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Abstract. We consider the Learning Parity with Noise (LPN) problem
with sparse secret, where the secret vector s of dimension n has Ham-
ming weight at most k. We are interested in algorithms with asymptotic
improvement in the exponent beyond the state of the art. Prior work in
this setting presented algorithms with runtime nc·k for constant c < 1,
obtaining a constant factor improvement over brute force search, which
runs in time

(
n
k

)
. We obtain the following results:

– We first consider the constant error rate setting, and in this case
present a new algorithm that leverages a subroutine from the ac-
claimed BKW algorithm [Blum, Kalai, Wasserman, J. ACM ’03] as
well as techniques from Fourier analysis for p-biased distributions.
Our algorithm achieves asymptotic improvement in the exponent
compared to prior work, when the sparsity k = k(n) = n

log1+1/c(n)
,

where c ∈ o(log log(n)) and c ∈ ω(1). The runtime and sample com-
plexity of this algorithm are approximately the same.

– We next consider the low noise setting, where the error is subcon-
stant. We present a new algorithm in this setting that requires only
a polynomial number of samples and achieves asymptotic improve-
ment in the exponent compared to prior work, when the sparsity

k = 1
η
· log(n)
log(f(n))

and noise rate of η 6= 1/2 and η2 =
(

log(n)
n
· f(n)

)
,

for f(n) ∈ ω(1) ∩ no(1). To obtain the improvement in sample com-
plexity, we create subsets of samples using the design of Nisan and
Wigderson [J. Comput. Syst. Sci. ’94], so that any two subsets have
a small intersection, while the number of subsets is large. Each of
these subsets is used to generate a single p-biased sample for the
Fourier analysis step. We then show that this allows us to bound
the covariance of pairs of samples, which is sufficient for the Fourier
analysis.
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– Finally, we show that our first algorithm extends to the setting where
the noise rate is very high 1/2−o(1), and in this case can be used as a
subroutine to obtain new algorithms for learning DNFs and Juntas.
Our algorithms achieve asymptotic improvement in the exponent for
certain regimes. For DNFs of size s with approximation factor ε this

regime is when log s
ε
∈ ω

(
c

logn log log c

)
, and log s

ε
∈ n1−o(1), for

c ∈ n1−o(1). For Juntas of k the regime is when k ∈ ω
(

c
logn log log c

)
,

and k ∈ n1−o(1), for c ∈ n1−o(1).

1 Introduction

The (search) Learning Parity with Noise (LPN) problem with dimension n and
noise rate η, asks to recover the secret parity s, given samples (x, 〈x, s〉 ⊕ e),
where x ∈ {0, 1}n is chosen uniformly at random, s ∈ {0, 1}n, error e ∈ {0, 1} is
set to 1 with probability η and 0 with probability 1− η, and the dot product is
taken modulo 2.

While solving a linear system of n equations over F2 to recover a secret of
dimension n can be done in polynomial time via Gaussian elimination, even
adding a small amount of noise e renders the above a seemingly hard learning
problem, even given a large number of samples. Specifically, the search LPN
problem, which typically assumes the noise rate is a small constant, is believed
to be hard, with the asymptotically best algorithm (known as BKW) requiring
runtime 2Θ(n/ log(n)) and 2Θ(n/ log(n)) number of samples to recover s of dimension
n. Some evidence of its hardness comes from the fact that it provably cannot be
learned efficiently in the so called statistical query (SQ) model under the uniform
distribution [3,5].

Though originally arising in the fields of computational learning theory and
coding theory, the LPN problem has found numerous applications in cryptogra-
phy (see e.g. [4,17,18,13] for a partial list of applications) due to the fact that
(1) there is a search-to-decision reduction, meaning that the decision version—
which is more amenable to cryptographic applications and asks to distinguish
(x, 〈x, s〉 ⊕ e) from (x, b), where b is random—is as hard as the search ver-
sion (which asks to recover s) and (2) the LPN problem is believed to be
quantum-hard, as opposed to other standard cryptographic assumptions such
as discrete log and factoring which are known to have polynomial time quantum
algorithms [26].

Variants of the LPN problem have also been considered in the literature:
Sparse LPN [6], where the x vectors in the LPN problem statement are sparse,
LPN with structured noise, where the noise across multiple samples is guaranteed
to satisfy some constraint [2], and Ring LPN [16]. While typically the error rate
is assumed to be constant, LPN with low noise rate has also been considered
with applications to cryptography [8]. Indeed, LPN with noise rate even as low
as Ω(log2(n)/n) is considered a hard problem [8]. We further note that WLOG
can assume that the secret is drawn from the same distribution as the noise, as
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there is a reduction from LPN with secret s to LPN with secret e, where e is
the error vector obtained after n samples are drawn [1].

In this work we consider LPN with sparse parities (i.e. the “sparsity” or
Hamming weight k of the secret vector is significantly less than η · n, where η is
the error rate). We consider both the constant noise and the low noise setting
(where the error rate is subconstant). Motivations for considering this variant of
LPN include the fact that sparse secrets may be used in practical cryptosystems
for efficiency purposes (as is the case for some fully homomorphic encryption
implementations [9]), or some bits of the secret may be leaked via a side-channel
attack. More generally, analyzing the security of LPN with sparse parities tests
the robustness of the standard LPN assumption, since a lack of polynomial-time
algorithms in the sparse parities setting (when k is super-constant) would then
raise our confidence in the security of the standard setting. We also consider ap-
plications of our results to other learning problems, such as learning DNFs and
Juntas. Prior work on LPN with sparse parities, has mainly considered obtaining
algorithms with runtime nc·k for constant c < 1 [14,27]. This beats the trivial
brute force search with runtime

(
n
k

)
in the regime where k � n. In this work,

our focus is to achieve an algorithm which, for certain regimes of k, beats the
prior best algorithms asymptotically in the exponent. Since our goal is to achieve
asymptotic improvement in the exponent, we will compare our algorithm’s run-
time against brute force search and not the prior work of [14,27], since the latter
algorithms are equivalent to brute force search in terms of asymptotics in the
exponent.

1.1 Our Results

We obtain new LPN algorithms for sparse parities that improve upon the state-
of-the-art in certain regimes, which will be discussed below.

Our first result pertains to the constant noise setting, where the noise rate
η ∈ Θ(1). In the theorem below, p ∈ (0, 1) is a free parameter that we set later
to optimize our runtime.

Theorem 1.1. For δ ∈ [0, 1], p ∈ (0, 1), LPN for parities of sparsity k out of
n variables and constant noise rate can be learned with total number of samples
and total computation time of

poly

(
1

(1− 2η)
√
np · p2(k−1)(1− p)2

· ln(
n

δ
) ·
(

2
np

log(np) · log(np)
))

,

and success probability of 1− δ −
(

16
(1−2η)

√
8np·p2(k−1)(1−p)2 · ln( 2n

δ ) · exp(−pn8 )
)

.

By setting the parameter p appropriately, we obtain the following:

Corollary 1.2. For sparisty k = k(n) = n
log1+1/c(n)

, where c ∈ o(log log(n))

and c ∈ ω(1), the runtime of our new learning algorithm is contained in both
log(n)o(k) and 2o(n/ log(n)), and it succeeds with constant probability. For this
range of k, Brute Force search requires runtime log(n)Ω(k) and BKW requires
runtime of 2Ω(n/ log(n)).
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Our second result pertains to the low noise setting, where the noise rate
η ∈ o(1). Again, p ∈ (0, 1) is a free parameter that we set later to optimize our
runtime.

Theorem 1.3. Assuming parameters are set such that

log

(
1

(1− 2η)2np+2p2(k−1)(1− p2)

)
∈ o(1/η · log(np)),

and that δ ∈ [0, 1], p ∈ (0, 1), LPN for parities of sparsity k out of n variables
and noise rate η ∈ o(1) can be learned using (2np+ 1)2 · log(n) number of sam-

ples, total computation time of N := poly
(

1
(1−2η)2np+2p2(k−1)(1−p2)

)
and achieves

success probability of

1− δ −
(
N ·

(
2 · exp(−p · n/8) + exp(−n/48) + 1/2

np/4
))

By setting the parameter p appropriately, we obtain the following:

Corollary 1.4. For sparsity k(n) such that k = 1
η ·

log(n)
log(f(n)) , noise rate η 6= 1/2

such that η2 =
(

log(n)
n · f(n)

)
, for f(n) ∈ ω(1)∩no(1), the Learning Algorithm of

Figure 4 runs in time O
(

1
(1−2η)2np+2p2k

· log(n) · (np)3
)
∈
(
n
k

)o(k)
with constant

probability. In this setting, the running time Brute Force is
(
n
k

)
≥ (nk )k and the

running time of Lucky Bruteforce is eηn ∈
(
n
k

)ω(k)
.

Finally, applying known reductions to LPN [12] and solving LPN using our
algorithm, we also obtain applications to learning other classes of functions such
as DNF and juntas:

– Our algorithm can be applied to learn DNFs of size s and approxima-
tion factor ε, with asymptotic improvements over Verbeurgt’s bound [28] of

O
(
nlog

s
ε

)
, and with negligible failure probability when log s

ε ∈ ω
(

c
logn log log c

)
,

and log s
ε ∈ n

1−o(1), where c ∈ n1−o(1).
– Our algorithm can be applied to learn Juntas of size k with a runtime of

no(k) and a negligible failure probability when k ∈ ω
(

c
logn log log c

)
, and

k ∈ n1−o(1), where c ∈ n1−o(1).

1.2 Technical Overview

Fourier Analysis of Boolean Functions. Every Boolean function, f : {0, 1}n →
{0, 1}—equivalently f : {−1, 1}n → {−1, 1}—can be represented as a linear com-

bination f(x) =
∑
S⊆[n] f̂(S) ·χS,p(x), known as the Fourier representation of f .

Typically, we consider the uniform distribution over examples x, in which case
χS,p(x) is defined as

∏
j∈S x[j] and f̂(S) = Ex∼{−1,1}n [f(x) · χS,p(x)]. However,

for any product distribution [p1, . . . , pn], where E[x[j]] = pj , we can also define
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χS,p(x) :=
∏
j∈S

x[j]−pj√
1−p2j

and f̂(S) := Ex∼Dp [f(x) · χS,p(x)], where Dp is a prod-

uct distribution defined over {−1, 1}n and is parameterized by its mean vector
[p1, . . . , pn] . Fourier analysis is a strong tool in computational learning theory
for learning under the uniform distribution (and can be extended to product
distributions as well). Specifically, the Low Degree Algorithm of [20] guarantees
that if most of the Fourier weight of a Boolean function is concentrated on low
degree parities (i.e. χS,p with small |S|), then an approximate version of the
function can be reconstructed, even in the presence of noise. However, for learn-
ing large parities under the uniform distribution Fourier analysis is not useful
since for a parity corresponding to secret s of Hamming weight k, all of the
Fourier weight is on a single Fourier coefficient of degree k and searching for this
Fourier coefficient would require a brute force search that enumerates over all
possible parities of size at most k. If the distribution is p-biased instead of uni-
form, however, then the above is no longer the case. Specifically, if we consider a
product distributions where the example x is no longer uniformly random, but
each coordinate of x is set to 0 with probability 1/2+p/2 and 1 with probability
1/2 − p/2 (so the expectation E[x[j]] = p for each coordinate of x), then the
Fourier weight is now spread over all parities S such that ∀j ∈ S, s[j] = 1. In
particular, this means that by approximately computing the Fourier coefficient
of all subsets consisting of a single element S = {s[1]}, . . . , S = {s[n]}, we can
distinguish the subsets of size 1 with non-zero versus zero Fourier weight and
thus determine all i such that s[j] = 1. We note that when the distribution is p-
biased, the magnitude of the Fourier coefficients that we must approximate is of
the order pk, and we will therefore require poly((1/p)k) samples to approximate
the quantity (even without considering noise). We will see in the following that
in order for our approach to improve upon known algorithms, we must consider
sparse parities with k ∈ o(n).

Attack Overview. Given the above discussion, the main idea of our attack is
to convert samples drawn from the uniform distribution to samples drawn from
a p-biased distribution and then use Fourier analysis techniques to learn the
elements of the parity one by one.

In order for this approach to succeed, our algorithm first needs to generate a
sufficient number of p-biased LPN samples, given uniformly random LPN sam-
ples. Specifically, the attacker has access to unbiased LPN oracle which outputs
samples xi and corresponding label bi such that bi = 〈xi, s〉+ei, noise ei has rate
η meaning that error ei is 1 with probability η and 0 with probability 1−η. The
attacker will generate new samples x′i, which are p-biased, and a corresponding
label b′i, with a higher error rate η′. We then approximate the Fourier coeffi-

cient of coordinate j, constructed as above, by b̂p({j}) := Ex′∼Dp [b′ ·χ{j},p(x′)].
The main observation is that for the secret key coordinate j such that s[j] = 0

we have b̂p({j}) = 0 and for the coordinates j such that s[j] = 1 we have

b̂({j}) = (1 − 2η′) · pk−1
√

1− p2 . The value of b̂p({j}) is estimated by us-
ing a sample mean with a sufficient number of generated p-biased samples to
approximate the expectation.
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We present two algorithms for generating the p-biased samples, each algo-
rithm is appropriate for a different scenario. Specifically, our first algorithm is
appropriate for the standard case where the noise rate is constant, while our
second algorithm is appropriate for the low noise case where the noise rate is
sub-constant. After generating the p-biased samples, the Fourier estimation step
is similar in both settings. We next elaborate on our algorithm for each of the
two settings.

Constant Noise. In the case where the noise rate is constant, to generate the p-
biased samples, we apply a variant of the BKW algorithm. The BKW algorithm
gives an 2O(n/ log(n))-time algorithm for the LPN problem that also requires
2O(n/ log(n)) number of samples. An intermediate step of the BKW algorithm uses
access to its LPN oracle to generates samples (x, 〈x, s〉⊕ e′), where x is a vector
that has all 0’s except in a single position, and e′ is an error term with higher
noise rate than the original error. The key idea of our algorithm is that in order to
create p-biased samples, we can choose a random set of coordinates, R ⊆ [n], by
including each i ∈ [n] in the set R independently with probability p, and then run
the subroutine of the BKW algorithm on the smaller set R, of expected size pn,
in order to create a sample x that is set to 0 for all i ∈ R. Such a sample x is now
distributed identically to a p-biased sample. The error rate increases, but since
Fourier analysis is robust against noise, these p-biased samples can still be used
to estimate the Fourier Coefficients corresponding to S = {s[1]}, . . . , S = {s[n]}
to determine the secret s. Crucially, our algorithm gains over simply running
BKW on the entire instance because the set of coordinates we run BKW on is of
size O(pn) instead of size n. Thus, generating the biased samples runs in time
2O(pn/ log(pn)) instead of time 2O(n/ log(n)). When p is subconstant, we achieve
an asymptotic gain in the exponent. In contrast, the Fourier estimation step
runs in time poly((1/p)k), so we must also set p large enough so that this step
achieves asymptotic gain in the exponent beyond the brute force search time of(
n
k

)
. We discuss at the end of the section the regime in which it is possible to set

the parameter p so that our algorithm improves asymptotically in the exponent
beyond the best known algorithms.

Low Noise. When the noise rate is sufficiently low, we can generate p-biased
samples using a simpler approach. As before, we randomly select a set R ⊆ [n],
by including each i ∈ [n] in the set R independently with probability p. Now,
instead of running BKW on the coordinates in the set R, we simply choose O(np)
number samples (since R has expected size np) from the non-biased oracle and
find a linear combination (guaranteed to exist) that sets all the coordinates in R
to 0. Again, the noise increases in the generated sample. Nevertheless, we gain
over the trivial approach (which instead of p-biasing the oracle simply creates
linear combinations that have x set to all 0 except for in a single coordinate)
because the linear combination we generate is over at most O(np) versus O(n)
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vectors, which in turn guarantees that the noise rate will be lower.3 We gain
from this technique by choosing p small enough to lower the noise rate but large
enough to ensure that the (1/p)k necessary to estimate the Fourier coefficient
still beats brute force search asymptotically in the exponent.

In the low noise case we further show that we can generate the large number
of samples needed for the Fourier analysis using only a polynomial size set of
examples from the original LPN oracle. In this case, the generated samples will
not be i.i.d., but we will use a construction inspired by the designs of Nisan and
Wigderson to generate an exponentially large set of samples, where each pair
of samples from the generated set has low covariance.4 See Section 4.1 for more
details. This will be enough to then run the Fourier analysis, which requires that
one can use random sampling to estimate the mean of a random variable. We
can bound the deviation from the mean using Chebyshev’s inequality since we
guarantee that the covariance between any two distinct samples is small.

Parameters. We now discuss the regime of k and η in which we improve on prior
algorithms, and how to set the parameter p to achieve the optimal run time. For
the constant noise setting, with secret s with sparsity in the form k = k(n) =

n
log1+1/c(n)

, where c ∈ o(log log(n)) and c ∈ ω(1), we set p = 1/ log1/(c)(n) to

obtain an algorithm that improves upon both Bruteforce and BKW asymptot-
ically in the exponent. Recall that prior work on LPN with parities of sparsity
k reduced the constant in the exponent beyond brute force, but did not achieve
asymptotic improvement in the exponent. In our work we care about asymptotic
improvement in the exponent and therefore do not compare against those algo-

rithms. For the low noise setting we show that for sparsity k = 1
η ·

log(n)
log(f(n)) and

the noise rate of η 6= 1/2 and η2 =
(

log(n)
n · f(n)

)
, for f(n) ∈ ω(1) ∩ no(1), by

setting p = 1
f(n) and 1

p ∈
(
n
k

)o(1)
, our algorithm improves upon both Bruteforce

and “lucky Bruteforce”–i.e. an algorithm which gathers m samples until it has n
noiseless samples with high confidence (where m depends on the noiserate) and
then attempts Gaussian elimination with every possible subset of size n, giving
runtime poly(

(
m
n

)
)–asymptotically in the exponent. To our knowledge, these are

the best algorithms when considering asymptotics in the exponent.

Application to DNF and Juntas. In addition to parities, the reductions by Feld-
man et al. [12] provide a way to translate improvements in solving LPN to
learning Juntas and DNFs. As such, we present a formulation of our constant
noise algorithm that is parameterized according to these reductions, and provide
parameter settings such that our algorithm, when applied to learning DNFs or

3 We note that the above description is a bit inaccurate, since we must include an
additional step to ensure that the added noise is independent of the set of samples.
See discussion in Section 4.1, Figure 3 and Lemma 4.1 for more details.

4 It is also possible to use a random choice of subsets in place of this design. How-
ever, the deterministic procedure allows for bounding the covariance of the newly
generated samples which is crucial in our analysis as seen later.
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Juntas, yields asymptotic improvements in the exponent. For DNFs, we present
an asymptotic result similar to that of [14] in that we improve on Verbeurgt’s
bound of O(nlog sε ) for learning DNFs of size s with approximation factor ε for

a different regime of s
ε , where log s

ε ∈ ω
(

c
logn log log c

)
, and log s

ε ∈ n
1−o(1), for

c ∈ n1−o(1). Note that for Juntas, we present an algorithm that learns Juntas

of k variables in no(k) time for k ∈ ω
(

c
logn log log c

)
, and k ∈ n1−o(1), where

c ∈ n1−o(1).

1.3 Related Work

LPN. Blum, Kalai and Wasserman [5] presented the first algorithm that im-
proved upon the trivial 2Ω(n) time algorithm for LPN. They showed that LPN
with constant error rate can be learned in slightly subexponential time 2O(n/ logn)

with the same amount of samples. To date, their algorithm remains the state-
of-the-art in terms of asymptotics in the exponent in the constant error rate
regime.

Lyubashevsky [22] extended the previous algorithm by Blum et al. [5] and re-
duced the overall sample complexity. Lyubashevsky developed an algorithm for
creating a super-polynomial number of psuedorandom samples from a polyno-
mial number of original samples. Thus, Lyubashevsky traded sample complexity
for time complexity. More specifically, the algorithm solved LPN with constant
error rate and parities of size n in time 2O(n/ log log n) using only n1+ε samples.

In later work Bogos et al. [7] presented a unified framework for various im-
provements and optimizations of BKW. Specifically, they focused on tightening
the analysis of several previous works [19,15] to give more accurate bounds for
the time and sample complexity needed to solve the LPN problem. They im-
proved the bounds of the variant of the BKW algorithm proposed by Leviel
and Fouque [19] which is based on Walsh-Hadamard transform. Moreover, they
analyzed the algorithm by Guo et al. [15] which used a “covering codes” tech-
nique to reduce the dimension of the problem. We note that the many of the
improvements listed are heuristic in nature, while others provably improve the
runtime. We also note that our usage of BKW in our algorithms is compatible
with only some of these improvements. We only use the so-called “reduction”
phase of the algorithm to generate our p-biased samples. Thus, improvements
to this phase, such as covering codes, are applicable whereas others, such as the
Walsh-Hadamard transform, are not.

LPN with sparse parities. Grigorescu et al. [14] showed an improvement of
learning sparse parities with noise over brute force search, which has run time(
n
k

)
. The algorithm ran in time poly

(
log( 1

δ ), 1
1−2η

)
· n(1+(2η)2+o(1))k/2 and had

sample complexity of k log(n/δ)ω(1)
(1−2η)2 in the random noise setting under the uniform

distribution. , where η is the noise rate and δ is the confidence parameter.
Valiant [27] showed that the learning parity with noise problem can be solved

in time ≈ n0.8kpoly( 1
1−2η ). He also showed that noisy k-juntas can be learned
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in time n0.8kpoly
(

1
1−2η

)
and r-term DNF can be (ε, δ)-PAC learned in time

poly
(
1
δ ,

r
ε

)
n0.8 log( rε ), respectively. We note that the improvements of Grigorescu

et al. [14] and Valiant [27] do not improve upon the runtime of brute force search
of nk in terms of asymptotics in the exponent.

Learning DNF and Juntas. Mossel et al. [24] showed the first learning algo-
rithm which achieves a polynomial factor improvement over trivial brute force
algorithm which runs time O(nk). It shows that k-juntas can be learned in ab-
sence of noise with confidence 1−δ from uniform random examples with run time

of
(
nk
) ω
ω+1 · poly

(
2k, n, log(1/δ)

)
where ω < 2.376 is the matrix multiplication

exponent.

Feldman et al. [11] presented a foundational work for learning both DNFs
and Juntas. They developed an oracle transformation procedure that enabled
reductions from learning DNFs and Juntas to that of LPN. In addition, Feldman
et al. presented a learning algorithm for agnostically learning parities by showing
a reduction from learning parities with adverserial noise to learning parities with
random noise. With this reduction, they showed that the algorithm by Blum et
al. [5] can learn parities with an adverserial noise rate of η in time O(2

n
log n ).

In a follow up work [12], Feldman et al. refined their reductions and included
the influence of sample complexity on the the runtime. These reductions have
streamlined the process of improving algorithms for learning DNFs and Juntas,
as improved algorithms for learning parities can be directly applied to both
problems. Both the work of Grigorescu et al. [14], and Valiant [27] were examples
of this.

One can also consider natural restrictions to the Junta problem. For mono-
tone Juntas, Dachman-Soled et al. [10] found lower bounds for solving monotone
Juntas in the statistical query model. Lipton et al. considered the problem of
learning symmetric Juntas [21] and showed they can be learned in no(k) time.
Note here that the symmetry requirement is orthogonal to restrictions on the
size of k.

2 Preliminaries

2.1 Notations

In this section we remind the reader some of the preliminary results used through-
out the paper. We use := as deterministic assignment and ← as uniformly ran-
domized assignment. We also use bold lowercase, e.g. x, to denote vectors and
bold uppercase, e.g. A, to denote matrix. The set {1, 2, . . . , n} is often denoted
by [n]. The i-th coordinate of vector x is denoted by x[i]. For the vector x of
dimension n and a set R that is a subset of [n], we denote x|R to be the restric-
tion of x to the coordinates in R, namely x|R = x[i1]‖x[i2]‖ . . .x[i|R|], ∀i ∈ R} .
The indices in x are from 1 to n. For simplicity, we reset the indices in x|R and
have the indices from 1 to |R|.
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2.2 Fourier Analysis

The boolean Fourier transform is defined for boolean functions defined over the
domain {−1, 1}. Throughout the rest of the paper, when we discuss boolean func-
tions, we will use this representation. To map a boolean function from {0, 1} ∈ F2

to {−1, 1}, we set −1 := 1F2
and 1 := 0F2

. We now present some additional no-
tation regarding the representation of the LPN problem in the {−1, 1} domain.

Notation. Assuming the LPN secret s is represented in Fn2 , the following rep-
resent the boolean inner product of input x with s in different notation.

fs(x) := 〈x, s〉 ∈ F2 for x, s ∈ Fn2

fs(x) =
n∏
i=1

x[i]s[i] ∈ {−1, 1} for x ∈ {−1, 1}n and s ∈ Fn2

hence to represent a sample (x, b) from LPN oracleOLPN
0 ,η (s) we have the following

two notations

b = fs(x) + e for x, s ∈ Fn2 and e ∈ F2

b = fs(x) · e for x ∈ {−1, 1}n, s ∈ Fn2 and e ∈ {−1, 1}

Consider a vector x ∈ {−1, 1}n. We denote by Dp the product distribution
over {−1, 1}n, where each bit of the vector is independent and has mean p.

Definition 2.1 (Fourier Expansion). For a product distribution Dp as above,
every function f : {−1, 1}n → R can be uniquely expressed as the multilinear
polynomial

f(x) =
∑
S

f̂p(S)χS,p(x), where χS,p(x) =
∏
i∈S

x[i]− p√
1− p2

.

This expression is called the Fourier expansion of f with respect to Dp, and the

real numbers f̂(S) are called the Fourier coefficients of f on S.

The Fourier transform defines an inner product between two boolean func-
tions f and g: 〈f, g〉p = Ex∼Dp [f(x) ·g(x)]. The Fourier coefficient for any S ⊂ N
over product distribution Dp is defined as follows:

f̂p(S) = Ex∼Dp [f(x) · χS(x)].

Claim 2.2. Let sp = (x, b) be a p-biased sample and let b = fs(x) · e, where

e ∈ {−1, 1} is independent of x and E[e] = 1− 2η′. Define b̂p({j}) := Ex∼Dp [b ·
χ{j},p(x))]. If sp.s[j] = 0, then b̂p({j}) = 0. Whereas if sp.s[j] = 1, then b̂p({j}) =

(1− 2η′) · pk−1
√

1− p2.

Proof. For the proof of the claim, refer to the full version of our paper available
on ePrint.
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3 Constant Noise Setting

In the constant noise setting, our algorithm consists of two steps. First, using a
modification of the acclaimed BKW algorithm [5], we implement a p-biased LPN
Oracle with noise rate η′ and secret value s which is denoted by OLPN

p,η′ (s) and
is defined in Section A.2. We present this modification, entitled BKWR (BKW
restricted to set R), in subsection 3.1. In subsection 3.2 we present the integration
of our p-biased oracle into the learning algorithm based on Fourier analysis.
Finally, in subsections 3.3 and 3.4, we combine our analysis to present the regime
in which we can set the free parameter p in order to improve on both BKW and
brute force search asymptotically in the exponent.

3.1 BKWR

As a first step, we present our BKWR algorithm in Figure 1. The BKWR al-
gorithm is given access to an unbiased LPN Oracle OLPN

0 ,η (s) and its goal is to
produce a sample that is p-biased. The presented algorithm works similarly to
BKW by successively taking linear combinations of samples to produce a sample
with all zero entries one ‘block’ at a time. The algorithm accomplishes this by
maintaining successive tables such that samples in each table are combined to
fill the next table. The number of tables is a parameter of the algorithm de-
noted a. The tables T (1), . . . , T (a) are each of size 2b, where b is the size of each
block, except the last table T (a) which might have a smaller number of entries,
specifically 2|R| mod b. Each table T (j) is indexed by the value of the coordinates
in the j-th block of x|R, namely x|R [(j − 1) · b, j · b− 1]. The element in row

i of table j is denoted by
[
T

(j)
i

]
. Importantly, while the size of R may vary, a

remains constant each time the algorithm is called. This ensures that a constant
number of samples are combined to produce the output. This decouples the noise
present in the output from the size of R, ensuring that all generated samples are
independent.

Construction of p-biased Oracle given BKWR The construction of the
p-biased Oracle is quite simple. We sample an index set R where each index is
selected independently with probability p. R is then passed as input to BKWR. By
bounding the size of the set R, we can ensure that with overwhelming probability
BKWR outputs a p-biased sample in 2O(np/ log(np)) time. If the size of the set R
exceeds this bound (captured by the event Event1 occurring), the runtime may
be longer. Thus, when we invoke OLPN

p,η′ (s) multiple times to generate a large
number of p-biased samples for the Fourier analysis, we need to ensure that
w.h.p. Event1 never occurs. We bound the probability of Event1 in Theorem 3.2.

Lemma 3.1. The samples (x′, b′) outputted by BKWR Algorithm with access
to OLPN

0 ,η (s) are independent and distributed identically to samples drawn from a

p-biased LPN Oracle OLPN
p,η′ (s) for η′ = 1

2 −
1
2 (1− 2η)

√
2np.

Proof. The proof can be found in Section A.4.



12 Dachman-Soled et al.

Algorithm 1: BKWR

Result: Sample (x′, b′) such that the coordinates of x′, which are defined by
set R are set to 0.

if |R| ≥ 2np ∨ |R| ≤ pn/2 then
Event1 occurs.

end
Set a := dlog(2np)/2e and b := d|R|/ae;
Set T (1), . . . , T (a) to empty tables;
while True do

Query a new sample from unbiased LPN Oracle OLPN
0 ,η (s) ;

j := 1;
while j ≤ a do

if
[
T

(j)

x|R[(j−1)·b,j·b−1]

]
= ∅ then[

T
(j)

x|R[(j−1)·b,j·b−1]

]
:= (x, b);

break;

end
if x|R [(j − 1) · b, j · b− 1] 6= 0 then

(x′, b′) :=
[
T

(j)

x|R[(j−1)·b,j·b−1]

]
;

x′′ := x + x′, b′′ := b+ b′;
(x, b) := (x′′, b′′);

end
j := j + 1;

end
if j = a + 1 then

break;
end

end
(x′, b′) := (x, b);
return (x′, b′);

Fig. 1. BKWR “Zeroing” Algorithm

Theorem 3.2. Given access to LPN Oracle OLPN
0 ,η (s) which gives samples s =

(x, b), the oracle OLPN
p,η′ (s) constructed from BKWR requires O(2

4np
log(2np) · log(2np))

samples, and O(2
4np

log(2np) ·log(2np)) runtime with probability at least 1−2 exp(−p·
n/8).

Proof. The proof can be found in Section A.5.

3.2 Learning Secret Coordinates

In this subsection we first present the Learning Algorithm in Figure 2. The
Algorithm starts by sampling num number of samples from a p-biased LPN
Oracle OLPN

p,η′ (s). As the samples are non-uniform, we can apply Fourier analysis
technique described in Section 2.2.
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The Learning Algorithm
The learning algorithm gets access to p-biased LPN Oracle OLPN

p,η′(s) which
returns sample sp = (x, b).

1. Initialize S,S ′ := ∅
2. For i ∈ num:

(a) Set spi ← O
LPN
p,η′(s) to be the output sample from p-biased LPN Oracle.

(b) Add spi to the set S.
3. Use the set S of num number of samples to estimate the Fourier coefficient of

each coordinate of secret.
– For each j ∈ [n], approximate b̂p({j}) := 1

num

∑num
i=1 bi · χ{j},p(xi), where

each coordinate of xi, bi is switched to {−1, 1} from F2.
– If b̂p({j}) > (1− 2η′)pk−1

√
1− p2/2, add j to S ′.

4. Output s′ such that s′[j] = 1 for j ∈ [n] if j ∈ S ′.

Fig. 2. LPN Algorithm for Constant Noise

Lemma 3.3. For δ ∈ [0, 1], p ∈ (0, 1), the learning algorithm presented in
Figure 2 uses samples from Oracle OLPN

p,η′ (s) to estimate the secret value s′.

The algorithm runs in time 8
(1−2η′)2·p2(k−1)·(1−p)2 · ln(2n/δ), requires num =

8
(1−2η′)2·p2(k−1)·(1−p)2 · ln(2n/δ) number of samples and outputs the correct se-

cret key, i.e. s = s′ with probability 1− δ.

Proof. The proof can be found in Section A.6.

3.3 Combining the Results

Combining the results of Sections 3.1 and 3.2 we obtain the following theorem:

Theorem 3.4. For δ ∈ [0, 1], p ∈ (0, 1), the Learning Parity with Noise algo-
rithm presented in Figure 2, learns parity with k out of n variables with the total
number of samples and total computation time of

poly

(
1

(1− 2η)
√
np · p2(k−1)(1− p)2

· ln(
n

δ
) · 2

np
log(np) · log(np)

)
,

and achieves success probability of 1−δ−
(

16
(1−2η)

√
8np·p2(k−1)(1−p)2 · ln( 2n

δ ) · exp(−pn8 )
)

.

Proof. Using Lemma 3.3, we have that the number of p-biased samples required
is num = 8

(1−2η′)2·p2(k−1)·(1−p)2 · ln(2n/δ) and using Lemma 3.1 we have that

η′ = 1
2 −

1
2 (1 − 2η)

√
2np. From Theorem 3.2 we have that with probability 1 −

2 exp(−p · n/8) each p-biased sample can be obtained by an invocation of the

BKWR algorithm, which requires O(2
4np

log(2np) · log(2np)) samples and O(2
4np

log(2np) ·
log(2np)) runtime with probability 1 − 2 exp(−p · n/8). Combining and taking
a union bound, we have that the algorithm in Figure 2 requires at most num ·
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O
(

2
4np

log(2np) · log(2np)
)

samples and run time and succeeds with probability

1− δ − (2 · num · exp(−p · n/8)).

3.4 Parameter Settings

We consider the parameter setting for which our algorithm asymptotically out-
performs the previous algorithms in the exponent. We consider two cases.

– The algorithm has to run faster than a brute force algorithm which tries all
the

(
n
k

)
combination to find the sparse secret. Note that the best algorithms

for k-sparse LPN achieve only a constant factor improvement in the expo-
nent beyond brute force search. Since we are concerned with asymptotic
improvement in the exponent, these algorithms are equivalent to brute force
search.

– The algorithm should run faster than the BKW algorithm for the length-n
LPN problem, as BKW is the asymptotically best algorithm for length-n
LPN.

Corollary 3.5. For the sparsity k = k(n) = n
log1+1/c(n)

, where c ∈ o(log log(n))

and c ∈ ω(1), the runtime of our learning algorithm in Figure 2 is contained in
both log(n)o(k) and 2o(n/ log(n)), with constant failure probability. For this range
of k, Brute Force search requires runtime log(n)Ω(k) and BKW requires runtime
of 2Ω(n/ log(n)).

Proof. Setting 1/p = log1/(c)(n) and k = n
log(c+1)/c(n)

in Theorem 3.4, we find

that our LPN Algorithm for constant noise rate presented in Figure 2 succeeds
with constant probability and has runtime(

1

p

)2k

· 2
4np

log(2np) = log(n)
(1/c)· n

log(c+1)/c(n) · 2
4n/ log1/(c)(n)

log(2n/ log1/(c)(n)) ∈ log(n)O((1/c)·k).

Note that if c ∈ ω(1), then our runtime is in log(n)o(k). On the other hand, if
c ∈ o(log log(n)) then our runtime

log(n)O((1/c)·k) = 2O((log log(n)/c)·k) ∈ 2o(k) ∈ 2o(n/ log(n)).

and so asymptotically beats the above two algorithms in the exponent for any
c = c(n) that satisfies c ∈ ω(1) and c ∈ o(log log(n)). Plugging the above
parameter into Theorem 3.4 yields probability of success of 1 − δ − negl(n) =
1− δ.

4 Low Noise Setting

In this section we present an improved learning algorithm for the low noise
setting. The algorithm will draw only a polynomial number of samples from the
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given LPN oracle, use them to construct a much larger set of p-biased samples
that are not independent, but have certain desirable properties, and then present
a learning algorithm that succeeds w.r.t. a set of p-biased samples satisfying these
properties.

4.1 Sample Partition

In this section we present the SamP algorithm which draws a polynomial-sized set
of samples from the original LPN oracle OLPN

0 ,η (s), and uses them to construct a
far larger set of p-biased samples that are “close” to being pairwise independent.
To achieve this, SamP constructs a large number of subsets of size 2np+ 1 from
the polynomial-sized set of samples, such that each pair of distinct subsets has
at most t � 2np + 1 number of samples in common Then, from each subset of
size 2np+1, we construct a single p-biased sample sp = (x′, b′) as follows: First,
a random subset R ⊆ [n] of coordinates is chosen, by placing each index i ∈ [n]
in R with independent probability p. Note that with overwhelming probability,
|R| ≤ 2np. Thus, given our set of 2np + 1 ≥ |R| + 1 samples, we construct a
matrix M that contains the samples as rows and we compute the left kernel of the
matrix to find a vector u to zero out the coordinates of R – i.e. (u ·M) |R = 0|R|

and the returned sample is (x′, b′) := u ·M. This procedure is denoted by RLK
(see Definition A.11 for more details). Note that the procedure always succeeds
when the size of R is at most 2np + 1.5 We show that the samples resulting
from distinct subsets are “close” to independent, due to the small intersection of
any pair of subsets. We next provide some additional details on the construction
and guarantees on independence, before formally describing the algorithm and
its properties.

Constructing the subsets with small pairwise intersection. Our algorithm given in
Figure 3 constructs the subsets using the designs of Nisan and Wigderson [25]: It
first draws (2np+1)2 samples from the original LPN distribution and associates
each sample with an ordered pair (x, y) for x, y ∈ F, for the field F of size 2np+1.
There are (2np+1)t polynomials of degree t−1 in F, and each subset is associated
with a particular polynomial, i.e. the samples contained in a particular subset
correspond to the 2np+1 points that lie on the associated polynomial. Note that
the maximum number of subsets that can be constructed is (2np+ 1)t and that,
furthermore, since any pair of distinct polynomials of degree t− 1 in F intersect
in at most t points, any two subsets have at most t samples in common. Note
that this construction allows at most maxnum := (2np+ 1)t number of p-biased
samples to be generated. Looking ahead, in Section 4.2 we will present a learning
algorithm that requires O (log(n)) such independent sets of samples, each of size
at most maxnum to learn the parity function.

5 If the size of R is larger than this, a bad event Event1 occurs, and we must draw new
independent samples from the oracle. We will later show that Event1 occurs with
negligible probability.
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Generating the p-biased samples

Obtain (2np + 1)2 independent samples S = {s1, . . . , s(2np+1)2} from the un-

biased LPN oracle OLPN
0 ,η (s) . Run the following setup phase to create sets

O1,O2, . . . ,Omaxnum each of size 2np+ 1 such that for distinct i, j, |Oi
⋂
Oj | ≤ t.

Setup Phase :

1. Consider a Finite Field F of size 2np+1. Define a bijection π from [(2np+1)2]
to pairs (x, y) ∈ F× F.

2. Consider all polynomials of degree t−1 in the ring F[x]. There are maxnum :=
(2np+ 1)t such distinct polynomials poly1, . . . , polymaxnum.

3. For j ∈ [maxnum], Oj contains si if and only if π(i) = (x, y) and polyj(x) = y.

Algorithm 2: SamP(j)

Result: p-biased sample (x′, b′).
To respond to the j-th query, if j > maxnum then

return ⊥ and terminate.
end
Otherwise, sample a set Rj such that each i ∈ [n] is selected
independently into Rj with probability p;

if |Rj | ≥ 2np ∨ |Rj | ≤ pn/2 then
Event1 occurs.;
Sample a fresh set of |Rj |+ 1 samples from the LPN oracle and
arrange them in rows of matrix A of size (|Rj |+ 1× n).;

Compute (x′,u) := RLK(A, Rj) such that x′|Rj = 0|Rj |; . RLK is
defined in Section A.3

Go To L1;

end
Select set Oj and arrange them in rows of matrix A of size (2np+ 1× n);

Compute (x′,u) := RLK(A, Rj) such that x′|Rj = 0|Rj |; . RLK is defined
in Section A.3

if x′|Ri = 0|Ri| for some i ∈ [j − 1] then
Event2 occurs;
Sample a fresh set of 2np+ 1 samples from the LPN oracle and
arrange them in rows of matrix A of size (2np+ 1× n);

Compute (x′,u) := RLK(A, Rj) such that x′|Rj = 0|Rj |;

end
L1 : k := 1;
(x′, b′) := u ·A;
while k < 2np+ 1− weight(u) do

. weight is defined in Section A.3
b′ := b′ + Õη

end
return (x′, b′);

Fig. 3. SamP “Zeroing” Algorithm
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Near pairwise independence. We note that by construction, the Sample Partition
Algorithm SamP presented in Figure 3 constructs sets of size (2np + 1) such
the intersection of any two sets is at most t for t ≤ (np + 1). This will allow
us to bound the covariance of the errors e′i and e′j obtained by taking linear
combinations of elements in the sets Oi, Oj . Overall, the set of samples generated
by SamP algorithm have certain properties enumerated in the following Lemma.

Lemma 4.1. Consider an experiment in which the setup phase is run and two
samples spi = (x′i, b

′
i) and spj =

(
x′j , b

′
j

)
are generated by running SamP(i) and

SamP(j) for distinct i, j ≤ maxnum then the following hold:

1. Each individual sample (x′i, b
′
i) (resp.

(
x′j , b

′
j

)
) outputted is distributed iden-

tically to a sample drawn from a p-biased LPN Oracle OLPN
p,η′ (s) for η′ =

1
2 −

1
2 (1− 2η)2np+1.

2. x′i and x′j are pairwise independent
3. Recall that b′i = fs(x

′
i) + e′i and b′j = fs(x

′
j) + e′j. Then

Cov
[
e′i, e

′
j

]
≤ (1− 2η)

2(2np−t)+2 − (1− 2η)
4np+2

.

Proof. The proof can be found in Section A.7.

Finally, we analyze the runtime and sample complexity for each invocation
of SamP.

Theorem 4.2. Given access to LPN Oracle OLPN
0 ,η (s) which gives samples s =

(x, b), the SamP algorithm requires O
(
(np)2

)
samples in total, and poly(np)

runtime per invocation with probability at least 1 − 2 exp(−p · n/8) − (np)t ·
exp(−n/48)− (np)t · 1/2np/4.

Proof. The proof can be found in Section A.8.

4.2 Learning Secret Coordinates

In this subsection we present our Learning Algorithm in Figure 4. The input to
the algorithm is 8 log(n) independently generated sets of p-biased samples with
the properties given in Lemma 4.1. The algorithm uses the p-biased samples to
estimate the values of the Fourier Coefficients of the target function.

Lemma 4.3. For δ ∈ [0, 1], p ∈ (0, 1), given as input 8 log(n) independent sets

of samples S1,S2, . . . ,S8 log(n) each of size num := O
(

1
(1−2η)2np+2p2(k−1)(1−p2)

)
and each satisfying the properties given in Lemma 4.1 for some t ∈ Θ(1/η), the

Learning Algorithm presented in Figure 4 runs in time poly
(

1
(1−2η)2np+2p2(k−1)(1−p2)

)
and outputs the correct secret key, i.e. s = s′ with probability 1− δ.

Proof. The proof can be found in Section A.9.
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The Learning Algorithm
The learning algorithm starts by having access to 8 log(n) sets S1,S2, . . . ,S8 log(n)

of randomly generated samples. Each set of samples is independent and satisfies
the properties given in Lemma 4.1.

1. Initilizate set S ′ := ∅.
2. For j ∈ [n]

– count := 0
– T := 8 log(n)
– For i′ ∈ T :

(a) Use the set Si′ of num number of samples to approximate b̂p({j}) :=
1

num

∑num
i=1 bi · χ{j},p(xi), where each coordinate of xi, bi is switched to

{−1, 1} from F2.
(b) If b̂p({j}) > (1− 2η′)pk−1

√
1− p2/2, count := count + 1

– if count ≥ T/2
• add j to S ′

3. Output s′ such that s′[j] = 1 for j ∈ [n], if j ∈ S ′.

Fig. 4. Low-Noise LPN Algorithm

4.3 Combining the Results

Combining the results of Sections 4.1 and 4.2 we obtain the following theorem:

Theorem 4.4. Assuming parameters are set such that

log

(
1

(1− 2η)2np+2p2(k−1)(1− p2)

)
∈ o(1/η · log(np)), (4.1)

and with δ ∈ [0, 1], p ∈ (0, 1), the Learning Parity from Noise Algorithm pre-
sented in Figure 4, learns parity with k out of n variables and noise rate η
using (2np + 1)2 · log(n) number of samples, total computation time of N :=

poly
(

1
(1−2η)2np+2p2(k−1)(1−p2)

)
and achieves success probability of

1− δ −
(
N ·

(
2 · exp(−p · n/8) + exp(−n/48) + 1/2

np/4
))

Proof. Using Lemma 4.3, we have that, for some t ∈ Θ(1/η), the number of p-
biased samples with the following properties needed to succeed with probability

1− δ is poly
(

1
(1−2η)2np+2p2(k−1)(1−p2)

)
. From Theorem 4.2, we have that as long

as num = poly
(

1
(1−2η)2np+2p2(k−1)(1−p2)

)
≤ maxnum = (2np+1)t we can generate

the required samples using (2np + 1)2 samples from the unbiased LPN oracle
OLPN

0 ,η (s), and with poly(np) runtime per sample, with probability at least 1 −
2(np)t ·exp(−p·n/8)−(np)t ·exp(−n/48)−(np)t ·1/2np/4. The fact that num and
maxnum satisfy the above constraint is guaranteed by the assumption in the the-
orem on the setting of parameters and the fact that t ∈ Θ(1/η). Combining and
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taking a union bound, we have that the algorithm in Figure 2 requires (2np+1)2 ·
8 log(n) samples, has run time poly

(
1

(1−2η)2np+2p2(k−1)(1−p2) · log(n)
)

, and suc-

ceeds with probability 1−δ−
(
N ·

(
2 · exp(−p · n/8) + exp(−n/48) + 1/2

np/4
))

.

4.4 Parameter Settings

We consider the parameter setting for which our algorithm’s runtime asymptoti-
cally outperforms the previous algorithms’ runtime in the exponent. We consider
two cases.

– The algorithm has to run faster than a brute force algorithm which tries all
the

(
n
k

)
combinations to find the sparse secret. Note that there are known

algorithms that improve upon brute force search, but the improvement is
a constant factor in the exponent. Since we are concerned with asymptotic
improvement in the exponent, these algorithms are equivalent to brute force
search.

– The algorithm should run faster than the algorithm which just gets lucky
and gets n noiseless samples, we call this algorithm “Lucky Bruteforce”. For
this algorithm to succeed, it needs n

1−η samples from LPN Oracle to ensures
that there are approximately n noiseless samples. The next step is to just
randomly select n out of these n

1−η samples and try Gaussian elimination on
them. The run time of such an algorithm for small η can be approximate by
eηn.

Corollary 4.5. For sparsity k(n) such that k = 1
η ·

log(n)
log(f(n)) , noise rate η 6= 1/2

such that η2 =
(

log(n)
n · f(n)

)
for f(n) ∈ ω(1) ∩ no(1), the Learning Algorithm of

Figure 4 runs in time O
(

1
(1−2η)2np+2p2k

· log(n) · (np)3
)
∈
(
n
k

)o(k)
with constant

probability. In this setting, the running time Brute Force is
(
n
k

)
≥ (nk )k and the

running time of Lucky Bruteforce is eηn ∈
(
n
k

)ω(k)
.

Proof. For k, η defined as above, we choose the biased p = 1
f(n) and 1

p ∈
(
n
k

)o(1)
, we have constraint (4.1) from Theorem 4.4 satisfied as follows:

log

(
1

(1− 2η)2np+2p2(k−1)(1− p2)

)
≈ 4npη + 2k log(

1

p
)

∈ o(1/η · log(n)) ∈ o(1/η · log(np)),

the runtime of the Learning Algorithm of Figure 4 is bounded by

1

(1− 2η)2npp2k
· log(n) ·O

(
(np)3

)
≈ e4npη ·

(
1

p

)2k

· log(n) ·O
(
(np)3

)
∈ eo(k)·log(n/k) ·

(n
k

)o(k)
· log(n) · o(n3)

∈
(n
k

)o(k)
,
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which outperforms Brute Force and Lucky Bruteforce under the same parameter
settings. Plugging the above parameters into Theorem 4.4 yields probability of
success of 1− δ − negl(n).

5 Learning Other Classes of Functions

In the following we apply our LPN algorithms from Section 3 to learn other
classes of functions. First, let us look at the reduction from learning DNFs to
learning noisy parities.

Theorem 5.1 (Theorem 2 in [12]). Let A be an algorithm that learns
noisy parities of k variables on {0, 1}n for every noise rate η < 1/2 in time
T (n, k, 1

1−2η ) and using at most S(n, k, 1
1−2η ). Then there exists an algorithm

that learns DNF expressions of size s in time Õ
(
s4

ε2 · T (n, logB,B) · S(n, logB,B)2
)

,

where B = Õ(s/ε).

We are interested in determining the parameter range for which our algorithm
yields an asymptotic improvement over the state of the art in the exponent.
The work of Grigorescu [14] is the current state-of-the-art. They present an

improvement of the bound from [28] of 2O(log(n) log sε ) for s
ε ∈ o

(
log1/3 n
log log n

)
. As

we are similarly applying the reductions from Feldman, our algorithm yields a
similar improvement on the bounds in [28] for a different range of s

ε .
Note the reduction in Feldman [12] relates the ratio of the size of the DNF

and its approximation factor to both the noise rate and sparsity of the parity
function. Thus, the parameter range for which our algorithm is optimal will be
expressed in terms of this ratio.

We begin by extending the runtime analysis of our algorithm from Section 3,
which dealt with the constant noise setting, to the arbitrary noise η < 1/2.

Theorem 5.2. The learning algorithm described in Figure 2 has a runtime of

T

(
n, k,

1

1− 2η

)
=

(
1

1− 2η

)2a+1

8 ln(2n/δ)

p2(k−1)(1− p)2
O
(
a2b
)

and requires

S

(
n, k,

1

1− 2η

)
=

(
1

1− 2η

)2a+1

8 ln(2n/δ)

p2(k−1)(1− p)2
O
(
a2b
)

LPN samples in the high noise setting, and achieves a success probability of

1− δ −
(

1

1− 2η

)2a+1

16 ln(2n/δ)

p2(k−1)(1− p)2
e
−np

8

where ab = np.
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Proof. The proof follows directly from Theorem 3.4. Instead of fixing a value
for a and b, we let them remain free parameters. As well, we no longer make
assumptions on the noise rate η. Thus, we start with the runtime in terms of η′.

T (n, k, η′) =
8 ln(2n/δ)

(1− 2η′)2p2(k−1)(1− p)2
O
(
a2b
)

T (n, k, η) =
8 ln(2n/δ)

(1− 2η)2a+1p2(k−1)(1− p)2
O
(
a2b
)

T

(
n, k,

1

1− 2η

)
=

(
1

1− 2η

)2a+1

8 ln(2n/δ)

p2(k−1)(1− p)2
O
(
a2b
)

The sample complexity of the algorithm is equal to its runtime complexity, and
thus we need to just need to consider the success probability. In the high noise

setting, the p-biased LPN oracle is called num =
(

1
1−2η

)2a+1

8 ln(2n/δ)
p2(k−1)(1−p)2 times,

and the success probability calculation follows the same formula from Theo-
rem 3.4.

As we are concerned with asymptotic improvement in the exponent of the
runtime we will take the logarithm of the runtime and compare it to the state
of the art for learning DNFs and Juntas.

Corollary 5.3. The learning algorithm described in Figure 2 learns DNFs of size
s and approximation factor ε, with asymptotic improvements over Verbeurgt’s
bound [28] of O

(
nlog

s
ε

)
, and with negligible failure probability when log s

ε ∈
ω
(

c
logn log log c

)
, and log s

ε ∈ n
1−o(1), where c ∈ n1−o(1).

Note here that the parameter regime in 5.3 requires setting the free param-
eters of the learning algorithm differently than in the constant noise setting. In
order to minimize the runtime of the BKWR step of the algorithm in the high
noise setting, the value for a must be changed from the description in Section 3.
Thus we set a = (1/2) log log(np). This change necessitates considerations for
δ, the Fourier analysis confidence. This ensures that the failure probability of
the full algorithm remains small, even after increasing the number of samples
required. We set δ = 2−n. The free parameter p is set to n−o(1) to satisfy asymp-
totic requirements. These parameters are set similarly for Corollary 5.5.

Aside from DNFs we can also use our LPN algorithm to learn Juntas. By
applying Feldman’s reduction we are able to yield an algorithm that, for certain
ranges for k, is able to improve on the O(n0.7k) runtime cited in [27] asymptot-
ically, not just by reducing the constant factor in the exponent.

Theorem 5.4 (Theorem 3 in [12]). Let A be an algorithm that learns parities
of k variables on {0, 1}n for every noise rate η < 1/2 in time T (n, k, 1

1−2η ). Then

there exists an algorithm that learns k-juntas in time O
(
22kk · T (n, k, 2k−1)

)
.

Corollary 5.5. The learning algorithm described in Figure 2 learns Juntas of
size k with a runtime of no(k) and a negligible failure probability when k ∈
ω
(

c
logn log log c

)
, and k ∈ n1−o(1), where c ∈ n1−o(1).
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A Appendix

A.1 Probability Bounds

The following inequality is used to bound the magnitude of an observed random
variable with respect to the true expected value of that random variable. The
Chernoff-Hoeffding bound extends the Chernoff bound to random variables with
a bounded range. Another important fact is that Chernoff-Hoeffding bound as-
sumes the random variables are independent whereas Chebyshev’s bound applies
to arbitrary random variables. The reader in encouraged to refer to [23] for more
in depth reading.

Theorem A.1 (Multiplicative Chernoff Bounds). Let X1, X2, . . . , Xn be
n mutually independent random variables. Let X =

∑n
i=1Xi and µ = E[X],

Pr[X ≤ (1− β)µ] ≤ exp

(
−β2µ

2

)
for all 0 < β ≤ 1

Pr[X ≥ (1 + β)µ] ≤ exp

(
−β2µ

3

)
for all 0 < β ≤ 1

Theorem A.2 (Chernoff-Hoeffding). Consider a set of n independent ran-
dom variables X1, X2, . . . , Xn. If we know ai ≤ Xi ≤ bi, then let ∆i = bi − ai.
Let X =

∑n
i=1Xi. Then for any α ∈ (0, 1/2)

Pr
(∣∣X − E[X]

∣∣ > α
)
≤ 2exp

(
−2α2∑n
i=1∆

2
i

)
.

Theorem A.3 (Chebyshev’s). Consider a set of n arbitrary random variable
X1, X2, . . . , Xn. Let X =

∑n
i=1Xi. Then for any α > 0,

Pr
(∣∣X − E[X]

∣∣ ≥ α) ≤ Var [X]

α2
.

https://doi.org/10.1109/SFCS.1994.365700
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The following lemma is being used to further simplify the Var[X] in Theo-
rem A.3.

Lemma A.4. Let X1, X2, . . . , Xn be n arbitrary random variables. Then

Var

[
n∑
i=1

Xi

]
=

n∑
i=1

Var [Xi] + 2
n∑
i=1

∑
j>i

Cov [Xi, Xj ] .

A.2 Learning Parities

In this subsection, we define three Oracles . The first is the standard LPN Oracle,
that samples x uniformly. The second is the noise Oracle, which sets x to the
zero vector. The purpose of this Oracle is to return additional noise sampled
identically to the noise found in a normal LPN sample. The third Oracle is
the p-biased LPN Oracle, which samples x according to a p-biased Bernoulli
distribution.

Definition A.5 (Bernoulli Distribution). Let p ∈ [0, 1]. The discrete probability
distribution of a random variable which takes the value 1 with probability η and
the value 0 with probability 1−η is called Bernoulli Distribution and it is denoted
by Berη.

Definition A.6 (LPN Oracle). Let secret value s ← Zn2 and let η < 1/2 be a
constant noise parameter. Let Berη be a Bernoulli distribution with parameter η.

Define the following distribution L(1)
s,η as follows{

(x, b) | x← Zn2 , fs(x) := 〈x, s〉, b = fs(x) + e, e← Berη} ∈ Zn+1
2

with the additions being done module 2. Upon calling the LPN Oracle OLPN
0 ,η (s),

a new sample s = (x, b) from the distribution L(1)
s,η is returned.

Definition A.7 (Noise Oracle). Let secret value s ← Zn2 and let η < 1/2 be a
constant noise parameter. Let Berη be a Bernoulli distribution with parameter η.

Define the following distribution L(2)
s,η as follows{

(x, b) | x := 0n, fs(x) := 〈x, s〉, b = fs(x) + e, e← Berη} ∈ Zn+1
2

with the additions being done module 2. Upon calling the Noise Oracle Õη a new

sample s = (x, b) from the distribution L(2)
s,η is returned.

Definition A.8 (p-biased LPN Oracle). Let secret value s ← Zn2 and let η <
1/2 be a constant noise parameter. Let Berη be a Bernoulli distribution with
parameter η and Bern(1−p)/2 be Bernoulli distribution with parameter (1 − p)/2
over n coordinates. Define the following distribution L(3)

s,η,p as follows{
(x, b) | x← Bern(1−p)/2, fs(x) := 〈x, s〉, b = fs(x) + e, e← Berη} ∈ Zn+1

2

with the additions being done modulo 2. Upon calling the p-biased LPN Oracle

OLPN
p,η (s) a new sample sp = (x, b) from the distribution L(3)

s,η,p is returned.
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As our algorithms require linear combinations of LPN samples, we present
the following lemma that describes the noise growth associated with the linear
combination.

Lemma A.9 (New Sample Error [5]). Given a set of ` samples (x1, b1), . . . , (x`, b`)
from an LPN Oracle OLPN

0 ,η (s) with secret s, where the choice of samples may de-
pend on the values of xi but not on the values of bi, then the new sample s`+1

can be formed as follows s`+1 =
∑`
i=1 si which has the property that b`+1 is in-

dependent of x`+1 and the probability that the label of the constructed sample is
correct is as follows: η′ = Pr[b′ = 〈x`+1, s〉] = 1

2 −
1
2 (1− 2η)`.

For reference we additionally provide the runtime of the original BKW algo-
rithm:

Theorem A.10 (BKW [5]). The length-n parity problem, for noise rate η
for any constant less than 1/2, can be solved with number of samples and total
computation time of 2O(n/ logn).

For sample i, the j-th coordinate of x is denoted by si.x[j] and the j-th
coordinate of s is denoted by si.s[j]. For simplicity, given two sample pairs s1 =
(x1, b1) and s2 = (x2, b2) a new sample s3 = s1 + s2 can be formed by s3 =
(x1 + x2, b1 + b2) with the additions being done mod 2.

A.3 Miscellaneous

Definition A.11 (Restricted Left Kernel). Given a matrix A ∈ Zm×n2 for
m ≤ n and set R ⊂ [n] such that |R| < m, RLK first finds a vector u ∈ Zm2 such
that v = u ·A and v|R = 0|R|. The RLK algorithm returns (v,u) := RLK(A, R).

Note that the RLK algorithm mentioned above can be implemented by simply
modifying matrix A and only takes the columns pointed by set R, i.e. restriction
of A to only columns pointed by R. Let’s denote the new matrix by A′, find
a vector in left kernel of A′ and call it u. Then v can simply be computed as
v = u ·A.

Definition A.12 (Hamming Weight). Given a vector u ∈ Zm2 , weight(u) returns
the number of 1’s in vector u, i.e. the Hamming weight of u.

A.4 Proof of Lemma 3.1

We first show that each coordinate of x′ is set to 0 with independent probability
(1 + p)/2. The probability that a coordinate j of x′ in sample sp is set to 0 after
running BKWR can be computed as follows:

Pr [x′[j] = 0] = Pr [x′[j] = 0 | j ∈ R] · Pr [j ∈ R] + Pr [x′[j] = 0 | j /∈ R] · Pr [j /∈ R]

= 1 · p+ 1/2 · (1− p) = (1 + p)/2
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To show that the label b′ is correct with probability η′ and that the correctness of
the label is independent of the instance x′, s, note that x′ is always constructed
by XOR’ing a set of exactly 2a number of samples and that the choice of the
set of XOR’ed samples depends only on the random coins of the algorithm and
on the x values, which are independent of the e value. Therefore, we can apply
Lemma A.9 to conclude that the noise is independent and that b′ is correct with
probability η′ = 1

2 −
1
2 (1− 2η)

√
2np.

A.5 Proof of Theorem 3.2

From the description of BKWR, it is clear to see that it takes O(a2b) LPN sam-
ples and running time to generate a p-biased sample, where a = log(2np)/2, b =
d|R|/ae. Remember that the BKWR algorithm will abort if |R| ≥ 2pn or |R| ≤
pn/2, i.e. Event1 occurs. By showing that Event1 occurs with probability at most

2 exp(−p · n/8) , we obtain that BKWR runs in time O(2
4np

log(2np) · log(2np)) with
probability at least 1− 2 exp(−p · n/8).

To bound the probability of Event1 occurring, we notice that by multiplicative
Chernoff bounds in Theorem A.1, we can bound the size of set R as follows:

Pr [|R| ≥ 2pn] ≤ exp(−p · n/3)

Pr [|R| ≤ pn/2] ≤ exp(−p · n/8)

Pr [|R| ≥ 2pn ∨ |R| ≤ pn/2] ≤ exp(−p · n/3) + exp(−p · n/8) ≤ 2 exp(−p · n/8)

Pr [pn/2 < |R| < 2pn] > 1− 2 exp(−p · n/8)

A.6 Proof of Lemma 3.3

Before proving Lemma 3.3, we present the following simple claims about
the number of samples needed to estimate the Fourier Coefficient of a single
index. Based on Claim 2.2, the magnitude of Fourier coefficient of the indexes
with secret value of 0 is equal to 0, while for the secret coordinates 1 that is
equal to ε = (1 − 2η′) · pk−1

√
1− p2. In the Following Claim we compute how

many samples are needed to estimate the magnitude of Fourier coefficient within
distance of ε/2 of correct value. We will bound the failure probability with δ/n.

Claim A.13. For every j ∈ [n], b̂p({j}) = E[b · χ{j},p(x))], where (x, b) ∼
OLPN

p,η′ (s), can be estimated within additive accuracy ε
2 and confidence 1 − δ

n

using 8
ε2 ·

1+p
1−p · ln(2n/δ) number of samples.
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Proof. The estimate of b̂p({j}) based on the m samples spi = (xi, bi) is.

b̂estimate({j}) =
1

m

m∑
i=1

bi · χ{j},p(xi)

and notice that E
[
b̂estimate({j})

]
= b̂p({j}). Lets denote Xi = 1

m · bi ·χ{j},p(xi),

then note that |Xi| ≤ (1/m)
√

1+p
1−p . Finally by Chernoff-Hoeffding bound of

Theorem A.2 we have the following.

Pr
[∣∣∣b̂estimate({j})− b̂p ({j})

∣∣∣ ≥ ε/2] ≤ 2 exp

(
−mε2

8
· 1− p

1 + p

)
Bounding the right hand side by δ/n and solving for m gives the desired

value for number of samples.

Proof of Lemma 3.3. Invoking Claim 2.2, we have that for j such that s[j] = 1

b̂p({j}) = (1 − 2η′) · pk−1
√

1− p2 while for j such that s[j] = 0 , b̂p({j}) = 0.
It is clear by inspection that Algorithm 2 succeeds when it correctly estimates
the values of b̂p({j}) to within additive ε/2 := (1 − 2η′) · pk−1

√
1− p2/2 for

all j ∈ [n]. By Claim A.13, 8
ε2 ·

1+p
1−p · ln(2n/δ) number of samples are sufficient

to estimate a single coordinate within additive ε/2 of its correct value with
confidence 1 − δ

n . By a union bound, the success probability of estimating all
coordinates to within additive ε/2 is 1− δ.

A.7 Proof of Lemma 4.1

The proof is similar to the proof of Lemma 3.1 and noticing that the SamP
algorithm uses 2np + 1 samples to generate a single p-biased sample. Two p-
biased samples x′i,x

′
j , j > i are pairwise independent, unless the same linear

combination of samples in S was used to generate both of them. But in that
case, during execution, the condition x′j |Ri = 0|Ri| would evaluate to true, which
means that Event2 occurred and so fresh samples (not from S) would be used
to generate x′j .

In the rest of the proof we switch to the ±1 representation instead of the
Boolean representation. The sample spi = (x′i, b

′
i) is obtained from the samples in

set Oi alongside some extra error samples from Noise Oracle Õη. In the following
proof these are denoted by e1, e2, . . . , e2np+1. Moreover, notice that the sample
spj =

(
x′j , b

′
j

)
, obtained from set Oj , has at most t elements in common with the

sample obtained from the set Oi. Hence we can represent the error in sample
spj =

(
x′j , b

′
j

)
as e1, e2, . . . , et, e

′′
t+1 . . . e

′′
2np+1. For the ease of notation we assumed
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that the t samples which are in common are at index 1 to t.

Cov[e′i, e
′
j ] = Cov[e1 · e2 . . . et · et+1 . . . e2np+1 , e1 · e2 . . . et · e′′t+1 . . . e

′′
2np+1]

= E[e21 · e22 . . . e2t · et+1 . . . e2np+1 · e′′t+1 . . . e
′′
2np+1]

− E[e1 · e2 . . . e2np+1] E[e1 · e2 . . . et . . . e′′t+1 . . . e
′′
2np+1]

= (1− 2η)
2(2np−t)+2 − (1− 2η)

4np+2

Where the last line follows from the independence of errors, E[ei] = 1− 2η and
E[e2i ] = 1.

A.8 Proof of Theorem 4.2

Assuming Event1 and Event2 do not occur, the sample complexity and runtime
can be verified by inspection and assuming RLK takes poly(np) time.

It remains to bound the probability of Event1 and Event2. We can upper
bound the probability of Event1 by 2 exp(−p·n/8), as in the proof of Theorem 3.2.

To upperbound the probability of Event2, we note that assuming Event1 does
not occur, Event2 occurs only if one of the following two events occur:

– Event′1: For some distinct i, j ∈ maxnum, |Ri ∩Rj | ≥ np/4.
– Event′2: For some distinct i, j ∈ maxnum, |Ri \ Rj | ≥ np/4 and x′j |Ri\Rj =

0|Ri\Rj |.

Since for distinct i, j, each coordinate ` ∈ [n] is placed in both Ri and Rj
with probability p2, by a union bound over all pairs i, j and a standard Chernoff
bound, Event′1 can be upperbounded by:

maxnum2 · exp(−n/48) = (np)t · exp(−n/48).

Since for any x′j , the coordinates outside of Rj are uniformly random, Event′2
can be upperbounded by:

maxnum2 · 1/2np/4 = (np)t · 1/2np/4.

A.9 Proof of Lemma 4.3

Similar to subsection 3.2, before proving Lemma 4.3, we first present the
following claim about the number of samples needed to estimate the Fourier
Coefficient of a single index. The algorithm gets access to 8 log(n) sets of p-biased
samples. In the following claim we first prove how many samples are needed to
be able to approximate the Fourier coefficient within additive distance of ε/2 and
later discuss how by repeating the approximation step, i.e. step 2b in Figure 4,
will reduce the error in approximation even further.
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Claim A.14. For δ ∈ [0, 1], p ∈ (0, 1), given 8 log(n) independent sets of sam-

ples S1,S2, . . . ,S8 log(n) that each of size num := O
(

1
(1−2η)4np+2p2(k−1)(1−p2)

)
and

each satisfying the properties given in Lemma 4.1 for some t ∈ Θ(1/η), then for

every j ∈ [n], b̂p({j}) = E[b · χ{j},p(x))] can be estimated within additive accu-

racy ε
2 = (1 − 2η′)pk−1

√
1− p2/2 for η′ = 1

2 −
1
2 (1 − 2η)2np+1 with confidence

1− δ
n .

Proof. Let X = 1
m

∑m
i=1 bi · χS,p(xi). Let f be a parity function. Assuming

S = {k}, let Xi = 1
m · bi · χ{k},p(xi). First we compute Cov[Xi, Xj ] for k such

that s[k] = 1

Cov[Xi, Xj ] = Cov

[
1

m
· b′i · χ{k},p(x′i) ,

1

m
· b′j · χ{k},p(x′j)

]
Cov[Xi, Xj ] =

1

m2
· Cov

[
b′i · χ{k},p(x′i) , b′j · χ{k},p(x′j)

]
=

1

m2
· Cov

 ∏
u:s[u]=1

x′i[u]

 · e′i · x′i[k]− p√
1− p2

,

 ∏
v:s[v]=1

x′j [v]

 · e′j · x′j [k]− p√
1− p2


(A.1)

=
1

m2
· 1

1− p2

(
Cov

 ∏
u:s[u]=1∧u 6=k

x′i[u]

 · e′i ,
 ∏
v:s[v]=1∧v 6=k

x′j [v]

 · e′j
−

Cov

 ∏
u:s[u]=1∧u6=k

x′i[u]

 · e′i , p ·
 ∏
v:s[v]=1

x′j [v]

 · e′j
−

Cov

p ·
 ∏
u:s[u]=1

x′i[u]

 · e′i ,
 ∏
v:s[v]=1∧v 6=k

x′j [v]

 · e′j
+

Cov

p ·
 ∏
u:s[u]=1

x′i[u]

 · e′i , p ·
 ∏
v:s[v]=1

x′j [v]

 · e′j
) (A.2)

=
1

m2
· 1

(1− p2)

(
p2(k−1)Cov

[
e′i, e

′
j

]
− 2p2kCov

[
e′i, e

′
j

]
+ p2(k+1)Cov

[
e′i, e

′
j

])
(A.3)

= m−2p2(k−1)(1− p2)Cov
[
e′i, e

′
j

]
= m−2p2(k−1)(1− p2)

[
(1− 2η)

2(2np−t)+2 − (1− 2η)
4np+2

]
(A.4)

Where equation (A.1) follows from definition of Fourier Coefficients and not-
ing that b′i is multiplications of xis and error term ei, equation (A.2) follows from
properties of Covariance, equation (A.3) follows from independence of x′is and
equation (A.4) follows from Lemma 4.1. We can also bound Var[Xi] as follows
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Var[Xi] = Var

[
1

m
· b′i · χ{k},p(x′i)

]

=
1

m2
·Var

 ∏
u:s[u]=1

x′i[u]

 · e′i · x′i[k]− p√
1− p2


=

1

m2
· 1

1− p2

Var

 ∏
u:s[u]=1∧u6=k

x′i[u]

 · e′i
− p2 ·Var

 ∏
v:s[v]=1

x′i[u]

 · e′i


=
1

m2
· 1

1− p2

(
E

 ∏
u:s[u]=1∧u6=k

x
′2
i [u]

 · e′2i
− E

 ∏
u:s[u]=1∧u6=k

x′i[u]

 · e′i
2

−

p2 · E

 ∏
u:s[u]=1

x
′2
i [u]

 · e′2i
+ p2 · E

 ∏
u:s[u]=1

x′i[u]

 · e′i
2)

(A.5)

=
1

m2
· 1

1− p2
(

1− p2(k−1)(1− 2η)2np − p2 + p2(k+1)(1− 2η)2np
)

(A.6)

= m−2
(

1− p2(k−1)(1 + p2)(1− 2η)2np
)
≤ m−2

Where equation (A.5) follows from properties of variance and equation (A.6)
follows from independence of x′is. Then we have the following bound from Cheby-
shev’s bound of Theorem A.3

Pr [|X − E[X]| ≥ ε/2] ≤
∑m
i=1 Var [Xi] + 2

∑m
i=1

∑
j>i Cov [Xi, Xj ]

ε2/4

≤ 4 ·
m−1 + p2(k−1)(1− p2)

[
(1− 2η)2(2np−t)+2 − (1− 2η)4np+2

]
ε2

By substituting ε = (1 − 2η′) · pk−1
√

1− p2 for η′ = 1
2 −

1
2 (1 − 2η)2np+1,

we can bound the right hand side by a constant less than 1/2 by setting t <

− ln(9/8−1/c)
2 ln(1−2η) and setting m = c · 1

(1−2η)4np+2p2(k−1)(1−p2) , where c > 8. We use

random variable Yi′ to represents whether the value of count in step i′ is increased
or not, specifically Yi′ = 1 represents the event that count is increased in step i′.
Assume we repeat the protocol for T rounds in total. Let Y = (1/T ) ·

∑T
i′=1 Yi′ .

First, take the case that j such that s[j] = 0 , we know that in each step of
loop over i′, Pr[Yi′ = 1] = 1/2− ε. Note that the algorithm is run T times using
independent sets Si′ each time and index j is only added if in the majority of the
runs its estimated Fourier coefficient is more than ε/2. Using Chernoff bound,
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we can bound Pr[Y ≥ T/2] ≤ 1/n.

Pr[index j is added to set S ′] = Pr[count ≥ T/2]

= Pr[

∑T
i′=1 Yi′

T
≥ 1

2
]

≤ Pr [|Y − E[Y ]| > ε] ≤ 2 exp(−2Tε2)

We can bound the right hand side by δ
n for constant δ by setting T = 8 log(n)

and ε = 1/4. Similar argument applies to the case for j such that s[j] = 1.

Proof of Lemma 4.3. Invoking Claim 2.2, we have that for j such that s[j] = 1

b̂p({j}) = (1 − 2η′) · pk−1
√

1− p2 while for j such that s[j] = 0 , b̂p({j}) = 0.
It is clear by inspection that Algorithm in Figure 4 succeeds when it cor-
rectly estimates the values of b̂p({j}) to within additive ε/2 := (1 − 2η′) ·
pk−1

√
1− p2/2 for all j ∈ [n]. By Claim A.14, we need 8 log(n) sets such that

each set has O
(

1
(1−2η)2np+2p2(k−1)(1−p2)

)
number of p-biased samples. So in total

num ·8 log(n) = O
(

1
(1−2η)2np+2p2(k−1)(1−p2) · log(n)

)
number of p-biased samples

are sufficient to estimate a single coordinate within additive ε/2 of its correct
value with confidence 1 − δ

n . By a union bound, the success probability of esti-
mating all coordinates to within additive ε/2 is 1− δ.
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