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Abstract. We address the black-box complexity of constructing pseudo-
random functions (PRF) from pseudorandom generators (PRG). The cel-
ebrated GGM construction of Goldreich, Goldwasser, and Micali (Crypto
1984) provides such a construction, which (even when combined with
Levin’s domain-extension trick) has super-logarithmic depth. Despite
many years and much effort, this remains essentially the best construc-
tion we have to date. On the negative side, one step is provided by the
work of Miles and Viola (TCC 2011), which shows that a black-box con-
struction which just calls the PRG once and outputs one of its output
bits, cannot be a PRF.

In this work, we make significant further progress: we rule out black-
box constructions of PRF from PRG that follow certain structural con-
straints, but may call the PRG adaptively polynomially many times.
In particular, we define “tree constructions” which generalize the GGM
structure: they apply the PRG G along a tree path, but allow for differ-
ent choices of functions to compute the children of a node on the tree
and to compute the next node on the computation path down the tree.
We prove that a tree construction of logarithmic depth cannot be a PRF
(while GGM is a tree construction of super-logarithmic depth). We also
show several other results and discuss the special case of one-call con-
structions.

Our main results in fact rule out even weak PRF constructions with
one output bit. We use the oracle separation methodology introduced by
Gertner, Malkin, and Reingold (FOCS 2001), and show that for any can-
didate black-box construction F¢ from G, there exists an oracle relative
to which G is a PRG, but F€ is not a PRF.
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1 Introduction

Pseudorandom Functions (PRF) constitute one of the most important primitives
in cryptography, used in almost every application of cryptography in theory and
in practice, and with deep connections to complexity theory and learning theory.
Classic results in cryptography prove that the existence of PRFs is equivalent to
the existence of many other fundamental primitives such as one-way functions
(OWF), pseudorandom generators (PRG), signatures, private key encryption,
and many others, where equivalence is defined by the existence of a polyno-
mial time reduction. However, these primitives are not all created equal, as the
reductions often incur significant efficiency cost, for various notions of efficiency.
For example, given a PRF it is easy to construct a PRG with similar parallel-
time complexity, but the other direction is not known. There is also a wide gap
between the efficiency of theoretical constructions of PRF and the corresponding
designs used in practice (block ciphers such as AES). An important and inten-
sively studied goal is to minimize the complexity of PRF constructions from
minimal assumptions. In this paper, we focus on the complexity of constructing
PRFs from PRGs.

The seminal result of Goldreich, Goldwasser, and Micali [GGMS86] (referred to
as the GGM construction hereafter) showed how PRFs can be constructed from
PRG in a black box way. In particular, given a PRG G: {0,1}" — {0,1}*" they
construct a PRF F = {ka: {0,13™™ — {0,1}" R for any polynomial
input length m(n). To evaluate f,? (z), the construction sequentially applies G
adaptively |x| times (once per each bit of x) along a tree path. This results in a
construction of depth linear in the length of the input — highly non-parallel. This
can be improved to w(logn) depth by using Levin’s domain extension technique
[Lev8T], a generic transformation which applies a pairwise independent function
to the input before running it through the construction. This allows to start from
a polynomial length input, shorten it to a super-logarithmic length input, and
then run the construction (in our case GGM) on the shorter input. In more detail,

if H = {h: {0, l}m/ — {0, l}m} is a family of pairwise independent functions,

and F = {f{} is a PRF, it is not hard to see that the family ' = { ,'f’;l} where

15, (x) = [ (h(x)) is also a PRF.

In the decades since the GGM construction was introduced, much effort was
dedicated to trying to improve it (e.g., [NR99,NRR00,NR04,LW09,BMR10,
BPR12,AR16]), including some results achieving PRFs in NC! (logarithmic
depth circuits) from concrete assumptions like DDH [NR99] and LWR [BPR12].
Despite this, the above construction remains the best one we have to date from
PRG. In terms of lower bounds, it is known via connections to learning and the
natural proofs barrier, that PRFs cannot be constructed in certain low circuit
complexity classes such as ACY[2] (c.f. [Val84, LMN93, PW88,RR94]), but there
are no known lower bounds on the required depth (or parallel efficiency) of a
PRF constructed from PRG.
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Indeed, the following question remains open (and stated as an open problem
already by Naor and Reingold [NR99)): Is there a black-box construction of PRF
from PRG with logarithmic depth? We can start by asking a much more basic
question: Is there a black-box construction of PRF from PRG that calls the PRG
Just one time? Miles and Viola [MV11] make a step towards addressing this
question, by ruling out such one-call constructions that consist of a projection,
namely call the PRG once and just output one of its output bits.! Beyond this,
even this basic question remains open.

Our goal is to address this large gap between the known positive results
(black-box constructions of super-logarithmic depth and number of calls to the
PRG), and the known negative results (only a very partial impossibility of a
black-box construction with a single call). We provide some explanation to this
state of affairs, by giving black-box separations ruling out a large class of black-
box constructions. In particular, for any candidate construction F¢ = { ka } in
this class, we show an oracle O relative to which there is a PRG G, but F¢
is not a PRF: there exists an efficient algorithm Break® that can distinguish a
randomly chosen function in F& from a truly random function. This follows the
oracle separation methodology of Gertner, Malkin, and Reingold [GMRO1], and
rules out so-called fully-black-box constructions [RTV04], but does not rule out
all relativizing reductions, since the adversary Break we design is specific for the
given candidate construction.

1.1 Our Results

We start with a high level overview, followed by more details. We consider (pur-
ported) black-box constructions of a PRF from a PRG, where the PRF has
super-logarithmic input length and one-bit output. Since we are showing nega-
tive results, this implies the same results hold for PRF with many output bits.
Our results hold even when the given PRG has super-polynomial stretch.

We rule out black-box constructions of a PRF F = {fi} from a PRG G that
satisfy some structural conditions. Our main results rule out constructions of
the form

56 (2) = A% (k, ),

where the oracle 9y , implements a function that calls G and depends on the
input z, k in some constrained way, while the algorithm A is an arbitrary oracle
aided algorithm (it can call the oracle adaptively, any number of times, and
on any input, without restriction). We have two main results with different
constraints on Q.

Our first main result generalizes a result by Miles and Viola [MV11]. In our
terminology, they rule out constructions where Qy, ,(s) applies G(s) and returns
one of its output bits (which one depends on k,z), and where A can only call

! Miles and Viola [MV11] considered the task of stretching the output of PRGs, but
as noted in [MV15] their lower bound implies a lower bound on PRF constructions.
The results in [MV15] additionally rules out, in our terminology, PRF constructions
with non-adaptive calls and ACO post-processing.
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Ok, once and return the same output bit (namely the PRF applies a projec-
tion on the output of the PRG). In contrast, we rule out any construction where
Ok, (s) applies G(s) and then returns a longer “digest” (depending also on k, x),
and where A is an arbitrary oracle-aided algorithm that can call Qy, , adaptively
and apply arbitrary post-processing. We require that the digest function applied
by the oracle in every call does not use too many bits of z,k (at most loga-
rithmically many), and that its output is not too long (bounded away from the
security parameter by more than a logarithmic amount). We show that these
requirements are necessary (so our result is tight in this sense).

Our second main result allows Qj, ,, to apply what we call a tree construction,
which generalizes a logarithmic-depth GGM structure, applying G at each level,
but allowing different choices for the functions computing the children of a node
at each level of the tree, and for the function computing the next node on the
computation path for a given input. Thus, we show that even if you can call
such a log-depth tree oracle @ polynomially many times on different root values,
the resulting construction is not a PRF. In this sense this result is tight with
GGM, which can be viewed as a single call to such a tree oracle Q with super-
logarithmic depth.

Considering the special case of constructions that call the PRG just one time,
our first result immediately rules out any such construction that calls G on some
arbitrary function of x, %, then applies some digest on the output of G and on
logarithmically many bits of x,k, and then applies arbitrary post-processing
using the digest (which is not too long) and the input x, k. Here our constraints
do not seem tight; completely ruling out any construction that calls the PRG
one time remains an intriguing open problem.

We note that all the results above in fact rule out even constructions of weak
PRF, which are PRF that should be indistinguishable from random functions
by adversaries who get random (input,output) pairs (rather than being able to
ask queries).

Finally, we show that any black-box construction of PRF {fi} from a PRG
G cannot have the key k& be much shorter than the length of the inputs that it
calls G on: if G is called on n-bit inputs, k must be of length at least n—O(logn).
Note that the first step in GGM applies G(k), so there k is exactly the length
of the input to G.

We provide more details on each of our results below. In the following, for a
security parameter n € N, let

F = {fki {0,13" — {0, 1}}

k‘E{O,l}A(")

be a candidate PRF construction with domain {0, 1}™™ of super-polynomial size
and with a key of polynomial length A(n). For simplicity of presentation, here we
assume that all calls to G in the construction are always on inputs of length n (the
security parameter). In the full version of this paper we show how to generalize the
proof for constructions that can call G on different input lengths.
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Warmup: Projection Functions. Miles and Viola [MV11] showed that there
is no black-box construction of a PRF from PRG such that

ka(x) = G(S(kax))i(k,x)a

where i(k,z) € [|G(s(k,z))|] is some index of a bit in the output of G (we call
this a projection function).? Our first theorem makes this result stronger by
allowing to add arbitrary post-processing.

Let Gk, be the function defined by G 2)(s) = G(5)i(k,z). Miles and Viola
[MV11] showed that there is no PRF construction such that f(z) makes one
call to Gy ) and outputs the result. We show that there is no black-box PRF
construction such that f&(z) = A%®x=, where A is an arbitrary oracle-aided
algorithm. That is, here A is allowed to make arbitrary number of (adaptive)
calls to G(x,z), and to apply arbitrary functions on the outputs.

Theorem 1.1. For a function G: {0,1}" — {0,1}"*"™ and an index i € [n+
r(n)], let Gi(s) = G(s);. Leti: {0,13*™ x {0, 13™™) — [n+r(n)] be a function.

Then for any polynomial r there is no black-box PRF construction F = {f}
from r(n)-bit stretch PRG, such that

I (x) = AS o (k, 2)

for any algorithm A.

First Main Result: Digest Functions. Our result is actually even stronger,
as we can replace the function G, »y (“projection”) with any function Qy, . (s) =
P(G(s), L(k,z)), as long as |L(k,z)| € O(logn) and |P(G(s),L(k,z))| < n —
w(logn) (a “digest” function). Note that projection functions are a special case
of digest functions, as G(z,+)(s) can be written as P(G(s), L(k,x)) for L(k,z) =
i(k,z) and P(z,1) = z.

Theorem 1.2. Let G: {0,1}" — {0, 1}n+r(n). Let L and P be functions such
that for every k, x and s, |L(k,z)| € O(logn) and |P(G(s), L(k,z))| < n —
w(logr). Let Qrka)(s) = P(G(s),L(k,xz)). Then there is no black-box PRF
construction F = {fi} from a PRG, such that

fi () = AQro) (k, )
for any algorithm A.

Tightness. Note that if we allow the stretch of the PRG to be super-polynomial,
there is a simple black-box projection construction that uses the output of the
PRG as the truth-table of the PRF, namely f<(z) = G(k), for z € [|G(k)]].
Thus, for both the original [MV11] and our generalization in Theorem 1.1, we

2 Their paper, and its journal version [MV15], has other results as well, in particular
about increasing PRG stretch in a black box way; we focus here on the result relevant
to our paper.
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need to require the index function to be have output of logarithmic length (which
in turn implies the stretch must be polynomial). Our more general result in
Theorem 1.2 does not impose any restriction on the stretch of the PRG, but still
requires the output of the function L to be of logarithmic length. This restriction
is necessary, to avoid the same simple truth-table construction.

The restriction on the output length of the digest P is also necessary for
our structural lower bound. Observe that when the output of P is allowed to be
n+1 bits, there exists a PRF construction f<(z) = A9 (k, r) where Q(s) simply
returns P(G(s)) = G(8)<n+1,> and A runs the standard black-box construction
of a PRF from a PRG with 1-bit stretch (first using the oracle to get a length
doubling PRG, and then running the GGM construction). In fact, using the
Goldreich-Levin theorem, such a construction exists even if we set P(G(s)) =
G(8)<n—1logn, as we can add logarithmically many hard core bits.

Second Main Result: Tree Constructions. The GGM construction has the
following structure. For every key k and input z, f(z) is defined by

i (x) = S(G(...G(S(G(k), 1)) ...), )1,

where S(z,b) = zp, for z = zg||z1 with |zg] = |21]-

This construction can be seen as a binary tree, where each node is labeled
with an n bit string: the root is labeled by with the key k, and to compute the
label of a child of a node v, we query the PRG on the label of v, and then apply
some function S(G(v),0) and S(G(v),1) to get the labels of the two children. To
compute the function, we start from the root, and use = to determine the path
to a leaf we take on the tree. The output is just the label of the leaf.

We generalize the above structure and define tree constructions of PRFs.

Definition 1.3. We say that a black-box construction of a PRF F = { fi.} from
a PRG G is a (t,c)-Tree construction, if there exist functions Ly,...,L; and
Soy ..., St such that for every key k and input x, |L;(k,x)| < ¢, and,

fS(z) = Si(G(...S2(G(S1(G(So(k,x)), Li(k, x))), La(k, ), ...), Ly(k, z));.
Note that a tree construction generalizes GGM in several ways:

1. We allow trees with larger degree (2¢), as long as the degree is a constant.
(GGM uses a binary tree, with ¢ = 1.)

2. We allow the label of the root of the tree to be an arbitrary function Sy of k
and z. (In GGM it is Sy(k,x) = k.)

3. We allow the function S; that chooses the label of the children of a node
labeled by y based on the value of G(y) to be arbitrary function. Moreover,
we allow it to be different in each level ¢ of the tree. (In GGM S;(z,b) =
S(z,b) = z for every level.)

4. We use an arbitrary function L;(k,z) to select which child to choose as the
next node on the path down the tree at level . (In GGM it is L;(k,z) = z;.)

3 Here x<; denotes the first i bits of x.
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Thus, the GGM construction is a (t = n,c = 1) tree construction, with the func-
tions Ly, ..., Ly, Sp, ... S specified above, and if we use Levin’s domain extension
together with GGM, it becomes a (t = w(logn),c = 1) tree construction.

We prove that for every choice of the functions L;, S;, there is no (logn, O(1))
tree construction.

Theorem 1.4 (Tree constructions). Let ¢ € N be a constant. Then there is
no (t, c)-tree black-box PRF construction from r(n)-bit stretch PRG, with t(n) <
logn — loglogn — w(1).

We then significantly generalize this result to rule out an arbitrary oracle-
aided algorithm that can call such a (logn,O(1)) tree construction adaptively,
and apply arbitrary post-processing.

Definition 1.5. We say that a function family Q = {Qk .} is a (¢, c)-Tree ora-
cle, if there exist functions Ly,...,L; and Sy,...,S; such that for every key k
and input z, |L;(k,z)| < ¢, and,

Qk}z(s) = St(G( .. SQ(G(Sl(G(S),Ll (k‘,l‘))),LQ(k‘,.’L‘)), N ),Lt(k,x))l.

That is, Qk.(s) is the above tree construction, when replacing the root
So(k, x) with the input s.

Theorem 1.6. Let G: {0,1}" — {0, l}n”("), ¢ € N be a constant, and t(n) <
logn —loglogn — w(1) be a function. Let Q be a (t,c) tree oracle. Then there is
no black-box PREF construction F = {fx} from a PRG, such that

fi (@) = A% (k, )
for any algorithm A.

Tightness. Theorem 1.4 is tight both in terms of ¢ and ¢:

— For any ¢t = w(logn), there exists a (¢ 1)-tree PRF construction
{fi}keqoyrom from n-bits stretch PRG, with A(n) = n. This is the GGM
construction with Levin’s domain extension (note that applying the domain
extension to a tree construction still results in a tree construction).

— For any ¢ = ¢(n) = w(1), there exists a (logn,2°)-tree PRF construction
{fitreqoyrom from (2¢- n)-bits stretch PRG, with A(n) = n. This can be
shown by considering a shallow 2¢-ary tree instead of the binary tree in the
GGM construction.

Special Case for One-Call Constructions. We say that a black-box PRF
construction is a one-call construction, if in order to evaluate f< on a point x
we only need to call the PRG G once. In other words, a one-call construction is
a construction of the form

i (x) = P(G(S(k, ), k, ),
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where the function S selects the query to the PRG and the function P computes
some arbitrary function of the key k, input x, and the output of the PRG.

Each of our two main results gives some lower bound on a restricted type of
such constructions as a special case. In particular, each of these results implies
that there is no construction of a PRF f¢ such that

fE(x) = P(G(S(k,x)), L(k, z))

where |L(k, z)| € O(logn) (notice that here the output of P is one bit).

In fact, Theorem 1.2 implies something stronger: that there is no PRF con-
struction of the form f&(z) = Py(Pi(G(S(k,z)), L(k,)),k,z) where here P»
can be dependent arbitrarily on k and z, as long as the output of P; is at most
n — w(logr) bits, and |L(k, z)| € O(logn):

Corollary 1.7. Let G: {0,1}" — {0,1}"+T(n). Let L, Py, and Py be functions
such that for every k, x and s, |L(k,z)| € O(logn) and |P1(G(s), L(k,x))| <
n — w(logr). Then there is no black-box PRE construction F = {fx} from a
PRG, such that

fch(x) = PQ(Pl(G(S)vL(kvx))’k7$)'

Does there exist a one-call black-box construction of PRF from PRG? While
intuitively the answer seems to be no, we do not know how to prove it in general.
We leave this as a fascinating (and elusive) open problem.

Lower Bound on the Key Length. Our last result shows that in any black-
box PRF construction, the key length must be roughly equal to the input length
for the PRG. That is, the length of the key cannot be much shorter than n
(unless the domain is of polynomial size).

Theorem 1.8 (Lower bound on the key-length). There is no black-box
PRF construction from PRG G: {0,1}" — {0,1}" """ such that A(n) < n —
w(logn).

The proof of Theorem 1.8 is given in the full version of this paper.

2 Proof Overview

We now give some overview of the proof. We start with explaining the proof for a
special case of one-call constructions: black-box constructions F¢ = {f kG }kg A(n)
of the form

fi (x) = P(G(S(k, ), L(k,z)),

where |S(k,z)| = n, |L(k,z)| = O(logn) and |P(G(S(k,z)), L(k,x))| = 1. We
then explain how to generalize the proof to get our lower bound for tree con-
structions. For simplicity, assume that F& is a PRF construction from a length-
doubling PRG G: {0,1}" — {0,1}*". Our goal is to construct an oracle @, with
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respect to there exists such a PRG G, and an efficient (with respect to O) algo-
rithm Break that breaks the security of F¢. That is, Break distinguishes a truly
random function from a function sampled from the family F& = { ka } keA(n)’

but cannot be used to break the security of G.

Eliminating L. We start by using the technique of Miles and Viola [MV11] to
eliminate the function L. Intuitively, their technique shows that when the output
of L is short, and for some type of distinguishers Break, it is enough to consider
constructions of the form

fi (x) = P/(G(S(k, 2))).

In more detail, since the output length of L is O(logn), there exists some value
z such that L(k,z) = z with noticeable probability. Fix such z, and assume
that we can show that there exists some class G of PRGs, and a function f,
such that for every key k and input z, and for every PRG G € G, it holds
that P(G(S(k,)),z) = f(k,z). That is, f<(z) can be evaluated on every input
for which L(k,z) = z without calling to G. Then, we can consider a simple
distinguisher Break that breaks the security of F&:

1. Sample z1,. ..,z < {0,1}" for £ > 2L(k:2) k|
2. Query xy,...,xe to get y1 = f(x1),...,y¢e = f(x0).
3. Break’ outputs 1 if there exists k such that:

(a) There are at least 2|k| i’s such that L(k,z;) = z.

(b) f(k,a;) = y; for every i € [(] with L(k, ;)
Otherwise, Break’ outputs 0.

zZ.

It is not hard to show that for a random function f, Break’ outputs 1 with
negligible probability, while it outputs 1 on f& with 1/poly probability, for every
PRG G from the class G and over a randomly chosen key k.

The hope now is that the class G is large enough such that it contains a PRG
that is secure against attackers with oracle access to Break. In our construction
we will choose G such that we will be able to convert any PRG G into a PRG
G’ € G, in a black-box way. That is, if Break can be used to break the security
of G, then it is possible to break the security of G. The proof now follows by
the fact that a random function is a PRG with respect to any oracle with high
probability [Impl1, GGKTO05] (and thus there exists an oracle which is a secure
PRG against Break).

Constructing ]?.ATO summarize, so far we showed that if we can prove that for
some function f, and for every PRG G from a large enough class of PRGs G, it
holds that

~

PI(G(S(k,x)), 2) = f(k,x),

then it follows that there is no black-box PRG construction of the form

fi (x) = P(G(S(k, ), L(k, ).
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In the following, let P'(G(S(k,z))) = P(G(S(k,x)), z). While it is enough for us
to consider P’ with an output of one bit, we explain how to construct such fwith
f(k,z) = P'(G(S(k,x))) for any function P’ with an output of at most n/2 bits,
as this will be useful for us later.* Fix such a function P': {0,1}*" — {0,1}"/2.
As a first step, assume that P’ can be completed to a permutation. That is,
assume that there exists some permutation R: {0,1}*" — {0,1}*", such that
P'(y) = R(y)<n/2 for every y € {0, 1}°". In this case, we claim it is easy to
construct the function fand the class G.

Indeed, consider the permutation 7 = R~!. For every PRG G, the function
G' = mo G (namely, G'(s) = m(G(s))) is still a PRG.> More importantly, for
every such G’ we get that

P(G'(S(k,2))) = R(G'(S(k, 7)) <nj2 = R(m(G(S(, @) <ns2 = G(S(k, ) <n/2-

That is, the output of P’ is the first n/2 output bits of G. We can now choose
a PRG G such that G(s)<p/2 = s,,/2, and we get that

P(G'(S(k,2))) = S(k,2)<nsa (1)
which implies what we wanted to show, by taking f(lmx) = S(k,x)<pn/2. We
remark that Eq. (1) holds for any PRG G’ such that

G'(s) = m(s<n2l|G(s5n/2),

and that G’ is a PRG if G is, as we wanted to show. This concludes the proof
for the case that P’ can be completed to a permutation.

Dealing with an Arbitrary Function P'. We are left to deal with the case in which
P’ cannot be completed to a permutation. Recall that by choosing 7 to be the
inverse of the function P’ (or actually the inverse of the permutation R), we
were able to show that P'(7(y)) = y, 2 for every y. This allowed us to compute
the output of P’ only using the first n/2 bits of y. While we cannot find such an
inverse 7 for any function P’, we show it is possible to find a “pseudo-inverse”
— a function 7 which is close to being a permutation, such that the first ¢ bits of
the output of P’(7w(y)) can be computed by roughly the first ¢ bits of y. This is
stated in the following lemma.

Lemma 2.1 (Pseudo-inverse lemma). Let n € N be a number, w = w(logn)
and f:{0,1}" — {0,1}" be a function. Then there exists a function7: {0,1}" —
{0,1}", and functions {f;} | such that:

i€n—w

1. SD(U,,, 7(Uy,)) < neg(n)
2. For every i € [n—w], f(7(z))<i = fi(T<itw)-

* In the actual proof we show how to do it for outputs of length n — w(logn).
5 We assume here that G is secure against adversaries with oracle access to 7. We can
construct such oracle PRG using [Imp11, GGKTO05].
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We remark that by the first condition above, moG is a PRG for any PRG G. For
simplicity of this presentation, in the following we assume (the generally false
assumption) that the above claim holds when setting w to be 0.

Back to our lower bound, by taking 7 to be the pseudo-inverse of P, we
can finish the proof. Consider the same class of PRGs G, and let f(k,z) =
Jny2(So(k, 7)<y 2), when f, /o is the function promised by Lemma 2.1 for i =

n/2. We get that

P(G'(So(k,x)) = P'(m(So(k, %) <n/2l|G(So(k, )5 /2))
= frny2(So(k, )< /2)

~

= (ka SU)

which concludes the proof. We explain how we prove Lemma 2.1 in Lemma 2.2.
In the following, we explain how to use Lemma 2.1 to generalize the above proof
to work for tree constructions.

2.1 Tree Construction

We now explain how to use the same techniques as described above to prove our
lower bound for tree constructions.

Fix functions Sp,...,S; and Ly ..., L; as in the definition of tree construc-
tion. As discussed above, since the total length of Ly (k,x)||...||L:(k,x) is at
most t = O(logn), we can fix its value. It is thus enough to show that there

N

exists a function f such that

~

f(k,x) = 5:(G(... S1(G(So(k, x))) - - .))

for every PRG G from some large class G.

We first observe that when all of the functions S; are equal (S =--- =51 =5
for some function S) then this is easy to show. Indeed, set P’ = S. Then our
proof above shows that for the right choice of G, the first n/2 bits of the output
of S(G(Sy(k,x))) are only dependent on the first n/2 bits of So(k,x).5 More
generally, it holds that S(G(y))<n/2 = T(yn/2) for some function 7. Applying
S o G again, we get that

S(G(S(GW))<ns2) = 7(S(G(Y)<ns2) = T(T(Y<n/2))-
More generally, the output of such depth ¢ tree-construction is equal to
Tt(SO(ka I)Sn/2)7

and thus can be computed without calling to G.

Of course, this is not the case when the functions Si,...,S; are not all
equal. Yet, we can use a similar idea. First, we observe that the same proof
works also when the function 7 is different in each level. That is, if we can

5 Actually, n/2 + w(logn), but we ignore it for this presentation.
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show that for any PRG G € G, and for every i € [t], there exists 7; such
that S;(G(y))<n/2 = Ti(Yns2). Then we will get what we wanted by considering
flk,x) = 1(me—1 (... T(S(k, 2)<ny2) - - )).”

But this is still too much to ask for. Indeed, consider the concatenation of
the prefixes of the functions Sy, ...,.S;

S(y) == S1(y)<nsall - 11St(y) <ny2-

Then it can be the case that S(y)<2, = y. In this case we cannot hope to
compute S(G(z)) only from the first n/2 bits of z, or without calling to G. Thus
such 7q,...,7; cannot exists.

However, the above requirement is still stronger than what we really need.
Recall that we want to show that we can find f such that

Flk,2) = SU(G(... $1(G(So(k, ) ...)),

and where the output of S; is only one bit long. Assume that for every i, we can
show that there exists 7; such that S;(G(y))<2t-i = Ti(y<g.2¢—i). That is, the
first bit of the output of S; only depends on the first two bits of the output of
S¢_1, which in turn only depends on the first 4 output bits of S;_o and so on.
The point is that when ¢ < logn/4, we get that the output of fcan be computed
from the first n/2 bits of So(k, z), which is exactly what we wanted to show.
So we now want to find an (almost) permutation 7 such that for every i € [t]

Si(ﬂ'(y))gwfi = Ti(y§2<2t*i)

for some function 7;. We can do it again using the pseudo-inverse lemma. Assume
that ¢ <logn/4, and consider the function

P'(2) = Su(2)1l|Se-1(2) <2llSi-2(2) <all - [192(2) <n /s (2)[1S1(2) <nya (2)-

Let 7 be the function promised by the psuedo-inverse. The crux of this choice
is that, by the pseudo-inverse lemma, for every z, it holds that P'(7(z))<; only
depends on the first 7 bits of z. By our construction of P’, we get that for every
i, Sy—i(m(2))<oi is only a function of the first

SIS () <all. 1SR (2)] = 3 277 = 37 27 < oit!

t>j>t—1i 0<j<i
bits of z, as we wanted to get.

" This is already enough to get some lower bound. As Tiangi Yang commented to
us, if we assume that the PRF construction is secure even when using different
PRG in each one of the levels, we can construct each one of the functions 7; by
applying the pseudo-inverse lemma separately for each S;. Specifically, letting m;
be the pseudo-inverse of S;, and taking/\the PRG G; to be m; o CI'\, we can get that
Se(Ge(St—1(Ge=1(... So(k,x)...)))) = f(k,x) for some function f (and for any t €
o(n/logn)). Interestingly, the GGM construction has this type of security.
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2.2 Pseudo-Inverse Lemma Proof Overview

We now give some intuition for how to prove Lemma 2.1. In the formal proof
(Sect. 6) we take a different and more direct path, and define 7 more explicitly.
Yet, the general approach is the same.

As explained above, in the special case in which f is a permutation, we can
take 7 = f~!. In this case f(m(x)) = z, and thus f(m(z))<; = r<;. We now
show how to generalize it for any function. '

We start with some notations. For every i € [n] and every prefix a € {0,1}'
of an image of f, let f~'(a) be the set of all inputs = such that f(z)<; = a.
We will construct 7 together with a set of inputs S, C {0,1}" for every such a,
such that for every z € S, it will hold that f(m(z))<; = a. In other words, we
construct 7 such that 7(S,) € f~!(a). Moreover, we will construct S, in a way
that allows us to determine for any z whether z € S, only by the first |a| + w
first bits of z. This will promise that the second property of Lemma 2.1 holds.

Since we want the above to hold for any prefix a € {0,1}", it must hold for
every such a that S, = S,0US,1, and that S,9 and S, are disjoint. Thus, S,¢ and
Sq1 are a partition of S,. In the following we construct such sets inductively: we
start with the construction of the set S, = {0, 1}", and for every prefix a explain
how to split the set S, into the sets S,9 and S,1. If by this construction we will
be able to show that for every image y € {0,1}" of f, the set S, is of the same
size as f~!(y), then we can construct a permutation w that fulfills the second
property of Lemma 2.1. Indeed, we can choose such 7 that maps arbitrarily
between elements in S, to f~!(y) for every y. By the sizes of these sets we get
that 7 is a permutation. By construction we also have that we can compute
f(m(2))<i by checking for which sets {Sa},c(013: # belongs. By construction
again, this can be done by only considering the first ¢ + w bits of z.

Constructing the Sets S, . To finish the proof we need to explain how to construct
such sets. For simplicity, in the following we assume that for every ¢ and a €
{0,1}", it holds that |f~'(a)| = ¢, - 2"7"~" for some integer ¢, € N. That is,
the number of inputs that f maps to a prefix a of length ¢ is a multiplication
of 2"~ Observe that if f is a permutation, then |f~!(a)| = 2"~ and this
condition holds.

We will show that we can construct S, such that [S,| = | f~(a)| = ¢,-2" 77
for every a. Since the same holds for any image y, this finishes the proof for this
simplified case. We show the above in induction on the length of the prefix. First
notice that Sc = {0,1}" = f~1(e). Fix i and a € {0,1}". Let S, be a set of size
Cq - 277, We show how to construct S,o and S,1.

First, since the membership in S, can be determined by the first i + w bits
of z, for every z € S, there are 2"7"~" strings 2’ such that 2L, = z<itw
and 2z’ € S,. This means that S, can be partitioned into ¢, sets §2, indexed by
q € {0,137 such that S is a set of size 2"~~* of all the strings in {0,1}"
with prefix ¢. Furthermore, we can partition each such S? into equal size sets
S84 and 8%, of all the strings with prefix q0 and ¢l respectively. We get 2c,
such sets, of size exactly 2" =1~ each. Moreover, membership in each such set
can be determined by a i + 1 + w-length prefix.



472 A. Beimel et al.

Next, By assumption, for every b € {0,1}, f_l(ab)’ =cap- 2" 717 where
Ca0 + Ca1 = 2¢, (since |f71(a0)| + ’f‘l(al) = ‘f‘l(a)’). We can thus simply
take the set S, to be the union of c¢,g of the sets Sgb, and the set S,1 to be
the union of the rest. It is not hard to see that this construction fulfills the

requirements we wanted to have.

2.3 Using Arbitrary Oracle-Aided Post-processing

We now briefly explain how to generalize the above proofs to get Theorems 1.2
and 1.6. Specifically, in Theorems 1.2 and 1.6 the PRF construction has the form
ka (r) = A9L¢.» | which allows making arbitrary number of calls to the oracle
and to apply arbitrary post-processing. Yet, by the same proof we presented
above, we can show that (for some value of L(k,z) = z), the answer to each
query to the oracle Q4 ) can be simulated without querying G'. Thus, we can
replace the oracle Qp ) with an alternative oracle that is independent of the
choice of the PRG G. As explained in the above proof, this implies that we can
break the PRF security without breaking the PRG.

2.4 Limitation of Our Methods

We next discuss some limitations of our proof technique. In all of the above
results we can only deal with digest function L that outputs O(logn) bits (in the
tree construction this corresponds to the total length of L (k,z)||...||L:(k, z)).
Below we give two reasons for this barrier.

The first reason is that our lower bounds hold even if the PRG has super-
polynomial stretch r(n). As discussed above, it is easy to construct a PRF from
such a PRG, by making one call and using a digest function L that outputs
log7(n) = w(logn) bits. Specifically, f&(z) = G(k), is a PRF.

The second reason is related to the choice of the attacker Break. In our proof
Break is chosen before the PRG G, and Break does not make any direct calls
to G. Moreover, G is chosen from a large family of function G. We observe that
for such attacker Break (and even when Break makes polynomial many calls
to G), and when G is “large” enough, there is a PRF construction that fools
Break, even when the stretch of the PRG is small. Specifically, assume that over
a random choice of G from the family G, it holds that the min-entropy of G(x)
is large given the entire truth table of G except for G(z). Namely, assume that
Ho(G(z) | G({0,1}"\{z})) > w(logn). Then Break cannot distinguish between

I8 (@) = BExt(G(ky @ ), k2)

to a random function, where Ext is a strong seeded extractor with seed of length
|k2| € w(logn) (and such extractors exists [Vad+12]), and when G is uniformly
sampled from the family G. This holds since the answer Ext(G(k; & x), ko) for
every query of Break is (almost) uniformly distributed, even given the entire
view of Break so far.
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A similar (and more general) barrier was shown by Miles and Viola [MV11].
Roughly speaking, [MV11] showed that when one-way functions do not exist, a
function that is hard to invert (and in particular any PRG candidate), must be a
function that is hard to compute. Then, [MV11] showed it is possible to use the
Nisan and Wigderson [NW94] PRG construction, to get a PRF with a simple
structure that is secure against any adversary Break that does not have oracle
access to the PRG G. On the other hand, when one-way functions exist, there
is a PRF construction that does not use the oracle to the PRG G at all. Back
to our proof, when the family G is large enough, it will contain a function that
is hard to compute, and thus there exists a PRG in the family G which can be
used to construct a PRF.

2.5 Lower Bound on the Key Length

We finally explain how to prove our lower bound on the key-length. Fix a black-
box PRF construction F with a key of length A(n) < n — w(logn), and let
2 C Ao, l}m(”) be an arbitrary set of n elements from the domain of F. We
will construct a PRG G and an efficient algorithm that breaks F¢ by querying
all the elements in 2. Toward this, let Z: {0,1}" — {0,1}"7"™ be the zero
function. That is Z(q) = 0"*7("™) for every ¢ € N. Let S be the set of all queries
made by fZ(z) for any possible key and for every x € £2. Namely,

S = {q: fZ(z) queries Z(q) on some x € 2,k € {0, 1})\(71)}.

The idea is that for any PRG G such that G(q) = 0"*"(") for every ¢ € S,
it holds that f<(z) = fZ(z). Thus, for every such PRG and for every z € 2 we
can compute f(x) without calling to G, and therefore we can distinguish f<
from a random function.

On the other hand, it holds that the size of S is at most poly(n)-[£2]-2*(") =
2™ - neg(n). This implies that given a PRG G, we can construct a new PRG G,
such that G'(q) = 0"*"(") if ¢ € S or G’(q) = G(q) otherwise. By the negligible
size of S we get that G’ is secure if G is.

3 Preliminaries

3.1 Notations

All logarithms are taken in base 2. We use calligraphic letters to denote sets
and distributions, uppercase for random variables, and lowercase for values and
functions. For n € N, let [n] := {1,...,n}. Given a vector v € X™, let v; denote
its i*h entry, let v; = (v1,...,v;-1) and v<; = (v1,...,v;). For z,y € {0,1}",
we let xy and z||y denote the concatenation of the strings x an y.

Let poly stand for the set of all polynomials. Let PPT stand for probabilistic
poly-time. We say that an oracle-aided algorithm is g-query algorithm if it makes
at most g(n) queries to the oracle on any input of length n.
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3.2 Distributions and Random Variables

When unambiguous, we will naturally view a random variable as its marginal
distribution. The support of a finite distribution P is defined by Supp(P) :=
{z: Prp[z] > 0}. For a (discrete) distribution P, let x «— P denote that x was
sampled according to P. Similarly, for a set S, let x < S denote that x is drawn
uniformly from S. We use U, to denote the uniform distribution over {0,1}". The
statistical distance (also known as, variation distance) of two distributions P and
Q over a discrete domain X is defined by SD(P, Q) := maxscx|P(S) — Q(S)| =
13 .esIP(@) — Q(z)|. We use P ~, Q to denote that SD(P, Q) < e.

We will make use of the following two inequalities.

Fact 3.1 (Chernoff bound). Let A4,..., A, be independent random variables
s.t. Ay € {0,1}. Let A= X1 A; and p = E{/ﬂ For every € € [0,1] It holds
that:

v

A- u‘ >e- u} <2 H/3,

Claim 3.2. Let S be a set of size at least k, and let X1,..., Xy «— S be t
independent, uniformly distributed, random variables over S. Then

Pr{X1,..., X} < k] < k- (1/2)t/k

Proof. First, notice that for every fixed t, the probability of interest is smaller
when |S| is larger. Thus, we can assume without loss of generality that S = [k].
For every j € [k] let x; be the indicator that X; = j for some i € [t]. Then

Pri{Xi,..., X¢}| < k] =Pr[3j € [k] s.t. x; =0].
By observing that
Prlyy = 0] = (1 - 1/k)" < (1/2)"*%,

we get that
Pr[|{X17 cee 7Xt}| < k] < k - (1/2)t/k

as we wanted to show.

3.3 Pseudorandom Generators and Functions
We next define pseudorandom generators.

Definition 3.3 (Pseudorandom generator (PRG)). An efficiently com-
putable function G is an r(n)-bit stretch PRG if for everyn € N and x € {0,1}",
|G(z)| = |x|+7r(|x]), and for every efficient algorithm A, there exists a negligible
function v such that

Prmk{o’l}n[A(ln, G(Z‘)) = 1} — Pry(_{071}71,+7“(n) [A(ln,y) = ] S l/(n)
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Let Fp,1 be the family of all functions from {0,1}™ to {0,1}. In this work we
show lower bounds on (semi) black-box constructions of pseudorandom functions
from PRGs. We now define such black-box constructions.

Definition 3.4 (Black-Box PRF construction). An efficient oracle-aided
function family

F={s0 o, — 0,13}

fk { } H{ } neN,ke{0,1}2 ™

is a black-box PRF construction from r(n)-bit stretch PRG if for every G =

{Gn: {0,1}" — {0,1}”+T(n)}  every 4 € poly, every q-query oracle-aided
ne

algorithm Break and every constant ¢ € N such that

’Pr,ﬁ_{m}x(n) [Breakf’?(ln) = 1} —Pry_ [Breakf(ln) = 1” > 1/nf

‘Fnl(n),l

for infinitely many n’s, there exists an efficient oracle-aided algorithm A and a
constant ¢’ € N such that

Pr, o1y [APC (1", G(2)) = 1] = Pr,_ g jymeron [APC (17, ) = 1] ’
> 1/n¢

for infinitely many n’s.
F is a Black-Box weak PRF construction if the same holds for all algorithms
Break that query i.i.d. uniform queries to the oracle f.

In our proof we will use the following well-known lemma, which states that
there exists an oracle with respect to which PRGs exist.

Lemma 3.5. Let f: {0,1}" — {0,1}", w: N — N and r: N — N be functions

such that n + r(n) € 2°0M)) . Then there exists a (possibly inefficient) func-

tion G = {Gn: {0,13*™ _ {0, 1}"+T(")} . such that the following holds. For
ne

every efficient oracle-aided algorithm A, there exists a negligible function v such
that

‘Per{QJ}w(") [ALG(]-na G(lna .’ﬂ)) = 1} - Pry%{o)l}"JrT(n) [Af’G(lnv y) = 1] ‘
<v(n).

The proof of Lemma 3.5, which is given in the full version of this paper follows
easily from the work of Gennaro, Gertner, Katz, and Trevisan [GGKTO05] (see
also [MV11,HHRSO07]).

4 Structural Lower Bounds on PRF Constructions

In this part we present our structural lower bound on black-box PRF construc-
tions, and derive our main lower bounds on Tree constructions and one-call con-
structions. For simplicity, in the following we assume that on security parameter
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n, the PRF construction queries the PRG G only on inputs with length n. In the
full version of this paper we generalize our results to get rid of this assumption.

To state our lower bound, we start with defining sequential oracles. Roughly
speaking, a collection of functions {Qz}ze{o,l}* is a sequential oracle if for some
functions Py, ..., P,

Q.(s) = P(G(...G(P1(G(s),2))...),2).

In other words, {Qz}ze{o,l}* is a sequential oracle if for po(s, z) = s and p;(s, z) =
Pi(G(pi—1), 2) it holds that Q.(s) = p:(s, z). In the definition below we let ¢ be
the depth of the function (that is, the number of adaptive calls to G), and v the
length of the output of P;. For simplicity we let P(i,y, z) = P;(y, 2).
Definition 4.1 (Sequential oracle). Let t = t(n),{ = {(n),v = v(n)
and v = r(n) be functions. A collection of oracles {Q”7Z}nEN,z€{O,1}Z<") is
a (t(n),v(n))-sequential oracle if for every m € N there exists a function
P: [t(n)] x {0, 1}n+r(") x {0, l}z(") — {0,1}" such that the following holds for
every function G: {0,1}" — {0, 1}"+T(") and for every n € N.

For z € {0,1}"" and s € {0,1}", let p§(s,z) = s, and for every i € [t(n)],
let p§(s,2) = P(i,G(pS | (s,2)),2). Then

Qﬁz(s) = ptcén) (57 Z)Sv(n)'

For example, a tree construction can be written as f&(z) = SL(k o (S(k, @)
for some functions L and S. Our goal is to show that when ¢ and ¢ are not too
large, there is no such tree construction. We actually show something stronger
- that for every choice of function L, the function QS Lik.z) alone is useless to
construct PRF. That is, there is no PRF construction that only uses QS Lik.z)

as an oracle.

Theorem 4.2. Let ¢ € N be a constant, and let w,m,\,r,¢,v,t: N — N be
functions, such that w(n) € w(logn + logr(n)), A € poly, {(n) < clogn,

m(n) > £(n) +log(A(n) + £(n) + 10) + 1

and
n —w(n)

t(n) < log(1 + max{v(n),w(n)}

).

Then, for every (t(n),v(n))-sequential oracle {Qy .}
family

neN,zeb(n)r CVETY function

L= {Ln: 0,11 x {0,13™™ _ 10, 1}”} .
ne

and for every oracle-aided algorithm A, there is no Black-Box (weak) PRF con-

struction
F={f 0.7 = 0,13}

from r(n)-bit stretch PRG, such that for all k,z,

ke{0,1}2™

fE(x) = A rwn (17 k, ).
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We prove Theorem 4.2 in Sect. 5, but first we use it to derive lower bounds
on two extreme cases of sequential oracles: Tree and depth-one oracles.

4.1 Tree Constructions

A tree construction is a black-box construction with sequential calls to the PRG,
in which every call is only dependent on the output of the previous call, together
with some small number of bits from the input and key. This type of construction
is formally defined below.

Definition 4.3 (Tree construction). A black-box construction of a PRF

F={f: 013" = {0,131}

ke{0,1}*(™)

from r(n)-bit stretch PRG is a (t,c)-Tree construction, if for every n € N, there
exist functions So: {0,137 x {0,1}™™ — {0,1}", S: [t(n)] x {0,137 x
0,13 = 10,1} and L: [t(n)] x {0, 1} x {0, 13™™ — {0,1}°™) such that
the following holds for every = € {0,1}™™ k € {0,1}™™ and G: {0,1}" —
{0, 1}7’L+T'(").

Let so = So(k,x), and for every i € [t(n)], let s; = S(i,G(si-1), L(i, k,x)) it
holds that f&(x) = (st(n))<1-

As a direct corollary of Theorem 4.2 we get a lower bound on the depth of every
tree construction.

Corollary 4.4 (Lower bound for tree constructions — Theorem 1.4,
restated). Let ¢ € N be a constant, and let A € poly, r: N — N, and m(n) >
c¢-logn +log(A(n) + clogn + 10) + 1 be functions. Then there is no (t,c)-Tree

k) PRF construction F = { f: {0,1}™ 1
(weak) PRF construction F {fk {0,1} — {0, }}ke{o,l}*("
bit stretch PRG, with t(n) < logn — log(logn + logr(n)) — w(1).

) from r(n)-

Proof. The proof is by showing the (c,t)-Tree construction with constant c
and t(n) < logn — log(logn + logr(n)) — a(n), for a(n) = w(l) can be
implemented with one call to a (1,t(n))-sequential oracle. Specifically, let
w(n) = 2¢M . (logn + logr(n)), L'(k,x) = L(1,k,z)||...||L(t(n),k,z), and
let £(n) = [L'(k,z)| = c-t(n) < clogn. Let P(i,y,2) = S(i,Y, Zeit1,....c(i+1)) SO
that P(i,G(s;—1), L' (k,x)) = S(i,G(si—1), Li(k, x)) for every i.

Moreover, the algorithm A that given k, x calls to Qf,(kym) with So(k,z) and

output the first bit of Pt((;n)(s, L'(k,x)), implements F.

A similar proof shows that there is no PRF construction even given an oracle
to the tree construction.

Corollary 4.5 (Theorem 1.6, restated). Let ¢,m,\,r,{ be as in Theorem
4.2. Then, for every (logn — log(logn + logr(n)) — w(1),1)-sequential oracle

{@n2tnen seein)



478 A. Beimel et al.
and for every oracle-aided algorithm A, there is no Black-Box (weak) PRF con-
struction

F={f: 013" = {0,13}

from r(n)-bit stretch PRG, such that for all k,z,

ke{0,1}2™)

fE (@) = A% s (17 k, ).

4.2 Digest Functions

Directly from Theorem 4.2 we get the following theorem, which implies our result
for one-call constructions.

Corollary 4.6 (Theorem 1.2, restated). Let ¢,m, A\, r, £ be as in Theorem
4.2. Then, for every (1,n—w(logn+logr(n))-sequential oracle {Qn -}, oy set(n)?
and for every oracle-aided algorithm A, there is no Black-Box (weak) PRF con-

struction
F={f 0.7 = 0,13}

from r(n)-bit stretch PRG, such that for all k,x,

ke{0,1}*(™)

8 (x) = AQr0n (17, k, ).
And as a special case we get the corollary for projection functions.

Corollary 4.7 (Theorem 1.1, restated). Let ¢c,m,\ be as in Theorem /.2,
and let v € poly. Let i = {zn {0,132 x {0,1}™™ [nJrr(n)]}, and let
Qg,in(k,w)(s) = G(8)i, (k). Then, for every oracle-aided algorithm A, there is
no Black-Box (weak) PRF construction

F= {fk: {0,1}™™ . {0, 1}}

ke{0,1}2(™

from r(n)-bit stretch PRG, such that for all k,z,

FE(@) = A inten) (17, k, ).

5 Proving Theorem 4.2

In this section we prove Theorem 4.2. We actually prove a stronger statement,
with respect to a slightly stronger oracle, defined next.

Definition 5.1 (Augmented sequential oracle). Let t = t(n),¢ = £(n) and
r = r(n) be functions, and v = v(n) = (U{L,...,vf(n)) € NY ™) be a vector. A
collection of oracles {Qn z}, ey 20,114 is a v-sequential oracle if for every

n € N there exists a function P: [t(n)] x {0,1}"7"™ x {0,1}*™ — {0,1}"
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such that the following holds for every function G: {0,1}" — {0, 1}”+T("). For
z € {0,1}" and s € {0,1}", let pS(s,z) = s, and for every i € [t(n)], let
p%(s,2) = P(i,G(p$ ,(s,2)),2). Then

g,z(s) = plG(57 Z)STHH s ||ptcén) (S, Z)S"t(n) :

That is, in augmented sequential oracles, we also output some inner values com-
puted during the computation of the output of the sequential oracle. We prove
the following lemma.

Lemma 5.2. Let c,w,m, A\, 7, £ and t be as in Theorem 4.2. For every n € N,

let v(n) = (vf,...,vy,)) € Nt be numbers such that
vl > wn) + Z vy, and, Z vl <n—w(n),
t(n)=j>i i€ft(n)]

and let L, : {0,132 x {0, 1}™™ — {0, 1Y) Then, for every sequential oracle
{anZ}nGN sel(n)’ and for every oracle-aided algorithm A, there is no Black-Box
(weak) PRF construction

F= {fk5 {0,131 = {0, 1}}

from r(n)-bit stretch PRG, such that for all k, z,

ke{0,1}2(m™)

f,?(gc) = AQSan(k)I)(I", k,x).
Theorem 4.2 follows from Lemma 5.2 simply by choosing the right parame-
ters.

Proof. (Proof of Theorem 4.2). Let w'(n) = max{v(n),w(n)}, and observe that
w'(n) € w(logn + logr(n)). For every n € N,i € [t(n)], let v} = w'(n) - 287,
It follows that

o =w'(n) - 227 = w'(n) - (1 + Z 2tm)=J)

t(n)=j>i
=w'(n)+ Z vy > w(n) + Z vy
t(n)>j>i t(n)=j>i

and that ;) Vi = w'(n)(24") — 1). Thus, v(n) = (V1. -, vf,)) satisfies
the conditions of Lemma 5.2, as long as

w' (n)(21 — 1) < n —w(n)
which holds for

n—w(n)

n—w(n)
t(n) <log(l+ w(n) ).

Moreover, the v-augmented sequential oracle contains the first v(n) bits of
pgn)(s,z), which is the output of the (¢(n),v(n))-sequential oracle which is
defined by the same function P. Thus, the v-augmented sequential oracle is
strictly stronger than the t(n)-sequential oracle.

) = log(1 + max{v(n),w(n)}
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5.1 Proving Lemma 5.2

We now prove Lemma 5.2. Assume toward a contradiction that there exists a
black-box PRF construction F = {f,g'): {0,13™™ — Jo, 1}}

bit stretch PRG with the structure described in Lemma 5.2.

To prove Lemma 5.2, we will show that there exists an oracle O, such that
with respect to the oracle, there exists a PRG G, but F¢ is not a PRF. In more
detail, we will show that for some z, € {0, l}f(n), and for some PRG G, Q¢ can
be computed on every input without calling to G. It follows that an adversary
that only attempts to break the security of the PRF F on keys and inputs for
which L(k,z) = z, cannot be used to break the security of G. We construct such
an adversary below.

We next describe the distinguisher that breaks the security of F.

Let c,w,m,\,r,4,t,v be as in Lemma 5.2. Let {Qz}neN,ze{O,l}“") be the v-
sequential oracle used by F, and for every n € N, let P,, be the function given
by the definition of sequential oracle. Let A and L,, be the algorithm and function
such that f&(z) = AQS,Ln(’w)(ln, k,x) for every G,k and x. In the following,
when n is clear from the context, we use L, P and @, to denote L,,, P, and @, ..

We start with the following simple claim, which states that there exists some
value z such that L(k,z) is equal to z with a good probability, over a random
choice of the key k and the input z. Our distingusher will try to break the
security of F on inputs &,z for which L(k,z) = z.

£ B}
e rom 7(n)

‘M) such that

Claim 5.3. For every n € N, there exists z, € {0,1}
PrkH{O’l}A(n) [Prz&{o’l}m,(n) [L(k,x) = 2z,] > Q*Z(n)71:| > 9—t(n)—1

The claim follows directly from the assumption that the output of L(k,x) is
short.

Proof. Let z € {0, 1}e(n) be the value that maximize
Prk&{o,1}*<">,m&{0,1}m<"> [L(k,z) = z].

Then Pry_ g 11300 g (0,1ymom [L(k, @) = 2] > 2740
We get that

27 < Pri 01320 aqoymon [L(K, x) = 2]
=B foapm {Prw—{o,l}m(") [L(k,x) = Z]}
<Pro1ppm [PrmH{O,l}""(”) [L(k,z) = 2] = Q%(n)*l] -1
+Pry_ (o1 |:Prm<—{0,1}m<") [L(k,x) = 2] < 2—5(71,)—1:| .9—t(n)—1

< Pl 0.0 [Procqoymom [k, @) = 2] 2 275071 ] 2=t

which implies the claim.
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In the following, for every n € N let z, be the value promised by Claim 5.3.
The following lemma is the main crux of the proof.

Lemma 5.4. There exist a function family

m= {7rn: (0,1} _, {0, 1}””(")}
neN

and a function @ such that the following holds for every function G: {0,1}" —

{0, 1}n+r(n) with G(8)<n—w(n) = S<n—w(n), and for every n € N.

1. SDWUytr(nys n(Unsr(ny)) < 2-27%0) and
2. Q’ZT:OG( ) = Q(s) for every s € {0,1}".

As we will show later, the first property promises that for every PRG G (which
is secure against adversaries with oracle access to ), m o G is also a PRG. The
second property promises that for any PRG G that outputs the first n — n® bits
of its seed, the output of the oracle QG can be computed without evaluating
G’ when using G’ = wo G as the black- box PRG. These two propertles together
allow us to break the security of any PRF construction that uses an without
breaking the security of G.

Lemma 5.4 is proven in Sect. 5.3, but first let us use Lemma 5.4 to define the
distinguisher that breaks the security of the PRF. Let m and @ be the function
families promised by Lemma 5.4. We next define the distinguisher.

Algorithm 5.5. (Break)

Input: 1™

Oracle: f: {0,1}™™ — {0,1}

Operation:

1. Randomly choose p(n) = 28(M+10 . (X(n) + £(n) 4 10)® points 1, ... s Tp(n)
{0,130,

2. Computes y; = f(:rz) for every i € [p(n)].

For every k € {0, 1} let Gy, = {wz;: L(k,z;) = 2z}

4. If for some k € {0, 1})‘(n), it holds that |Gx| > A(n) + £(n) + 10, and f(x) is
equal to A@(k,x) for every x € Gy, return 1. Otherwise return 0.

o

Lemma 5.2 follows from the following two claims. The first states that Break
breaks the security of the PRF F, when using a certain type of PRGs.

Lemma 5.6. Let G: {0,1}" — {0, 1}"+T(n) be a function such that for every
n € N and s € {0,1}", it holds that Gpn(S)<p—wn) = S<n—wn). Let
G {0,1}" — {0,137 be the function defined by G'(s) = mn(G(s)) for
s € {0,1}". Then,

Pry_por [Break!(1") = 1] = Pry g, , [Break/(1") = 1” > 9=tm-10,
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The second lemma states that there is some oracle O with respect to Break
is efficiently computable and there exists a PRG of the form needed in Lemma
5.6 with respect to O.

Lemma 5.7. There exists a function

G = {Gn: {O,l}w(n) N {O’l}w(n)+r(")} .
ne

such that G is a PRG with respect to the oracle O = (m,Break, G).
Proof. (Proof of Lemma 5.7). Immediate by Lemma 3.5.
Lemma 5.6 is proven below, but first we use them to prove Lemma 5.2.

Proof. (Proof of Lemma 5.2). For every n € N, let z, be the value promised
by Claim 5.3 and 7 = {m,},y be the function promised by Lemma 5.4. Let
O = (m,Break, G) be the oracle promised by Lemma 5.7.

Let G: {0,1}" — {0,1}"™ ™ be the function family defined by

é"(s) = S<n—n¢ G(5>n_”s).

Clearly, G is a PRG if G is, Moreover, since ™ = {m,}, is efficiently com-

putable with respect to O, G’ = 7o G is a PRG. Indeed, otherwise let D be a
distinguisher that breaks the security of G'. We claim that D" = D o m, breaks
the security of G. To see this, observe that

Pty o1y [D(G(y) = 1] = Prye oy [Dima(Gl»)) = 1
=Pryqo13n [D(G'(y)) = 1]

and that, since 7, is close to be a permutation,

Pry{_{(),l}n«i»r(n) [D/(y) = 1] = Pry(_{071}'rz+7*(n) [D(ﬂ‘n(y) = 1]
= Pry(;{()’l}n-%—r(n) [D(y) = 1] £ neg(n).

Thus D’ breaks G with roughly the same advantage of D breaking G/, and
therefore the advantage must be negligible.

Since G’ is a PRG with respect to the oracle O = (m, Break, G), it is also a
PRG with respect to the (weaker) oracle 0" = (Break, G’).

On the other hand, Break is efficiently computable with respect to O, and
by Lemma 5.6, Break breaks the security of F when using G’ as the oracle PRG.
Thus, F is not a black-box construction of a PRF.

5.2 Proving Lemma 5.6

Lemma 5.6 follows directly by the following two claims.
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Claim 5.8.
Prfhfm(n)vl [Breakf(ln) = 1} < 9—4(n)—10

Proof. Let fk(x) = AQrum (k, x). The probability that a random function agrees
with fx on A(n) + £(n) + 10 inputs, for any fixed k, is at most 2~ (W) =¢n)=10,
The claim thus follows by the union bound over all possible 2)(™ keys.

Claim 5.9. Let G’ be as in Lemma 5.6. Then

Prk<_{071}x<n> Break/¥ (1m = 1} > 9~ n)—5

Proof. By Lemma 5.4, for every k and « with L(k, x) = z,, it holds that ka' (z) =

AQL(kW(k,a:). Thus, it is enough to show that with good probability over the
choice of the key k, the size of the set Gy, is larger than A(n) + ¢(n) + 10 with a
good probability. That is,

Prke{o)l}/\(n)7I17".)Ip(n)(;{071}717,(71.) [|Qk\ > )\(n) + E(n) + 10] > 9—4(n)=5 (2)

By Claim 5.3, with probability at least 2~¢(")=1 over the choice of k, the proba-
bility that for a random z it is the case that L(k,z) = z, is at least 274" =1 Tt is
thus enough to show that for every such k, the size of Gy, is at least A(n)+£(n)+10
with probability at least 27%.

Fix such k, and let X1,..., X}(,) be the random variables taking the value
of the queries made by Break in a random execution. Let

GX = {x € {0, 13" L(k,z) = zn}

be the set of all #’s such that L(k,z) = z,, and let G = {i € [p(n)]: X; € GX'}
be the (random) set of all indexes such that X; € Gi in the execution of Break.
By our assumption on k and a simple use of Chernoff, |GZ| > (A(n) + £(n) +

10)? with probability at least 1/2. Moreover, for every i € [p(n)], given the event
that ¢ € GZ, X; uniformly distributed over the set GAX. We thus get that for
q(n) = (A(n) +£(n) + 10)?,

Pr[|Gk| > A(n) + £(n) + 10] = Pr[|{X;: i € GZ}| > A(n) + £(n) + 10]

> Pr[{Xi: i € GZ}| > An) +£(n) + 10 A |GZ| > q(n)]

Z Pri{Xi: i € GI} = A(n) + £(n) + 10 [ |GZ] = ¢(n)] - 1/2

Z 1/2 . PI‘y1 ,,,,, Yy(n)—GX H{Yl, ce ,Yq(n)}| Z )\(Tl) + E(n) + 10]

>1/4
where the last inequality follows by Claim 3.2, since by our bound on m(n) and
our assumption on k, |GX| > 2" . 2= =1 > \(n) + ¢(n) + 10.

We are now ready to prove Lemma 5.6.

Proof (Proof of Lemma 5.6). Immediate from Claim 5.8 and Claim 5.9.



484 A. Beimel et al.

5.3 Proving Lemma 5.4
In this part we prove Lemma 5.4. We will make use in the following lemma.

Lemma 5.10 (Pseudo-inverse lemma). Let n,w € N be numbers and
f:{0,1}" — {0,1}"™" be a function. Then there exists a function 7: {0,1}" —
{0,1}", and functions {fi} | such that:

i€n—w
1. SD( n, T (Un)) S 2.27%
2. For every i € [n —w], f(m(x))<i = fi(T<itw)-

Lemma 5.10 is proven in Sect. 6. In the following we use Lemma 5.10 to prove
Lemma 5.4.

Proof (Proof of Lemma 5.4). We start with the construction of 7. Fix n and
for every i € [t(n)], and y € {0,137 let S;(y) = P(i,y, z,). Let S! be the
function defined by Sj(y) = Si(y)<v,- Finally, let S = S n)||St(n) ]8T

By Lemma 5.10 with respect to f = S and w = w(n ) there exists a function
T {0,137 = {0,137 such that

SD(Ur(n)7 7-‘—n(rjr(n))) <2 2—w(n)7
and, Si, (7 (), ..., Si(mn(x)) can be computed by the first

w(n) + Z v; < U1

i<j<t(n)

bits of z. That is, there exist functions §1,~~~,§t(n) such that Si(m,(z)) =
Si(z<y,_,) for every i € [t( )].

We next use 51, .. St(n) to construct the function Q Let p OG(s) = s, and
for every i € [t(n)], 1et preoC(s) = S:(p¢ 4 (s)). Define

Qs) =5 () ... TS0 (5):

Next, let p7*°“(s) = s, and for every i € [t(n)], let

p%(s) = Si(ma (G719 (5)))).

To finish the proof of the lemma, we need to show that for any G: {0,1}" —
{0, l}r(") with G(5)<n—w(n) = S<n—w(n), and for every s, it holds that

Q(s) = Q% (s),
or more explicitly, we need to show that

7,06

T )| - IPsC () = P (8) <unll -+ P[5 (8) <vrgoy - 3)

P1 P



Structural Lower Bounds on Black-Box Constructions 485

To establish Eq. (3), in the following we prove with induction on 0 < i < t(n)
that p7"°%(s) = pI"°%(s) <u,-

For i = 0 the above holds trivially, as by definition p3"°%(s) = s = pi°“(s).
Next, assume that the above holds for ¢ — 1. We get that

P (5) <0, = il (G0 (5))<we = SUGOTT () <o) (4)
= gi((p?ffG(S))SvFl)v

where the first equality holds by the definition of p;r"OG(s), the second by the
definition of §i7 and the last equality holds since by our choice of G it holds
that G(s)<wv; , = S<w;_, (recall that v;_1 < n —w(n)). Next, by the induction
hypothesis we get that

ST 9 () <o) = Si((B7259(s)) = D7 (s), (5)

where the last equality holds by the definition of p] "OG(S). We now get the claim
by combining Egs. (4) and (5).

6 Proving the Pseudo-Inverse Lemma

In this section we prove Lemma 5.10, restated below.

Lemma 6.1 (Pseudo-inverse lemma, restated). Let n,w € N be num-
bers and f:{0,1}" — {0,1}"™" be a function. Then there exists a function
m:{0,1}" — {0,1}", and functions {fi};c(,_,) such that:

1. SD(Uyp, 7(U,)) < 2- 27
2. For every i € [n—ul, f(n())<i = filz<iru).

Proof (Proof of Lemma 5.10). We start with the construction of . Fix n and
w, and let € = n-27%. In the following we construct functions 7y, m2: {0,1}" —
{0,1}", and take m = 7 o o (namely, 7(z) = 71 (m2(x))). We will construct 7
and 79 such that m; will be a (perfect) permutation, while 7o will only be close
to a permutation, in the sense that

SD(U,,m(Uy)) <e.
This will be enough to get that
Up = m2(Un) me m2(m1(Un)) = (Up)

as stated in the lemma.

We will construct m; such that f’ := f om; will be a monotone function.
That is, for every x; < o it holds that f/(x1) < f/(z2), where here < is with
respect to the lexicographic order. We will then construct w9 that fulfils both of
the requirements of the lemma, with respect to this monotone function f’.
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Constructing m; such that f oy is monotone is straightforward. Let y; <
-+ <y, be all of the images of f in a lexicographic order. Define 7; as follows:
map the first | f~*(y1)| elements in {0, 1}" (according to the lexicographic order)
to the set f~'(y1). Then map the next | f~*(y1)| elements of {0,1}" to f~(y2),
and so on. In the last step, map the last |f’1(yr)| elements of {0,1}" to f~(y,).
It is not hard to see that m; is a permutation and that f’ = f o is monotone.

We next define 5. To do so, for every z, let i(z) be the minimal index ¢ such
that

(@il |0 ) <i # f1 (@il 1" <
or i(x) = L if not such index exists. That is, i(x) (if not L) is the first index
such that we cannot predict the first ¢ bits of f/(z) from the first i + w bits of x
(recall that since f’ is monotone, if f/(z;4y||0" ") <; = f(Tivw||1" %)<,
then f/'(2;1]|0" ")y = f/(ziywl|2)<i for any 2z € {0,1}"“""). We now
define 7y as follows: for any a such that i(z) = L, let mo(z) = z. Otherwise, let
T3 (%) = T<i(a)w 0" 7.

To finish the proof of the lemma, we need to show that (1), o is close to
be a permutation, and (2), that there are functions {f;} such that f(7(z))<; =
f(m2(x))<i = fi(<itw)- To show that 7o is a permutation, it is enough to prove
that the number of x € {0,1}" such that mo(z) # x is at most 2" - . That is,
it is enough to show that there are at most 2" - € strings = € {0,1}" such that

To see the above, observe that by the monotonicity of f’, for any i € [n —
w], and for any prefix a € {0,1}", there is at most one z € {0,1}'"" such
that f(z||[0""""")<; = a but f(2|[1""*"%)<; # a. Indeed, take the minimal
such z. If f(z||0""""")<; = a but f(z||]1"7""")<; # a then it must hold that
f(z|[1"™""%)<; > a, which means that f(2'||[0""""")<; > a for any 2’ > 2.

Using the above observation, we get that there are at most 2% strings z €
{0,137 for which f(2|]0""~")<; # f(2|[1""~*)<;. This implies, by definition
of i(x), that there are at most 2% strings « € {0, 1}" such that i(x) = i. Summing
over all possible values of i € [n—w], we get that there are at most >, . 2' =
2n-wtl — ¢. 2" strings x with i(x) # L, which implies that 7 is indeed close
to be a permutation.

Finally, we need to construct the functions {f;}

i€ln—w]- FOr every i € [n—w],

and z € {0,1}"7" let f;(2) be defined as follows. If z is a prefix of some string = €
{0,1}" such that i(z) <4, then let f;(2) = f'(2<i(z)+w]|0" @ 7). Otherwise,
let fi(2) = f'(]|0"~"7).

Now observe that by the definition of i(), we can determine if i(z) < i by
looking on the first ¢ + w bits of 2. Moreover, if i(z) < i, then we can determine
the value of i(x) by looking on the same first ¢ + w bits of x. Thus, if i(x) < i
then fi(z<itw) = f(Z<i(e)+w|/0" @) = f/(m2(z)). On the other hand, when
i(z) > i or i(z) = L, we have again that fi(z<itw) = [/ (T<itw|[0"7%) =
f/(m2(x)), which concludes the proof.
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