is in effect the “standard” approach in our
evaluation, and which Reef outperforms in all applications.
Another related area is that of secure regex evaluation [38,
53, 58, 61, 63, 80]. Here the goal is for one party to supply the
regex R and another party the document D, and to determine
whether D € L[R] without revealing their inputs. This is
a multi-party computation, and the techniques used in this
domain aim to express computation rather than verification,
which is the main theme in our work (via NP checkers).

11 Discussion and Future Work

Reef is the most expressive zero-knowledge proof system for
regexes to date. It excels in situations where the document is
large and the match is small, or when the regex gives Reef
many opportunities to skip unnecessary work. In contrast,
works like Zombie [84] excel in the opposite regime (small
documents or when the document closely matches the regex).
We think there are opportunities to combine the techniques in
these two approaches to obtain the best of both worlds.

Reef has the ability to prove regex matches (and non-
matches), but an interesting extension is to support “search
and replace”. In such a setting, the prover would prove not
whether there is a match for some regex but rather that some
committed document is the result of performing a regex
search and replace transformation on some other commit-
ted document. Another extension to Reef is to support context
free grammars. We think a similar approach of developing a
custom automata would work there, and Reef already uses a
stack for SAFA, which we show is quite efficient.

Source Code

Our code is available at:
https://github.com/eniac/Reef.

Acknowledgements

We thank Justin Thaler for insightful discussions on the prob-
lem of matching with wildcards and Riad Wahby for clarify-
ing some questions on Hyrax and its polynomial commitment.
We also thank Zachary DeStefano, Paul Grubbs, and Michael
Walfish for helping us better understand Zombie, and Xiang
Fu for pointing out a typo in an earlier version of this paper
and for helping us better understand zkreg. Weidong Cui en-
couraged us to formalize our automata, which ultimately led
to our formal development of SAFA. This work was funded
in part by NSF grants CNS-2045861, CNS-2107147, CNS-
2124184, a gift from the Arcological Swiss Association, and
DARPA contract HRO011-17-C0047. Any views expressed
herein are solely those of the authors listed.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]
(1]

(12]
[13]

(14]

[15]

[16]

(17]

bellman.
https://github.com/zkcrypto/bellman.

Circom.
https://github.com/iden3/circom.

Neptune.
https://github.com/lurk-1lab/neptune.

Nova: Recursive SNARKSs without trusted setup.
https://github.com/microsoft/Nova.

Nova: Recursive SNARKSs without trusted setup.
https://github.com/sga®01/Nova.

Nova-scotia. https://github.com/
nalinbhardwaj/Nova-Scotia.

Perl-compatible regular expressions (PCRE).
https://www.pcre.org/original/doc/
html/pcresyntax.html.

Reef: A zZkSNARK system for proving that a
committed document matches a regex.
https://github.com/eniac/Reef.

Regex filters for pi-hole.
https://github.com/mmotti/pihole-
regex/blob/master/regex.list.

https://bit.ly/reef-min-dfa, 2023.

https://nordpass.com/most-common-
passwords-Tlist/, 2023.

https://www.cs.cmu.edu/~enron/, 2023.

https://www.ncbi.nlm.nih.gov/gene/672,
2023.

https://www.ncbi.nlm.nih.gov/gene/675,
2023.

Introduction to Microsoft Entra Verified ID.
https://learnmicrosoft.com/en-us/
azure/active-directory/verifiable-
credentials/decentralized-
identifier-overview, 2023.

Zk email verify. https:
//github.com/zkemail/zk-email-verify,
2023.

A. V. Aho and M. J. Corasick. Efficient string hatching:
an aid to bibliographic search. Communications of the
ACM, 18, 1975.

https://github.com/eniac/Reef
https://github.com/zkcrypto/bellman
https://github.com/iden3/circom
https://github.com/lurk-lab/neptune
https://github.com/microsoft/Nova
https://github.com/sga001/Nova
https://github.com/nalinbhardwaj/Nova-Scotia
https://github.com/nalinbhardwaj/Nova-Scotia
https://www.pcre.org/original/doc/html/pcresyntax.html
https://www.pcre.org/original/doc/html/pcresyntax.html
https://github.com/eniac/Reef
https://github.com/mmotti/pihole-regex/blob/master/regex.list
https://github.com/mmotti/pihole-regex/blob/master/regex.list
https://bit.ly/reef-min-dfa
https://nordpass.com/most-common-passwords-list/
https://nordpass.com/most-common-passwords-list/
https://www.cs.cmu.edu/~enron/
https://www.ncbi.nlm.nih.gov/gene/672
https://www.ncbi.nlm.nih.gov/gene/675
https://learn.microsoft.com/en-us/azure/active-directory/verifiable-credentials/decentralized-identifier-overview
https://learn.microsoft.com/en-us/azure/active-directory/verifiable-credentials/decentralized-identifier-overview
https://learn.microsoft.com/en-us/azure/active-directory/verifiable-credentials/decentralized-identifier-overview
https://learn.microsoft.com/en-us/azure/active-directory/verifiable-credentials/decentralized-identifier-overview
https://github.com/zkemail/zk-email-verify
https://github.com/zkemail/zk-email-verify

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

S. Ames, C. Hazay, Y. Ishai, and

M. Venkitasubramaniam. Ligero: Lightweight
sublinear arguments without a trusted setup. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2017.

S. Angel, A. J. Blumberg, E. Ioannidis, and J. Woods.
Efficient representation of numerical optimization
problems for SNARKS. In Proceedings of the USENIX
Security Symposium, 2022.

V. Antimirov. Partial derivatives of regular expressions
and finite automaton constructions. Theoretical
Computer Science, 155(2):291-319, 1996.

E. Ben-Sasson, 1. Bentov, Y. Horesh, and M. Riabzev.
Scalable, transparent, and post-quantum secure
computational integrity. Cryptology ePrint Archive,
Paper 2018/046, 2018.
https://eprint.iacr.org/2018/046.

E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza.
Scalable zero knowledge via cycles of elliptic curves.
In Proceedings of the International Cryptology
Conference (CRYPTO), 2014.

D. Boneh, J. Drake, B. Fisch, and A. Gabizon. Halo
Infinite: Recursive zk-SNARKSs from any Additive
Polynomial Commitment Scheme. In Proceedings of
the International Cryptology Conference (CRYPTO),
2021.

S. Bowe, J. Grigg, and D. Hopwood. Recursive proof
composition without a trusted setup. Cryptology ePrint
Archive, Paper 2019/1021, 2019.
https://eprint.iacr.org/2019/1021.

B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J.
Blumberg, and M. Walfish. Verifying computations
with state. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2013.

J. A. Brzozowski. Derivatives of regular expressions.
Journal of the ACM (JACM), 11(4):481-494, 1964.

B. Biinz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille,
and G. Maxwell. Bulletproofs: Short proofs for
confidential transactions and more. In Proceedings of
the IEEE Symposium on Security and Privacy (S&P),
2018.

B. Biinz and B. Chen. ProtoStar: generic efficient
accumulation/folding for special sound protocols.
Cryptology ePrint Archive, Paper 2023/620, 2023.
https://eprint.iacr.org/2023/620.

B. Biinz, A. Chiesa, W. Lin, P. Mishra, and N. Spooner.

Proof-carrying data without succinct arguments. In
Proceedings of the International Cryptology

Conference (CRYPTO), 2021.

(30]

(31]

(32]

[33]

[34]

(35]

(36]

(37]

(38]

[39]

[40]

B. Biinz, A. Chiesa, P. Mishra, and N. Spooner.
Proof-carrying data from accumulation schemes. In
Proceedings of the Theory of Cryptography Conference
(TCC), 2020.

P. Caron, J.-M. Champarnaud, and L. Mignot. A
general framework for the derivation of regular
expressions. RAIRO-Theoretical Informatics and
Applications, 48(3):281-305, 2014.

A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer.
Alternation. Journal of the ACM (JACM), 28(1), 1981.

C. Costello, C. Fournet, J. Howell, M. Kohlweiss,

B. Kreuter, M. Naehrig, B. Parno, and S. Zahur.
Geppetto: Versatile verifiable computation. In
Proceedings of the IEEE Symposium on Security and
Privacy (S&P), May 2015.

R. Cramer and 1. Damgéard. Zero-knowledge proofs for
finite field arithmetic, or: Can zero-knowledge be for
free? In Proceedings of the International Cryptology
Conference (CRYPTO), 1998.

L. Eagen, D. Fiore, and A. Gabizon. cq: Cached
quotients for fast lookups. Cryptology ePrint Archive,
Paper 2022/1763, 2022.
https://eprint.iacr.org/2022/1763.

A. Fellah, H. Jiirgensen, and S. Yu. Constructions for
alternating finite automata. International journal of
computer mathematics, 35(1-4):117-132, 1990.

N. Franzese, J. Katz, S. Lu, R. Ostrovsky, X. Wang, and
C. Weng. Constant-overhead zero-knowledge for ram
programs. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications
Security, pages 178-191, 2021.

K. B. Frikken. Practical private dna string searching
and matching through efficient oblivious automata
evaluation. In Data and Applications Security XXIII:
23rd Annual IFIP WG 11.3 Working Conference,
Montreal, Canada, July 12-15, 2009. Proceedings 23,
pages 81-94. Springer, 2009.

A. Gabizon and Z. J. Williamson. plookup: A
simplified polynomial protocol for lookup tables.
Cryptology ePrint Archive, Paper 2020/315, 2020.
https://eprint.iacr.org/2020/315.

A. Gabizon and Z. J. Williamson. Proposal: The
turbo-PLONK program syntax for specifying SNARK
programs. https://docs.zkproof.org/
pages/standards/accepted-workshop3/
proposal-turbo_plonk.pdf, 2020.

https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2020/315
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

R. Gennaro, C. Gentry, B. Parno, and M. Raykova.
Quadratic span programs and succinct NIZKs without
PCPs. In Proceedings of the International Conference
on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), 2013.

A. Golovnev, J. Lee, S. Setty, J. Thaler, and R. S.
Wahby. Brakedown: Linear-time and post-quantum
snarks for rlcs. Cryptology ePrint Archive, 2021.

G. Gramlich and G. Schnitger. Minimizing nfas and
regular expressions. In STACS 2005: 22nd Annual
Symposium on Theoretical Aspects of Computer
Science, Stuttgart, Germany, February 24-26, 2005.
Proceedings 22, pages 399—411. Springer, 2005.

L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and
M. Schofnegger. Poseidon: A new hash function for
zero-knowledge proof systems. In USENIX Security
Symposium, volume 2021, 2021.

P. Grubbs, A. Arun, Y. Zhang, J. Bonneau, and
M. Walfish. Zero-knowledge middleboxes. In

Proceedings of the USENIX Security Symposium, 2022.

T. Hansen, D. Crocker, and P. Hallam-Baker.
Domainkeys identified mail (DKIM) service overview.
https:

//www.r fc-editor.org/rfc/rfc5585.html,
2009. RFC 5585.

D. Hopwood. The Pasta curves for Halo 2 and beyond.
https://electriccoin.co/blog/the-
pasta-curves-for-halo-2-and-beyond/,
2020.

S. Jarecki, H. Krawczyk, and J. Xu. Opaque: An
asymmetric PAKE protocol secure against
pre-computation attacks. In Proceedings of the
International Conference on the Theory and
Applications of Cryptographic Techniques
(EUROCRYPT), 2018.

K. Jiang, D. Chait-Roth, Z. DeStefano, M. Walfish, and
T. Wies. Less is more: refinement proofs for
probabilistic proofs. Cryptology ePrint Archive, Paper
2022/1557, 2022.
https://eprint.iacr.org/2022/1557.

M. Jones, J. Bradley, and N. Sakimura. JSON web
token JWT). https://
datatracker.ietf.org/doc/html/rfc7519,
2015. RFC 7519.

A. R. Karlin, H. W. Trickey, and J. D. Ullman.
Experience with a regular expression compiler.
Technical report, STANFORD UNIV CA DEPT OF
COMPUTER SCIENCE, 1983.

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

A. Kate, G. M. Zaverucha, and I. Goldberg.
Constant-size commitments to polynomials and their
applications. In International Conference on the
Theory and Application of Cryptology and Information
Security (ASIACRYPT), 2010.

F. Kerschbaum. Practical private regular expression
matching. In IFIP International Information Security
Conference, pages 461-470. Springer, 2006.

E. Kinnear, P. McManus, T. Pauly, T. Verma, and C. A.
Wood. Oblivious DNS over HTTPS. https:
//www.r fc-editor.org/rfc/rfc9230, 2022.
RFC 9230.

A. Kothapalli and S. Setty. SuperNova: proving
universal machine executions without universal circuits.
Cryptology ePrint Archive, Paper 2022/1758, 2022.
https://eprint.iacr.org/2022/1758.

A. Kothapalli and S. Setty. HyperNova: recursive
arguments for customizable constraint systems.
Cryptology ePrint Archive, 2023.

A. Kothapalli, S. Setty, and I. Tzialla. Nova: Recursive
zero-knowledge arguments from folding schemes. In
Advances in Cryptology—CRYPTO 2022: 42nd Annual
International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15-18, 2022,
Proceedings, Part IV, pages 359-388. Springer, 2022.

P. Laud and J. Willemson. Universally composable
privacy preserving finite automata execution with low
online and offline complexity. Cryptology ePrint
Archive, 2013.

J. Lee. Dory: Efficient, transparent arguments for
generalised inner products and polynomial
commitments. In Proceedings of the Theory of
Cryptography Conference (TCC), 2021.

C. Lund, L. Fortnow, H. Karloff, and N. Nisan.
Algebraic methods for interactive proof systems. In
Proceedings of the IEEE Symposium on Foundations of
Computer Science (FOCS), Oct. 1990.

N. Luo, C. Weng, J. Singh, G. Tan, R. Piskac, and
M. Raykova. Privacy-preserving regular expression
matching using nondeterministic finite automata.
Cryptology ePrint Archive, Paper 2023/643, 2023.
https://eprint.iacr.org/2023/643.

J. Miller, D. Waite, and M. Jones. JSON web proof.
https://www.ietf.org/archive/id/draft-
ietf-jose-json-web-proof-00.html, 2023.

https://www.rfc-editor.org/rfc/rfc5585.html
https://www.rfc-editor.org/rfc/rfc5585.html
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/
https://eprint.iacr.org/2022/1557
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/rfc/rfc9230
https://www.rfc-editor.org/rfc/rfc9230
https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2023/643
https://www.ietf.org/archive/id/draft-ietf-jose-json-web-proof-00.html
https://www.ietf.org/archive/id/draft-ietf-jose-json-web-proof-00.html

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

P. Mohassel, S. Niksefat, S. Sadeghian, and

B. Sadeghiyan. An efficient protocol for oblivious dfa
evaluation and applications. In Topics in
Cryptology—CT-RSA 2012: The Cryptographers’ Track
at the RSA Conference 2012, San Francisco, CA, USA,
February 27-March 2, 2012. Proceedings, pages
398-415. Springer, 2012.

A. Nitulescu. SoK: Vector commitments.
https://www.di.ens.fr/~nitulesc/files/
vc-sok.pdf, 2021.

S. Owens, J. Reppy, and A. Turon. Regular-expression
derivatives re-examined. Journal of Functional
Programming, 19(2):173-190, 2009.

A. Ozdemir, F. Brown, and R. S. Wahby. Circ:
Compiler infrastructure for proof systems, software
verification, and more. In 2022 IEEE Symposium on
Security and Privacy (SP). IEEE, 2022.

T. P. Pedersen. Non-interactive and
information-theoretic secure verifiable secret sharing.
In Proceedings of the International Cryptology
Conference (CRYPTO), 2001.

N. Pippenger. On the evaluation of powers and related
problems. In Proceedings of the Annual Symposium on
Foundations of Computer Science (SFCS), 1976.

M. Raymond, G. Evers, J. Ponti, D. Krishnan, and

X. Fu. Efficient zero knowledge for regular language.
Cryptology ePrint Archive, Paper 2023/907, 2023.
https://eprint.iacr.org/2023/907.

C.-P. Schnorr. Efficient signature generation by smart
cards. Journal of Cryptology, 4:161-174, 1991.

S. Setty. Spartan: Efficient and general-purpose
zkSNARKSs without trusted setup. In Proceedings of the

International Cryptology Conference (CRYPTO), 2020.

S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and
M. Walfish. Resolving the conflict between generality
and plausibility in verified computation. In Proceedings
of the ACM European Conference on Computer
Systems (EuroSys), 2013.

S. Setty, J. Thaler, and R. Wahby. Customizable
constraint systems for succinct arguments. Cryptology
ePrint Archive, Paper 2023/552, 2023.
https://eprint.iacr.org/2023/552.

S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg,
and M. Walfish. Taking proof-based verified
computation a few steps closer to practicality. In

Proceedings of the USENIX Security Symposium, 2012.

S. Shin, K. Kobara, and H. Imai. Security proof of
AugPAKE. Cryptology ePrint Archive, Paper 2010/334,
2010. https://eprint.iacr.org/2010/334.

[76]

[77]

(78]

[79]

[80]

(81]

[82]

[83]

[84]

[85]

[86]

T. Solberg. A brief history of lookup arguments.
https://github.com/ingonyama-zk/
papers/blob/main/lookups.pdf, 2023.

C. Stanford, M. Veanes, and N. Bjgrner. Symbolic
boolean derivatives for efficiently solving extended
regular expression constraints. In Proceedings of the
42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation,
pages 620-635, 2021.

T. Taubert and C. A. Wood. SPAKE2+, an augmented
PAKE. https://www.rfc-editor.org/rfc/
internet-drafts/draft-bar-cfrg-
spake2plus-08.html, 2022.

K. Thompson. Programming techniques: Regular
expression search algorithm. Communications of the
ACM, 11(6), 1968.

J. R. Troncoso-Pastoriza, S. Katzenbeisser, and

M. Celik. Privacy preserving error resilient dna
searching through oblivious automata. In Proceedings
of the 14th ACM conference on Computer and
communications security, pages 519-528, 2007.

R. S. Wahby, L. Tzialla, A. Shelat, J. Thaler, and

M. Walfish. Doubly-efficient zkSNARKSs without
trusted setup. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2018.

C. Weng, K. Yang, X. Xie, J. Katz, and X. Wang.
Mystique: Efficient conversions for zero-knowledge
proofs with applications to machine learning. In
Proceedings of the USENIX Security Symposium, 2021.

T. Wu. The secure remote password protocol. In
Proceedings of the Network and Distributed System
Security Symposium (NDSS), 1998.

C. Zhang, Z. DeStefano, A. Arun, J. Bonneau,

P. Grubbs, and M. Walfish. Zombie: Middleboxes that
don’t snoop. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation
(NSDI), 2024.

J. Zhang, T. Xie, Y. Zhang, and D. Song. Transparent
polynomial delegation and its applications to zero
knowledge proof. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2020.

L. Zhao, Q. Wang, C. Wang, Q. Li, C. Shen, and

B. Feng. Veriml: Enabling integrity assurances and fair
payments for machine learning as a service. I[EEE
Transactions on Parallel and Distributed Systems, 2021.

https://www.di.ens.fr/~nitulesc/files/vc-sok.pdf
https://www.di.ens.fr/~nitulesc/files/vc-sok.pdf
https://eprint.iacr.org/2023/907
https://eprint.iacr.org/2023/552
https://eprint.iacr.org/2010/334
https://github.com/ingonyama-zk/papers/blob/main/lookups.pdf
https://github.com/ingonyama-zk/papers/blob/main/lookups.pdf
https://www.rfc-editor.org/rfc/internet-drafts/draft-bar-cfrg-spake2plus-08.html
https://www.rfc-editor.org/rfc/internet-drafts/draft-bar-cfrg-spake2plus-08.html
https://www.rfc-editor.org/rfc/internet-drafts/draft-bar-cfrg-spake2plus-08.html

rsu= 0 Empty set
| € Empty string
I C Non-empty character set () C C C)
I rs concatenation
| r+s Logical or (alternation)
I r&s Logical and (conjunction)
I Kleene-closure
I r{n,m} Bounded repetition (n,m € N)

FIGURE 9—Low-level Regex syntax in Reef. Additionally define
the wildcard notation . to be the full character set > and n-repetition

as r{n} = r{n,n}.
A Preliminaries
A.1 Monoids

A monoid is a triple (4, -, €) where A is the carrier set, - is
the append operation, and ¢ is the identity element of append,
such that the monoid equations apply.

* Associativity a- (b-¢) = (a-b) - c.
e Left-identity € - a = a.
* Right-identity @ - € = a.

A.2 Boolean Algebras

A boolean algebra (or boolean lattice) is a 6-tuple
(A, T, L,A,V,—) where A is the carrier set, T € A, L € A
represent the frue and false booleans.

The binary combinators A,V correspond to conjunction
and disjunction respectively, and the unary — corresponds to
negation. A boolean algebra is closed in A under A, V, — and
has the following equations.

* Associativity of V, A.

* Commutativity of V, A.

* Distributivity of A over V and V over A.

e | the unit of V.

e T the unit of A.

 Annihilation for V, T and A, L respectively.

* Idempotence of V, A. item Complement rules for V, A
and —.

A.3 Kleene Algebras

A Kleene Algebra over carrier set A is the 8-tuple
(A, T, L,A,V,—, - €), where A is a Monoid (A, ¢,) and A
is also a Boolean algebra (A, T, L, A, V, —). Additionally, the
distributivity laws describe the interactions of A, V, -.

(anb)-x=(a-x)NA(b-x)
(avb)-x=(a-x)V(b-x)
x-(anb)=(x-a)A(x-D)
x-(avb)=(x-a)V (x-b)

In the proofs that follow, we take advantage of the fact that
regular expressions form a Kleene algebra, we also show that
skips over regions of the string also form a Kleene Algebra, as
do the automata we introduce—Skipping Alternating Finite
Automata (SAFA). We use this equivalence to Kleene algebras
to prove SAFA are regular.

B Regular Expressions

The regular expression syntax in Reef is almost the one from
Owens et al. [65], with the addition of bounded repetition, to
preserve bounded skips for the SAFA compiler. The bounded
repetition does not change the regular nature of the source
language, as r{a,b} = rajra + 1] ... |rb which is regular, but
for large a, b can grow quickly.

Given an alphabet X, the language accepted by regex r is
defined as L]r] in Figure 10).

Definition B.1.

LIO]=0
Le] = {}
L[C] = C (where C is a character class)
Lr-s]=A{uv|uecL]r], veL[s]}
Lr+s] = L[] U L[s]
L[r&s] = L[r] N L]s]
L[r*] ={e} U L[r-r*]
{e} ifth=m=20
Lr-r{0,m — 1}] ifn=0
Llr-r{n—1,m—1}] otherwise

L[r{n,m}] =

FIGURE 10—The set of strings accepted by a regex r is the language
L[r] C =~

B.1 Derivatives of regular expressions

Brzozowzki [26] defined the derivative of a regex r given a
character « € ¥ as d,(r), as another regular expression such
that its language L[d, ()] contains all the suffixes w C X*
of L]r] with prefix .

L[r] = {aw | w € L[da(r)]}

Regex derivatives are the workhorse of the SAFA compiler.
Before we can define regex derivatives for SAFAs, we follow
Brzozowki’s presentation and introduce the nullable predicate
v(r) in Figure 11. The predicate v(r) is true if and only if the
regex r accepts the empty string. Nullable regex correspond
to accepting states in finite automata. We use v(r) in Defini-
tions 12, 13 to check if for a regex r - s the derivative dy (r -)
should be applied to r or s.

Definition B.2.

true ifn=20

v(r{n,m}) =

v(r) otherwise

FIGURE 11—The predicate v(r) is true when the regex r accepts
the empty string

ifaeC

(da(r)s) | da(s) ifv(r)

dy(r)s otherwise
do(r+5) =do(r) + du(s)
do(r&s) = do (r)&dy(s)
do(r*) = do(r)r*
0 ifn=m=0
do(r{n,m}) = < do(r-r{0,m — 1}) ifn=0
do(r-r{n—1,m—1}) otherwise

FIGURE 12—The Brzozowski derivative for a regex r given charac-
ter a € X is do (r).

Given the nullable predicate v(r), the Brzozowski deriva-
tive [26] [65] d,(r) for a character a € X is defined as the
regex matches string D given r matches initial string « - D,
see Figure 12.

Antimirov imporves on regex deriviatives with Partial
Regex derivatives [20], by observing the upper semilattice
(R, +,0) where R are sets of regex, provides us with the As-
sociativity, Commutativity, Idempotence, and Zero-element
laws already, from their set structure.

Caron et al. [31] generalize Antimirov’s partial derivatives
from sets to arbitrary support structures, a significant
generalization. We define Generalized Antimirov partial
derivatives 0, : regex — BT (regex) as a function, given
a character « € X, returns a positive boolean algebra
over regex B (regex), meaning any and/or expression (no

negation —) of regex.

In practice Alternating Finite Automata (AFA) which we
introduce later as the basis of SAFA, alternate between and
(A) expressions and or (V) expressions at different states,
so each state is either an A state or an V state, a subset of
B (regex).

Here’s our definition of generalized partial derivative 9, (r)
given character o € X in Figure 13.

Definition B.3.

ifaeC

€
1 otherwise
0,

£
a8
Il I

() V u(r) -5 if v(r)
da(r-s) Ba(r) - s otherwise
Oa(r +s) = 0a(r) V da(s)

0a (r&s) = 0a(r) A Oal(s)

Do (r") = 0a(r) -1

i ifn=m=0
Oa(r{n,m}) =< 0sq(r-r{0,m—1}) ifthn=0
Oa(r-r{n—1,m —1}) otherwise

FIGURE 13—The generalized partial regex derivative () is a
boolean expression of other regex.

B.2 Existing Automata

Let us review some basic automata theory which will be used
later in proofs and as a useful step to understand the SAFA
construction.

Start with Nondeterministic Finite Automata (NFA), a 5-
tuple (Q, %, go, 0, F) in Figure 14. NFA start at an initial state
qo and transition nondeterministically to subsequent states in
0, using the transition relation § to determine the next step.
Note the special € nondeterministic transition, which does
not consume a character and allows the NFA to arbitrarily
(nondeterministically) take those transitions. This use of non-
determinism is crucial for the performance of Reef, as those
choices correspond to existential witnessses.

An AFA [32] is a 6-tuple (Q, £, go, A4, 9, F) in Figure 15
which generalizes nondeterminism (the 3 quantifier states)
with the addition of the V quantifier states. When a state is an
state, based on the labeling function A, it works like an NFA,
any one descendant of state accepts means the whole state
accepts. Dually, a V state accepts if and only if all descendants
of the state accept the string.

0 . the set of all states

YU {e} The alphabet with € (empty string)
q0 €0 Initial state

JCOx(BU{e}) xQ Transition relation

FCOQ Set of accepting states

FIGURE 14—Noneterministic Finite Automata (NFA) can chose €
transitions.

(0] . the set of all states

Y : The alphabet

qo0 € Q Initial state

At QO —{V, 3} Label states V or 3
6COxXXxQ Transition relation
FCQ Set of accepting states

FIGURE 15—An AFA alternates between existential and universal
states.

C Skipping Alternating Finite Automata

AFA introduce existential/universal states that allow Reef
to represent both alternation and look-aheads respectively.
Next, to efficiently represent sparse matches we introduce an
automaton that can ignore irrelevant parts of the string.

Consider the regex *.{1,1000}ab$ given string D, it
means there is a cursor 1 < { < 1000 and D; = a and
D;.1 = b. The verifier has a nondeterministic choice of i at
this point, as long as the remaining Dy; ;1) characters match.
We skip verifying those 1000 characters and only verify the
inequality 1 < i < 1000 instead.

We must now formally define the notion of skip, which was
described informally so far. The properties of skips we look
for is, short representation of sets of possible natural num-
bers, fast membership checks, and compositionality. Specifi-
cally we want not only the usual set combinators U, N, — but
also concatenation of skips s + ¢, for example in the regex
A, {2,3}.a$ we can see two wildcards compose and we
get the equivalent skip . {3,47}. The datastructure we use
to represent skips are Interval sets, a set of disjoint, ordered
intervals of natural numbers.

C.1 Intervals

A bounded interval [a,b] where a < b, a,b € N represents
the subset of natural numbers { i | a < i < b}, inclusive in
both ends.

An unbounded interval [a, o) represents the subset of
natural numbers { i | a < i}, inclusive on the left, unbounded
on the right. We represent intervals with the letters 7, i.

C.2 Skips/Interval sets

An interval set S or a skip is a set datastructure, a collection
of intervals {iy, ..., i,} ordered by increasing starting point,
such that there is no overlap between consecutive intervals.

Interval sets allow us to represent continuous ranges of nat-
ural numbers, for example the single interval {[a, b]} where
a < b, a,b € N, as well as disjoint sets, for example the
set of numbers less-than-equal to a and greater-than-equal
b as { [0,d],[b,0)}, assuming @ < b. A right-open inter-
val simply means the end-of-file determines when to stop
skipping.

We consider an overlap of two intervals to be a difference
of at most 1 between the end-point of the first and the start
point of the second. So for example [1, 2], [4, 5] do not overlap
but both [1,3],[2,4] and [1,2], [3,4] overlap and are both
equivalent to [1,4]. Two intervals [ay, b1], [az,b;] overlap if
max(ay,by) + 1 > min(ay, by).

Intervals and Interval sets admit the familiar set operations
union (U), intersection (N), complement (—) and additionally
the operation append(+), which is element-wise addition of
interval bounds. We use set notation i € s and n € s, to mean
i 1s an interval in s, or n is a number contained in one of the
intervals of s.

C.3 Operations on Interval sets

We define the combinators U,N,— on intervals on Fig-
ure 16,17,18,19 as a preparation for defining the boolean
closures of Interval sets. Notice U, N, — on Intervals are not
closed, they return an Interval Set S and as such, intervals do
not form a boolean algebra. But this is fine as we can recover
boolean closure for interval sets with these definition.

[a1,b1] U a2, ba] =
{[min(a1,a2), max(by,b2)]} max(ai,az) < min(by, by)
{laz,b2], [a1, b1]} by < ay
{la1, b1, [az, a2]} otherwise
[(11700) @] [az,bz} =
{laz, b2], [a1,0)} b2 < ay
{lar, 00)} by>a <a
{[az,)} otherwise
[a1,b1] Ulaz,0) =
{la1,b1], a2, 00)} b1 < a2
{laz, 00)} b >a < a
{la1,00)} otherwise

[a1,00) U [az,00) =

{{[alsw)} a < a

{[az,0)} otherwise

FIGURE 16—The union of intervals is an interval set.

[a1,b1] N[az,bs) =
{{[Max(al,az), min(by,)]} max(ay, a2) < min(by, by)
{} otherwise

[al,oo) n [az,bz] =
{laz.b2]} b2 > a1 < a
{[al,bz]} b >a > a
{} otherwise
[ai,b1] Naz,0) =
{lai,b1]} b1 > a<a
{[az,bl]} by > ax > a
{} otherwise

[ai,00) N a2, 00) =

{{[az,oon a < a

{[a1,0)} otherwise

FIGURE 17—The intersection of intervals is an interval set.

= [0, 00) ={}

—[a, 00) ={[0.a - 1]}

=0, a] ={[a+1,00]}

=la, b ={[0,a—1],[b+ 1,00)}

FIGURE 18—The complement of intervals is an interval set.

Intervals can also be combined with the append(+) opera-
tor and e = [0, 0] as the identity element, forming a monoid
in Figure 19.

ai, 00) + [az,00) = [a1 + az, 0)

ai, 00) + [az, b2] = [a1 + a2, 0)

[
[
[
[[a2,b2] = a1 + a2, b1 + b2)

1 +
ai, bi] + [az,00) = [a1 + a2, 0)
+
ai, bi] +
FIGURE 19—Intervals are closed under append.

Interval set combinators in Figure 20 are then build up
from the interval combinators. They are closed under boolean
and monoidal operations and form a Kleene algebra A.3, with
T ={[0,00)}, L = {} and combinators V = U, A = N and
— and monoidal combinator + and e the identify element. The
Kleene Algebra properties hold by induction on the length of
interval sets and taking cases for any possible interval (bound-
ed/unbounded). In the Reef implementation, we additionally
check the Kleene Algebra properties hold for interval sets
using property-based tests.

Interval sets are also sets of natural numbers so we use
set notation i € s to indicate membership of natural number
i checked in sublinear time, proportional to the number of
disjoint intervals in the Interval set.

We can now formally define a finite automaton that takes
advantage of the skip structure. SAFA are a generalization of
AFA with skips on their transitions.

C.4 SAFA formal definition

A Skipping Alternating Finite Automaton (SAFA) is an 8-
tuple (Q, E, 3, go, bq, Ay, Ae, 9, F) in Figure 21.

The only difference with the AFA definition is the addition
edge labeling function \.. Transitions in a SAFA can be
labeled as either a character set C C > which match a
character D; € C, for document D, or a skip s, which
does not consume a character, but increases the cursor
nondeterministically by any n € s.

We overload the notation (g, s,¢’) € § to indicate a skip
transition s, or more precisely there exists an edge e € E such
that (g,e,q’) € § and A,(e) = s. Also overload (¢, o, ¢') € §
to indicate a character o € X transition, or there exists an
edge e € E and character set C C ¥ such that (g,e,q’) €
dand \,(e) = Cand « € C. As the labeling function A, maps
to a disjoint union there is no confusion with this notation.

C.5 SAFA Semantics

Now we can give the semantics of the language accepted
by a SAFA S in Figure 22. If D € X* is a string with
random-access, and i < |D| a cursor in the string, define
the mutually-recursive decidable procedure matchs which
returns true if at state g, a string D at index i is accepted by
SAFA S.

With the auxilary definitions of Figure 22 in place, finally
define the language recognized by a SAFA S as

L[S] = {D | matchs(go, D, 0)}

{i, i} Us={iUis|i; € s} U {in}
{}Us =s

{i, infns={inis| iy € s} N {i,}
{tns ={}

iy =i N ={i}

~{} = {[0,00)}

S1 + 5o :U{i1+i2|i1€S1,i2€S2}

FIGURE 20—Boolean and monoidal closure operations on interval
sets.

€ €

FIGURE 23—NFA N (s,) for interval set s = {i, }.

0 . the set of all states (nodes)

E . the set of all transitions (edges)
% : The alphabet

q €0 Initial state

A1 Q—{V, 3} Label nodes, V or 3

Ae 1 E—=SWC Label edges, skip or character set
JCOXEXQ Transition relation

FCQ Set of accepting states

FIGURE 21—SAFA formal definition over alphabet 3 generalizes
AFA with skip edges.

Definition C.1.
matchs(g,D,i) £ 9]
g€ FAi=|D|] (acceptcondition)
matchy(q,D,i) if A\(qg) =V
matchs(q,D,i) if A;(¢q) =3
matchy(g, D, i) £
Ve,q, (qg.e,q") € 6 — matchg(q’, e, D, i))
matchs(g, D, i) £
de,q, (g,e.q') € 5 Amatchg(q’,e,D,i) 3)
matchz(q’,e,D,i) = “4)
matchs(¢’,D, i+ 1) if A.(e) = D[]
In € 5, matchs(q’,D,i+n) if A(e) =s
false otherwise

FIGURE 22—SAFA semantics, mutually recursive predicate matchs
is true iff string D at position i < |D| is accepted by SAFA S.

C.6 SAFA are regular

To prove SAFA are regular and have the same computational
power as the source regex language, we must provide an iso-
morphism from SAFA to another finite automaton which is
known to be regular, like DFA, NFA or AFA, as well as an iso-
morphism to our source language to show that no expressive

power is lost during compilation.

Source language <= DFA. The source language in Fig-
ure 9 is regular by giving a translation to the regular expres-
sion language with character sets [65], which is shown to be
regular by equivalence to a DFA. Our bounded range expres-
sions r{a, b} in Figure 9 translate to an alternation of finite
repetition r{a,b} = r{a} + ...+ r{b} where

r{0} =e
r{i}=r-r{i—1}

DFA <= AFA. A construction is given by Fellah et al. [36].
The proof proceeds by constructing an intermediate NFA
where states are Q x Q sized boolean matrices which corre-
spond to truth tables of BT (Q) of AFA states. By the above, a
n-state AFA is equivalent to an at most 2”-state NFA and a 2%'
DFA by the product construction [36]. The opposite direction
is trivial, as all DFA are AFA with only existential nodes.

AFA <= SAFA. Finally, we show SAFA is regular by
translation to AFA. We give a translation A/ (s,) of skip s
to NFA, given alphabet 3. Then show substituting N (s, 22)
in place of s produces an AFA which recognizes the same
language as the SAFA. The opposite direction, embedding an
AFA to a SAFA is trivial; all AFA are SAFA without skips.
A skip is a finite set of intervals (Section C.2), whose
union is a possibly infinite subset of the natural numbers
s = {i,} C N. Before we give an NFA construction for s we
construct a NFA A;(i, X) for an interval i and alphabet 3.

Intervals to DFA. An NFA for a closed interval [a, b] (where
a < b) is given by the following construction

Definition C.2.
Ne(a, b, %) = (
Q = {CII’CIZs e ,Qb}
Y=
qo ‘= 41

F= {Qa»~-~,qb}

> >
d:={q1 = q@.¢20 = q3, ...

)

The NFA Ni,;) = N.(a,b,X) is a finite chain with ac-
cepting states g;, a < i < b. Notice the final state g, is an
accepting state but does not transition. We will later give a
substitution function of an NFA in a SAFA S edge g4 ~ g5
which adds an e-transition from ¢g; to SAFA state ¢gp.

The N. construction will not work for an open interval i =
[a, 00) as it will result in an infinite chain of states. Instead,
construct an NFA with an accepting self-loop as the last state.

by
Jdb—1 = @b}

Definition C.3.
No(a,2) = (
0:={q1.92....,9a}
Y=
qo ‘= q1
F :={q.}
by by) b
S={q1 = @92 = @3- .. Gb—1 = qb,qa —> qa}
)

Note the reflexive transition (g,, X, g,) on the only accept-
ing state g, means all a states must be traversed to accept.
Now combine N.(a, b,¥) and N, (a,) to construct an NFA
equivalent to an arbitrary interval, by conditionally branching
on if the interval is closed or open.

Definition C.4.
M, %) =

{M.(a, bY) ifi=[ab]

Ny(a,X) if i = [a,00)

Interval sets to NFA. Given skip s = {i,} and alphabet 2
construct an n + 1 state NFA N (s,) as follows. Assume
no capturing of state identifiers—state g € Qn;(;,x;) does not
appear in another NV; (i, X) where i # 7.

Definition C.5.
N(5.5) = (
0 :={q}tU U ONy(is)
i€s
X=X
40 = 40
F = Fmas)
i€s
6= U{(CIO, €, qO,N([,Z))} U U 6_/\[(,"2)
i€s ics
)

The initial state g is non-accepting. Then add a nonde-
terministic choice from gy to each one of N;(i,, ¥). As long
as any N;(i,, X) reaches an accepting state, then A (s, X)
accepts. This concludes the construction or N (s,).

Substitution in SAFA. Now define formally a substitution
procedure (N /e)s, for a SAFA S, NFA N, and SAFA edge
ecEgs.

Remember that SAFA edges are a set Es and map to either
skips or character-sets via the labeling function A\, : £ —
S C. We build an edge set Exr and labeling function Ay :
Exn — C for NFA N, such that

* No capturing: Es: Exy NEs = ().

» Exsound: Ve € Eg, 3q ¢ (g. A\ (e).q') € dnr.

* En complete: Vg ¢’ C, (q,C,q') € oy — Je €
En, Av(e) =C.

Also assume no capturing of states, Qs N Qn = () are
disjoint and their alphabets are equal. Let unique gy, gy,
such that (g, e, gs) € 0s

Definition C.6.

(N/es)s = (
Q = Q./\f U QS \ {qsrc’ qut}
E:=EnUEs\ {e}
Y= ES
Agi=NsU{g—3[q€0n}
A i= Aos U Ay
0:= 55
U{(g.e.q') | (g.C.q") € dnr, CC X, Mv(e) =C}
) {(QSrCs Ce, C]o,/\/)} U {(qF: €e, qut) ‘ qr S]:./\f}
F:=Fs
)

The substitution construction may look complex but is in-
tuitive to understand. For SAFA S, NFA A and SAFA edge
es with transition (g, €, ¢ge) € ds, remove the transition
(gsre» €, qsre) from ds and replace it with N by connecting g,
and g4, to the initial and accepting states of N respectively.

Notice the accepting states Fs of S do not change, so if we
can prove language equivalence of NFA A with the replaced
edge e, we should be able to prove a key lemma for the SAFA
<= AFA proof. The definition of a language for an edge
e € Es comes directly from the matchg rule in Figure 22.

Definition C.7.

Ekﬂ={c

{¥"|n€s}

if\(es)=CCX
if \o(es) =s

Either the edge ¢ maps to a character set C C X and the
language is all the single characters in the set C, or a skip s
and the language is all the n-length strings, for every n € s.

The language of an NFA is the textbook definition, where
0* is the transitive-reflexive closure of the ¢ relation.

Definition C.8.
LINT = {w | (90w, qr) € 03/}

Define the language suffix at state ¢ € Qs for a SAFA as a
generalization of L[S] to a given start state ¢ € Qs instead
of initial state go. This definition gives us a strong induction
hypothesis to use in the following lemma.

Definition C.9.
L[S : q] = {D | matchs(q,D,0)}

Taking a transition e € Es prepends the language L[es] to
all the suffixes of the destination of e. Note the concatenation
operator - is overloaded, to mean the pairwise concatenation
of the product of two sets.

Lemma C.1. (g,e,q’) € 0s — L[S : q] = L[es]-L[S : ¢']

Proof. The proof proceeds by induction on the derivation
L[S : g]. In the base and the inductive case, perform case
analysis on A, (es).

1. If A(es) = C C X then the language Les] =
C. Prepend each character in the character set C to
L[S : ¢']. The strings D € C - L[S : ¢'] are
matched by matchg(q', es, D,0) for the base case and
matchg(q’, es, D, i+ 1) in the induction step.

2. If M(es) = s then the language L[es] =
{X" | n € s}. The strings D € ¥" - L[S :] are
matched by matchg(q', es,D,0) for the base case and
matchg(q',es,D,i+ 1) in the induction step.

O

Now what is left is to show the substitution operation re-
spects language equivalence between edge es and NFA N,

Lemma C.2. L[N] = L]es] — L[N /es)s] = L[S]

Proof. This is a straightforward application of (Lemma C.1).
O

We need two more auxilary lemmas. First, describe how
interval set composition translates to langage union.

Lemma C.3. L[{iy1,in}] = {Z" | m € int1} U L[{in}]

The second is similar, an interval set composition in the
NFA construction (Definition C.5) translates to language
union.

Lemma CA4.
LIN(int1,0n}, 2)] = {E" [m € ipy1} U LIN ({in}, 2)]

Both lemmas are straightforward to prove from their defi-
nition. Finally, prove the NFA construction for interval sets
N;(s,X) has the same language as skip s for all possible
skips.

Lemma C.5.)\ (¢;) =s — L[N (s, 2)] = L]es]

Proof. For skip s = {i,} prove this statement by induction
on the number of intervals 7.

1. For the base case, n = 1 as skips are non-empty sets
of intervals, then L[S(e)] = {¥" | n € i} and
N(s,%) = N (i1, X) as only one epsilon transition is
possible from A (s, 3), the one to NV;(ij, 2). By inspect-
ing the 4 relations in N.(i1,X) and N, (i}, %) (Defini-
tion C.4), both recognize exactly {¥" | n € i1 }.

2. For the inductive case, n’ = n + 1, use the auxilary lem-
mas (Lemma C.3, Lemma C.4) to translate composition
of interval sets to language union, as well as composi-
tion of interval NFA to language union. Both lemmas
produce a language union with {¥™" | m € i,41} which
cancel out. The result is exactly satisfied by the induction
hypothesis.

O

SAFA to AFA recursive definition. The last construction
that converts a SAFA to an AFA is now possible. We give a
well-founded recursion procedure unskip, based on the num-
ber of skips in SAFA ns = |{¢ | e € Es, A.(e) = s}| which
will substitute skip n on each iteration, for 0 < n < ng.

Definition C.10.

unskip(0, S) =S
unSkip(n +1, S) = <N(Sn, Z)/sn>unskip(n,$)

This procedure runs once for all ¢ € Eg in S, where
Ae(e) = s is a skip and substitutes s for its equivalent NFA
N (s,%) until there are no more skips. By this definition
unskip(ns, S) is an AFA.

Next to show § and unskip(ns, S) are equivalent in terms
of the regular languages they recognize, we prove

Lemma C.6. L[S] = L[unskip(ns,S)]
Proof. We proceed by induction on the number of skips ns.

1. For ng = 0, there are no skips in S, then unskip(0, S) =
S an AFA, the automata are equal and their languages
are equal.

2. For ns = n+ 1, assume S, is an AFA with all skips
already substituted and the induction hypothesis L[S] =
L[S,]. We must prove L[S] = L[Sp+1]-

(a) Let s, the current skip to substitute, then
L[Sy41] = L]unskip(n+1,S,)] = LN (50,)/
sn)s,] by unfolding the definition of unskip.

(b) The key equality to conclude the proof is by
(Lemma C.2) L[{N /su)s,] = L[S.], provided
that L[N (s,,X)] = L[sx], which we proved
(Lemma C.5).

(c) All that is left is exactly the induction hypothesis
L[S] = L[S,] which concludes the proof.

O

acdX
Bort REFL WILD
D=<r rr a=X.
v(r) = true r=<s
- NIL —— STAR ~ Top
exr r s r=
i<j r=s < 1 < Jj2
% REPSTAR — - .J / REP
r{ijy 2 r{in i1} = s{ia.jo}
r<s i<1<j r=<s P
r < s{i,j} rr < ss
r=s r=u Su
——— ALT ANDL
r<slu r u

s=u
——— ANDR
r&s=u

FIGURE 24—A partial ordering on regex r = s iff the language of r
is subset (or equal) of the language of s.

D Compiling Regular Expressions to SAFA

We present here a recursive compilation procedure from regex
to SAFA, based on generalized Antimirov derivatives (Sec-
tion 13). Assume syntactic sugar expansion (Section E.1) and
regex normalization by weak equivalence ~~ is already done.

Start with a fully normalized regex r, alphabet 3. Create
an empty SAFA given alphabet ¥ and states of type B (r)
then run this recursive procedure.

Given a regex r,

1. If state r exists in the SAFA, return. Otherwise add the
new state » to Q.

2. Extract a skip r = #/ (Section E.3) from r, if possible.
Then s is the skip interval set and r’ is the remaining
regex when no more wildcards can be extracted. Label
state r an 3 state by A\,(r) = 3 and add to it a new
outgoing edge e such that (r,s,7") € § and A.(e) = s.
Recurse for r'.

3. Otherwise, for each character o« € X take the deriva-
tive of r with respect to « to be a boolean algebra ex-
pression O, (r) (Section B.1) in disjunctive normal form
(Section A.3) and add one transition for each character
(rya, 0,(r)) € 6.

(a) In DNF, the derivative 9, (r) = V/;(/\; r;) proceed
to add i existantial 3 states (/\; r;;) and for each j
add a forall V state 7;;.

(b) Then add e-transitions (Ja(r), €, \;ri;) € & for

each i, as well as (/\] rij. € rij) € 0 for each j.

(¢) Recurse for each leaf state 7;;.

Note, the number of new states added in step 3(a) is O(|X] -
i - j). In practice, however, we noticed regex are not nested as
much so i - j is small.

E Regular expression preprocessing
E.1 Syntactic sugar

All of the PCRE syntax in Figure 1 can be expressed in
terms of the simpler syntax in Figure 9. The more interesting
transformation is from a look-ahead to a boolean conjunction
(&), indicating that both the look-ahead and the rest of the
regex must match the string.

E.2 Regular expression normalization

The next step, after preprocessing syntactic sugar, is regex
normalization, converting to a simpler, smaller regex by use
of the weak syntactic equivalence [65] equations. Weak equiv-
alence r = v is given in Figure 25 and is a nested recursive
definition. Weak equivalence internally uses the refinement
relation r < s in Figure 24, which corresponds to language
inclusion.

Vr, s, r<s

Vr, s, r=s

iff L[r] C L[]
iff L[r] = L[s]

The proof of the above is simple, albeit tedious. To show
the weak equivalence is sound and complete with respect to
language equality, proceed by induction on the derivation of
the r = s relation in the left-to-right direction, and by induc-
tion on the definition of L[] in the right-to-left direction,
similarly for r <s.

The benefit of introducing this weaker notion of equiva-
lence is a syntactic normalization procedure for regex. As
Owens et al. [65] show, this normalization procedure is fast
and successfully minimizes the number of states of the com-
piled automaton (SAFA) and thus the final step function size,
which is proportional to the number of states.

E.3 Extract skips

We define the rules for extracting skips from the begining

of regex, one at a time, with the partial function r i> r’ that
extracts skip S (Figure 26).

E.4 SAFA solver

At a high-level, the SAFA solver algorithm is given by the
SAFA semantics (Section C.5). A side-note, an additional
advantage of non-determinism is the room for paralleliza-
tion. We take advantage of non-determinism to parallelize the
SAFA solver in at least three places using a threadpool.

1. On matchy we parallelize solving across edges e € E
then join and wait on the results.

2. On matchg we parallelize solving across edges e € E,
but instead of join we race the threads. The first thread
to find a solution returns and the rest are killed.

€
r——¢ r—= €
oy Pot — EMPTY* — NIL*
€ r—e =€
s
r=e 18
{007} STAR* r—e E 1
,00 . -
r € {07} 5 €
P i#0 € oy
RE 2 r—e 1<
— @ RE — ————"RNIL
r{i,j} — € r{i,j} =€
re i<j r e r 2
- RANGE APPR
. SULUY Si+82
r{i,j} ——— ¢ Firy —— 1
s
r—nr
——— AprPL
rr —rn

FIGURE 26—Inference rules for a partial, recursive function r = r’
extracting skip s from the head position of a regex r and returning
the tail r’

3. On match, we parallelize our search for different values
of n € s and race the threads again. Even though skips
s are unbounded, the string is bounded so we limit our
solution search from min(s) to max(max(s), |D|).

The benefits of parallelization in the solver are concrete and

is a contribution outside the cryptographic benefits of SAFA.

Using SAFA we improve the performance of regex matching
by taking advantage of non-determinism in branches and
wildcards.

F Matrix representation of R1CS

We repeat our running example of constraints over [:

guard X (xo — 30) = 0
guard X (y — x1) = 0
(1 — guard) x (y —prod) = 0
Xo X inv — prod = 0
x1 X inv — 1 = 0

We would like to convert these constraints to matrices A,
B, and C such that (A - z) o (B-z) = (C - z), where - is the
matrix-vector product and o is the Hadamard product. There
should only exist a solution vector z = (io, 1, w), with witness
w € Feob—liel=1 when this set of constraints is satisfiable.

In the example from Section 2.3, y is the only public
variable in io. The variables xy, x|, guard, prod, and inv are
known only to P, so they make up our witness w. So
z= (y, 1, x0,x1, guard, prod, inv).

First, we shuffle some of the constraints so that each is of
the form (addition term) * (addition term) = (addition term):

r o~

s=2r
ANTISYM SYymMm

r~s sS>r

APPNR

r >~ re >~ Ur

APPZL

APPREP
r{ijyr{i j Y = r{i+ i +7}

s>r rs
- — STAR
sy rlso~s

ALTLEQ

re~s i<

ALTREP
r{i} [s{77} = rimin(i.), max(i./)}

FIGURE 25—Weak regex equivalence r ~ s iff the language of r is
equal to the language of s.

guard X (xo — 30) = 0
guard X (y — x1) = 0
(1 — guard) x (y — prod) = 0
X0 X iny = prod
X1 X iny = 1

We create the corresponding R1CS matrices A, B, C:

0000 1 0O
0000 1 00O
A=10 1 0 0 -1 0 O
001 0 0 0O
0001 0 0O

0 =301 0 0 0 O

1 0 0 -1 0 0 O

B=(f1 0 O O O -1 0

0 0 0 0O 0 0 1

0O 0 0 0O 0 0 1
000 0O0O0TO 0
000 0O0O0TO0
C=1(0 0 0 00 0O
000 0O0T1F®O
01 00 O0O0O0

Notice all of the matrices have 6 rows, since there are 6
multiplication constraints, and 8 columns, since the length
of z is 8. If P has (for example) xo = 10,x; = 5, and wants
to prove that y = 2, a vector z = (2,1,10,5,0,5,2,571)
satisfies this R1CS instance. Note that we use 5~! as the
inverse of 5in [F.

It is easy to see that this z only satisfies (A-z)o(B-z) = (C-z)
when the assignments y = 2, xo = 10, x; = 5, guard = 0,
tmp = 5, prod = 2, inv = 51 satisfy our original constraints.

G Low cost padding

The obvious way to hide the size of a string D is by construct-
ing a string D’ which is equal to D but padded with dummy
characters to some suitable upper bound. If the padding is
chosen to be 0 € F, then the committer G has to do no extra
work, since g’ = 1 for all generators g of the polynomial
commitment scheme. However, the nlookup prover and the
nlookup verifier (which is embedded within Reef’s step func-
tion) still need to do work proportional to |D’| for each step:
linear for the prover and a logarithmic number of constraints
to express the verifier, plus O(|D’|) operations at the end for
ProveEval and O(+/|D’|) operations for VerifyEval when we
use the Hyrax (§6.3). If the upper bound is chosen to be large
(e.g., |D’| = 239), the cost to the prover would be prohibitive.

We observe that the same ideas in table projections that
allow the prover to do less work can be used here: the prover’s
work during each step can be made linear in | D| (the unpadded
document). The key observation is that given that D is a subset
of D’, and that padding is just Os, it is possible for the prover
to project the entries in the table corresponding to D, without
having to reveal to the verifier the selector s. Consequently,
the verifier learns nothing about D except for |D’|, and the
prover is able to save considerable costs.

The basic idea is to pad the multilinear extension of the
document strategically with 0, and commit to this padded mul-
tilinear extension. This is, in spirit, committing to a larger doc-

ument, D’. The prover can then run a slightly larger nlookup
in the step function that looks to be operating over a larger
document, so the size of the real document is hidden. But
we leverage the structure of our multilinear polynomial so
that work to generate the commitment and the work of P to
generate nlookup witnesses is closer to the work done in the
case of the original, smaller document.

B Given a multilinear extension to the original document,
D(xo, ..., x¢_1), of length |D| = 2¢, we generate a multilinear
extension to a larger document, of length |D’| = 2t

57(]70’ s PO —0—15X05 +0s xf*l) = 5()(0, '“a-xffl)

ﬁ, will evaluate the same way D does on any point, “throw-
ing away" its padding variables, py, ..., pgr—¢. It is committed
to by inserting zeros into the multilinear extension’s coef-
ficient commitment vector for every term that includes any
padding variable p;. (This will be a predictable pattern.) Al-
though the literal document D’ (i.e. the evaluations of D’ over
the boolean hypercube) never has to be materialized, it may be
helpful to visualize it. For each padding variable added to the
input’s of ﬁ, the document size doubles, and the document
repeats itself.

Notice that we are treating the document’s multilinear ex-
tension as a vector of coefficients, rather than a vector of
evaluations, which is a change from the original description.
This does not change any of our previous cost evaluations, nor

does it prevent the use of the projection or hybrid table opti-
mizations. Implementation would require tweaking the Hyrax

code (or writing/using code for any commitment scheme that
supports inner product).

For example, if D(xp,x;) = 7 4+ 5xo + 3x1 + 2xox,
the commitment to a extension with one padding variable,
D'(po.x0,x1) will be to the vector [7,0,5,3,0,0,2,0].
The final check of that ﬁ(qo, q1,92) = v will be
done with an inner product argument that proves
([7,0,5,3,0,0,2,0], 1, 0, 91, 42, 9091, 9092, 4192, G041 92]) =
v. The actual document D is [7, 12, 10, 17], and if materialized,
D’ would be [7,12,10,17,7,12, 10, 17]. The key here is that
the commitment “zeros out" the padding variables, without
revealing to the verifier which variables are padding.

This varies from typical projections in that our padding
variables are not known to V, since knowing the length would
leak things about the length of the document.

The work to generate the commitment is the same as if
we did not have padding—any generator exponentiated by
0 is 1. So G does not have to do extra exponentiations or
multiplications for this larger commitment.

When producing sumcheck witnesses (as part of producing
nlookup witnesses), P has to calculate evaluations over D
of the form:

D/(r07 e i1, X, bi-‘rl’ '“7)%'—1)

ri €F
xe{0,1}
b; € {0,1}

Instead, it can calculate evaluations over D. Because of
the structure of D/, the evaluations over D(xy, ..., X¢—1) can
119 calculated once, and reused to mimic evaluations over
D'(Po, .- Po7—0—1, X0, ---» Xo—1), NO matter what the values of
D0» ---»Per—¢—1- This ends up being O(|D| + log(%)) work,
instead of O(|D'[). The log factor covers any doubling of
the precalculated D evaluations that have to be done to pad
“extra" nlookup rounds (since there are now log(|D’|) rounds
in the step function).

At the end of our protocol, V must verify a claim of the
form D'(g,) = v,, where ¢, € F¥. This is done in the usual
way using an inner product argument and our commitment
to D', and implies consistency of all of our lookups with the
original D.

H Implementation Optimizations
H.1 Batching

To leverage the amortization of nlookup, Reef reads a batch
of m > 1 characters and transitions from the hybrid table
within each step function. This results in having to perform
%l Where a = O(|D| - L). The benefit is that nlookup re-

m

quires O(mlogn)+ Oy (log n) constraints for each step when

looking up m entries from a table of size n, and the hash
component is typically the dominant cost. As we discuss in
Section 6.2, this results in O(alog(|Qsam| - |X])) constraints
plus O£ 1og(|Qsarm - [X])) hashes.

Since the hash component is the dominant cost, one might
wonder whether setting m = « is optimal, as it minimizes
the impact of the hash component. But this has a variety of
issues.

First, we cannot actually set m to « since the actual value of
« depends on the document and the R1CS instance is created
independent of the document. This means we would need to
set m to be the worst-case o which grossly overestimates its
actual value (as we show in our evaluation).

Second, if there is a single step then there is no recursion.
If there is no recursion, then this means that Reef cannot skip
work because it cannot finish early—it has to perform all the
operations in the single step. A corollary of this is that to
benefit from the skipping powers of SAFA, Reef needs steps
to be of a reasonable granularity (not too big).

Third, Nova actually benefits from having many steps be-
cause folding is cheaper than proving. If there is a single step,
then there is no folding taking place and the entire cost is
proving.

Fourth, a larger step function leads to larger proof sizes
and a more expensive verifier since the size of proofs in our
version of Nova are logarithmic in the size of the step function,
and require work linear in the size of the step function to
verify (owing to our use of Bulletproofs [27] inner product
argument).

As a consequence of the above, the relationship between
the size of the final proof, the number of constraints, the total
computational cost, the ideal batch size, and the number of
steps is not linear and requires careful tuning since it depends
on many factors including the regex itself. Reef’s compiler
contains a cost model that takes into account all of the above
(and a few other low-level concerns) and decides on the best
batch size.

H.2 Optimized stack

Rather than using the hash chain stack construction, Reef
represents a stack using a vector of field elements and a stack
pointer field element:

field[stack_size+1] push(
field[2*stack_size] stack,
field stack_ptr, (field child, field cursor)) {
for i in stack_size {
if i == stack_ptr {
stack[i] = (child, cursor);
stack_ptr +=1;
}
}
return {stack, stack_ptr};
}

field[stack_size+3] pop(field[2*stack_size] stack,
field stack_ptr) {

for i in stack_size f
if i == stack_ptr

(popped_child, popped_cursor) = stack[i];
stack_ptr -=1;
}
}
return {stack, stack_ptr, popped_child,
popped_cursor};

The stack needs to be big enough to accommodate all of the
children for all of the nested forall nodes on any particular
path. This number, stack_size is calculated during the step
function compilation. This is usually more efficient than a
hash chain stack.

Additionally, since pushes to and pops from the stack only
need to happen under certain conditions (encountering a
forall state or finishing transversal of a branch), it is a
waste of constraints to include pop constraints and multiple
sets of push constraints for every lookup in the batch. Reef
instead uses constraints that may perform a single pop or
several pushes during only the first lookup. If during witness
generation, P needs to perform a pop/push and does not cur-
rently have access to the correct (first) lookup, it is allowed to
“loop" on the current state, consuming e characters, until the
lookup constraints are available. Obviously, if the batch size is
set badly, this could become inefficient. We choose batch size
carefully; during table generation, Reef walks over the SAFA
in a depth-first search, and takes note of the length of paths
between forall nodes and accepting states. The batch size
is the average length of these paths. Users of Reef can also
override this mechanism and set the batch size themselves.

H.3 Pipelined solving and proving.

Reef also optimizes the solving/proving pipeline; P’s solver
runs in parallel with the thread that produces the folded cryp-
tographic proof for P. The solver thread calculates a witness
for step i and hands it off to the prover, which is able to focus
on proving step i while the solver moves on to generating
witnesses for step i + 1.

I Alternate instantiation of RAM with better
asymptotics

The majority of the costs in Section 8 come from our use of
lookup arguments and polynomial commitments. However,
Reef can easily swap the lookup argument and polynomial
commitment and use a Merkle Tree to represent the SAFA
table and the document (assuming the hash function heuristi-
cally instantiates a random oracle). This gives us the efficient
random access memory we need in Reef.

With Merkle trees using a SNARK-friendly hash function
like Posseidon [44], we have the following cost profile. Here
we redefine T = |D| - |Qsam|, since Merkle Trees do not
amortize requests and hence there is no benefit in combining
the public SAFA table and the private document table. We
thus assume we have two separate Merkle trees.

Commitment generation. G must perform O(|D|) finite
field computations.

Prover’s cost. For processing a batch of m characters
at a time, the step function has O(mlogT) constraints,
and there are a total of O(«/m) steps to finish process-
ing a document. This results in P performing a total of
O(alog(T)/log(mlogT)) group operations in Nova. The
resulting proof 7 is of size O(log(m - log T)).

To generate the witness for each step, P also needs to
perform O(mlog T) finite field operations in order to generate
the appropriate Merkle proofs (though these could be pre-
generated and stored for later use).

In total, there are O(alog(T)/log(mlogT)) group and
O(alogT) finite field operations.

Verifier’s cost. The total cost to the verifier V is simply
O(mlog(T)/log(mlog T)) group operations in Nova to ver-
ify . There is no need for any auxiliary proofs.

Discussion. While clearly this alternate approach is asymp-
totically better, our experiments reveal that arithmetizing so
many hash functions leads to very large RI1CS instances in
practice, and hence why we choose to rely on more compli-
cated lookup arguments that amortized these costs. Of course,
there is likely to be some document and SAFA size for which
this alternate approach is better. Fortunately, the main contri-
butions of our work: Reef’s match_step design and SAFA,
are orthogonal to the proof system (as long as it is recursive)
and the way that random access memory is instantiated.

J Applications

Here we recount the full results from our experimental eval-
uation of Reef for our motivating applications. We start by
discussing the origin and rationale behind our test data.

Password Strength We randomly generated our good pass-
word set. Our bad password set was selected at random from
the NordPass list of the top 200 most common passwords
[11], which is a list of weak passwords. Our regex indicates
strong passwords, of a certain length, with required charac-
ters from several different fields (uppercase and lowercase
alphabet characters, numbers, and special characters).

Email Redactions For our redactions, we use the Enron
email dataset [12]. Our small instance is their smallest in-
stance, and our large instance was randomly selected. Our
regexes indicate redacted versions of both.

ODoH Blocklisting We use a regex filter for Pi-hole [9],
which is a DNS sinkhole, for our oblivious DNS over HTTPS
regexes. While blocklisting would traditionally prove non-
matching, to better compare to existing work we instead prove
matching. Our queries are randomly generated.

Genetic Matching For our evaluation we consider three com-
mon mutations of the BRCAI and BRCAII genes. Mutations

in these genes are commonly linked to most forms of breast
cancer. The base pairs for these genes, as well as for common

mutations are all publicly available from the US National
Institutes of Health [13, 14].

Full results. The results are in Figures 29-34.

Modified nlookup Protocol

The typical nLlookup protocol happens interactively between an nLookup prover and nLlookup verifier. We describe a modified version of
nlookup where the "bigger" Reef prover aims to proves a successful set of lookups to the Reef verifier by encoding the nlookup verifier as
RICS. More details can be found in Sections 6.1 and 6.3.

The Reef prover wants to prove b batches of m lookups (per batch) in a certain table 7. We say T is the multilinear extension of that table, parameterized
over £ = log(|T|) variables. There is one batch per Nova folding.

For each batch 8 € [0, 5] :
1. Input: m + 1 evaluation points (g1, v1), ..., (gm, Vi), (gr, vr) of a multilinear polynomial T, such that T(qi) =v;. Fori < m, g; € {0, l}é and
gr € F£. We refer to this last point as the "running claim". The first running claim (8 = 0) can be an arbitrary point in T.
2. The nlookup verifier, simulated by a hash computation in R1CS, chooses challenge p.
3. The Reef prover proves:
vt > pvi= Y0 alen)) TO+ Y A Y alan) TG)
i=1..m je{o1yt i=l.m je{0,1}¢
* This is done using the sum-check protocol, encoded in R1CS over log(|T|) rounds. The left-hand side is the claim the sum-check prover

makes. Each round, a degree 2 polynomial is sliced off of the right-hand-side of the equation in response to a random challenge from the
sum-check verifier. This challenge is again simulated in R1CS by a hash computation, to produce a non-interactive protocol.

* We maintain a Poseidon hash sponge in R1CS that absorbs a table commitment (if the table is not public), and all of the (g;, v;) pairs,
including the running claim. The binary ¢; elements can be packed into a smaller number of field elements for efficiency. This sponge is
squeezed to produce p. Then, for each sum-check round, it absorbs the "messages" sent by the prover (describing the polynomial slice),
and is squeezed to produce the sum-check verifier’s random challenge.

Note the polynomial ég(x, ¢) = Hle (ei - xi + (1 — ¢;) - (1 — x;)) is a multilinear extension of a function that outputs 1/0 depending on
whether x == e or not.

During the last sum-check round, the sum-check verifier is required to check the evaluation of the right-hand side, over a random vector r
of length £ in F in place of j. The nlookup verifier will indeed evaluate all of right-hand side except for T(r), which it will delay until

the next 8 + 1 batch. It will set the next running claim g, = r,v, = T(r).

After b batches are completed, the nLookup verifier is required to confirm the final running claim, T(q,, 8) = Vi3
1. Delaying this evaluation (the most expensive part of the right-hand side evaluation) until the end amortizes its cost over b batches.

2. The Reef verifier simulates the NLookup verifier by doing this computation separately from the main nLookup proof. If the table is public,
this is straightforward. In the case of a private table, this check has to be done over a commitment to the table. (So there must be a commitment
that supports polynomial evaluation.) In Reef, this check is proved by 7, (notation from the body of the paper).

3. Additionally, in the case of a private table, the Reef verifier should not see v, B> since it leaks some information about the table. Instead, the
verifier is handed H, = H(v, g||blind) and a commitment to v, 3. This commitment is used to verify 7,,,. The relationship between the
commitment and the hash is proven by a separate proof, Teonsistency-

FIGURE 27—The full nlookup protocol, with our zero-knowledge modifications. See [56] for the original protocol.

Full Reef Protocol

Here we describe the full Reef protocol. Black text indicates normal, non-optimized actions. Blue text indicates changes made when using hybrid
tables. See Section 6.5. Red text indicates changes made when using projections. See Section 6.4. Green text indicates changes made when using low
cost padding. See Appendix G.

1. A committer (who can also be the prover) uses a polynomial commitment scheme (Setup, Commit, ProveEval, VerifyEval), in our case, Hyrax-PC
to commit to a multilinear extension D of the private document D; Both the prover and verifier can access this commitment. This commitment
can be reused across multiple proofs.

(a) Committer runs Sefup to produce pp, and Commit(pp, [~)) to produce Cj.

* Projections and hybrid tables do not require any changes to the commitment.

» Since low cost padding hides the length of the document in the commitment, this requires extending D t0 Dy;.

(b) Committer sends pp, Cj; to the prover and verifier, and blinding information about C5 to only the prover.

2. The Reef prover and verifier choose a public regex to create a proof about. Both compile the regex to a SAFA. They generate a set of R1CS
constraints that verifies a single batch of a lookups using two nLookup protocols, one for the SAFA lookups (over ‘multilinear extension § that
describes the SAFA transition table) and one for the character lookups in the document (over multilinear extension D). The rounds done by the
S nlookup’s sum-check engine is £ = log, (|S|). The rounds in D nLookup is £ = log,(|D]). This R1CS compilation is a deterministic
public process that they can do independently.

* Using hybrid tables requires prior agreement and a change to the R1CS: there is only one nlookup protocol (over multilinear extension
T of the combined table), that performs twice as many lookups. The rounds done by this nLookup protocol is £, = log,(|T|) =
log, (2 - max(|S], D))

¢ When using projections, the nlookup over D as Ly = logz(\D,,,-,,j\) rounds, where Dp,,; is the section(s) of the document that actually
need to be processed. The prover and verifier agree on where this section is, and the log, (|D|) — ¢, public boolean variables that index
that section, referred to as g;gy.

* Low cost padding: the number of rounds in the DIT nlookup will technically depend on |Dey| rather than |D|, though the verifier will
not be aware of this distinction.

Obviously, it is possible to use these three optimizations in any combination, though some combinations will be less useful than others,
depending on the document and regex.

3. The prover:

(a) iterates through (the appropriate subset of) the document. For each batch of document characters, it generates the appropriate nLookup
witnesses (this requires running linear-time sum-check solver), and other bookkeeping witnesses the regex R1CS needs. The prover folds
each new batch into it’s proof of lookups, 7r. This NLookup witnesses include the final running claims for both nLookup protocols.
The first we refer to as (gs, vs), where S(gs) = vs. The second is (g4, va), where D(qq) = vg4.

* Hybrid: there is a single running claim, (g, v-), over the single table, such that 7(q,) = W
* Projections: The sum-check witnesses for the DIT nloo kup are calculated over 13,,,~(4f.

* Low cost padding: The sum-check witnesses for the DIT nlookup are calculated over D with some additional work to mimic
DL’XI .

(b) generates Tonsistency» that proves the hash Hy of v4 is consistent with a commitment C,, to vg.
» Hybrid: We use the hash H, of v, and the commitment C,, to v, instead.

(c) runs ProveEval(E, qd»Va) to generate ,y,, that proves B(qd) =y
« Hybrid: ProveEval(D, g,[1..]. v4) generates Tpoly instead. The prover also generates 7req, a proof that (1 —g,[0]) - vs +¢-[0] - vy = v,
* Projections: vaeEval(f), Gidx||qa, va) generates 7,y instead.

(d) sends the verifier 7, Tconsistencys Tpoly» Gs» Vs> 4d» Ha and Cy, .
* Hybrid: Instead of g, vy, g4, Hg, the prover sends g, Hy, Cy,, as well as meq, which proves (1 — g-[0]) - vy + ¢,[0] - vg = v,

4. The verifier:

(a) verifies 7 and checks that the public part of 7’s witness makes sense; that is, that SAFA traversal starts at state 0 and ended at an accepting
state (requiring an end of file character to be “seen" in the document), and the cursor stack starts and ends totally empty.

(b) verifies Teonsistency, using Hy and Cy,,. (Hybrid: H, and C,, are used instead.)

(c) runs VerifyEval(Cs;, qa. Tpoty, va) and checks E(qs) = v, “in the clear".

» Hybrid: Verinyval(CB, qr[1..], Tpoty, va) is called instead. verifier does not need to verify E(qs) = vy (these values don’t exist). It
must verify 7., which requires the verifier to compute it’s own commitment to (1 — g,[0]) - vs + ¢[0] - v4, which is possible using

gr, Cy,, and a computation of vy = §(qr[1..}) done in the clear.

* Projections: VerifyEval(Cs, qiax||9a- Tpoty» va) is called instead.

FIGURE 28—The full Reef protocol, with modifications required for each optimization.

Application Document Regex RICS Doc. #Steps Compile Solving Proving Verifying Proof Commit Max

ID 1D Con- Length Time Time Time Time Size Size Memory
straints (s) (s) (s) (s) (KB) (KB) Usage
(GB)
Redactions
Small rl 46,655 415 4 36.947 0.760 3.169 0.553 32.609 0.512 0.733
Email
Large 2 65,727 1,000 7 217.628 3.221 5.923 0.701 33.361 1.024 1.051
Email
ODoH
5f558 3 18,437 128 3 16.180 0.081 1.904 0.424 31.793 0.512 0.330
25424 r4 22,692 128 2 19.650 0.213 1.709 0.435 31.889 0.512 0.362
55824 r5 23,148 128 1 19.676 0.040 1.366 0.422 31.857 0.512 0.387
21d97 6 18,409 128 2 16.092 0.028 1.601 0.409 31.761 0.512 0.329
49b9a r7 18,433 128 2 16.095 0.028 1.579 0.407 31.761 0.512 0.323
b8f74 8 18,263 128 2 16.030 0.028 1.560 0.406 31.761 0.512 0.330
3bded 9 17,177 128 2 15.415 0.023 1.572 0.398 31.761 0.512 0.308
24448 rl0 18,865 128 2 16.241 0.029 1.572 0.414 31.761 0.512 0.335
b329c rll 18,241 128 2 16.075 0.025 1.575 0.405 31.761 0.512 0.326
6f74a ri2 18,241 128 2 15.995 0.028 1.574 0.413 31.761 0.512 0.323
83a9c¢ rl3 17,785 128 2 15.795 0.025 1.569 0.411 31.761 0.512 0.313
5410f rl4 17,617 128 1 15.797 0.014 1.344 0.400 31.761 0.512 0.318
a0514 rl5 17,365 128 1 15.578 0.013 1.292 0.399 31.697 0.256 0.314
bdebd rl6 17,617 128 3 15.789 0.034 1.869 0.412 31.761 0.512 0.314
Passwords
Match dcdc9 rl7 19,982 12 5 17.960 0.067 2.573 0.418 31.665 0.128 0.347
43db4 rl7 19,982 12 5 17.975 0.067 2.571 0.415 31.665 0.128 0.341
9ledc rl7 19,982 12 5 17.936 0.066 2.581 0.409 31.665 0.128 0.337
2bcf2 rl7 19,982 12 5 17.897 0.068 2.597 0.411 31.665 0.128 0.343
10bf0 rl7 19,982 12 5 18.086 0.079 2.599 0.415 31.665 0.128 0.341
aff42 rl7 19,982 12 5 17.901 0.068 2.577 0.421 31.665 0.128 0.347
edde7 rl7 19,982 12 5 18.011 0.067 2.555 0.413 31.665 0.128 0.350
1539¢ rl7 19,982 12 5 17.904 0.067 2.580 0.413 31.665 0.128 0.344
Tbfcc rl7 19,982 12 5 17.992 0.067 2.585 0.414 31.665 0.128 0.344
dfa02 rl7 19,982 12 5 17.899 0.071 2.600 0.410 31.665 0.128 0.344
Non-Match e73ee rl7 20,728 8 7 18.638 0.410 3.284 0.425 31.761 0.128 0.328
b5f3a rl7 20,728 8 6 18.610 0.345 2.979 0.415 31.761 0.128 0.331
fdle7 rl7 20,725 6 6 18.550 0.344 2.944 0.418 31.729 0.064 0.327
db267 rl7 20,725 3 5 18.731 0.285 2.631 0.414 31.729 0.064 0.326
40867 rl7 20,728 8 6 18.566 0.360 3.004 0.411 31.761 0.128 0.326
f4a98 rl7 20,725 6 6 18.640 0.359 2.978 0.417 31.729 0.064 0.332
7474f rl7 20,728 8 6 18.578 0.349 2.969 0.424 31.761 0.128 0.332
b20ef rl7 20,725 6 6 18.634 0.354 2.961 0.415 31.729 0.064 0.334
27ba9 rl7 20,728 7 6 18.594 0.355 2.976 0.427 31.761 0.128 0.329
304b5 rl7 20,728 9 6 18.636 0.357 2.963 0.416 31.761 0.128 0.330
DNA
Match BRCA1 rl8 35,306 43,054,295 2 47.766 2.157 18.425 0.837 33.761 262.144 7.937
Varl
BRCA1 rl9 50,783 43,054,295 5 52.834 5.494 20.254 0.856 33.761 262.144 8.078
Var2
BRCA2 20 81,722 32,325,508 8 62.351 12.830 17.708 0.908 34.417 131.072 5.091
Varl
Non-Match BRCAL1 rl9 34,940 43,054,295 1 47.610 1.779 16.417 0.849 33.761 262.144 7.998
Varl
BRCALl rl8 50,783 43,054,295 1 53.268 2.275 18.101 0.878 33.761 262.144 8.024
Var2
BRCA2 20 81,722 32,325,508 1 62.357 3.006 10.838 0.915 34.417 131.072 5.032
Pri-
mary

FIGURE 29—Summary of all costs for all applications evaluated in Reef. R1ICS Constraints are for the step function in Nova. Times are
averaged across 10 runs, standard deviation was less than 5% for all components and applications.

Application Document Regex RICS Doc. #Steps Compile Solving Proving Verifying Proof Commit Max

ID ID Con- Length Time Time Time Time Size Size Mem-
straints (s) (s) (s) (s) (KB) (KB) ory
Usage
(GB)
Redactions
Small rl 49,144 415 4 38.994 0.458 3.263 0.570 32.801 0.512 0.764
Email
Large 2 75,812 1,000 6 223.189 1.726 5.735 0.685 33.585 1.024 1.073
Email
ODoH
5f558 3 22,573 128 3 20.769 0.131 2.022 0.429 31.953 0.512 0.354
25424 r4 25,129 128 2 21.506 0.136 1.757 0.459 32.049 0.512 0.409
55824 rS 25,576 128 1 21.813 0.054 1.396 0.456 32.017 0.512 0.415
21d97 6 22,193 128 2 19.683 0.066 1.672 0.428 31.857 0.512 0.352
49b9a r7 22,217 128 2 19.671 0.065 1.687 0.431 31.857 0.512 0.354
b8f74 r8 22,094 128 2 19.662 0.067 1.694 0.429 31.889 0.512 0.357
3bded 9 21,009 128 2 21.501 0.062 1.677 0.426 31.857 0.512 0.344
24448 rl0 22,020 128 2 21.976 0.065 1.681 0.425 31.825 0.512 0.354
b329c¢ rll 21,138 128 2 18.893 0.061 1.668 0.427 31.825 0.512 0.330
6f74a rl2 21,749 128 2 19.319 0.064 1.674 0.427 31.857 0.512 0.350
83a9¢ rl3 21,305 128 2 19.128 0.064 1.685 0.424 31.857 0.512 0.344
5410f rl4 20,515 128 1 18.945 0.036 1.352 0.418 31.793 0.512 0.346
a0514 rl5 20,589 128 1 18.779 0.036 1.346 0.430 31.761 0.256 0.347
bdebd rl6 21,149 128 3 19.677 0.092 1.991 0.431 31.857 0.512 0.340
Passwords
Match dcdc9 rl7 21,002 12 5 18.814 0.157 2.653 0.421 31.697 0.128 0.349
43db4 rl7 21,002 12 5 18.837 0.149 2.673 0.423 31.697 0.128 0.343
9ledc rl7 21,002 12 5 18.759 0.148 2.641 0.413 31.697 0.128 0.346
2bcf2 rl7 21,002 12 5 18.796 0.150 2.662 0.424 31.697 0.128 0.348
10bf0 rl7 21,002 12 5 18.644 0.147 2.652 0.422 31.697 0.128 0.347
aff42 rl7 21,002 12 5 18.687 0.151 2.651 0.422 31.697 0.128 0.346
edde7 rl7 21,002 12 5 18.687 0.149 2.661 0.417 31.697 0.128 0.344
1539¢ rl7 21,002 12 5 29.531 0.153 2.679 0.418 31.697 0.128 0.345
Tbfcc rl7 21,002 12 5 18.598 0.151 2.652 0.411 31.697 0.128 0.354
dfa02 rl7 21,002 12 5 19.013 0.150 2.652 0.423 31.697 0.128 0.350
Non-Match e73ee rl7 21,721 8 7 22.067 0.336 3.281 0.431 31.793 0.128 0.344
b5f3a rl7 21,721 8 6 22.711 0.290 3.025 0.426 31.793 0.128 0.345
fdle7 rl7 21,401 6 6 19.478 0.287 2.973 0.426 31.729 0.064 0.342
db267 rl7 21,401 3 5 19.234 0.242 2.688 0.435 31.729 0.064 0.334
40867 rl7 21,721 8 6 19.718 0.291 3.004 0.428 31.793 0.128 0.345
f4a98 rl7 21,401 6 6 19.282 0.295 3.017 0.423 31.729 0.064 0.343
7474 rl7 21,721 8 6 19.600 0.285 3.005 0.431 31.793 0.128 0.342
b20ef rl7 21,401 6 6 19.128 0.291 2.989 0.431 31.729 0.064 0.344
27ba9 rl7 21,721 7 6 19.336 0.283 3.009 0.431 31.793 0.128 0.345
304b5 rl7 21,721 9 6 22.028 0.292 2.997 0.428 31.793 0.128 0.339
DNA
Match BRCAI1 rl8 44,698 43,054,295 2 92.504 2,074.962 11.644 0.900 34.305 262.144 16.848
Varl
BRCAI1 r19 71,818 43,054,295 4 174.760 7,829.746 17.003 1.053 35.089 262.144 17.173
Var2
BRCA2 20 96,296 32,325,508 8 73.533 13,407.752 14.952 0.976 35.057 131.072 9.442
Varl
Non-Match BRCAI1 rl9 46,650 43,054,295 1 62.941 542.441 12.997 0.908 34.369 262.144 15.131
Varl
BRCAI1 rl8 72,343 43,054,295 1 71.860 556.006 12.963 1.075 35.121 262.144 15.214
Var2
BRCA2 20 107,184 32,325,508 1 78.083 321.560 7.988 0.971 35.121 131.072 8.411
Pri-
mary

FIGURE 30—Summary of all costs for all applications evaluated using safa+nlookup. R1CS Constraints are for the step function in Nova.
Times are averaged across 10 runs, standard deviation was less than 5% for all components and applications.

Application Document Regex RICS Doc. #Steps Compile Solving Proving Verifying Proof Commit Max

ID ID Con- Length Time Time Time Time Size Size Mem-
straints (s) (s) (s) (s) (KB) (KB) ory
Usage
(GB)
Redactions

Small rl 292,053 415 83 3,183.479 7,993.773 69.256 1.160 25.904 0.032 1.721

Email
Large r2 1,320,713 1,000 100 29,984.607 101,133.269200.144 4.219 27.280 0.032 5.848

Email

ODoH

5f558 3 110,532 128 16 146.789 118.867 9.130 0.443 24.528 0.032 0.925
25424 4 47,561 128 16 65.722 12.513 6.353 0.302 23.840 0.032 0.640
55824 5 39,301 128 16 59.451 7.123 6.007 0.304 23.840 0.032 0.639
21d97 6 24,841 128 16 51.159 1.512 5.173 0.223 23.152 0.032 0.637
49b9a r7 27,937 128 16 52.823 2.222 5.317 0.222 23.152 0.032 0.639
b8f74 8 33,097 128 16 55.699 3.772 5.736 0.297 23.840 0.032 0.639
3bded 9 28,969 128 16 53.648 2.500 5.302 0.224 23.152 0.032 0.639
24448 rl0 25,873 128 16 51.625 1.730 5.243 0.220 23.152 0.032 0.638
b329c¢ rll 23,809 128 16 50.669 1.313 5.162 0.220 23.152 0.032 0.637
6f74a rl2 23,809 128 16 50.710 1.314 5.186 0.218 23.152 0.032 0.637
83a9¢ rl3 24,841 128 16 51.194 1.513 5.173 0.221 23.152 0.032 0.637
5410f rl4 20,713 128 16 49.586 0.818 4.999 0.223 23.152 0.032 0.634
a0514 rl5 22,777 128 16 50.244 1.133 5.125 0.217 23.152 0.032 0.636
bdebd rl6 26,905 128 16 52.752 1.966 5.301 0.219 23.152 0.032 0.639

FIGURE 31—Summary of all costs for all applications evaluated with DFA+Recursion. R1CS Constraints are for the step function in Nova.

Application Document Regex RI1CS Doc. #Steps Compile Solving Proving Verifying Proof Commit Max

ID ID Con- Length Time Time Time Time Size Size Mem-

straints (s) (s) (s) (s) (KB) (KB) ory
Usage

(GB)

Redactions
Small rl 23,041,771.0 415 1 10,330.135 8,181.845 194.572 51.036 18.440 0.032 76.300
Email
ODoH

5f558 3 1,564,274.0 128 1 490.940 110.792 13.089 3.572 15.688 0.032 5.048
25424 r4 557,263.0 128 1 193.364 11.508 7.202 1.778 15.000 0.032 2.064
55824 5 425,163.0 128 1 157.852 6.010 3.958 1.065 14.312 0.032 1.261
21d97 6 193,983.0 128 1 100.478 1.230 2.450 0.645 13.624 0.032 0.745
49b9a r7 243,519.0 128 1 114.146 1.960 2.523 0.663 13.624 0.032 0.871
b8f74 r8 326,079.0 128 1 134.130 3.504 3.931 1.035 14.312 0.032 1.086
3bded 9 260,031.0 128 1 116.638 2.230 2.536 0.690 13.624 0.032 0.910
24448 r10 210,495.0 128 1 104.763 1.435 2.514 0.649 13.624 0.032 0.746
b329c rll 177,471.0 128 1 95.964 1.035 2.426 0.640 13.624 0.032 0.741
6f74a rl2 177,471.0 128 1 96.223 1.032 2.420 0.639 13.624 0.032 0.741
83a9c rl3 193,983.0 128 1 100.632 1.229 2.456 0.637 13.624 0.032 0.745
5410f rl4 127,935.0 128 1 84.745 0.549 1.728 0.425 12.936 0.032 0.738
a0514 rl5 156,009.0 128 1 89.062 0.821 2.434 0.628 13.624 0.032 0.692
bdebd rl6 227,007.0 128 1 108.855 1.670 2.478 0.639 13.624 0.032 0.747

FIGURE 32—Summary of all costs for all applications evaluated in Reef using a DFA and no recursion. R1CS Constraints for the entire circuit.

Application Regex ID SAFA States SAFA Transitions DFA States DFA Transitions

Redactions

rl 331 42,318 433 55,424
2 908 116,751 1,013 129,664
ODoH
r3 28 3,232 94 12,032
4 36 4,012 33 4,224
5 30 3,238 25 3,200
6 12 1,421 11 1,408
7 15 1,808 14 1,792
r8 20 2,453 19 2,432
9 16 1,937 15 1,920
rl0 13 1,550 12 1,536
rll 11 1,292 10 1,280
rl2 11 1,292 10 1,280
rl3 12 1,421 11 1,408
rl4 8 905 7 896
rl5 10 1,163 9 1,152
rl6 14 1,679 13 1,664
Passwords
rl7 21 1,188 — —
DNA
rl8 331 42,318 43,052,484%* 172,209,936*
rl9 331 42,318 43,050,383* 172,201,532*
20 976 4,861 32,318,453 129,273,812*

FIGURE 33—SAFA size vs DFA size for all evaluated regex
* are estimates

Application Document Regex ID DFA DFA # DFA + DFA + SAFA + SAFA + Reef Reef #
ID Steps Recursion Recursion nlookup nlookup Steps
Steps # Steps
Redactions
Small rl 23,041,771 1 292,053 83 49,144 4 46,655 4
Email
Large 2 —_ —_ 1,320,713 100 75,812 6 65,727 7
Email
ODoH
5558 r3 1,564,274 1 110,532 16 22,573 3 18,437 3
25424 r4 557,263 1 47,561 16 25,129 2 22,692 2
55824 5 425,163 1 39,301 16 25,576 1 23,148 1
21d97 6 193,983 1 24,841 16 22,193 2 18,409 2
49b9a r7 243,519 1 27,937 16 22,217 2 18,433 2
b8f74 8 326,079 1 33,097 16 22,094 2 18,263 2
3bded 9 260,031 1 28,969 16 21,009 2 17,177 2
24448 r10 210,495 1 25,873 16 22,020 2 18,865 2
b329¢ rll 177,471 1 23,809 16 21,138 2 18,241 2
6f74a rl2 177,471 1 23,809 16 21,749 2 18,241 2
83a9¢ rl3 193,983 1 24,841 16 21,305 2 17,785 2
5410f rl4 127,935 1 20,713 16 20,515 1 17,617 1
a0514 rls 156,009 1 22,777 16 20,589 1 17,365 1
b4ebd rl6 227,007 1 26,905 16 21,149 3 17,617 3
Passwords
Match dedc9 rl7 — — — — 21,002 5 19,982 5
43db4 rl7 — — — — 21,002 5 19,982 5
9ledc rl7 — — — — 21,002 5 19,982 5
2bcf2 rl7 — — — — 21,002 5 19,982 5
10bfO rl7 — — — — 21,002 5 19,982 5
aff42 rl7 — — — — 21,002 5 19,982 5
edde? rl7 — — — — 21,002 5 19,982 5
1539¢ rl7 — — — — 21,002 5 19,982 5
Tbfcc rl7 — — — — 21,002 5 19,982 5
dfa02 rl7 — — — — 21,002 5 19,982 5
Non-Match e73ee rl7 — — — — 21,721 7 20,728 7
b5f3a rl7 — — — — 21,721 6 20,728 6
fdle7 rl7 — — — — 21,401 6 20,725 6
db267 rl7 — — — — 21,401 5 20,725 5
40867 rl7 — — — — 21,721 6 20,728 6
f4a98 rl7 — — — — 21,401 6 20,725 6
7474 rl7 — — — — 21,721 6 20,728 6
b20ef rl7 — — — — 21,401 6 20,725 6
27ba9 rl7 — — — — 21,721 6 20,728 6
304b5 rl7 — — — — 21,721 6 20,728 6
DNA
Match BRCAI rl8 — — — — 44,698 2 35,306 2
Varl
BRCALI rl9 — — — — 71,818 4 50,783 4
Var2
BRCA2 20 — — — — 96,296 8 81,722 8
Varl
Non-Match BRCA1 r19 — — — — 46,650 1 34,940 1
Varl
BRCAl rl8 — — — — 72,343 1 50,783 1
Var2
BRCA2 20 — — — — 107,184 1 81,722 1
Primary

FIGURE 34—Total number of R1CS constraints for DFA, number for step function for DFA+Recursion, SAFA+nlookup, and Reef

Component
== Proving

. 8541.66 3
10 flzacsz == Solving
3
10
= 250.24
210 74.41
£
10' 5.94 6.11
3.41 3.32 3.22
- - =
o
0.46
— L
DFA DFA+Recursion SAFA+nlookup Reef DFA+Recursion SAFA+nlookup Reef
Small Small Small Small Large Large Large

(a) Proof that a (small / large) committed email matches a redaction regex. DFA was unable to finish within 12
hours for the large email.

10°
Component
I Proving
s Solving
; 11.51 12.51
10 7.22 6.38
=z
g
£ 1.86 1.83
10°
0.25
T
—
DFA DFA+Recursion SAFA+nlookup Reef
(b) Proof that a committed document matches an ODoH regex.
10'
Component
Emm Proving
s Solving
S.00 3.06 2.75 2.70
=z
®
E 10°
=
0.48
0.29
— |
SAFA+nlookup Reef SAFA+nlookup Reef
Non-Match Non-Match Match Match

(c) Proof that a committed password matches/does not match a password strength regex. Neither DFA nor
DFA+recursion can handle this application.

10
Component
13407.75 = Proving
104 mmm Solving
@ 10°
)
£
=
10
} 15.16 18.29 12.90
10
3.09
I
SAFA+nlookup Reef SAFA+nlookup Reef
Non-Match Non-Match Match Match

(d) Proof that a committed DNA document matches/does not match a DNA regex. Neither DFA nor
DFA+recursion can handle this application.

FIGURE 35—Mean proving and solving time across 10 runs for proving that some committed document matches/does not match a regex with
Reef and various alternatives. Standard deviations were less than 5% of the mean. Each subfigure describes a different application (regex) and
type of document. The corresponding document sizes are found in Figure 6.

Application RegexID Regex

Redactions
rl A Message-ID: .*[[:space:]] Date: Tue, 8 May 2001 09:16:00 -0700 (PDT) [[:space:]] From: .* [[:space:]] To: .* [[:space:]]
Subject: Re: [[:space:]] Mime-Version: 1.0 [[:space:]] Content-Type: text/plain; charset=us-ascii [[:space:]] Content-Transfer-
Encoding:7bit [[:space:]] X-From: Mike Maggi [[:space:]] X-To: Amanda Huble[[:space:]]X-cc: [[:space:]]X-bcc: [[:space:]]
X-Folder:\\ Michael_Maggi_Jun2001 \\ Notes Folders \\ Sent[[:space:]]1X-Origin: Maggi-M[[:space:]]X-FileName:
mmaggi.nsf[[:space:]]*at 5:00$
2 A Message-1D: .*[[:space:]]Date: Tue, 11 Jul 2000 11:11:00 -0700 (PDT)[[:space:]]From: .*[[:space:]]To: .*[[:space:]]
Subject: Reimbursement of Individually Billed Items|[[:space:]]Mime-Version: 1.0[[:space:]]Content-Type: text/plain;
charset=us-ascii[[:space:]]Content-Transfer-Encoding: 7bit[[:space:]]X-From: Enron Announcements[[:space:]]X-To:
All Enron Employees North America[[:space:]]X-cc: [[:space:]]1X-bcc: [[:space:]]1X-Folder: \ \Michelle_Lokay_Dec2000_
June2001_1\\Notes Folders\ \ Corporate[[:space:]]X-Origin: LOKAY-M[[:space:]]1X-FileName: mlokay\.nsf[[:space:]]*The
memo distributed on June 27 on Reimbursement of Individually Billed Items [[:space:]]requires[[:space:]]clarification\. The
intent of the memo was to give employees an alternate [[:space:]Jmethod[[:space:]Jof paying for pagers, cell phones, etc\.
Employees can continue to submit[[:space:]]these[[:space:]]invoices to Accounts Payable for processing or pay these items
with their [[:space:]]corporate[[:space:]]JAmerican Express card and request reimbursement through an expense report\.
[[:space:]]Either[[:space:]]way is an acceptable way to process these small dollar high volume invoices\.$
ODoH
3 Nad([sxv]?[0 — 9] * |system)[_.—]([A.[[: space :]] + .){1, }|[_.—]ad([sxv]?[0 — 9] * |system)[_.—]|$
r4 A(. 4 [L.-—])?adse?rv(er?|ice)?s?[0 — 9] * [_.—]
5 A(-+ [L—])?telemetry[_.—]
6 N(adim(age|g)s?[0 — 9] * [_.—]
7 N(adtrack(er|ing)?[0 — 9] * [_.—]
18 A(advert(s|is(ing|ements?))?[0 — 9] * [_.—]
9 N(aff(iliat(es?|ion))?[_.—]
r10 A(analytics?[_.—]
rll A(banners?[_.—]
r12 A(beacons?[0 — 9] * [_.—]
rl3 A(ount(ers?)?[0 — 9] * [_.—]
rl4 A(mads.
rl5 A(pixels?[—.]
rl6 N(stat(s|istics)?[0 — 9] * [_.—]
Passwords
rl7 AN?=.x[A=Z.x[A=2Z)(?=.%[1%N@#$&*])(?=.%[0—9]. %[0 —9])(?=.x [a— z]. *x [a — z]. x [a — 2]).{12}$
DNA
rl8 /M{43052424}ATGGGCTACAGAAACCGTGCCAAAAGACTTCTACAGAGTGAACCCGAAAATCCTTCCTTG
rl9 /n{43050079}ATGCTGAAACTTCTCAACCAGAAGAAAGGGCCTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAG.*AGCCTACAAG
AAAGTACGAGATTTAGTCAACTTGTTGAAGAGCTATTGAAAATCATTTGTGCTTTTCAGCTTGACACAGGTTTGGAGT. + ATGCAAACAGCTATA
ATTTTGCAAAAAAGGAAAATAACTCTCCTGAACATCTAAAAGATGAAGTTTCTATCATCCAAAGTATGGGCTACAGAAACCGTGCCAAAAGACTT
CTACAGAGTGAACCCGAAAATCCTTCCTTG
120 A.{32317478}CACAACTAAGGAACGTCAAGAGATACAGAATCCAAATTTTACCGCACCTGGTCAAGAATTTCTGTCTAAATCTCATTTGTATG

AACATCTGACTTTGGAAAAATCTTCAAGCAATTTAGCAGTTTCAGGACATCCATTTTATCAAGTTTCTGCTACAAGAAATGAAAAAATGAGACAC
TTGATTACTACAGGCAGACCAACCAAAGTCTTTGTTCCACCTTTTAAAACTAAATCACATTTTCACAGAGTTGAACAGTGTGTTAGGAATATTAA
CTTGGAGGAAAACAGACAAAAGCAAAACATTGATGGACATGGCTCTGATGATAGTAAAAATAAGATTAATGACAATGAGATTCATCAGTTTAACA
AAAACAACTCCAATCAAGCAGTAGCTGTAACTTTCACAAAGTGTGAAGAAGAACCTTTAG. * ATTTAATTACAAGTCTTCAGAATGCCAGAGATA
TACAGGATATGCGAATTAAGAAGAAACAAAGGCAACGCGTCTTTCCACAGCCAGGCAGTCTGTATCTTGCAAAAACATCCACTCTGCCTCGAATC
TCTCTGAAAGCAGCAGTAGGAGGCCAAGTTCCCTCTGCGTGTTCTCATAAACAG. * CTGTATACGTATGGCGTTTCTAAACATTGCATAAAAAT

TAACAGCAAAAATGCAGAGTCTTTTCAGTTTCACACTGAAGATTATTTTGGTAAGGAAAGTTTATGGACTGGAAAAGGAATACAGTTGGCTGAT

GGTGGATGGCTCATACCCTCCAATGATGGAAAGGCTGGAAAAGAAGAATTTTATAG. * GGCTCTGTGTGACACTCCAGGTGTGGATCCAAAGCT

TATTTCTAGAATTTGGGTTTATAATCACTATAGATGGATCATATGGAAACTGGCAGCTATGGAATGTGCCTTTCCTAAGGAATTTGCTAATAGA

TGCCTAAGCCCAGAAAGGGTGCTTCTTCAACTAAAATACAG

FIGURE 36—Regexs with ID

	1 Introduction
	2 Background
	2.1 Regular Expression Matching
	2.2 zkSNARKs
	2.3 Rank-1 Constraint Satisfiability (R1CS)
	2.4 NP checkers

	3 Goals and standard approach
	3.1 A standard approach
	3.2 Limitations of the standard approach

	4 Improving the standard approach
	5 Skipping Alternating Finite Automata
	5.1 Alternating Finite Automata (AFA)
	5.2 SAFA: Supporting Skips
	5.3 Designing the SAFA match_step Function

	6 SAFA and Document Lookup Tables
	6.1 Lookup arguments
	6.2 SAFA Lookup table
	6.3 Committing to a document
	6.4 Table projections
	6.5 Hybrid private/public lookup argument

	7 Implementation
	7.1 Compilation: from regex to R1CS
	7.2 Solving: finding the satisfying witness
	7.3 Proving knowledge of the witness

	8 Costs and Complexity analysis
	9 Evaluation
	9.1 Experimental Setup
	9.2 Overall Performance
	9.3 Comparative Performance

	10 Related Works
	11 Discussion and Future Work
	A Preliminaries
	A.1 Monoids
	A.2 Boolean Algebras
	A.3 Kleene Algebras

	B Regular Expressions
	B.1 Derivatives of regular expressions
	B.2 Existing Automata

	C Skipping Alternating Finite Automata
	C.1 Intervals
	C.2 Skips/Interval sets
	C.3 Operations on Interval sets
	C.4 SAFA formal definition
	C.5 SAFA Semantics
	C.6 SAFA are regular

	D Compiling Regular Expressions to SAFA
	E Regular expression preprocessing
	E.1 Syntactic sugar
	E.2 Regular expression normalization
	E.3 Extract skips
	E.4 SAFA solver

	F Matrix representation of R1CS
	G Low cost padding
	H Implementation Optimizations
	H.1 Batching
	H.2 Optimized stack
	H.3 Pipelined solving and proving.

	I Alternate instantiation of RAM with better asymptotics
	J Applications

