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ABSTRACT
This paper proposes Oryx, a system for e!ciently detecting cycles
in federated graphs where parts of the graph are held by di"er-
ent parties and are private. Cycle identi#cation is an important
building block in designing fraud detection algorithms that operate
on con#dential transaction data held by di"erent #nancial institu-
tions. Oryx allows detecting cycles of various length while keeping
the topology of the graphs secret, and it does so e!ciently. Oryx
leverages the observation that #nancial graphs are very sparse, and
uses this to achieve computational complexity that scales with the
average degree of nodes in the graph rather than the maximum
degree. Our implementation of Oryx running on a single 32-core
AWS machine (for each party) can detect all cycles of up to length
6 in under 5 hours in a #nancial transaction graph that consists
of tens of millions of nodes and edges. While the costs are high,
Oryx’s protocol parallelizes well and can use additional hardware
resources. Furthermore, Oryx is, to our knowledge, the #rst system
that can handle this task for large graphs.

1 INTRODUCTION
In our complex international #nancial ecosystem, fraudulent ac-
tivities such as money laundering are commonplace, partly due
to the decentralized and opaque nature of this ecosystem and the
lack of auditing mechanisms. Financial institutions spend a lot of
resources in order to detect and mitigate some of these fraudulent
activities: in 2022, they collectively spent around $274 billion on
#nancial-crime compliance [5]. A common approach for under-
standing #nancial transactions, and determining whether they are
anomalous, is to treat account owners as vertices, transactions as
edges, and then study certain structural properties of the resulting
graph. A particularly helpful and important structural property is
that of cycles within the graph [22, 24]. The intuition is that money
is transferred between di"erent accounts but eventually goes back
to an account that belongs to the original sender, which forms a
cycle, and is a strong signal of behaviors such as money laundering.

There is a large literature of works [8, 12, 22, 25, 30] that design
algorithms and build systems for #nding cycles or other graph
structural patterns, but they all assume that a single entity holds (or
has visibility into) the entire graph. Allowing #nancial institutions
to do away with this requirement of having to reveal their entire
transaction graph to a trusted intermediary (as in the status quo)
could unlock impactful audits. Our goal is therefore to privately
!nd cycles over federated graphs.

The setting of federated graphs closely resembles reality whereby
each #nancial institution only sees the fraction of transactions
that are directly involved with its own accounts and cannot see
transactions that occur in other banks or institutions. As such, no
party has a global view of the entire graph and cannot e"ectively
detect cycles or other patterns besides those that are visible within
their own subgraphs.

Computing privately over federated graphs is not a new problem.
There are prior works in this space [6, 19–21, 23]. But there is one
key di"erence between the types of computations that these works
target, and those that we study in this paper. In particular, these
prior works aim to compute an aggregate statistic on the graph,
such as PageRank [7]. In other words, if one thinks of each vertex
as holding some data, the goal of the existing works is to compute
some aggregate function over the data held by the vertices. In
contrast, our aim is to identify some property or pattern (cycles in
our particular case) that exists within the graph’s topology. This is
a fundamentally di"erent and more expensive type of computation:
even in the non-private setting, the number of subgraphs one needs
to process—and therefore the computational complexity—grows
exponentially with the average number of neighbors that nodes
have in the graph. As a result, existing works are ill-equipped to
perform computations over the structure of the graph.

To support this challenging domain we propose Oryx, a system
that detects cycles over federated graphs while hiding the graph’s
topology (i.e., the edges between di"erent nodes). Oryx works in
the client-server MPC setting [9, 10] whereby many clients (the
banks in our context) have secret inputs (their subgraphs) and rely
on a few servers to perform the computation on their behalf. Oryx
can be instantiated with two or more semi-honest non-colluding
servers, though our particular implementation uses a three-server
semi-honest protocol that achieves better performance. In #nancial
settings, these servers could be run by delegates from #nancial
institutions as well as government regulators. These servers will
learn nothing about the graphs of individual banks besides the
number of vertices and edges, and the result of the cycle detection
computation (including some information about the number of
paths). Wemake this explicit in our ideal functionality in Section 6.1.

A key observation that Oryx leverages to be e!cient is the fact
that if the graph represents #nancial transactions, this graph is
actually very sparse. We see this experimentally from a #nancial
money laundering dataset released by IBM [3], but can also under-
stand this intuitively: if vertices are people, then a very dense graph
would mean that every person is sending money to nearly every
other person which does not make sense. In reality, most people
have few transactions; a minority of vertices (e.g., companies) have
many transactions. The implication is that the average degree of
a node is very small compared to the maximum degree. A generic
MPC protocol for #nding all cycles of a certain length in the graph
would therefore scale exponentially with the maximum degree. In
contrast, Oryx exploits the graph’s sparsity to achieve a similar
computational complexity to the non-private baseline: exponential
in the average degree rather than the maximum degree.

Oryx makes the following technical contributions:
• Private cycle detection protocol. Oryx introduces a three-

party privacy-preserving cycle detection protocol. The output
of this protocol are all of the cycles of a given length, along with
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all of the vertices that participate in each of those cycles. This in-
formation is precisely what prior works in non-federated graphs
aim to collect in order to identify fraudulent transactions [22].
The computational costs ofOryx’s protocol are quasilinear in the
number of subgraphs (which is itself exponential in the average
degree across all nodes) and linear in the length of the cycle.
Note that even non-private cycle detection algorithms that list
all cycles of a certain length have complexity that is linear in the
number of subgraphs. We give the full analysis in Appendix B.
In Oryx, each data owner (e.g., bank) submits secret shares of its
subgraph, including the nodes and edges, to these three parties.
Then, using these shares the servers compute over the full graph
and output the cycles they detect until they reach a pre-set max-
imum length of exploration (i.e., how many hops to consider).
Oryx’s protocol combines a three-server oblivious shu$e pro-
tocol [6] with a tailored private message passing paradigm for
graph pattern matching inspired by prior work [21].

• E!cient parallelization. Oryx proposes an e!cient parallel
version of the private cycle detection protocol. This parallelism
allows Oryx to scale with multiple cores and multiple machines
to handle large-scale #nancial graph data e!ciently.
We evaluate Oryx with 3 AWS m5.16xlarge servers co-located

in the same datacenter. We use an anti-money laundering #nancial
transaction graph dataset from IBM [3] with tens of millions of
vertices and edges, and #nd that Oryx can detect all cycles of up to
length 6 (which the authors of prior studies have found su!cient
for many applications [22]) in around 4.7 hours.

Limitations. While a lot of our techniques signi#cantly reduce
computational costs over using generic MPC or prior works, the
servers still need to exchange large amounts of data. In #nancial
settings, this may not be an issue since the servers can be co-located,
in much the same way that stock trading servers and related infras-
tructure is in close proximity to each other. Indeed, our evaluation
assumes such co-location.

Oryx’s protocol also requires upper bounding the maximum de-
gree across all nodes with some value d; d impacts the protocol’s
computation complexity and the amount of memory used by each
server. Depending on the timescale on which one plans to detect
cycles (within the last day versus the last month), d needs to be
adjusted accordingly. In our evaluation we study values of d be-
tween 10 and 300 (meaning at most 300 transactions per account in
the chosen time window for a #nancial dataset), which we admit
might not be realistic. This limitation is not fundamental: it stems
from the fact that even though Oryx’s algorithms are parallelizable,
our prototype implementation parallelizes across cores rather than
across di"erent machines. As a result, we are bound by the amount
of memory available in a single machine for each of our servers.

Finally, cycle detection is an instance of a large class of compu-
tations called subgraph pattern matching. Other computations in
this class are also useful, but our current implementation does not
support them (we discuss potential extensions in Section 11).

2 SETTING AND PROBLEM STATEMENT
2.1 Problem description
• G(V , E) is a directed graph where V is the list of all nodes and

E → V ↑ V represents all the edges. An edge e is de#ned as a
tuple of two nodes (v, v↓) which denotes that there is a directed
path from v to v↓ and we call this is an out-edge for v and an
in-edge for v↓. We denote that there are N nodes in G and vi is
the i-th node in V .

• There are B parties who hold partial graph data and are denoted
as Pi for i ↔ [1, B]. Each of them holds a disjoint set of nodes Vi
where i ↔ [1,B] and V1 ↗ V2 ↗ · · · ↗ VB = V .

• For each node v in Vi , Pi knows all the edges of v and the edge
list of Pi is denoted as Ei . E1 ↗ E1 ↗ · · · ↗ EB = E. Note that the
edge lists of two di"erent parties may contain the same edges e
which connects the nodes in the two parties’ disjoint node lists.

• The in(out)-degree of a node v is de#ned as the number of in-
coming (outgoing) edges of v. We use d to denote the maximum
in-degree and out-degree of all nodes in G.

• A path p of length k is a sequence of k + 1 nodes v1, · · · , vk+1
such that (vi , vi+1) ↔ E for i ↔ [1, k] and v1, · · · , vk+1 are distinct
nodes.

• A cycle C of length k is a special type of path. It is a sequence
of k + 1 nodes v1, · · · , vk+1 such that (vi , vi+1) ↔ E for i ↔ [1, k],
v1, · · · , vk are distinct nodes, but v1 = vk+1.

Problem de"nition. Given a static directed graph G(V , E) held
by B parties, P1 to PB, and a pre-de#ned parameter K , three non-
colluding servers, S1, S2, and S3, wish to detect all the cycles with
a maximum length of K in G without leaking any other edge in-
formation besides what is revealed in these cycles. Speci#cally for
each detected cycle, all the nodes and edges associated with the
cycle will be revealed.

2.2 Threat model and assumptions
Semi-honest adversaries. We model the servers and graph data
holders as honest-but-curious adversaries: they will follow the pre-
scribed protocol but will try to infer graph information (i.e., the
existence of edges between nodes). We also assume these parties
will not collude with each other.

Participants instantiation. The data providers are #nancial in-
stitutions each holding their customers’ information including ac-
counts and internal transactions. The computing servers can be
instantiated by designated banks or other #nancial institutions as
well as government regulators.

Id alignment. We assume these #nancial institutions agree on the
same id for each account and all ids are positive integers. For each
account, only the data holder institution knows the detailed account
information (the name of the account holder, balance information,
value of internal transfers, etc.). Financial institutions with whom
the account has transactions also see some basic information of the
account required for processing transactions such as the name of
account holder, type of account, etc. All other #nancial institutions
only see that the id exists but know nothing about the account.
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3 CANWE USE GENERIC MPC?
Secure multi-party computation (MPC) frameworks [4, 14, 28] allow
mutually distrusting parties to compute any arbitrary function that
can be expressed as a boolean or arithmetic circuit on secret inputs
without revealing anything else beyond the output of the function.
A prior study [6] points out that it is challenging to run graph
algorithm using generic MPC frameworks. The key challenge is
that if one wishes to hide the graph’s topology (as is the case in our
setting), the circuit cannot directly follow this topology and must
instead hide which node or edge is being processed by performing
some (potentially noop) action on every node. For example, to #nd
a neighbor of a given node, the circuit needs to iterate through
every node in the graph.

To address this limitation of generic MPC frameworks, recent
works [6, 19–21] propose protocols for computing graph analytics
such as PageRank [7] while hiding the graph’s topology. These
works represent a huge improvement over generic MPC frame-
works, but they are unfortunately not applicable to our setting.
There are two key reasons for this. The #rst is that graph analytics
computes some aggregate function over the data held by various
nodes, so the protocol only needs to maintain a constant amount of
space in which it collects and updates the result. This is not at all
the case in pattern matching tasks such as cycle detection, where
we are not interested in computing an aggregate value from data
held by nodes but instead in some property about the structure of
the graph itself. This requires tracking all relevant subgraphs that
satisfy the property, the number of which grows exponentially as
one explores deeper into the graph.

The second reason is that existing works adapt a node-centric
programming paradigm proposed by graph processing frameworks
such as Pregel [18], while (non-private) subgraph matching frame-
works [25] typically adopt a di"erent but more suitable subgraph-
centric programming paradigm. It is challenging to express a sub-
graph pattern matching task using the current frameworks sup-
ported by private graph analytics. To address this, this paper pro-
poses a way to bring subgraph-centric programming ideas to MPC.

4 NON-PRIVATE CYCLE DETECTION
We start by giving a non-private cycle detection protocol to demon-
strate the idea of the subgraph-centric programming paradigm [25],
which is a major departure from the paradigm adopted by prior pri-
vate graph analytics works. Here each subgraph represents a path
of a speci#c length. We then discuss the intuition behind converting
this non-private method into a privacy-preserving protocol.

Figure 1 gives the pseudocode for non-private cycle detection.
The protocol runs in rounds where it #nds out cycles with a speci#c
length in the graph. Initially, paths of length one are initialized with
all the edges in the graph. Then, in each round, the computation is
divided into two phases, extension and !lter.

In the extension phase, we iterate through each path found in the
previous step. For each path, we #nd all the outgoing edges of the
last node in the path and append the neighbor node of each edge to
the existing path (lines 6–10 in Figure 1). Appending the neighbor
node results in a new path with one more node.

Then, in the !lter phase, we examine each newly generated path
and #nd out which path forms a cycle by verifying whether the

1: function N!"#$%&’#()(*+(V , E, K)
2: paths ↘ E
3: for k ↔ [2,K] do
4: # Phase 1: extension
5: new_paths ↘ [ ]
6: for p in paths do
7: # Traverse all outgoing edges of the last node.
8: for (p[-1], neighbor) ↔ E do
9: np ↘ p.append (neighbor)
10: new_paths.append (np)
11: # Phase 2: #lter
12: paths ↘ new_paths
13: cycles ↘ K ≃ []
14: for p in paths do
15: # Remove paths with repeating nodes.
16: for i ↔ [1, k ⇐ 1] do
17: if p[i] = p[⇐1] then
18: paths.remove(p)
19: continue
20: # Detect cycles.
21: if p[0] = p[⇐1] then
22: paths.remove(p)
23: cycles[k].append (p)
24: return cycles

Figure 1: Pseudocode for non-private cycle detection. The
inputs are the list of nodes V , the list of edges E, and the
maximum length of cycles to detect K . It outputs the detected
cycles with length from 2 to K in the graph.

#rst and last node are the same. The detected cycles are removed
from the list of paths. For each path, we also check whether the
newly appended node occurs in the path twice. The repeating nodes
mean that there is a cycle with a smaller length inside the path.
Since cycles with smaller length have already been detected in the
previous round we do not need to include them for the next round
of extension. For example, a path of a ⇒ b ⇒ c ⇒ d ⇒ b includes
the cycle b ⇒ c ⇒ d ⇒ b which has been previously detected.

4.1 Adding privacy to the strawman approach
To turn the non-private cycle detection strawman into a private
protocol, we need to support the two phases extension and !lter
obliviously without leaking the graph topology. To achieve this
goal, we #rst need a way to encode the graph including nodes,
edges, and all the paths that are generated during execution such
that the computing parties cannot learn the topology of the graph
from the encoded data. Then, we need to design a protocol that can
operate directly on this encoded data. In this section, we give some
design choices in Oryx and defer the details to later sections.

Encoding the data. Prior works on private graph analytics [6, 19–
21] store the graph (a set of nodes and a set of edges) as secret
shares; each computing party receives one share of the graph, and
all shares are needed to recover the graph. In Oryx, we follow these
works and also store graphs as secret shares.
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How to compute over secret shares. The goal of Oryx is to
compute the entire process in Figure 1 in a private way. Speci#cally,
each server inputs its secret shares of the graph (E and V ) and the
protocol only outputs the detected cycles (i.e., cycles, the return
value of the pseudocode). All the intermediate results including the
generated paths are stored as secret shares without being revealed
in the clear so no servers ever know the exact values of the paths.

We now discuss how the two phases, extension and !lter, can be
conducted over secret shares.

Since all the generated paths in each round are stored as secret
shares, and the #ltering computation is performed on each path, we
can implement the !lter phase using generic MPC frameworks [4,
14, 28]. The servers use their local shares of one path to run an
MPC to #rst check whether the path contains repeating nodes; the
servers then remove all paths with repeating nodes. Over the paths
with no repeating nodes, the servers run MPC again by inputting
their local shares of the path and only output whether the path
forms a cycle. Finally, the servers exchange their local shares of the
cycles to reveal the nodes.

The di!cult part is how to do the extension in an oblivious way
without leaking edge information. Recall that our edges and gen-
erated paths are stored as secret shares. Thus, to run extension on
a path, the servers need to fetch the neighboring nodes without
knowing who they are. There are two challenges here. The #rst
challenge is e!ciency: how to #nd the neighbors of a node in an
e!cient way without naively traversing through each node and do-
ing comparisons one by one. The second challenge comes from the
potential to leak too much information: how can we avoid leaking
the number of newly generated paths associated with each node
given that di"erent nodes have di"erent numbers of neighbors.

To address the #rst challenge, we borrow ideas from existing
works [6, 19–21] that use an oblivious sort operation to signi#cantly
reduce the amount of comparisons needed to #nd the neighbors
of a node. We defer the details to Section 5. To deal with the sec-
ond challenge, we pad each node’s neighbor lists to the maximum
degree with dummy neighbors so that each node has the same num-
ber of neighbors. Then, at a later stage, we remove the paths that
contain dummy neighbor nodes in an oblivious way, as otherwise
the number of paths would grow exponentially with the maximum
degree. Removing these paths leaks the number of total paths of a
speci#c length across all nodes in the graph. This is a signi#cant
improvement because instead of leaking per-node information, we
leak a single aggregate value. We discuss this further in Section 6.1.

5 OBLIVIOUS MESSAGE PASSING
In this section we review the idea introduced in GraphSC [21] of
using oblivious sorting as a way to obliviously pass data from one
node to its neighbors. This idea has been used in a lot of follow up
works [6, 19, 20]. We will use the PageRank protocol as an example.

Strawman message passing. In a PageRank task, each node has
its own rank score and the goal is to pass a node’s rank score to its
neighboring nodes so that all nodes’ scores can be updated. The
main challenge is how to pass a node’s data to its neighboring
nodes while maintaining privacy. For simplicity, we assume that all
nodes have the same number of neighbors n. The total number of
nodes is denoted as |V |, and the total number of edges is denoted

1: function G%,$-SC#P,..(tuples)
2: var ↘ 0
3: for t in tuples do
4: if t.isNode then
5: var ↘ AGG(var , t.data)
6: else
7: t.data ↘ var ; var ↘ 0

Figure 2: Pseudocode for passing data between sorted tuples.

as |E | = n|V |. The naive way of doing this is as follows. First, we
loop through all nodes. For each node i, we have an inner loop that
goes over every other node j, and we check to see if j is a neighbor
of i. If so, we update i’s data so that it incorporates the data of j
(e.g., we update the rank by applying some aggregate function on
the two values). This results in a total of n|V |2 comparisons.

5.1 Message passing in GraphSC
The previous naive approach is very expensive, which is why
GraphSC [21] proposed the following improvement.

Representing the graph. GraphSC encodes both nodes and edges
in the same format in order to make it hard to di"erentiate the
two. Speci#cally, both are encoded as a tuple (src, dst, data). When
src = dst, this tuple indicates a node with id src. Otherwise, it
indicates an outgoing edge from node src to node dst. The data
#eld is used to store values such as the rank score of each node in
PageRank. The tuples are then split as secret shares.

Passing data. There are two rounds of data passing in GraphSC.
First, the data of each node i is passed to its outgoing edge tuples
(i.e., all edge tuples that contain src = i) by setting the data #eld of
these edge tuples to be the data value of node i. Second, for each
node j, an aggregate function is applied over the data #elds of all
the edge tuples where dst = j to compute an aggregate value. This
aggregate value is then written to the data #eld of node j.

Message passing with sorted tuples. To allow passing data from
the source nodes to the outgoing edges, the servers #rst obliviously
sort the tuples based on the src #eld in the tuple (src, dst, data). For
node and edge tuples with the same src value, the sorting ensures
that the node tuples always appear before the edge tuples. Likewise
for the second data pass, we sort the tuples based on the dst #eld
and ensure that for tuples with the same dst value, the node tuple
always appear after the edge tuples.

After the #rst sort, the tuple for node i is the closest node tu-
ple that appears before i’s out edges (edge tuples with src = i).
For example, suppose the servers initially have the shares they
received from clients in an arbitrary but consistent order. Say the
shares represent tuples [2, 2, 3], [2, 3, 0], [3, 3, 1], [1, 2, 0], [1, 1, 2].
After sorting, the list is [1, 1, 2], [1, 2, 0], [2, 2, 3], [2, 3, 0], [3, 3, 1],
which contains the #rst node tuple, followed by its edge, followed
by the next node tuple, etc. Then the servers do a linear pass over
all tuples to move data from the source node to the outgoing edges
as shown in Figure 2.

The linear pass runs as follows: the servers begin iterating through
the tuples from the start of the sorted list and use a global variable
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Ideal functionality F of cycle detection

Parties: Pi for i ↔ [1,B], S1, S2, and S3.
Public parameters:
• d: maximum degree of every node in graph G.
Inputs:
• Vi , Ei : list of nodes and edges from each Pi .
Desired output:
• Ck : set of cycles of length k in G for k ↔ [2,K].
Additional output (i.e., leakage):
• |Vi | + |Ei |: sum of the number of nodes and edges for

each party Pi .
• pnk : number of paths of length k in G for k ↔ [1,K].

Figure 3: Ideal functionality of Oryx.

var during the iteration. When encountering a node tuple, var is
written as the data #eld of the tuple. Otherwise, the tuple is an edge
tuple and the aggregate function is applied over var and data of
the tuple (for simplicity, we assume the aggregate function does
additions over the inputs). The result after applying the aggregate
function is written to the data #eld of the edge tuple. In the example
above, var is #rst written as 2 when it encounters the #rst tuple
[1, 1, 2]. And then var is written to the data #eld of edge tuple
[1, 2, 0] and it becomes [1, 2, 2] after the update.

The second pass to send data from the edges to the destination
nodes runs in a similar way but with a sorted list that arranges all
edges before their destination nodes.

The complexity of the Bitonic sorting network [15] used in
GraphSC is O(( |V | + |E |) log2 ( |V | + |E |)), and the linear pass takes
O( |V | + |E |). As a result, the total complexity of private PageRank
with sorting is O(( |V | + |E |) log2 ( |V | + |E |)). If we assume the av-
erage number of neighbors is n, then |E | = n|V |, which results in
O((n+1) |V | log2 ((n+1) |V |))—better than the strawman approach’s
running time of O(n|V |2).

Recent work by Araki et al. [6] proposed using e!cient shu$e
and sort protocols to further improve the e!ciency of GraphSC
assuming three non-colluding servers.

6 PRIVACY-PRESERVING CYCLE DETECTION
In this section, we describe our systemOryx which supports privacy-
preserving cycle detection. We start by stating the desired privacy
guarantee of Oryx, then give an overview of the end-to-end cycle
detection protocol, describe the data format for edges and generated
paths in Oryx, and talk about the details of each stage in order to
achieve our privacy guarantee. Oryx consists of various subrou-
tines. Our particular instantiation of these subroutines uses three
servers since they were the most e!cient protocols that we know
of at present. However, if a better instantiation for any of these
subroutines becomes available, Oryx could use those instead.

6.1 Privacy guarantee of Oryx
The privacy guarantee of Oryx is given by the functionality F in
Figure 3. The graph is held by B parties, P1, P2, . . . , PB and we have
three computing servers, S1, S2, and S3. F takes the graph as an
input and it outputs the detected cycles up to length K , which is
precisely what we want. However, F also leaks additional infor-
mation, owing to the fact that Oryx is not perfect. Speci#cally, F
outputs (1) the sum of the number of nodes and edges for each
party Pi because in Oryx we will not ask parties to pad the number
of their tuples with dummy entries (though we could); (2) the total
number of paths in the graph of up to length K . This second leakage
is the most fundamental and is speci#c to the way in which Oryx
computes cycles e!ciently and avoids increasing the number of
paths exponentially with the maximum degree d.

What does this leakage mean in practice? Leaking pn1, which
is the number of paths of length 1 is equivalent to leaking |E |.
Leaking |Vi | + |Ei | for all Pi means that an adversary can recover
|V | = ∑

i ( |Vi | + |Ei |) ⇐ |E |. Finally, computing pnk+1/pnk leaks the
average outgoing edges of all nodes in the entire graph G. We do not
have a proof that this leakage will not allow an adversary to learn
whether a particular pair of nodes in the graph has an edge or not
with much higher probability than its prior, or other information
about the structure of any of the parties’ subgraphs (aside from
trivial graphs). However, based on our survey of state-of-the-art
techniques for reconstructing graphs from partial knowledge [13]
they require signi!cantly more information than what we leak.
We thus conclude that there does not exist any known way to
recover the topology of the graphs of any of the parties from the
information that we leak, and we conjecture that doing so is actually
hard since we only leak aggregate information (e.g., total number
edges, vertices, and average out degree).

6.2 Overview of Oryx

The protocol consists of three stages. The #rst stage operates
as an initialization phase, during which each data holder (Pi↔ [B] )
creates secret shares of its graph. Then Stage 2 and Stage 3 run in
rounds in which the servers detect cycles of a speci#c length k. We
give the overview of each stage here and defer the details of each
stage to later sections.

Stage 1: Graph data holders create secret shares. Each Pi↔ [B]
#rst formats its local graph data (i.e., the nodes and edges it owns)
in the same way (§6.3) and creates secret shares of the formatted
tuples. We use an edge tuple to include both the node ids and all
the outgoing edges of the node. The secret shares of both edges and
generated paths are indistinguishable. Then, Pi sends one secret
share to a computing server respectively. The servers each receive
secret shares from all Pi↔ [B] , and then use the secret shares to
compute cycles.

Stage 2: Computing servers run oblivious path extension. In
each round of detecting cycles of length k, each server holds the
secret shares of the edges and the paths of length k ⇐ 1. The goal
for the oblivious path extension protocol is to input these secret
shares, and output the secret shares of edges and paths of length k.
Paths of length k are generated by extending each path p of length
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Figure 4: Data format de"nition of a tuple in Oryx.

k ⇐ 1 using the outgoing neighbor nodes of the last node in p (as
shown in lines 6–10 in Figure 1). For example, suppose node 2 has
two neighbors 3 and 4. Given an input path [1, 2], the output paths
are [1, 2, 3] and [1, 2, 4].

We capture the above functionalitywith the function ( [esk]1, [esk]2,
[esk]3) ↘ Ob-Extend( [sk]1, [sk]2, [sk]3), where [sk]1, [sk]2, [sk]3
are input and [esk]1, [esk]2, [esk]3 are output shares for each of the
servers S1, S2, S3, respectively. We show how to build this function
in Section 6.5.

Stage 3: Computing servers run oblivious "ltering. In the
oblivious #ltering stage, the servers take as input secret shares of
edges and generate paths of length k (i.e., the outputs from running
Ob-Extend in Stage 2). The servers #lter out invalid paths (as shown
in lines 16–18 in Figure 1), and detect and reveal cycles (as shown in
lines 21–23 in Figure 1). Note that only detected cycles are revealed
along with the nodes that form each cycle. Each server then formats
secret shares of edges and valid paths to be used for cycle detection
of length k + 1 in the next round.

We capture the above functionality with the function (ck , [sk+1]1,
[sk+1]2, [sk+1]3) ↘ Ob-Filter( [esk]1, [esk]2, [esk]3). Here, the re-
vealed cycles with length k are denoted ck and the secret shares of
paths and edges to be used in the next round are [sk+1]1, [sk+1]2, [sk+1]3.
We show how to build this function in Section 6.6.

6.3 Data format and secret sharing
To ensure that the secret shares of both edges and generated paths
are indistinguishable, we format them into the same structure. In
Oryx, given the length of cycles to detect, k, and the maximum
node degree, d, we format the edges or a path as shown in Figure 4.
Each tuple begins with a non-negative integer src which indicates
a path if src = 0 or the edges of node src otherwise. The tuple also
has an id #eld which is a unique number among all tuples; this #eld
is only used as a tie-breaker for the sorting operation which we
will detail in later sections. Then it has #eld vec, which consists of d
vectors where each vector contains k+1 positive integers. Note that
the size of the tuples increases with the round of cycle detection
(i.e., as k increases).

For a path [v1, . . . , vk], the formatted tuple has d vectors, each
with k + 1 elements. All of the d vectors in vec are the same (dupli-
cates of each other). In each vector, the #rst k elements are the nodes
of the path [v1, . . . , vk] and the last element is an empty placeholder
0. As shown in the example in Figure 5 with d set to 2, we repre-
sent the path of [1, 2, 3] as {src = 0, vec = ( [1, 2, 3, 0], [1, 2, 3, 0])}.
The reason to have the d copies of the path vector is for oblivious
extension which we will detail in section 6.5.

To represent edges, we use a tuple to represent all the neighbors
from the outgoing edges of a node src. Additionally, the neighbor list

of each node is padded with dummy zeros to match the maximum
degree d. For example, in the graph shown in Figure 5 with d = 2,
we use [2, 0] as the neighbor list of node 1. Node 1 has a single
neighbor, node 2, and we use the dummy id 0 to pad the neighbor
list to two elements. We set src #eld in the tuple to u indicating that
it represents the neighbor list of node u. Then we set the #rst k
elements of the d vectors in vec, [vi1, . . . , vik]i↔ [d ] , to zeros. And we
set the last element of the d vectors, vik+1 for i = 1 to d, to the nodes
in the padded neighbor list of node u individually. For example,
{src = 1, vec = ( [0, 0, 0, 2], [0, 0, 0, 0])} represents the neighbor
nodes of node 1 with k = 3.

Sharing method. In Oryx, all these tuples are encoded using repli-
cated secret shares. Assume each tuple t is an 𝐿-bit string. The
original tuple data holder creates three random secret shares, a, b, c.
The three secret shares are three 𝐿-bit strings that satisfy t = a⇑b⇑c.
The three computing servers each hold two of the three shares. S1
holds a and b, S2 holds b and c, and S3 holds a and c. The shares
held by Si are denoted as [s]i , for i = 1 to 3. We will keep using this
notation of secret shares held by each server in later sections.

Subroutines. We de#ne the following to format edges and paths
and create secret shares of the formatted tuples.
• Gen-Edges-Share(k, u, e) ⇒ (ts1, ts2, ts3). Takes the node u and

the padded outgoing neighbor list e, [v1, . . . , vd ], of node u.
Outputs three secret shares, [ts]1, [ts]2, [ts]3, of the formatted
tuple for detecting cycles of length k.

• Gen-Path-Share(k, p) ⇒ (ts1, ts2, ts3). Takes an integer k and
path p of length k⇐1 and outputs three secret shares, [ts]1, [ts]2, [ts]3,
of the formatted tuple for detecting cycles of length k.

6.4 Create secret shares of graph
Each data holder Pi↔ [B] holds its own disjoint node list Vi and
creates secret shares of both edge and path tuples for detecting
cycles of length k = 2. For each node u ↔ Vi , Pi :
(1) Creates an empty list of nodes l. For each u such that (v, u) ↔ E,

u is appended to l. The list l is padded to length d with dummy
nodes of zeros.

(2) [ets]1, [ets]2, [ets]3 ↘ Gen-Edges-Share(k = 2, u, e = l).
(3) [pts]1, [pts]2, [pts]3 ↘ Gen-Path-Share(k = 2, p = (u, v)).

Each Pi now has the three secret shares of its edge and path tu-
ples, ( [etsi]1, [etsi]2, [etsi]3) and ( [ptsi]1, [ptsi]2, [ptsi]3). Pi sends
one of its secret shares, [etsi]j and [ptsi]j , to each computing server
Sj , for j ↔ [1, 3]. The tuples are now formatted correctly but with id
#elds not populated yet, which are used as the tie-breakers for sort-
ing. We denote these secret shares by Sj from all Pi as [s_no_idk=2]j .

The servers populate the id #elds for these tuples by assigning
each tuple the index i of the tuple in the list of all secret shares
starting from 1. We assume that the index is an integer of m bits
meaning the maximum possible index is 2m ⇐ 1. Recall that we use
the replicated secret shares, a, b, c, and each secret share of a server
has two out of the three shares. For secret share a in [s_no_idk=2]1
and [s_no_idk=2]3, S1 and S3 set the id #eld in a, [id]a, to i. And
for [id] #elds in the other two secret shares b and c, the servers
set the corresponding #elds to 2m ⇐ 1 (i.e., an integer of all m bits
being ones). Note that [id]a ⇑ [id]b ⇑ [id]c = i ⇑ 1 . . . 1⇑ 1 . . . 1 = i.
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Oblivious Filter

Computing servers Forward graph shares

Figure 5: One round of cycle detection. Two data holders (blue and red) generate secret shares of their graphs and send the
shares to three computing servers who run Oryx. The maximum degree of all nodes is d = 2. The grey cells represent edges and
the white cells represent paths. At the end of a round, the grey cells and white cells are grouped together, while the internal
sequences are random and not sorted.

By manipulating the local secret shares this way, we set the orig-
inal value of a tuple’s id to the index i as desired. The secret
shares with id assigned are denoted as [sk=2]1, [sk=2]2, [sk=2]3.
We denote the process of the three servers populating the ids as
( [s]1, [s]2, [s]3) ↘ Assign-Id( [s_no_id]1, [s_no_id]2, [s_no_id]3).

6.5 Oblivious extension
This section details how to transform the extension phase in Figure 1
into an oblivious operation. The oblivious path extension protocol
runs in the following two steps, as illustrated in Figure 5. In the #rst
step, the servers execute an oblivious sort protocol, grouping all
path tuples that end with node u alongside the edge tuple of node
u. The sorting also ensures that the edge tuple of node u always
appears before the path tuples that end with node u. In the second
step, the servers perform a linear traversal of all the tuples to #rst
pass the node u’s neighbor nodes to the path tuples that end with
node u. Then, each path tuple that ends with node u can extend
the existing path by adding one more edge, using the previously
passed neighbor list of node u.

Subroutines. Here we give some notation of the subroutines that
will be used in the construction.
• Ob-Shu"e( [s]1, [s]2, [s]3) ⇒ ( [rs]1, [rs]2, [rs]3). Takes secret

shares of a list of tuples from three servers, ( [s]1, [s]2, [s]3),
and outputs the randomized secret shares of the shu$ed list of
tuples, ( [rs]1, [rs]2, [rs]3). Note that each server receives only
one secret share of the shu$ed list.

• Ob-Sort (cmp, [s]1, [s]2, [s]3)⇒ ( [os]1, [os]2, [os]3). Takes a com-
parator circuit cmp for comparing tuples and secret shares of a
list of tuples from three servers, ( [s]1, [s]2, [s]3), and outputs
the secret shares of the sorted list of tuples in ascending order,
( [os]1, [os]2, [os]3), based on cmp. Our construction follows the
recent work by Araki et al. [6], which #rst shu$es the tuples
using Ob-Shu"e and then does the comparison-based sorting
over the randomly permuted tuples.

Step 1: Sort edge and path tuples. The pseudocode of the com-
parator to sort tuples is given in Figure 6. Note that all inputs and
intermediate results are secret shares, and only the #nal comparison
result is revealed in plain text. The servers #rst compute the node
value n by XORing src and v1k in each tuple (line 2 and 3 in Figure 6).
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1: function P%&’#C0$#O"#T/$*+.(t1, t2)
2: n1 ↘ t1.src ⇑ t1.v1k
3: n2 ↘ t2.src ⇑ t2.v1k
4: if n1 ω n2 then
5: return (n1 > n2)
6: else if t1.src ω t2.src then
7: return (t1.src < t2.src)
8: else
9: return t1.id > t2.id

Figure 6: Pseudocode of the comparator function to sort tu-
ples to determine which tuple of t1 and t2 is larger. The tuple
follows the data format in Figure 4. The input tuples t1 and t2
are stored in secret shares. All the computation are conducted
over secret shares and only the "nal comparison boolean re-
sult is revealed in clear.

1: function P%&’#N+&1-2!%#P,..&"1(tuples)
2: neighbors ↘ [0, . . . , 0︸⨌⨌︷︷⨌⨌︸

d

]

3: for t in tuples do
4: if t.isEdgeTuple then
5: for i ↔ [1, d] do
6: neighbors[i] ↘ t.vik+1
7: else
8: for i ↔ [1, d] do
9: t.vik+1 ↘ neighbors[i]

Figure 7: Pseudocode of oblivious neighbor passing and path
extension. d is the maximum degree in the graph. The input
tuples (i.e., all the path and edge tuples) are stored in secret
shares and follow the format in Figure 4.

When t is an edge tuple, src is the node id and v1k will be 0 (§6.3).
And when t is a path tuple, src is 0 and v1k is the last node in the
path. Thus, n will be either src of an edge tuple or v1k in a path. The
comparison using n groups the edge tuple of node u and the paths
that end with u together. When two tuples have the same n, we
further compare src of the two tuples. As src of path tuple will be 0,
a path tuple that ends with node u is always larger than the edge
tuple of node u. For paths that end with the same node both src
#elds would be zeros. We use the id #elds, each of which is unique
among all tuples in a round, as the tie-breaker. It ensures there are
no equal tuples in the comparison and there is a strict sequence
of all tuples after sorting. This approach prevents any additional
information from being leaked regarding the number of tuples that
end with the same node during the comparison-based sorting.

The servers run ( [osk]1, [osk]2, [osk]3) ↘ Ob-Sort (cmp, [sk]1,
[sk]2, [sk]3), where k is the cycle length of the current round, using
the comparator described in Figure 6. ( [osk]1, [osk]2, [osk]3) are
the secret shares of sorted tuples.

Step 2: Neighbor passing and path extension. The pseudocode
of Step 2 (neighbor passing and path extension in Figure 5) is shown
in Figure 7. It runs in a similar way to GraphSC (as shown in

Figure 2), but tailored for our use case. The servers maintain a
variable neighbors, which is a vector of d integers. They perform
a linear pass over all the tuples. If an edge tuple is encountered,
neighbors is updated as the current tuple’s neighbors (line 4–6 in
Figure 7). Otherwise, neighbors is written to vik+1 for i ↔ [1, d] to
add the neighbor to the path.

For example, when the servers encounter the #rst tuple in Fig-
ure 5, representing the neighbor list of node 1, the servers privately
evaluate whether the current tuple is an edge tuple. As it is an edge
tuple, they then privately assign the values of this tuple’s neighbor
nodes information to the neighbors variable. Now, neighbors is pri-
vately set to {2, 0} (i.e., the neighbors of node 1). The servers then
proceed to the next tuple which is the #rst path tuple of [4, 1] in Fig-
ure 5, stored as secret shares of {src = 0, vec = ( [4, 1, 0], [4, 1, 0])}.
Again, the servers privately evaluate the tuple’s type, and then
extend the path by setting the last elements (i.e., two zeros) in the
path tuple to the elements in the neighbors variable. After extension,
the path tuple is written as {src = 0, vec = ( [4, 1, 2], [4, 1, 0])} by
setting the original two zeros as {2, 0}.

We abstract the above with the following subroutine.
• Ob-Extend( [osk]1, [osk]2, [osk]3) ⇒ ( [esk]1, [esk]2, [esk]3). It

takes the secret shares of sorted tuples, ( [osk]1, [osk]2, [osk]3),
and outputs the secret shares with newly extended path tuples
( [esk]1, [esk]2, [esk]3).

6.6 Oblivious "ltering
In this section, we address how to make the #ltering phase of the
non-private protocol in Figure 1 oblivious. This process is shown in
the oblivious #ltering phase of Figure 5. It takes the outputs from
the oblivious extension protocol as inputs, which is the secret shares
of the path tuples after extension. The goal of oblivious #ltering
is to #lter out invalid extended paths (i.e., the paths that end with
invalid node id 0 or with repeating nodes) and then perform cycle
detection on the valid paths; revealing the cycles found. It runs in
the following three steps: (1) #nd path tuples and extract d path
vectors from each extended path tuple; (2) #lter out invalid paths
and detect cycles over the valid paths; and (3) format valid path
tuples and edges tuples for the next round of detection.

Subroutines. Here we de#ne some subroutines used later.
• Check-Tuple-Type( [t]1, [t]2, [t]3) ⇒ (type). Takes the secret

shares of a tuple, [t]1, [t]2, [t]3, and outputs a boolean type
which is true if the tuple is an edge tuple or false otherwise.

• Parse-Path( [pt]) ⇒ ( [p1], . . . , [pd ]). Takes a secret share [pt] of
a path tuple (§6.3), and outputs d vectors [p1], . . . , [pd ]. Speci#-
cally, the share is:

[pt] =
{ [src] = [s]
[vec] = ( [[v11 ], . . . , [v1k+1]], . . . , [[v

d
1 ], . . . , [vdk+1]])

}

where, pi = [[vi1], . . . , [vik+1]] for i ↔ [1, d]. Note that this is a
computation done by each server locally.

• Private-Filter-Path( [p]1, [p]2, [p]3) ⇒ valid. Takes the secret
shares of a path vector of length k (i.e., a vector of k + 1 nodes),
( [p]1, [p]2, [p]3), and outputs a boolean variable valid which
indicates whether this path is a valid path or not. The details are
shown in Figure 8.
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1: function P!"#$%&’F"(%&!’P$%)(p)
2: if p[⇐1] == 0 then
3: return False
4: # Skip comparing the #rst node with the last one.
5: for i ↔ [1, len(p) ⇐ 1] do
6: if p[i] == p[⇐1] then
7: return False
8: return True

Figure 8: Pseudocode of Private-Filter-Path subroutine used
in oblivious "ltering protocol (§6.6). The input are secret
shares of a path p. And all the computation are conducted
over secret shares and only leaks the "nal boolean variable
to indicate whether this path p is a valid one.

• Private-Cycle-Detection( [p]1, [p]2, [p]3) ⇒ detected. Takes the
secret shares of a path vector of length k (i.e., a vector of k + 1
nodes), ( [p]1, [p]2, [p]3), and outputs a boolean variable detected,
which indicates whether it forms a cycle by privately evaluating
whether the #rst and the last nodes in the path are the same.

Step 1: Extract paths. The servers #rst perform an oblivious shuf-
%e over the outputs from the oblivious extension phase to obfuscate
the sequence of originally sorted tuples by running ( [stk]1, [stk]2,
[stk]3)↘ Ob-Shu"e( [esk]1,[esk]2,[esk]3). For each tuple t in the
shu$ed tuples stk , the servers run (type) ↘Check-Tuple-Type( [t]1,
[t]2, [t]3) to check the type of the tuple t. For all edge tuples, the
servers store their local shares, denoted as [edgesk]i for i ↔ [1, 3].
For each path tuple pt, each Si parses its local share [pt]i into local
secret shares of d paths with ( [p1]i , . . . , [pd ]i)↘Parse-Path( [pt]i)
for i ↔ [1, 3]. For example, given a path tuple pt = {src = 0, vec =
( [4, 1, 2], [4, 1, 0])}, with d = 2, each server parses its local shares of
pt and obtains the local shares of [4, 1, 2] and [4, 1, 0] respectively.

Step 2: Filter out invalid paths and detect cycles. Before #l-
tering out invalid paths, the servers shu$e the tuples again. The
servers then use the Private-Filter-Path subroutine as de#ned in Fig-
ure 8 to privately check whether each path tuple is valid or not. A
valid tuple should consist of all non-zero nodes and should not con-
tain repeating nodes. All invalid paths are removed. For each valid
path pt, the servers run Private-Cycle-Detection( [pt]1, [pt]2, [pt]3)
to check whether the current path forms a cycle. When a cycle
is detected, the servers reveal their local shares to each other to
reconstruct and reveal the cycle with all nodes. For all valid and
non-cycle path tuples, each server retains the local share. These
tuples are denoted as pathsk , and the local shares are denoted as
[pathsk]i for i ↔ [1, 3].

Step 3: Format tuples for next round. As mentioned in Sec-
tion 6.3, the tuples of edges and paths have di"erent sizes across
cycle detection rounds. Thus, the servers need to set their local
shares of edgesk and pathsk of length k to the proper format for use
in the round of length k + 1.

For each local share of an edge tuple [etk]i = {[src] = [s]i , [vec] =
( [[v11 ]i , . . . , [v1k+1]i], . . . , [[v

d
1 ]i , . . . , [vdk+1]i])} of Si for i ↔ [1, 3],

Si appends a zero before each [vd1 ]i . So the local share is updated:{ [src] = [s]i ,
[vec] = ( [0, [v11 ]i , . . . , [v1k+1]i], . . . , [0, [v

d
1 ]i , . . . , [vdk+1]i])

}

Appending a zero of each of the local shares is equivalent to ap-
pending a zero element to the original edge tuple since 0⇑ 0⇑ 0 = 0.
Now, the edge tuples have the format for detecting cycles of length
k+1. Note that servers still only see their local shares so the original
value of the edge tuple is still kept secret. This process of formatting
the edge tuple is denoted as Extend-Edge-Share(etk)⇒etk+1.

For each path vector pk = [v1, . . . , vk+1] in pathsk , each servers
uses the local shares of a path vector to create local shares of a
path tuple to detect cycles of length k + 1. As an example, for a
path vector [1, 2, 3], each server uses its local share of the vec-
tor to compute a share of the formatted tuple {src = 0, vec =
( [1, 2, 3, 0], [1, 2, 3, 0])} with d = 2. The process is performed lo-
cally so the original values of the vector remain secret. They com-
pute as follows. Si with [pk]i = [[v1]i , . . . , [vk+1]i] creates a local
path tuple share [ptk+1]i = {[src] = 0, [[vj1] = [v1]i , . . . , [vjk+1] =
[vk+1]i , [vjk+2] = 0]j↔ [1,d ] }. Note that Si sets its local share for the
src #eld of the tuple as zero, and this is equivalent to setting the orig-
inal value of src as zero as well. Similarly, the tuple’s last elements in
each vector vjk+2 for j ↔ [1, d] are also set to zeros. The process of for-
matting a path is denoted as Format-Path-From-Share(pk)⇒(ptk+1).

After this step the servers can tell which tuples indicate edges
or paths and the secret shares are not indistinguishable. However,
the next round begins with an oblivious shu$e (the #rst step in
the sorting), so both original sequences and values of secret shares
are obfuscated and randomized again. After formatting the tuples,
servers assign the id #elds of the tuples by running the Assign-Id
subroutine. These tuples with id assigned are denoted as [sk+1]i
for i ↔ [1, 3] as the local secret shares held by Si .

6.7 Security
We formalize the security of Oryx with the following theorem and
give the proof in Appendix A.

Theorem 1. Oryx securely implements the ideal functionality in
Figure 3 under the threat model of Section (§2.2).

6.8 Complexity analysis
Here we summarize the computation complexity of Oryx. The full
analysis is available in Appendix B.

Let v be the total number of vertices, n be the average number
of neighbors, and d be the maximum degree. In a round of cycle
detection of length k, the number of total subgraphs to process is
T = v · nk⇐1. Oryx’s computational complexity for that round is
O(kT (d + log(T ))). Note that even non-private protocols for cycle
detection will be linear in T , as they have to at least iterate through
each subgraph and do the path extension.

7 PARALLEL CYCLE DETECTION
Parallelism is essential for the e!ciency of Oryx, which currently
runs sequentially over each tuple. In this section, we discuss how
to transform our protocol to a parallel version.
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Except for the oblivious shu$e, sort, and neighbor passing sub-
routines, all other operations as shown in Figure 5 are performed
over each tuple with no dependencies on other tuples, thus mak-
ing it embarrassingly parallel (they can run on independent MPC
instances). Now we discuss how to support parallelism of the re-
maining subroutines.

7.1 Parallel oblivious shu#le
We instantiate the oblivious shu$e with the three-server shu$e
protocol of Araki et al. [6]. The main computation involves (1)
computing XOR over two messages, where each message consists
of multiple tuples; and (2) permuting the list of tuples using a
seed agreed by two out of the three parties. XOR operations on
multiple tuples can be computed in parallel. The permutation is a
lightweight computation involving the relocation of tuples from
their original positions to the permuted index. As such, it does not
require parallelization.

7.2 Parallel oblivious sort
In the sorting operation, all tuples are initially shu$ed, followed by
a comparison-based sort over the shu$ed tuples, which is quicksort
in Oryx. In each round of quicksort, the data is split into multiple
partitions. In each partition, a pivot is selected, then we perform
comparisons between the pivot and each tuple. Therefore, once a
pivot is chosen for each partition, the comparisons between each
tuple and its respective pivot can be performed in parallel.

7.3 Parallel oblivious neighbor passing
For parallelism, all the tuples are split evenly into M partitions,
with the intention of processing these M partitions of tuples simul-
taneously. However, the challenge in creating a parallel version
of oblivious neighbor passing (Figure 7) is that the value of the
neighbors variable, when the loop encounters a tuple, depends on
the types and values of the previous tuples. As a result, for each
parallel task, we require an additional step to privately compute the
values of neighbors (still in secret share format), which are intended
to be passed to the #rst tuple in its respective partition. We refer to
these values as the start_neighbors of each partition.

As neighbors will only be updated when the servers encounter
an edge tuple, #nding the start_neighbors of each parallel task is
equivalent to #nd the nearest edge tuple before the #rst tuple in this
partition. One intuitive approach would be for each processor to
iterate over all previous tuples from the end to the beginning to
#nd out the start_neighbors. However, since the protocol needs to
be oblivious, the protocol has to #nish iterating through all tuples
even though an edge tuple is found before reaching the beginning.
Given t tuples in each partition, each task m ↔ [1,M] needs to
iterate through t · (m ⇐ 1) tuples. This means that for the last tuple
the servers need to go through all the tuples in the current round
making the parallelism useless.

Instead, we #nd start_neighbors as in Figure 9. In the #rst round
of computation, each task tries to #nd the nearest_neighbors within
its partitioned data by iterating from the beginning to end. Since the
data is evenly partitioned, there is a possibility that one partition
might not contain an edge tuple. Thus, each task also computes
a boolean value encountered_edge to indicate whether there is an

1: function P%&’#F&"3#S4,%4#N+&1-2!%.(tuples[M])

2: nearest_neighbors ↘ [[

d︷⨌⨌︸︸⨌⨌︷
0, . . . , 0], . . . , [

d︷⨌⨌︸︸⨌⨌︷
0, . . . , 0]︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸

M

]

3: start_neighbors ↘ nearest_neighbors
4: encountered_edge ↘ [false, . . . , false︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸

M

]

5: for m ↔ [1,M] do
6: # Round 1
7: for t ↔ tuples[m] do
8: if t.isEdgeTuple then
9: nearest_neighbors[m] ↘ t.neighbors
10: encountered_edge[m] ↘ true
11: # Round 2
12: Task m ⇓ 2 waits for the tasks 1 to m ⇐ 1 to #nish.
13: if _update_neighbors ↘ encountered_edge[m ⇐ 1]
14: start_neighbors[m] ↘ nearest_neighbors[m ⇐ 1]
15: for i in [m ⇐ 2, 1] do
16: if _update_neighbors ↘ (!if _update_neighbors &

encountered_edge[i])
17: if if _update_neighbors == True then
18: start_neighbors[m] ↘ nearest_neighbors[i]
19: return start_neighbors

Figure 9: Pseudocode of obliviously "nding starting neigh-
bors of in totalM parallel tasks. Each taskm processes its own
partitioned data tuples[m]. Both inputs and outputs are stored
in secret share format and nothing else in leaked during the
computation.

edge tuple within this partition. In the second round, each task m
only iterates through the nearest_neighbors found by previous tasks
1 tom⇐1. This is lightweight compared to the naive solution which
requires iterating through t · (m⇐1) elements. Once start_neighbors
are determined for each task, each task continues as the original
protocol while initializing neighbors with the found start_neighbors
instead of all zeros (line 2 in Figure 7).

8 IMPLEMENTATION
Oryx consists of around 3K lines of C++. For the oblivious shu$e
protocol, we implement the three-server shu$e protocol proposed
by Araki et al. [6]; for the oblivious sort protocol, we implement a
prior protocol [6, 11, 16] that #rst shu$es and then does comparison
sort over the shu$ed tuples. We implement the parallel version of
quicksort as the sorting algorithm. We use emp-toolkit’s sh2pc [28]
library as the MPC.

Run MPC with two servers. In Oryx, we use the three-server
shu$e protocol, but for other MPC tasks, we only use two servers
for computation. The detailed process of running the MPC tasks
using two servers is as follows. As each server holds two out of
three secret shares, a, b, c such that a ⇑ b ⇑ c = m where m is the
original data. One server S1 could compute XOR over its local share
as s1 (e.g., s1 = a⇑ b) and another server S2 can use one of its secret
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shares as s2 (e.g., s2 = c) such that s1 ⇑ s2 = m. Then the two server
input s1 and s2 respectively to run the computations in 2PC.

Reassign secret shares. In some MPC subroutines, such as the
path extension, the #nal outputs are also secret shares, but they
are held by only two servers since only two servers are involved
in the MPC tasks. When the third server is required for oblivious
shu$e, the two servers holding the two output secret shares o1 and
o2 can reconstruct the secret shares back to replicated secret shares
as follows. S1 randomly generates a↓ and b↓ such that a↓ ⇑ b↓ = o1
and sends b↓ to S2 and a↓ to S3. S2 use c↓ = o2 and sends c↓ to S3.
Now each server holds two out of the three shares a↓, b↓, c↓.

Optimizations of oblivious sort. We followed the oblivious sort-
ing used by Araki et al. [6]. We optimized it by selecting the pivot
in quicksort using median values obtained from randomly sampled
elements in each partition. We also directly sort all tuples, avoid-
ing further recursion in quicksort, when the size of elements in a
partition falls below a threshold of t tuples.

9 EVALUATION
In this section, we answer the following questions:
(1) What are the costs of each subroutine in Oryx?
(2) What are the end-to-end costs (including both computation

and network communication) of Oryx’s protocol?

Evaluation setting. We run all of our experiments onAWSm5.16xlarge
instances (32-core Intel Xeon and 256 GB RAM) with Ubuntu 20.04.
All instances are launched in US East (Ohio) and we allocate one
instance for each computing party. Note that by leveraging the par-
allelism of Oryx’s protocol, it is possible to scale out Oryx further
by employing multiple servers for each computing party, but we
have not yet implemented this.

Parameters. We represent node ids using 23-bit integers, allowing
for a maximum of 223 nodes in the graph. We use 25-bit integers
to represent tuple ids, supporting a maximum of 225 tuples for
processing. For quicksort, we set the number of randomly sampled
tuples to #nd the median to 7, and we set the threshold to directly
sort all tuples to 10.

Datasets. We use two datasets. The #rst is a synthetic graph with
1,000 vertices and 3,500 edges; 5 nodes have 300 neighbors. This
serves as a microbenchmark where a few nodes in the graph have a
much higher degree than the others and a higher max degree d (100
to 300) is required. The second dataset was published by IBM [3] and
represents #nancial transactions, including somemoney laundering
activities. We preprocess the second dataset by limiting the maxi-
mum degree d to 10. This ensures that the memory of our servers is
enough to complete the experiment (to support larger d we would
need either servers with more memory or an implementation that
uses many servers). The resulting graph comprises 7,339,522 ver-
tices and 9,328,103 edges. The numbers of cycles from length 2 to 6
are 499,141; 152,170; 60,868; 25,717; and 11,071 respectively.

Graph partitioning. There are four graph data holders, each pos-
sessing one-fourth of the total nodes for both datasets, as described
in Section 2.1. Each data holder creates secret shares of their local
graph, following the procedure outlined in Stage 1 of the protocol
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Figure 10: Microbenchmark for shu#le.

Number of tuples 218 220 222 224

Sorting 40.587 76.850 224.032 853.138

Neighbor passing
d = 2 1.640 3.330 11.388 43.692
d = 4 2.150 5.261 19.288 75.582
d = 8 3.498 9.564 35.632 139.397

Type checking 0.747 1.153 3.017 8.506

Filtering
k = 3 0.976 1.615 5.051 19.045
k = 4 0.974 1.908 6.515 24.497
k = 5 0.999 2.518 7.994 29.882

Figure 11: Latency measured in seconds of the sort, neighbor
passing, tuple type checking, and "ltering subroutines.

(Section 6.2), and sends these secret shares to the three computing
servers. Note that the number of graph holders does not impact the
performance of the protocol, only the size of the graph does.

9.1 Costs of each subrountine
We measure the costs of the servers running the #ve subroutines
as depicted in Figure 5: (1) shu$ing tuples; (2) sorting over shu$ed
tuples; (3) neighbor passing and path extension; (4) checking tuples’
types over shu$ed tuples; and (5) #ltering invalid paths and cycle
detection. For all subroutines, we measure the latency of servers
from beginning to end. We also use tcpdump [2] to measure the
total network tra!c. We report the mean of values over #ve runs.

Costs of shu#le. The total network tra!c varies among the three
servers, with S2 experiencing the highest network tra!c load. The
network tra!c of S1 and S3 accounts for 1/4 and 3/4 of that of S2,
respectively. Here we only report the communication costs of S2;
the latency and communication costs are shown in Figure 10a and
Figure 10b with varied number of tuples T , maximum degree d, and
the length of cycles k. The results show that both metrics increase
sublinearly with d and k, and linearly with T .

Costs of sort. Since the sorting algorithm is data-oblivious, mean-
ing that it operates independently of the distribution of the tuples’
types, the sorting runtime should remain constant when given the
same number of tuples; the costs are not related to k (§B). We run
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Number of tuples 218 220 222 224

Sorting 2.956 11.190 40.983 127.050

Neighbor passing
d = 2 1.233 3.306 11.144 36.909
d = 4 2.220 5.399 21.606 52.206
d = 8 3.869 15.826 41.108 119.770

Type checking 0.203 0.819 2.569 5.804

Filtering
k = 3 0.604 2.440 8.461 22.596
k = 4 0.849 3.166 11.844 28.579
k = 5 1.086 4.373 16.458 47.999

Figure 12: Network tra!c measured in GB of the sort, neigh-
bor passing, tuple type checking, and "ltering subroutines.

the evaluation over a set of tuples, half of which are path tuples
and the other half are edge tuples. The maximum degree is d = 10
and the cycle length is k = 4. The latency and communication costs
are shown in Figure 11 and Figure 12 respectively. The complexity
is, as expected, quasilinear in T .

Costs of neighbor passing and path extension. As only the
maximum degree d and the number of tuples T impacts the runtime
of this subrountine, we #x the length of cycles k to 4 and run
the evaluation over a set of tuples, half of which are path tuples
and the other half are edge tuples. We display the latency and
communication costs in Figure 11 and Figure 12 for di"erent values
of d and T . Both metrics grow linearly with both d and T .

Costs of tuple type checking. Checking the types of each tuple
only uses the s #eld, and hence the runtime is only related to the
number of tuples. We therefore run the evaluation over sorted
tuples, half of which are path tuples and the other half are edge
tuples. As with prior experiments, we keep d = 10 and k = 4.
The latency and communication costs are shown in Figure 11 and
Figure 12 respectively—both metrics increase linearly with T .

Costs of "ltering and cycle detection. In this subrountine, the
maximum degree d a"ects the number of tuples T . However, for
simplicity, we omit d and directly experiment with di"erent values
of T . We #x the percentage of cycles in all path tuples to 0.5%, as this
does not impact the runtime. We experiment with varying percent-
ages of valid paths in all path tuples, speci#cally 5%, 10%, and 15%.
This choice aligns with our end-to-end evaluation, where the major-
ity of path tuples are invalid. The latency remains nearly the same,
while the communication costs experience a slight increase with
di"erent percentages of valid paths. This outcome is expected since
checking cycles over each valid path involves only one comparison,
and the percentage of valid paths is relatively small. Consequently,
this component is relatively minor in the overall computation. We
report the latency and network communication for a graph with
a percentage of valid paths set to 15% in Figure 11 and Figure 12
respectively. We vary the number of tuples T and the cycle length
k. Both metrics grow linearly with k and T .
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Figure 13: End-to-end results of Oryx on small dataset.
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Figure 14: End-to-end completion time of Oryx on the large
IBM dataset with varying detection cycle length.

9.2 End-to-end evaluation
We use three servers and the two datasets described in Section 9
(small synthetic dataset and large dataset from IBM). The evaluation
concludes when the servers detect cycles up to length 6. We chose
length 6 because it strikes a balance between keeping the number
of subgraphs T manageable (which scales exponentially with k and
is an issue even in the non-private protocol, not just in Oryx), and
being useful in practice, as identi#ed by prior work that detected
fraudulent activities in Alibaba with cycle length 6 [22]. We report
metrics as the mean over three runs.

9.2.1 Evaluation on small synthetic dataset. We start by studying
the number of tuples that Oryx must process as a function of the
maximum degree d and the length of the cycle to be detected. We
can immediately observe that cycle detection, even with Oryx’s op-
timizations, is a high-complexity operation: as shown in Figure 13a,
the number of tuples T in each round of cycle detection grows
exponentially with the average number of neighbors (n). Note that
without Oryx’s #ltering optimization, the number of tuples would
be exponential in the maximum degree d rather than in n, and
hence much worse than what is depicted in Figure 13a since n ⇔ d.

We also study the end-to-end completion time and show the
results in Figure 13b. If we focus on the completion time for a given
round k but under a di"erent maximum degree d, we #nd that the
time grows linearly with dT . If we then look at the completion
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time under the same maximum degree d but with di"erent cycle
length (i.e., di"erent rounds) k, the completion time is also linear
with kT . These results are consistent with our complexity analysis
in Section B, which indicates that the total end-to-end completion
time is linear with respect to the total number of processed tuples
T , the cycle length k, and the maximum degree d.

9.2.2 Evaluation on IBM’s financial dataset.

Local storage. Each server locally stores two out of three secret
shares, with each share being 2.2 GB of data. This requires a total
of 4.4 GB of local storage for each server.

Peak memory usage. During the entire run, the peak memory
usage is around 230 GB memory.

Total network tra!c. As we run the MPC program using only
two servers, these two servers handle the majority of data exchange
during execution. Due to the substantial network tra!c, it is not
feasible to capture packets using tcpdump. Instead, we rely on the
native cloudwatch [1] metrics for inbound and outbound network
tra!c provided by AWS. These metrics provide an upper bound
estimate of the total network tra!c for each end-to-end run as
the total network tra!c encompasses other parts of tra!c on each
instance, in addition to what is incurred by the end-to-end run. On
average, each of the two servers needs to exchange approximately
20.7 TB of data for a complete end-to-end run. This signi#cant
network tra!c characterizes Oryx as network-bound, necessitating
high network bandwidth for deployment.

Completion time. The time breakdown for each round of detect-
ing cycles of length k is in Figure 14. In rounds with cycle length
2 to 6, the number of processed tuples are 16,666,380; 18,100,272;
19,995,417; 22,267,002; and 25,190,191. As both the number of pro-
cessed tuples and the length of cycles for detection increase, the
completion time also grows. In most rounds, the process can be
completed within half to one hour, while the most time-consuming
round, used to detect cycles of length 6, can be #nalized within
1.5 hours. These costs are practical for applications such as money
laundering as they typically run in the background.

10 RELATEDWORK
Private graph algorithms. GraphSC [21] #rst studied private
graph analytics, and this was improved by Araki et al. [6] who
introduce an e!cient 3-server shu$e protocol. Other works [19, 20]
use four servers but they leak di"erentially private information
about the degrees of nodes. In all cases, these works do not handle
cycle detection or other tasks that analyze the graph’s structure.

Vorstermans’s masters thesis [26] proposed the only other work
in the literature for privately detecting cycles over federated graphs.
The techniques used by Vostermans are very di"erent to Oryx: they
rely on MPC over adjacency matrix multiplications. A consequence
of Vostermans use of adjacency matrices is that the computational
complexity of their proposal grows exponentially with the total
number of vertices, which is essentially the maximum possible node
degree in the graph. In contrast, Oryx’s computation scales with
the average node degree, which in the sparse graphs that we target,
is signi#cantly smaller.

Outsourcing graph pattern queries. Prilo [29] andOblivGM [27]
enable a single data owner to outsource its graph to some untrusted
service and then perform private subgraph pattern queries on this
graph. The target domain for these works is di"erent from Oryx:
Oryx targets federated graphs that belong to di"erent data owners.
In terms of techniques, Prilo uses trusted hardware (very di"erent
from Oryx), while OblivGM uses non-colluding servers (similar to
Oryx) but provides a weaker privacy guarantee [31].

11 DISCUSSION
Support node and edge attributes. In some graphs nodes or
edges might have attributes and it might be desirable to detect
cycles only within vertices or edges that have a speci#c attribute.
To achieve this, we can include the attributes of vertices and edges
in the tuples. Then, in the #ltering phase, Oryx can inspect the
attributes when checking whether a path forms a desired cycle.

Support more subgraph patterns. Oryx can be extended to sup-
port more subgraph pattern matching queries besides cycles. This
extension requires a change in the logic of the extension phase
to determine the source vertices for extension instead of always
using the last vertex in the path. Oryx’s neighbor passing and path
extension can still be reused as a building block for matching new
subgraph patterns.

Source code
Our code is available at:
https://github.com/eniac/oryx.
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A SECURITY PROOF
We #rst give the formal description of our protocol and then do a
simulation proof [17] to prove that our construction leaks no more
information than the outputs from the ideal functionality (§6.1).

A.1 Oryx’s protocol of cycle detection
Oryx’s protocol of cycle detection

Step 0 (Create secret shares of graph):
Each partial graph holder Pj , where j ↔ [1,B] holds its
own disjoint node list Vj . Pi create secret shares of both
edge and path tuples. For each node u ↔ Vi , Pi computes
as follows.
• Pj creates an empty list of nodes l. For each u such that

(v, u) ↔ E, u is appended to l. And the list l is padded
to length d with dummy nodes of zeros.

• [etsj]1, [etsj]2, [etsj]3 ↘ Gen-Edges-Share(k = 2, u, e =
l).

• [ptsj]1, [ptsj]2, [ptsj]3 ↘ Gen-Path-Share(k = 2, p =
(u, v)).

• [etsj]i and [ptsj]i are denoted as [tsj]i for j ↔ [1,B].
Each Pj j↔ [1,B] sends [tsj]i to Si . And all secret shares
from all Pj j↔ [1,B] are denoted as [s_no_id2]i for i ↔
[1, 3].

S1, S2, and S3 assign ids to the tuples using its local
shares by running ( [sk=2]1,[sk=2]2,[sk=2]3)↘Assign-Id
( [s_no_id2]1,[s_no_id2]2, [s_no_id2]3).

For k ↔ [2,K], the servers repeat the following steps.

Step 1 (Sort the edges and paths):
• S1, S2, S3 run the oblivious sort operation over

the secret shares using the comparator as in
Figure 6 as follows. ( [osk]1, [osk]2, [osk]3)↘Ob-
Sort (cmp, [sk]1, [sk]2, [sk]3).

• ([osk]1, [osk]2, [osk]3) are the secret shares of the
sorted tuples.

Step 2 (Obliviously extend paths):
• The servers run the oblivious extend protocol to extend

the path as follows.
( [esk]1,[esk]2,[esk]3)↘Ob-Extend( [osk]1, [osk]2,
[osk]3).

• ([esk]1,[esk]2,[esk]3) are the secret shares of the tuples
after neighbor passing and extension.

Step 3 (Extract paths from path tuples)
• The servers #rst shu$e all the secret

shares and obtain the shu$ed secret
shares by running ( [stk]1, [stk]2, [stk]3) ↘
Ob-Shu"e( [esk]1,[esk]2,[esk]3).

• Over the shu$ed tuples, the servers check
each tuple t in the shu$ed tuples stk to check
the tuple type, we denote the process as
(typesk)↘Check-Tuple-Type( [stk]1, [stk]2, [stk]3)
and use typesk to denote the found types of all shu$ed
tuples.

• We denote all found path tuples as ptk and edge
tuples as etk . Each server Si , for i ↔ [1, 3], parse
its local shares [ptk]i into [pathsk]i by running
( [pathsk]i)↘Parse-Path( [pt]i).

Step 4 (Filter out invalid paths and detect cycles):
• The servers #lter out invalid paths in pathsk by running

validk↘Private-Filter-Path( [pathsk]1,[pathsk]2,
[pathsk]3). validk is a vector of boolean values for all
paths in pathsk indicating whether a tuple is valid or
not.

• We denote vpathsk as the valid paths and
for each path in vpathsk , the servers run
isCyclek↘Private-Cycle-Detection( [vpathsk]1,
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[vpathsk]2,[vpathsk]3). isCyclek is the vector of all
boolean values for all valid paths in vpathsk indicating
whether the path forms a cycle.

• For each cycle, the servers reveal the local shares of the
cycles and we use Ck to denote all the detected cycles
along with the nodes that form each cycle.

• We denote all the non-cycle and valid paths as vptk .
Step 5 (Pad tuples for next round):
• For each edge tuple in etk , each Si locally runs

Extend-Edge-Share to pad the edge tuples for next
round of detection. We denote the process as
[pad_etk]i↘Extend-Edge-Share( [etk]i) for i ↔ [1, 3].
And [pad_etk]i represents all padded edge tuples.

• For each path tuple in vptk , each Si locally runs
Format-Path-From-Share to pad the path tuples for
next round of detection. We denote the process
as [pad_ptk]i↘Format-Path-From-Share( [vptk]i). And
[pad_ptk]i represents all padded path tuples.

• [pad_etk]i and [pad_ptk]i are denoted as [s_no_idk+1]i
for i ↔ [1, 3]. And the servers assign ids to the tu-
ples by running ( [sk+1]1,[sk+1]2,[sk+1]3)↘Assign-Id
( [s_no_idk+1]1,[s_no_idk+1]2, [s_no_idk+1]3).

• [sk+1]i is the local secret share of Si to be used in next
round of cycle detection of length k + 1.

A.2 Simulation proof
Without loss of generality, we assume that S1 is the adversary in the
proof. We build a simulator Sim for one of the computing servers
and use A to denote an adversary who corrupts S1. In following
simulation, when three secret shares are inputs, A inputs its own
secret share and Sim inputs another two secret shares. Recall that
F is the ideal functionality given in Figure 3.

Sim for S1

Step 0 (Create secret shares of graph):
• F outputs |Vi | + |Ei | for i ↔ [1,B], pn1, and Ck , pnk

for k ↔ [2,K] to Sim. |E | = pn1 and |V | is derived by
computing |V | = ∑

i ( |Vi | + |Ei |) ⇐ |E |.
• Sim #rst creates an empty graph G↓ with |V | nodes with

no edges. For each edge e↓ in the detected cycles Ck for
k ↔ [2,K], the edge e↓ is added to G↓.

• Sim takes a greedy approach to try and add edges into
G↓ such that the numbers of paths of length 2 to K
are cpath2, . . . , cptahk respectively, there are no other
cycles and exactly |E | edges in G↓.

• Sim creates the secret shares of the graph G↓ as in Sec-
tion 6.3. The total number of tuples is |V | + |E |. And
these secret shares are denoted as gsi for i ↔ [1, 3].

• Sim partition gsi into [ts↓j]i for j ↔ [1, B] such that the
number of tuple secret shares of [ts↓j]i is |Vj | + |Ej |.

• All [ts↓j]1 of all j ↔ [1,B] are sent to A.

• [ts↓j]i of all j ↔ [1,B] are denoted as [s_no_id↓k]i for
i ↔ [1, 3].

• Sim and A assign ids by running
( [sk=2↓]1,[sk=2↓]2,[sk=2↓]3)↘Assign-Id
( [s_no_id↓2]1,[s_no_id↓2]2, [s_no_id↓2]3).

For k ↔ [2,K], Sim and A repeat the following steps.
Step 1 (Sort the edges and paths):
• Sim and A run the oblivious sort operation over

the secret shares using the comparator as in
Figure 6 as follows. ( [osk ↓]1, [osk ↓]2, [osk ↓]3)↘Ob-
Sort (cmp, [sk ↓]1, [sk ↓]2, [sk ↓]3).

Step 2 (Obliviously extend paths):
• The servers run the oblivious extend protocol to extend

the path as follows.
( [esk ↓]1,[esk ↓]2,[esk ↓]3)↘Ob-Extend( [osk ↓]1,
[osk ↓]2,[osk ↓]3).

Step 3 (Extract paths from path tuples)
• Sim and A shu$e all the secret shares

by running ( [stk ↓]1, [stk ↓]2, [stk ↓]3) ↘
Ob-Shu"e( [esk ↓]1,[esk ↓]2,[esk ↓]3).

• Sim and A check the tuple type
of all shu$ed tuples by running
(typesk ↓)↘Check-Tuple-Type( [stk ↓]1, [stk ↓]2, [stk ↓]3).
typesk ↓ is the found types of all shu$ed tuples.

• We denote all found path tuples as ptk ↓ and edge tuples
as etk ↓.

• A parses its local shares [ptk ↓]1 into [pathsk ↓]1 by run-
ning ( [pathsk ↓]1)↘Parse-Path( [pt↓]1).

• Sim parses its local shares [ptk ↓]2 and [ptk ↓]3 into
[pathsk ↓]2 and [pathsk ↓]3 as A does above.

Step 4 (Filter out invalid paths and detect cycles):
• Sim and A #lter out invalid paths by running

validk ↓↘Private-Filter-Path( [pathsk ↓]1,[pathsk ↓]2,
[pathsk ↓]3). validk ↓ is a vector of boolean values for all
paths in pathsk ↓ indicating whether a tuple is valid or
not.

• We denote vpathsk ↓ as the valid paths. Sim and A run
isCyclek ↓↘Private-Cycle-Detection( [vpathsk ↓]1,
[vpathsk ↓]2,[vpathsk ↓]3). isCyclek ↓ is the vector of all
boolean values for all valid paths in vpathsk ↓ indicating
whether the path forms a cycle.

• For each cycle, Sim and A reveal the local shares of the
cycles which is Ck .

• We denote all the non-cycle and valid paths as vptk ↓.
Step 5 (Pad tuples for next round):
• For each edge tuple in etk , A locally run

[pad_etk ↓]1↘Extend-Edge-Share( [etk ↓]1). And
Sim does the same for its local shares.
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• For each path tuple in vptk , A locally runs
[pad_pt↓k]1↘Format-Path-From-Share( [vptk ↓]1).
And Sim does the same for its local shares.

• [pad_et↓k]i and [pad_pt↓k]i are denoted
as [s_no_id↓k+1]i for i ↔ [1, 3]. And Sim
and A assign ids to the tuples by run-
ning ( [s↓k+1]1,[s

↓
k+1]2,[s

↓
k+1]3)↘Assign-Id

( [s_no_id↓k+1]1,[s_no_id
↓
k+1]2, [s_no_id

↓
k+1]3).

The view of S1 in the real world includes:

• |V |, |E |
• [tsi]1, |Vi | + |Ei | for i ↔ [1,B]
• For k = 2 to K :

– [s_no_idk]1
– [sk]1, [osk]1, [esk]1, [stk]1
– [ptk]1, [etk]1, [vptk]1
– [pathsk]1, [vpathsk]1
– typesk , validk , isCyclek
– [pad_etk]1, [pad_ptk]1
– Ck , pnk

The view of A in the ideal world includes:

• |V |, |E |
• [ts↓i]1, |Vi | + |Ei | for i ↔ [1,B]
• For k = 2 to K :

– [s_no_id↓k]1
– [sk ↓]1, [osk ↓]1,[esk ↓]1,[stk ↓]1
– [ptk ↓]1,[etk ↓]1, [vptk ↓]1
– [pathsk ↓]1, [vpathsk ↓]1
– typesk ↓, validk ↓,isCyclek ↓,
– [pad_etk ↓]1, [pad_ptk ↓]1
– Ck , pnk

Now we compare the two views in both worlds. All the secret
shares in both views are uniform random numbers thus are in-
distinguishable. So we only need to compare the number of se-
cret shares in both views. [tsj]1 and [ts↓j]1 have the same size
of |Vi | + |Ei | for j ↔ [1,B]. [s_no_idk]1,[sk]1,[osk]1,[esk]1, typesk ,
and [s_no_id↓k]1,[sk

↓]1,[osk ↓]1,[esk ↓]1, typesk ↓ all have pnk⇐1 + |V |
elements. [ptk]1 and [ptk ↓]1 both represents the number of path
tuples with pnk⇐1 elements. [pathsk]1, [pathsk ↓]1 are induced from
[ptk]1 and [ptk ↓]1 with d ↑ pnk⇐1 elements. [etk]1 and [etk ↓]1
both represents the number of edge tuples and have |V | elements.
[vpathsk]1, [vpathsk ↓]1 are secret shares of valid paths and cycles
with pnk + |Ck | elements. [vptk]1, [vptk ↓]1 are secret shares of valid
paths with pnk elements. [pad_etk ↓]1 and [pad_etk]1, [pad_ptk]1
and [pad_ptk ↓]1 are induced from [etk]1 and [etk ↓]1, [vptk]1 and
[vptk ↓]1 respectively, thus have the same size.

Nowwe compare the remaining non-secret-shared outputs. typesk
and typesk ↓ have the same amount of zeros and ones as the num-
bers of edge and path tuples are the same in both worlds. The exact
distributions of values are uniform random as they are the results
of obliviously shu$ed data. For the similar reasoning, typesk and
typesk ↓, isCyclek and isCyclek ↓ are indistinguishable. Now we con-
clude the proof that the views in both worlds are indistinguishable.

B COMPLEXITY ANALYSIS
In this section, we analyze the computation complexity of Oryx.
We denote the total number of nodes as v, the average number of
neighbors as n, the maximum degree as d. In a round of detecting
cycles of length k, the number of total subgraphs (tuples) to process
in that round is T = v · nk⇐1. In each round of detecting cycles of
length k, with maximum degree d, the size of each tuple is O(kd).
Each comparison between two numbers in MPC has constant cost
when the bit length of the numbers is #xed. For simplicity, we will
omit including this constant in the following analysis.

Shu#le for sort. The computation complexity of the shu$e opera-
tion proposed by Araki et al. [6] is linear to the number of tuples and
the size of each tuple. Thus, it has O(kdT ) computation complexity.

Sort over shu#led tuples. The oblivious sort operation #rst shuf-
%es all the data with O(kdT ) complexity. Then the servers use
comparison-based sorting such as quicksort over tuples each with
size of O(k) (as in Figure 6) with O(kT log(T )) complexity. In total,
the complexity is O(kT (d + log(T ))).
Neighbor passing and path extension. The neighbor passing
and path extension takes a linear pass over each tuple. In each
iteration, the protocol does one comparison over the src #eld, and
then either reads or writes the variable, neighbors, which has d
elements. As a result, it has complexity of O(dT ).
Shu#le in "ltering. In the #rst shu$e operation during the #l-
tering phase, T tuples are shu$ed, with each tuple having a size
of kd. Therefore, the #rst shu$e has complexity of O(kdT ). The
second shu$e involves shu$ing the path vectors, and their count
is at most dT , with each path vector having a size of O(k). Thus,
the second shu$e’s complexity is O(kdT ).
Check the type of tuples. To evaluate which tuples are path
tuples in all the shu$ed tuples, servers perform one comparison of
the src #eld for each tuple. In total, this is O(T ).
Filtering and cycle detection. The #ltering and cycle detection
involve comparing the last elements with all the previous nodes of
each tuple, requiring k comparisons. Given there are at most dT
path vectors in total as each path tuple is parsed into d vectors, this
part has computation complexity of O(kdT ).
Padding tuples. Padding tuples for the next round iterate through
each tuple and has O(T ) complexity.

Total computation complexity. In total, our protocol has com-
putation complexity of O(kT (d + log(T ))).
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