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ABSTRACT
We consider the problem of determining a binary ground truth using

advice from a group of independent reviewers (experts) who express

their guess about a ground truth correctly with some independent

probability (competence) 𝑝𝑖 . In this setting, when all reviewers

are competent with 𝑝 ≥ 0.5, the Condorcet Jury Theorem tells us

that adding more reviewers increases the overall accuracy, and if

all 𝑝𝑖 ’s are known, then there exists an optimal weighting of the

reviewers. However, in practical settings, reviewers may be noisy

or incompetent, i.e., 𝑝𝑖 ≤ 0.5, and the number of experts may be

small, so the asymptotic Condorcet Jury Theorem is not practically

relevant. In such cases we explore appointing one or more chairs

(judges) who determine theweight of each reviewer for aggregation,

creating multiple levels. However, these chairs may be unable to

correctly identify the competence of the reviewers they oversee,

and therefore unable to compute the optimal weighting. We give

conditions on when a set of chairs is able to weight the reviewers

optimally, and depending on the competence distribution of the

agents, give results about when it is better to have more chairs or

more reviewers. Through simulations we show that in some cases

it is better to have more chairs, but in many cases it is better to

have more reviewers.
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1 INTRODUCTION
People have been struggling with finding the correct answer for
millennia

1
. In ancient times, when faced with a problem that re-

quired discovering a ground truth, two main approaches dominated.

The first, less common today, was to approach deities and either

ask them to intervene on the randomness of the world (as in the

Book of Joshua, Chapter 7), which is a bit akin to sortition [18]; or

to ask the deity’s wisdom directly (e.g., the Oracle at Delphi). The

second approach, still in widespread use today, is to try to assess

the known information and draw a conclusion. This can either be

done by laymen, the basic premise of the jury system as established

by Magna Carta, or by people with expertise. In both cases, groups

of people are used (instead of single individuals) to increase the
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reliability and accuracy of the answers, building on the “wisdom of

the crowds”.

Mathematical analysis of using a group of agents – a jury, or a
set of experts – to assess information and make a decision has been

done since at least Condorcet’s time, in the late 18th century, when

he established the Condorcet Jury Theorem (CJT) [15, 16]. In the

standard jury setting, agents vote on a binary ground truth and the

objective is to aggregate their votes, using a voting rule, to maximize

the probability of the outcome being correct. It is typical to assume

that agents guess the ground truth correctly with some independent

probability (competence) 𝑝𝑖 , we call agents competent when 𝑝 > 0.5

and incompetent when 𝑝 ≤ 0.52. According to the CJT, when the

agents are competent, the collective accuracy of their majority vote

tends to correctness as the number of agents increases. Even with a

relatively small number of highly competent agents, accuracy can be

very high. However, this result, which basically tells us that groups

are less prone to mistake than individuals, rests on a knife’s edge.

By symmetry, if the agents are even minimally incompetent then,

as the population grows, their collective accuracy under majority

voting tends to 0, and a small group of highly incompetent agents

stands no chance.

In the world around us, this idea is used everywhere – in judi-

cial settings (juries), in academic conferences (peer evaluation), in

voting for political leaders or in referendums, and even in settings

with inanimate agents, such as aggregating sensor outputs into a

single reading or indicator.

The precariousness of the CJT stems from the underlying aggre-

gation procedure, majority voting, being anonymous, thus treating

all agents equally, regardless of their competence. When agent com-

petences can be different, majority rule is generally sub-optimal,

and if one knows the agents’ level of expertise exactly, the optimal

aggregation method for maximizing accuracy with any number

of independent experts and any competences is to use a weighted

majority rule in which each agent’s weight is the log-odds of their

competence [28, 35]. In this result, somewhat surprisingly, the op-

timal weight of each agent does not depend on the competences

of the other agents or even on the total number of agents. That

is, if agents are added or removed, we do not need to update the

weights in order for the weighted majority rule to remain optimal.

However, the assumption that each agent’s competence is known

exactly is highly unrealistic.

In this work, we consider a variant of the classic jury setting,

inspired by the domain of academic peer review [34], which at-

tempts to address these unrealistic assumptions. Since the quality

of reviewers may not be known by the conference Program Chairs,

many conferences (e.g., IJCAI) appoint more senior researchers

as SPCs (or chairs) to evaluate the reviewers and decide how to

aggregate their views. This multi-level process inspired our model:

2
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we have both reviewers, who we will call experts, but also chairs,
who we will call judges, that evaluate the experts and assign them

weights.

Analyzing this setting is particularly interesting when the num-

ber of agents is relatively small, and therefore we cannot rely on the

asymptotic guarantees of the CJT; as well as when there is a poten-

tial for significant deviation among agent competency, even when

the particular competence values are unknown; or when agents

can be incompetent, i.e., they will make the wrong decision most of

the time
3
. We examine when such a two-level system works well,

under what conditions it might be worthwhile to implement it, and

when is it better to have an expert become a judge.

Contribution. We propose and investigate a novel model of multi-

level jury problems for usewhenwe have a small number of possibly

unreliable agents. We show that when we know the agent com-

petences exactly (or even approximately), we can find an optimal

aggregation procedure, as long as the judges are competent. When

the agents’ (experts and judges) competences are unknown, we

provide a set of numerical experiments demonstrating that adding

more than a single judge is rarely helpful, and, indeed, in some

cases, the potential damage of a less competent judge is enough to

prefer to avoid judges completely.

2 RELATED WORK
There is a long history of studying the Condorcet jury model and its

extensions (e.g., Ben-Yashar and Paroush [8], Berend and Paroush

[10], Feld and Grofman [17], Grofman [20]), including work across

computer science, philosophy, and economics. Our work is pri-

marily based off the literature on weighting experts in both the

offline [28, 35] and online settings [9, 14, 19, 41], though in this

work we restrict our focus to a single decision. The overall CJT

model can be seen in portfolio solver techniques where slower,

more reliable algorithms evaluate ensembles of faster, less accurate

algorithms [40] and in boosting techniques in ML, where one ag-

gregates weakly competent classifiers into a better overall classifier

[33]. These methods are particularly useful when each expert will

use limited effort or energy [39].

In settings with repeated decisions, the competences of the ex-

perts can be estimated based on their performance history. Their

competence might be estimated by their similarity to other agents,

or how often they agreed with the decision outcomes in the past [4,

23, 32]. In our setting, however, we do not have access to this his-

tory and cannot use it to estimate competences. Indeed, in peer

review, one may have a notion of other reviewers’ competency, but

rarely does one co-review with another to form a precise estimate.

Our emphasis on imperfect judges is also inspired by work on

“wisdom of the crowds" and crowdsourcing [12, 13, 36], proxy vot-

ing [1, 30] and truth-tracking in Liquid Democracy [7, 44]. For

example, in proxy/delegative voting the voters are like judges as-

signing weights (voting units) to their proxies/delegates. But, as

noted above, a major inspiration has been the work on academic

peer evaluation [34], in which experts assess each other’s com-

petences. Some treat this matrix as a Markov chain, and use its

3
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eigenvector values as the experts’ weights [21] in a manner rem-

iniscent of some peer-evaluation models [26, 29, 42]. In contrast,

within our setting the agents who vote and the of agents who

weight the voters are disjoint.

The problem of partitioning agents into judges and experts is also

related to the problem of computing optimal committee sizes [27,

31]. There is also work on how group accuracy depends on the size

of the group and mean competence [20, 22], which is reflected in

our simulations.

3 MODEL AND NOTATION
Our model has two types of agents; judges and experts. Let 𝐸 be a

set of𝑚 experts and 𝐽 be a set of 𝑛 judges. The experts vote on a

single binary issue where there is only one correct (ground truth)

outcome. Without loss of generality, let the options be {1, 0} where
1 is correct and 0 is incorrect. Each expert 𝑒 ∈ 𝐸 has a competence, or
probability 𝑝𝑒 of voting correctly, independent of all other experts.

We associate each expert’s index with their vote, so expert 𝑒 ∈ 𝐸

casts a vote 𝑣𝑒 ∈ {1, 0} with competence 𝑝𝑒 = 𝑃 (𝑣𝑒 = 1). If an
agent’s competence is above 1/2wewill say that they are competent,

and call them incompetent otherwise. We assume no one is always

correct or always incorrect, and so 0 < 𝑝𝑒 < 1.

Weighted Majority Rules. We refer to the probability of pro-

ducing the correct outcome as the accuracy, and reserve the term

competence to refer to individual agents’ probabilities of voting

correctly; i.e. accuracy is collective.

Definition 1 (Weighted Majority Rule). A weighted majority
rule gives each expert 𝑒 ∈ 𝐸 a weight 𝑤𝑒 ∈ R and selects 1 as the
winner if

∑
𝑣𝑒=1

𝑤𝑒 >
∑
𝑣𝑒=0

𝑤𝑒 , selects 0 as the winner if
∑
𝑣𝑒=1

𝑤𝑒 <∑
𝑣𝑒=0

𝑤𝑒 , and uses a tie-breaking rule (e.g. coin flip) for the edge case

where these sums are equal4.

Definition 2 (Simple Majority Rule). Simple majority rule
refers to the weighted majority rule where all weights are equal and
positive and ties are broken randomly.

The Condorcet Jury Theorem tells us that if 𝑝𝑒 ≥ 0.5 + 𝜖 for

some 𝜖 > 0 for all experts, then with simple majority accuracy

tends to 1 asymptotically as the number of experts tends to infinity.

A weighting function maps vectors of values in (0, 1) (i.e. compe-

tences) to equal length vectors of real values. For any set of experts,

including incompetent ones, the optimal aggregation method of

experts’ votes, is to apply the log-odds weighting function to the

experts’ competences and use the corresponding weighted majority

rule [28, 35].

Definition 3 (Log-OddsWeighting Function). Given a vector
of values in the open unit interval ®𝑝 = (𝑝1, . . . , 𝑝𝑚), the log-odds
weighting function returns the vector ®𝑤 = (𝑤1, . . . ,𝑤𝑚) where𝑤𝑒 =

log( 𝑝𝑒
1−𝑝𝑒 ) for all 1 ≤ 𝑒 ≤ 𝑚.

Any weighting of the agents implies a collection of winning

coalitions – subsets of agents who, if they all vote the same way,

4
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determine the outcome regardless of the other votes [38]. Differ-

ent weightings may yield the same rule because they imply the

exact same winning coalitions. For example, with 5 agents there

are exactly 7 distinct weighted majority rules [24, 25]. Multiplying

the weights of all agents by a constant does not change the win-

ning coalitions and therefore does not change the rule. Similarly,

perturbing agent weights by small amounts may not change the

winning coalitions. Therefore, while the weights may vary con-

tinuously, the accuracy under various weightings will change in

discrete steps. In practice, weights may be finite precision rather

than true real numbers, and this is also the case in our simulations

that use floating point arithmetic, but as long as the rounding tends

to be too small to change winning coalitions for most instances its

effect will be negligible.

The log-odds weighting rule assigns a positive weight to compe-

tent experts when 𝑝𝑒 > 0.5, weight of zero if 𝑝𝑒 = 0.5, and negative

weight to any incompetent expert with 𝑝𝑒 < 0.5. In some settings

it may be inappropriate to allow negative weights and better to

assume any such weights are rounded up to zero. Bounding weights

below by zero has the effect of ignoring the incompetent experts

and is therefore qualitatively similar to assuming all experts are

competent, though with a smaller number of experts. We therefore

focus on the more informative setting where weights can be nega-

tive. Negative weights also have real-world motivation. A remote

sensor may have drifted so far off its initial calibration to be reliably
wrong, as has happened with many spacecraft [6]. However, we

would like to believe that peer reviewers, jurors, and the like are

not so reliably wrong that negative weights would be needed.

Multi-Level Jury Problems. Each judge 𝑗 ∈ 𝐽 estimates the

competence of each expert 𝑒 ∈ 𝐸 as 𝑝 𝑗𝑒 ∈ (0, 1) and assigns them

a weight 𝑤 𝑗𝑒 based on this estimate. When assigning weights to

the experts, our judges always use the log-odds weighting function

on their competence estimates. Intuitively, our judges are trying

to implement the optimal rule using their estimates of the experts’

competences. Formally, judge 𝑗 assigns expert 𝑒 a weight 𝑤 𝑗𝑒 =

log( 𝑝 𝑗𝑒

1−𝑝 𝑗𝑒
). When there are multiple judges, the weight of an expert

will be the average weight assigned to them by the judges 𝑤𝑒 =
1

𝑛

∑
𝑗
𝑤 𝑗𝑒 .

PerceivedCompetences. Our theoretical results depend on judges
using the log-odds weighting but do not depend on how the judges

form their competence estimates 𝑝 𝑗𝑒 . To perform empirical analysis

we must make assumptions about where these estimates come from.

Rather than drawing the estimates 𝑝 𝑗𝑒 from some named distribu-

tion with mean 𝑝𝑒 , we take an approach inspired by peer review,

and assume that judges and experts are fundamentally similar. Each

judge 𝑗 has competence 𝑝 𝑗 just like the experts and estimates the

competence of expert 𝑒 as 𝑝 𝑗𝑒 = (𝑝 𝑗 · 𝑝𝑒 ) + (1−𝑝 𝑗 ) (1−𝑝𝑒 ), i.e., the
probability that expert 𝑒 agrees with them. When 𝑝 𝑗𝑒 is derived in

this way, we will refer to it as the judge’s perceived competence of
the expert. As with peer review, a judge may estimate an expert’s

competency from knowing them professionally, but may not have

observed many past reviews. A judge could also reach this estimate

of competency if they observe enough votes from the expert but the

ground truth is never revealed, as is the case in some peer prediction

settings [43]. While there are many models one could select for the

formulation of perceived competencies, this formulation does not

rely on complex models of estimation or opinion formation. Indeed,

any additional assumptions that improves accuracy, i.e., that judges

are better at estimation than simple observation, would improve

the limit results we obtain. So while this assumption is simplistic, it

is in some ways a worst-case assumption for our theoretical results,

and leads to interesting empirical results.

Example 1. Suppose we have 5 experts with competences ®𝑝𝐸 =

(0.6, 0.6, 0.6, 0.7, 0.9). The optimal log-odds weighting is approxi-
mately ®𝑤∗

𝐸
= (0.41, 0.41, 0.41, 0.85, 2.2). With these weights the most

competent expert (𝑝𝑒 = 0.9) receives a weight (𝑤𝑒 = 2.2) that makes
them a dictator in a weighted majority vote, since their weight is
greater than all other experts combined. Hence, the accuracy under
the log-odds weighting is exactly 0.9. If instead we use simple majority,
the accuracy drops to 0.82.

A judge with 𝑝 𝑗 = 0.6 would assign the experts weights of ap-
proximately ®𝑤0.6

𝐸
= (0.08, 0.08, 0.08, 0.16, 0.323) using the log-odds

weighting of perceived competences. Note that the fifth expert is no
longer a dictator. How high of a competence would the judge need
to have to assign weights that results in the optimal weighting? The
judge’s competence would have to be greater than 0.962; a far cry from
0.6 and higher than all the experts. And yet, the judge’s sub-optimal
weighting yields an accuracy of 0.898, which is a great improvement
over simple majority, and extremely close to optimal at 0.9! Example 1
is illustrated in Figure 1 where we plot the accuracy, sweeping 𝑝 𝑗 from
0.0 to 1.0.

Figure 1: Accuracy of perceived optimal weightings from a
single judge with the expert competences as in Example 1.

In Example 1 we rounded the values of the weights to two deci-

mal places, which did not change the rule implemented. Similarly,

whether judges are human, sensors, or algorithms, they do not (al-

ways) need to provide high precision of weights. More specifically,

the smaller the number of agents, the less chance there is for small

perturbations or rounding of the weights to change the rule. This

is also why Figure 1 will be piecewise linear regardless of the step

size.

4 OPTIMALITY AND ROBUSTNESS
With a single judge, if 𝑝 𝑗𝑒 = 𝑝𝑒 for all 𝑒 ∈ 𝐸, then all experts receive

their optimal weight. As noted, small perturbations to the weights



do not change the rule because the winning coalitions determined

by the weights do not change. Thus, if 𝑝 𝑗𝑒 is close enough to 𝑝𝑒 for

all experts, they will still produce the optimal weighting. We now

establish sufficient conditions for an ensemble of judges to produce

the optimal weighting, and provide a condition under which the

difference between an expert’s weight and their optimal weight

tends to be small.

Proposition 1 shows that when the geometric mean of the judges’

perceived competence of experts odds is their true competence odds,

all experts are assigned their optimal weights,𝑤𝑒 = 𝑤∗
𝑒 . This does

not require individual judges to know the experts’ true competences,

and does not depend on the number of experts nor the number of

judges.

Proposition 1. If each judge uses the log-odds weighting function
on their estimates of expert competences, and the geometric mean of
the judges’ estimates of each expert’s competence odds is the expert’s
true odds, then the weighted majority rule using the judges’ average
weights to weight each expert is exactly the optimal weighted majority
rule.

Proof. Since judge 𝑗 gives each expert aweight of𝑤 𝑗𝑒 = log( 𝑝 𝑗𝑒

1−𝑝 𝑗𝑒
),

𝑤𝑒 =
1

𝑛

∑
𝑗

𝑤𝑗𝑒 =
1

𝑛

∑
𝑗

log(
𝑝 𝑗𝑒

1 − 𝑝 𝑗𝑒
) =

=
1

𝑛
log(

∏
𝑗

𝑝 𝑗𝑒

1 − 𝑝 𝑗𝑒
) = log( (

∏
𝑗

𝑝 𝑗𝑒

1 − 𝑝 𝑗𝑒
)
1

𝑛 )

We assume the geometric mean of judge’ estimates of the experts’

competence odds is correct, i.e., ( 𝑝𝑒
1−𝑝𝑒 ) = (∏

𝑗

𝑝 𝑗𝑒

1−𝑝 𝑗𝑒
)
1

𝑛 . Thus,𝑤𝑒 =

log( 𝑝𝑒
1−𝑝𝑒 ) = 𝑤∗

𝑒 . □

This result requires assumptions on the judges’ competence

estimates that must hold for all experts. However, suppose there
are errors in these collective competence estimates. We want to

know how sensitive the weight of a single expert is to such errors.

Corollary 1. If the geometric mean of judge estimates of compe-
tence is off by some multiplicative factor 𝛼 for some expert, then the
error of that expert’s weight is only log(𝛼).

Proof. In the proof above, assume instead that 𝛼

(
𝑝𝑒

1−𝑝𝑒

)
=

(∏
𝑗

𝑝 𝑗𝑒

1−𝑝 𝑗𝑒
)
1

𝑛 . Then𝑤𝑒 = log(𝛼 · 𝑝𝑒
1−𝑝𝑒 ) = 𝑤∗

𝑒 + log(𝛼). □

Admittedly, it is not clear in what settings the conditions of

Proposition 1 should be expected to hold. Neither can we make

claims about what multiplicative factors are realistic in Corollary 1.

But ultimately, what we care about most is the sensitivity of the

accuracy to errors in competence estimates, which has to do with

the set of winning coalitions induced by the weights. We care

less about the sensitivity of the weights themselves, although the

sensitivity of the weights gives some intuition.

In Example 1, we see that for all 𝑝 𝑗 > 0.55 the accuracy rivals

that of the optimal rule, with almost no difference. The effect that

dominates Figure 1 is when we move from 𝑝 𝑗 < 0.5 to 𝑝 𝑗 = 0.5

(when the rule becomes simple majority), with another slight bump

with a move to 𝑝 𝑗 > 0.55.

Recent work [5] shows that when expert competences are drawn

from certain distributions over the range (1/2, 1), simple majority

achieves an accuracy close to optimal. However, as one might ex-

pect, when experts can be incompetent the majority rule is no

longer a good approximation to the optimal weighted majority rule.

Thus, if judges can at least differentiate the competent from in-

competent experts, the weighting they produce should be expected

to outperform simple majority rule when there are incompetent

agents. In our model, any minimally competent judge with 𝑝 𝑗 > 0.5

is able to achieve this. We will discuss this more in Section 5 with an

array of experiments, including a suite of experiments with a single

judge. For now we introduce some basic theoretical observations

that help understand the phenomena observed in our experiments.

Namely, the improvement in accuracy as the judge(s) competence(s)

reach 𝑝 𝑗 = 0.5 appears to be largely but not entirely explained by

the judge’s ability to (1) assign experts weights of the correct sign,

and (2) assign experts weights according to the weak order of their

competences.

Example 2 (Two Experts). Suppose there are two experts with
competences (𝑝1, 𝑝2) such that 𝑝1 > 𝑝2. If 𝑝2 > 1/2, i.e., both experts
are competent, the optimal aggregation rule is to make 𝑝1 dictator.
However, if 𝑝1 > 1/2 > 𝑝2 then the optimal rule is either to make 𝑝1 a
dictator if 𝑝1 ≥ 1−𝑝2, or else make 𝑝2 an anti-dictator using negative
weight such that the outcome is the opposite of however 𝑝2 votes. If
1/2 > 𝑝1 > 𝑝2, then the optimal rule makes 𝑝2 the anti-dictator
symmetrically with the first case.

From Example 2, we see that even with only two experts, if a

judge can determine which experts are competent, and order their

competences correctly, this is enough information to produce the

optimal rule. With more experts, the situation is more complicated,

but our experiments reveal that merely separating the competent

experts from incompetent ones creates a large improvement in

overall accuracy. Any chair with 𝑝 𝑗 > 1/2 using log-odds weightings
of the perceived competences can achieve this improvement.

Proposition 2 (Correct Sign). If sign(𝑝 𝑗𝑒−0.5) = sign(𝑝𝑒−0.5),
then sign(𝑤 𝑗𝑒 ) = sign(𝑤∗

𝑒 ).

Proof. Proposition 2 follows directly from the fact that
𝑝

1−𝑝 > 1

if and only if 𝑝 > 1/2, and therefore log( 𝑝
1−𝑝 ) > 0 if and only if

𝑝 > 1/2. Symmetrically for 𝑝 < 1/2. □

Proposition 3 (Correct Order). If 𝑝 𝑗𝑒 is a strictly monotonic
increasing function of 𝑝𝑒 , then the weak order of expert weights given
by judge 𝑗 is the weak order of the experts’ competences.

Proposition 3 follows from the monotonicity of the log-odds

weighting. When a single judge applies the log-odds weighting to

their perceived competences of a small set of experts then we can

make the following observations.

Observation 1. If 𝑝 𝑗 = 1/2 then all experts are equally weighed.
If 𝑝 𝑗 = 1 then experts are optimally weighed.

If 𝑝 𝑗 = 1/2 then the judge will perceive all experts as having a

competence of 1/2, and therefore assign them the weight of 0, which

we treat as giving them equal weight, i.e. majority vote. When

𝑝 𝑗 = 1, the judge knows exact competences of the experts and

therefore assign them their optimal weights.

Observation 2. If 𝑝 𝑗 > 1/2, then 𝑝 𝑗𝑒 > 𝑝 𝑗𝑒′ iff 𝑝𝑒 > 𝑝𝑒′ .



This means that a judge’s perceived competences of the experts

preserves the order of their true competences if 𝑝 𝑗 > 1/2. When

weights are based on perceived competences, this means whenever

𝑝 𝑗 > 0.5, the judge will assign all experts’ weights with the correct

sign and in the correct order. This is because when 𝑝 𝑗 > 0.5, 𝑝 𝑗𝑒
is monotonically increasing in 𝑝𝑒 and 𝑝 𝑗𝑒 > 0.5 iff 𝑝𝑒 > 0.5. Thus,

even a single barely competent judge might give us an edge over

simple majority.

Theorem 1 (Minimal Competent Single Judge). If 𝑝 𝑗 > 0.5

and the judge assigns experts weights according to their perceived
competences, the weights given by the judge will have the correct sign
and the correct order.

Proof. Let 𝑝 𝑗 = 1/2 + 𝜀 𝑗 and 𝑝𝑒 = 1/2 + 𝜀𝑒 .

𝑝 𝑗𝑒 =
(
1/2 + 𝜀 𝑗

)
(1/2 + 𝜀𝑒 ) +

(
1/2 − 𝜀 𝑗

)
(1/2 − 𝜀𝑒 )

= 1/2 + 2𝜀 𝑗𝜀𝑒

If 𝜀 𝑗 > 0 and 𝜀𝑒 > 0, then this value is greater than 1/2, if 𝜀 𝑗 > 0 and

𝜀𝑒 < 0, then this value is less than 1/2, and if 𝜀𝑒 = 0 then this value

is exactly 1/2. The proposition then follows from Proposition 3 and

Proposition 2. □

We can generalize Proposition 2 by replacing the requirement

that 𝑝 𝑗 > 1/2 with the requirement that the geometric mean of

judges’ estimated competence odds is greater than 1. Notice that the

requirements for this theorem are far weaker than for the optimality

demanded by Proposition 1.

Proposition 4 (Correct Sign). If the geometric mean of every
expert’s estimated competence from the judges is greater than 1 when-
ever 𝑝 𝑗 > 1/2, less than 1 whenever 𝑝 𝑗 < 1/2, equal to 1 when 𝑝 𝑗 = 1/2,
every expert will be assigned a weight with the same sign as their
optimal weight.

Proof. Suppose 𝑝𝑒 > 1/2. Their optimal weight is positive, and

so we need the following to hold:∑
𝑗∈𝐽

log

(
𝑝 𝑗𝑒

1 − 𝑝 𝑗𝑒

)
> 0

∏
𝑗∈𝐽

𝑝 𝑗𝑒

1 − 𝑝 𝑗𝑒
> 1

©­«
∏
𝑗

𝑝 𝑗𝑒

1 − 𝑝 𝑗𝑒

ª®¬
𝛾

> 1

for 𝛾 > 0. When 𝛾 = 1

𝑛 this is the geometric mean. The case for

𝑝𝑒 < 1/2 is symmetric with flipped inequality, and for 𝑝𝑒 = 1/2 is
the same but with strict equality. □

Proposition 2, Proposition 3, and Theorem 1 can be immedi-

ately generalized to multiple judges by requiring their respective

assumptions to hold for all judges individually, because the sum of

non-negative (strictly monotonic) functions remains non-negative

(strictly monotonic). While our results on correct sign and order

are interesting, they are not sufficient to always outperform equal

weighing. As we will see in the next section, with our perceived

competences model we see a discrete interpolation between equal

and optimal weighting as a single judge’s competence increases.

Sign and order preservation appear to be part of the explanation as

to why, but this explanation is incomplete. We pose the conjecture

of monotonicity w.r.t. single judge competency using perceived

competences as an open problem.

5 EMPIRICAL RESULTS
We gain a deeper understanding of the behavior we see in Exam-

ple 1 and Section 4 with a set of numerical experiments. In our

simulations, the agents’ competences are drawn i.i.d from various

distributions. All experiments were run for 100,000 iterations for

each parameterization of the problem instance so that the variances

are negligible. When there is no judge (𝑛 = 0), unweighted majority

vote is used with random tie-breaking.

We consider three distributions of expert competences: uniform,

truncated normal, and truncated exponential. The uniform distri-

bution reflects settings where the experts can equally have any

competence; the exponential distribution models settings where

the expertise tends to be rare [11]; and the normal distribution is

appropriate for a common expertise [37].

We provide Tables 1-3, with one for each family of competence

distribution over (0.5, 1.0) where no agents are incompetent and all

agents, judges and experts, have their competences drawn from the

same distribution. By looking across the rows, we see the improve-

ment from incrementally adding experts, by looking down each

column we see any change from adding judges, and by looking

at the diagonals we see how best to choose 𝑛 and𝑚 to divide the

agents into roles given a fixed number of agents 𝑛 +𝑚.

When competences are bounded below by 0.5, we see that there

is always a benefit to increasing the number of experts, but no

benefit to increasing the number of judges beyond 𝑛 = 1. Notably,

without any judges, adding an expert only increases accuracy when

incrementing the number of experts from even to odd.When adding

a single expert makes𝑚 even, there is no observable increase in

accuracy if there is no judge. With one or more competent judges,

increasing the number of experts always increases accuracy. By

contrast, adding a single judge shows increasing accuracy when-

ever there is more than 1 expert, but increasing the number of

judges further shows no benefit. See Appendix for a suite of similar

experiments varying the support and parameters of the various

distributions.

In all three of these tables, there is a noticeable benefit to adding

a single judge, but no benefit to adding judges beyond that. We

therefore take a closer look in Section 5.1 at the case with a single

judge, and examine how the accuracy varies if the judge’s com-

petence differs from the experts, even allowing the judge to be

incompetent. Lastly, we will look in Section 5.2 at how to determine

the number of agents to set as judges versus experts when all agent

competences are drawn from the same distribution and agents can

be incompetent. Further tables can be found in the Appendix.

5.1 Single Judge
The top row of Figure 2 shows accuracy as a function of the single

judge’s competence when expert competences are distributed over

the interval [0.001, 0.999] according to the uniform, truncated nor-

mal (N(1/2, varying 𝜎)), and truncated exponential distributions

(using the density function 𝑒−𝑥/1−𝑒−𝑏 for varying values of 𝑏) re-

spectively. Only Figures 2a and 2b exhibit true symmetry because



(a) Uniform distribution over (0, 1) (b) 5 experts with truncated (in (0, 1)) Gauss-
ian competences N(1/2, 𝜎)

(c) 5 experts with exponentially distributed
competences (0, 1)

(d) Uniform distribution over (0.5, 1) (e) 5 experts with truncated (in (0.5, 1)) Gauss-
ian competences N(1/2, 𝜎)

(f) 5 experts with exponentially distributed
competences in (0.5, 1)

Figure 2: Accuracy with a single judge and expert competences drawn i.i.d. from a distribution with support [0.001, 0.999] (top
row) or support [0.501, 0.999] (bottom row).

𝑛\𝑚 1 2 3 4 5 6 7 8 9 10

0 0.750 0.749 0.843 0.843 0.897 0.897 0.929 0.929 0.950 0.950

1 0.750 0.831 0.880 0.913 0.936 0.951 0.964 0.973 0.980 0.984

2 0.751 0.833 0.881 0.914 0.937 0.953 0.964 0.974 0.980 0.984

3 0.748 0.833 0.880 0.914 0.937 0.952 0.964 0.972 0.980 0.984

4 0.748 0.832 0.882 0.914 0.937 0.952 0.964 0.974 0.980 0.984

5 0.747 0.833 0.882 0.915 0.937 0.953 0.965 0.972 0.980 0.984

6 0.748 0.832 0.881 0.914 0.937 0.952 0.964 0.974 0.980 0.985

7 0.750 0.833 0.881 0.913 0.937 0.954 0.964 0.974 0.980 0.984

8 0.748 0.834 0.881 0.915 0.937 0.952 0.964 0.974 0.980 0.985

9 0.751 0.832 0.881 0.914 0.937 0.953 0.965 0.974 0.980 0.984

10 0.748 0.833 0.881 0.915 0.937 0.954 0.966 0.974 0.979 0.984

Table 1: Accuracy with all agent competences drawn from
the uniform distribution over (0.501,0.999)

competences are drawn from a symmetric distribution with mean

0.5, and Figures 2d and 2e show behavior most similar to Figure 1.

In the top row of Figure 2 we can have highly incompetent ex-

perts, but even in this setting whenever the judge has competence

𝑝 𝑗 > 1/2, high overall accuracy is achieved. This is because the

𝑛\𝑚 1 2 3 4 5 6 7 8 9 10

0 0.581 0.578 0.621 0.618 0.647 0.648 0.673 0.669 0.693 0.692

1 0.580 0.616 0.639 0.658 0.673 0.691 0.705 0.720 0.732 0.741

2 0.580 0.612 0.640 0.660 0.680 0.690 0.705 0.719 0.729 0.743

3 0.581 0.612 0.640 0.659 0.676 0.691 0.707 0.718 0.730 0.742

4 0.581 0.614 0.638 0.658 0.673 0.692 0.707 0.719 0.727 0.741

5 0.581 0.616 0.635 0.658 0.674 0.692 0.706 0.718 0.729 0.743

6 0.580 0.612 0.635 0.660 0.675 0.692 0.706 0.717 0.731 0.742

7 0.579 0.613 0.639 0.659 0.678 0.692 0.707 0.718 0.730 0.741

8 0.581 0.615 0.639 0.659 0.676 0.689 0.708 0.718 0.732 0.741

9 0.582 0.613 0.639 0.659 0.675 0.692 0.707 0.719 0.733 0.741

10 0.579 0.612 0.641 0.662 0.676 0.692 0.705 0.718 0.731 0.743

Table 2: Accuracy with all agent competences drawn from
the Gaussian distribution N (0.5,0.1) truncated over (0.501,
0.999)

ability of the judges to differentiate competent experts from incom-

petent ones is of primary importance, and Proposition 4 shows that

a judge using perceived competences is able to do this. In Figures 2a-

2c, once the judge passes a minimum threshold of competence, little



𝑛\𝑚 1 2 3 4 5 6 7 8 9 10

0 0.672 0.672 0.750 0.747 0.797 0.799 0.834 0.835 0.862 0.865

1 0.674 0.745 0.795 0.831 0.857 0.881 0.897 0.913 0.925 0.935

2 0.672 0.744 0.795 0.829 0.858 0.882 0.898 0.912 0.926 0.936

3 0.675 0.744 0.796 0.829 0.858 0.879 0.899 0.913 0.925 0.936

4 0.671 0.747 0.791 0.830 0.858 0.880 0.897 0.913 0.924 0.938

5 0.672 0.746 0.794 0.831 0.857 0.879 0.897 0.912 0.925 0.936

6 0.672 0.746 0.791 0.829 0.858 0.880 0.898 0.913 0.926 0.935

7 0.674 0.742 0.793 0.831 0.857 0.880 0.896 0.913 0.925 0.936

8 0.672 0.745 0.792 0.829 0.858 0.880 0.897 0.913 0.925 0.937

9 0.671 0.747 0.796 0.829 0.858 0.881 0.898 0.913 0.925 0.936

10 0.674 0.745 0.795 0.832 0.857 0.878 0.897 0.912 0.927 0.936

Table 3: Accuracy with all agent competences drawn from
the exponential distributionwith scale parameter𝑏 = 2 trun-
cated over (0.501, 0.999)

is gained from increasing 𝑝 𝑗 . Interestingly, in Figure 2b we see that

when expert competences are distributed normally with mean 1/2,
higher variance leads to higher collective accuracy. This appears to

be because a judge with sufficiently high competence can differen-

tiate between highly competent and minimally competent experts,

and then leverage the benefits of having highly competent experts

when they are present.

In the bottom row of Figure 2 we show accuracy as a function

of the single judge’s competence when expert competences are

distributed over the interval [0.501, 0.999] according to our three

distributions. This is closer to prior work in the literature where all

experts are assumed to be competent. Unlike in Figure 2a and 2b,

which are symmetrical distributions, we now see an asymmetry

around 𝑝 𝑗 = 0.5. When the judge’s competence is 1/2, the judge
gives all experts the same weight, so when experts competence is

symmetrical around 1/2 (as in the upper row of Figure 2), resulting

in an accuracy of 1/2, but when they cannot be incompetent, the

resulting accuracy is higher – almost optimal [5]. In contrast to the

top row of Figure 2, when all experts are competent, there is a large

difference in accuracy for truncated exponential distributions with

different scale parameters.

5.2 Should We Add a Judge or an Expert?
Empirically, with a single judge the accuracy improves as the judge’s

competence grows, and we know from the Condorcet Jury The-

orems that as the number of experts increases, if the experts are

competent, accuracy will increase. Hence, if the conditions of Propo-

sition 4 hold, then accuracy will increase as the number of experts

increases whether they are competent or incompetent, as long as

they have competences that are not equal to 1/2. We examine the

balance between the benefits of increasing the number of judges

and increasing the number of experts. That is, with a fixed set of

agents of unknown competences, how should they be partitioned

between experts and judges? This problem is faced by any scientific

conference with a hierarchical structure: how to divide its Program

Committee between reviewers and SPCs, ACs, etc.

We first draw agents’ competences from uniform distributions

with varying lower bounds and examine the optimal number of

agents to set aside as judges rather than experts when we have 5

and 11 agents, respectively (Figures 3a and 3d). For both number of

agents, we see that setting aside a single agent as judge diminishes
the accuracy compared to the simple majority rule in almost all cases.
This is more pronounced when there is a possibility the judge will

have competence below 1/2, i.e., when a lone judge is incompetent

they give all competent experts negative weights and incompetent

experts positive weights. The only case where a judge is helpful is

when the minimum competence of agents is 1/2, perhaps because
there is high enough chance that the judge will be helpful, and

the agents’ competence is not guaranteed to be high enough that

losing the judge as an expert is too big a hit. Even adding more

judges, at best, returns the accuracy to the level of a simple majority

rule, though most commonly it does not. In the 11 agent case,

Figure 3d, this effect is even more pronounced than for 5 agents.

With 11 agents, adding enough judges can eventually bring peak

accuracy to slightly above the simple majority, though it requires

roughly an even split between judges and experts (or even slightly

more judges). Further experiments show that if we simply add a

judge, increasing the number of agents by one without reducing the

number of experts, accuracy drops, so adding a judge is harmful, up

until the point where the lower bound on competences guarantees

the judge will be helpful (see Appendix).

In contrast to the uniform distribution, when drawing compe-

tences from the normal and the exponential distributions, things

are a bit different. They show that a single judge can be productive.

With normal distributions, when the mean is high but not extremely

so (Figures 3b and 3e), adding a judge helps. When the mean is very

high (0.8 and above), aggregating all agents as experts seems to be

better than having a judge, for whom there is still a probability of

being bad. But when agents are with a lower mean, having a judge

seems to help, and this is true even for a mean of 0.5, in which

there is a probability of 0.5 that the judge will be incompetent. This

pattern appears for 5 agents, but, as in the uniform case, it is more

pronounced for 11 agents.

For the exponential distributions (Figures 3c and 3f), this property

is stronger – it is always beneficial, for our parameters, for agents

to have one judge, and that improves over a simple majority. This

is likely due to the fact that the small loss of accuracy from having

one fewer experts is made up for by the ability of even a minimally

competent judge (and all agents are competent in this distribution)

to distinguish highly competent experts from less competent ones.

Unlike in the uniform case, adding more judges (after a single one)

is never helpful compared to a single judge (though sometimes two

judges are better than simple majority).

These results imply that the division of labor in scientific con-

ference is counter-intuitive: multiple layers above regular experts

(e.g., SPC, AC) does not seem to be helpful. It seems better to have

a flat hierarchy (i.e., fewer judges) and use simple majority, despite

this idea being often frowned upon. We did not investigate the case

where a judge is more competent than experts, but even then it

is not clear more judges are better, as losing a top expert incurs a

cost. Indeed, it is not at all clear that the best judge is the one with

the highest competence, and we leave this open question to future

research.



(a) 5 agents with competence from uniform
distribution over (min, 1)

(b) 5 agents with competence from truncated
(in (0, 1)) Gaussian competencesN(mean, 0.1)

(c) 5 agents with competence from truncated
(in (0.5, 1)) exponential distribution

(d) 11 agents with competence from uniform
distribution over (min, 1)

(e) 11 agents with competence from truncated
(in (0, 1)) Gaussian competencesN(mean, 0.1)

(f) 11 agents with competence from truncated
(in (0.5, 1)) exponential distribution

Figure 3: Accuracy partitioning a set of agents randomly into judges and experts with agent competences i.i.d. from the same
distribution.

6 DISCUSSION AND FUTURE WORK
We consider a multi-level jury problem in which experts are given

weights according to estimates from judges of their competence.

We focus on settings where there is a small number of agents, so

the classic asymptotic results from the literature do not apply, as

well as cases where it is possible for agents to be incompetent (i.e.,

their chance of being correct might be less than 1/2).
We show that when judges are even minimally competent, we

can guarantee that the weak order and sign of the weights assigned

to experts will be correct. Additionally, we showed that if judges

use the log-odds weighting and are reasonably accurate as a group,

we will recover the optimal weighting function. Moreover, we show

some cases where judges bring a meaningful benefit to the process.

However, our results regarding how to divide a group of agents – a

particularly relevant issue for scientific conferences – indicate that

multiple judges may be unhelpful, and there are cases (e.g., uniform

distributions) in which an additional expert is more valuable than

a judge.

There are several interesting future directions. One is to recon-

sider the problem we have presented here when the weights given

by experts must all be non-negative, or when it is required for each

judge 𝑗 that
∑
𝑒∈𝐸 𝑤 𝑗𝑒 = 1 (as required in Aziz et al. [2, 3] for the

setting of peer evaluation). Another is to examine what happens

when the hierarchy level is increased by adding an additional layers

(as in large conferences, which have Area Chairs in charge of SPCs,

in charge of PC members). At what point does it no longer become

helpful (or begin to be helpful)? Can a guarantee of minimal quality

of judges change the value proposition of having them? Further,

it would be interesting to explore how this framework extends

to non-binary information, as when PCs provide more detailed

information to SPCs than just acceptance or rejection.
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A TABLES
The following tables give the accuracy with competences drawn

from various distributions given a number of judges 𝑛 and number

of experts𝑚.

A.1 Uniformly Distributed competences

Table 4: Accuracy with judge and expert competences from
uniform distribution over (0.1,1.0)

𝑛\𝑚 1 2 3 4 5 6 7 8 9 10

0 0.549 0.550 0.572 0.574 0.591 0.591 0.607 0.607 0.621 0.621

1 0.526 0.534 0.538 0.544 0.546 0.549 0.550 0.552 0.550 0.550

2 0.546 0.563 0.574 0.582 0.587 0.590 0.592 0.593 0.596 0.597

3 0.559 0.579 0.593 0.603 0.607 0.611 0.615 0.621 0.623 0.622

4 0.571 0.593 0.611 0.618 0.627 0.631 0.636 0.641 0.642 0.643

5 0.577 0.603 0.620 0.633 0.641 0.649 0.653 0.657 0.661 0.664

6 0.583 0.616 0.635 0.645 0.655 0.663 0.669 0.671 0.677 0.679

7 0.591 0.624 0.643 0.660 0.667 0.675 0.679 0.685 0.691 0.694

8 0.598 0.631 0.653 0.667 0.681 0.685 0.694 0.700 0.704 0.706

9 0.603 0.638 0.662 0.677 0.692 0.700 0.706 0.712 0.714 0.718

10 0.608 0.646 0.669 0.688 0.701 0.710 0.716 0.721 0.726 0.728



Table 5: Accuracy with judge and expert competences from
uniform distribution over (0.2,1.0)

𝑛\𝑚 1 2 3 4 5 6 7 8 9 10

0 0.600 0.601 0.647 0.647 0.682 0.681 0.710 0.710 0.734 0.734

1 0.554 0.572 0.585 0.593 0.599 0.605 0.610 0.613 0.615 0.617

2 0.592 0.626 0.647 0.663 0.674 0.684 0.691 0.695 0.700 0.704

3 0.613 0.656 0.683 0.702 0.718 0.728 0.736 0.743 0.747 0.752

4 0.631 0.679 0.710 0.732 0.745 0.760 0.770 0.775 0.782 0.788

5 0.643 0.696 0.730 0.753 0.770 0.782 0.794 0.804 0.810 0.815

6 0.653 0.709 0.744 0.770 0.790 0.804 0.815 0.825 0.833 0.837

7 0.661 0.720 0.758 0.785 0.806 0.821 0.833 0.842 0.849 0.855

8 0.668 0.728 0.769 0.797 0.817 0.835 0.847 0.857 0.865 0.873

9 0.673 0.736 0.778 0.810 0.827 0.845 0.859 0.870 0.877 0.883

10 0.679 0.744 0.786 0.817 0.837 0.857 0.871 0.879 0.889 0.895



Table 6: Accuracy with judge and expert competences from
uniform distribution over (0.3,1.0)

𝑛\𝑚 1 2 3 4 5 6 7 8 9 10

0 0.651 0.649 0.717 0.718 0.762 0.763 0.800 0.798 0.829 0.827

1 0.588 0.623 0.645 0.661 0.673 0.681 0.687 0.692 0.696 0.702

2 0.640 0.694 0.728 0.752 0.770 0.784 0.794 0.801 0.808 0.815

3 0.665 0.728 0.770 0.800 0.819 0.835 0.846 0.855 0.863 0.869

4 0.678 0.749 0.792 0.823 0.846 0.865 0.877 0.887 0.897 0.903

5 0.688 0.760 0.808 0.841 0.864 0.883 0.897 0.909 0.917 0.923

6 0.694 0.768 0.819 0.851 0.877 0.895 0.909 0.921 0.931 0.938

7 0.698 0.774 0.825 0.859 0.884 0.903 0.919 0.931 0.940 0.946

8 0.700 0.778 0.829 0.865 0.890 0.909 0.923 0.936 0.946 0.953

9 0.702 0.782 0.831 0.867 0.893 0.913 0.928 0.940 0.949 0.957

10 0.705 0.784 0.835 0.869 0.895 0.915 0.931 0.942 0.952 0.960



Table 7: Accuracy with judge and expert competences from
uniform distribution over (0.4,1.0)

𝑛\𝑚 1 2 3 4 5 6 7 8 9 10

0 0.700 0.700 0.784 0.783 0.836 0.835 0.872 0.873 0.901 0.901

1 0.645 0.702 0.734 0.760 0.776 0.788 0.800 0.808 0.812 0.815

2 0.690 0.768 0.815 0.845 0.869 0.885 0.898 0.907 0.915 0.923

3 0.708 0.790 0.841 0.873 0.899 0.917 0.929 0.940 0.948 0.954

4 0.714 0.798 0.849 0.883 0.909 0.928 0.942 0.951 0.960 0.966

5 0.714 0.802 0.852 0.888 0.911 0.931 0.946 0.956 0.965 0.970

6 0.716 0.802 0.855 0.889 0.915 0.932 0.947 0.958 0.966 0.972

7 0.715 0.804 0.854 0.891 0.915 0.935 0.948 0.959 0.968 0.974

8 0.715 0.803 0.855 0.889 0.917 0.935 0.948 0.959 0.968 0.974

9 0.716 0.802 0.856 0.889 0.915 0.935 0.948 0.960 0.968 0.974

10 0.716 0.803 0.855 0.890 0.915 0.935 0.949 0.960 0.968 0.975



Table 8: Accuracy with judge and expert competences from
uniform distribution over (0.5,1.0)

𝑛\𝑚 1 2 3 4 5 6 7 8 9 10

0 0.750 0.749 0.843 0.843 0.897 0.897 0.929 0.929 0.950 0.950

1 0.750 0.831 0.880 0.913 0.936 0.951 0.964 0.973 0.980 0.984

2 0.751 0.833 0.881 0.914 0.937 0.953 0.964 0.974 0.980 0.984

3 0.748 0.833 0.880 0.914 0.937 0.952 0.964 0.972 0.980 0.984

4 0.748 0.832 0.882 0.914 0.937 0.952 0.964 0.974 0.980 0.984

5 0.747 0.833 0.882 0.915 0.937 0.953 0.965 0.972 0.980 0.984

6 0.748 0.832 0.881 0.914 0.937 0.952 0.964 0.974 0.980 0.985

7 0.750 0.833 0.881 0.913 0.937 0.954 0.964 0.974 0.980 0.984

8 0.748 0.834 0.881 0.915 0.937 0.952 0.964 0.974 0.980 0.985

9 0.751 0.832 0.881 0.914 0.937 0.953 0.965 0.974 0.980 0.984

10 0.748 0.833 0.881 0.915 0.937 0.954 0.966 0.974 0.979 0.984



Table 9: Accuracy with judge and expert competences from
uniform distribution over (0.6,1.0)

𝑛\𝑚 1 2 3 4 5 6 7 8 9 10

0 0.798 0.800 0.897 0.895 0.942 0.942 0.966 0.968 0.980 0.980

1 0.799 0.865 0.911 0.940 0.958 0.972 0.980 0.986 0.990 0.993

2 0.800 0.867 0.911 0.940 0.960 0.971 0.980 0.986 0.990 0.992

3 0.798 0.867 0.911 0.940 0.958 0.972 0.980 0.986 0.990 0.993

4 0.799 0.865 0.911 0.941 0.959 0.972 0.980 0.986 0.990 0.993

5 0.800 0.865 0.912 0.941 0.958 0.972 0.980 0.986 0.990 0.993

6 0.800 0.865 0.911 0.940 0.959 0.972 0.980 0.986 0.990 0.993

7 0.800 0.865 0.912 0.940 0.958 0.971 0.980 0.986 0.990 0.993

8 0.798 0.867 0.912 0.940 0.958 0.972 0.980 0.986 0.990 0.993

9 0.799 0.866 0.912 0.941 0.960 0.972 0.980 0.986 0.990 0.993

10 0.799 0.867 0.912 0.940 0.958 0.973 0.980 0.986 0.990 0.993



Table 10: Accuracy with judge and expert competences from
uniform distribution over (0.7,1.0)

𝑛\𝑚 1 2 3 4 5 6 7 8 9 10

0 0.849 0.849 0.940 0.938 0.973 0.973 0.988 0.988 0.994 0.994

1 0.850 0.899 0.942 0.965 0.978 0.987 0.991 0.994 0.996 0.998

2 0.850 0.899 0.942 0.966 0.979 0.986 0.992 0.995 0.996 0.998

3 0.849 0.901 0.943 0.965 0.978 0.987 0.991 0.994 0.997 0.998

4 0.851 0.897 0.942 0.965 0.978 0.987 0.991 0.994 0.996 0.998

5 0.851 0.899 0.943 0.966 0.978 0.987 0.992 0.995 0.996 0.998

6 0.849 0.899 0.944 0.966 0.978 0.986 0.992 0.994 0.996 0.998

7 0.849 0.899 0.942 0.966 0.978 0.987 0.992 0.995 0.996 0.998

8 0.849 0.901 0.942 0.966 0.978 0.986 0.992 0.995 0.996 0.998

9 0.851 0.901 0.942 0.965 0.978 0.987 0.991 0.995 0.997 0.998

10 0.850 0.898 0.943 0.966 0.978 0.986 0.992 0.994 0.996 0.998



Table 11: Accuracy with judge and expert competences from
uniform distribution over (0.8,1.0)

𝑛\𝑚 1 2 3 4 5 6 7 8 9 10

0 0.900 0.900 0.972 0.972 0.992 0.992 0.997 0.997 0.999 0.999

1 0.901 0.933 0.972 0.984 0.992 0.996 0.998 0.999 1.000 1.000

2 0.899 0.933 0.972 0.984 0.992 0.996 0.998 0.999 0.999 1.000

3 0.901 0.933 0.971 0.984 0.992 0.996 0.998 0.999 0.999 1.000

4 0.899 0.933 0.972 0.984 0.992 0.996 0.998 0.999 0.999 1.000

5 0.901 0.933 0.972 0.984 0.992 0.996 0.998 0.999 0.999 1.000

6 0.899 0.933 0.972 0.984 0.992 0.996 0.998 0.999 0.999 1.000

7 0.900 0.933 0.972 0.984 0.992 0.996 0.998 0.999 0.999 1.000

8 0.899 0.933 0.972 0.984 0.992 0.996 0.998 0.999 0.999 1.000

9 0.899 0.931 0.972 0.984 0.992 0.996 0.998 0.999 0.999 1.000

10 0.899 0.933 0.972 0.984 0.992 0.996 0.998 0.999 0.999 1.000



Table 12: Accuracy with judge and expert competences from
uniform distribution over (0.9,1.0)

𝑛\𝑚 1 2 3 4 5 6 7 8 9 10

0 0.949 0.950 0.993 0.992 0.999 0.999 1.000 1.000 1.000 1.000

1 0.949 0.965 0.992 0.996 0.999 0.999 1.000 1.000 1.000 1.000

2 0.948 0.966 0.993 0.996 0.999 0.999 1.000 1.000 1.000 1.000

3 0.948 0.966 0.993 0.996 0.999 1.000 1.000 1.000 1.000 1.000

4 0.949 0.966 0.992 0.996 0.999 0.999 1.000 1.000 1.000 1.000

5 0.949 0.966 0.992 0.996 0.999 0.999 1.000 1.000 1.000 1.000

6 0.950 0.966 0.993 0.996 0.999 1.000 1.000 1.000 1.000 1.000

7 0.950 0.966 0.992 0.996 0.999 0.999 1.000 1.000 1.000 1.000

8 0.949 0.966 0.992 0.996 0.999 0.999 1.000 1.000 1.000 1.000

9 0.948 0.965 0.992 0.996 0.999 0.999 1.000 1.000 1.000 1.000

10 0.948 0.966 0.992 0.996 0.999 1.000 1.000 1.000 1.000 1.000



A.2 Normally Distributed competences

Table 13: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.5,0.1) over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.581 0.578 0.621 0.618 0.647 0.648 0.673 0.669 0.693 0.692

1 0.580 0.616 0.639 0.658 0.673 0.691 0.705 0.720 0.732 0.741

2 0.580 0.612 0.640 0.660 0.680 0.690 0.705 0.719 0.729 0.743

3 0.581 0.612 0.640 0.659 0.676 0.691 0.707 0.718 0.730 0.742

4 0.581 0.614 0.638 0.658 0.673 0.692 0.707 0.719 0.727 0.741

5 0.581 0.616 0.635 0.658 0.674 0.692 0.706 0.718 0.729 0.743

6 0.580 0.612 0.635 0.660 0.675 0.692 0.706 0.717 0.731 0.742

7 0.579 0.613 0.639 0.659 0.678 0.692 0.707 0.718 0.730 0.741

8 0.581 0.615 0.639 0.659 0.676 0.689 0.708 0.718 0.732 0.741

9 0.582 0.613 0.639 0.659 0.675 0.692 0.707 0.719 0.733 0.741

10 0.579 0.612 0.641 0.662 0.676 0.692 0.705 0.718 0.731 0.743



Table 14: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.5,0.4) over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.719 0.720 0.807 0.806 0.861 0.862 0.897 0.899 0.923 0.923

1 0.718 0.798 0.850 0.882 0.908 0.927 0.941 0.953 0.964 0.971

2 0.718 0.798 0.848 0.883 0.909 0.928 0.942 0.953 0.963 0.970

3 0.720 0.797 0.850 0.882 0.908 0.927 0.942 0.953 0.964 0.969

4 0.721 0.800 0.848 0.884 0.908 0.927 0.942 0.955 0.964 0.971

5 0.721 0.801 0.850 0.885 0.907 0.926 0.943 0.954 0.963 0.970

6 0.721 0.799 0.850 0.884 0.910 0.928 0.943 0.954 0.965 0.972

7 0.719 0.800 0.851 0.883 0.908 0.927 0.943 0.955 0.963 0.971

8 0.721 0.801 0.848 0.883 0.910 0.927 0.943 0.955 0.963 0.971

9 0.721 0.798 0.846 0.883 0.909 0.927 0.942 0.954 0.963 0.971

10 0.722 0.800 0.850 0.883 0.909 0.928 0.943 0.954 0.963 0.971



Table 15: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.6,0.1) over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.629 0.629 0.689 0.689 0.732 0.732 0.765 0.764 0.791 0.789

1 0.628 0.673 0.708 0.737 0.762 0.778 0.799 0.815 0.829 0.842

2 0.630 0.675 0.709 0.735 0.760 0.780 0.798 0.814 0.830 0.840

3 0.629 0.674 0.707 0.737 0.761 0.782 0.797 0.814 0.830 0.842

4 0.629 0.674 0.712 0.738 0.762 0.780 0.798 0.815 0.827 0.839

5 0.630 0.673 0.710 0.736 0.761 0.779 0.797 0.815 0.829 0.840

6 0.629 0.675 0.711 0.737 0.761 0.783 0.799 0.814 0.829 0.839

7 0.628 0.674 0.709 0.736 0.760 0.782 0.796 0.815 0.828 0.842

8 0.632 0.672 0.711 0.738 0.757 0.780 0.798 0.814 0.830 0.840

9 0.630 0.677 0.709 0.736 0.760 0.781 0.797 0.817 0.828 0.843

10 0.630 0.673 0.706 0.736 0.761 0.782 0.798 0.814 0.827 0.840



Table 16: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.6,0.4) over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.732 0.731 0.825 0.820 0.878 0.875 0.911 0.911 0.936 0.935

1 0.732 0.811 0.861 0.896 0.920 0.939 0.952 0.962 0.969 0.976

2 0.731 0.812 0.861 0.895 0.919 0.937 0.951 0.963 0.970 0.977

3 0.729 0.812 0.861 0.895 0.922 0.939 0.953 0.962 0.970 0.976

4 0.730 0.813 0.862 0.896 0.919 0.938 0.952 0.962 0.969 0.977

5 0.733 0.812 0.861 0.895 0.920 0.939 0.952 0.963 0.971 0.977

6 0.731 0.811 0.861 0.897 0.920 0.939 0.952 0.963 0.971 0.976

7 0.733 0.812 0.861 0.895 0.920 0.938 0.950 0.962 0.970 0.976

8 0.732 0.814 0.861 0.895 0.919 0.937 0.953 0.963 0.971 0.977

9 0.731 0.811 0.860 0.895 0.919 0.938 0.952 0.963 0.970 0.977

10 0.732 0.811 0.859 0.897 0.921 0.938 0.952 0.963 0.970 0.976



Table 17: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.7,0.1) over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.706 0.706 0.792 0.792 0.843 0.845 0.881 0.880 0.908 0.907

1 0.704 0.758 0.805 0.838 0.866 0.887 0.904 0.917 0.931 0.941

2 0.703 0.761 0.803 0.840 0.864 0.886 0.904 0.916 0.930 0.940

3 0.705 0.758 0.806 0.839 0.866 0.885 0.903 0.916 0.930 0.940

4 0.704 0.762 0.805 0.837 0.865 0.886 0.903 0.919 0.930 0.940

5 0.704 0.761 0.804 0.838 0.864 0.885 0.905 0.919 0.931 0.940

6 0.702 0.755 0.804 0.837 0.864 0.885 0.903 0.918 0.930 0.939

7 0.706 0.758 0.805 0.837 0.865 0.886 0.902 0.917 0.930 0.939

8 0.706 0.757 0.805 0.838 0.866 0.886 0.903 0.917 0.929 0.942

9 0.704 0.761 0.805 0.836 0.865 0.888 0.901 0.918 0.930 0.940

10 0.704 0.758 0.803 0.838 0.866 0.887 0.901 0.917 0.930 0.940



Table 18: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.7,0.4) over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.742 0.744 0.837 0.835 0.889 0.890 0.924 0.923 0.945 0.946

1 0.744 0.823 0.873 0.904 0.929 0.948 0.959 0.968 0.976 0.981

2 0.743 0.826 0.873 0.906 0.930 0.946 0.960 0.969 0.976 0.982

3 0.743 0.824 0.874 0.906 0.929 0.948 0.959 0.969 0.975 0.981

4 0.745 0.827 0.873 0.907 0.931 0.947 0.961 0.968 0.977 0.981

5 0.743 0.826 0.871 0.905 0.928 0.947 0.960 0.969 0.977 0.982

6 0.743 0.827 0.874 0.906 0.929 0.946 0.958 0.969 0.976 0.981

7 0.745 0.825 0.874 0.906 0.929 0.946 0.959 0.969 0.977 0.982

8 0.744 0.824 0.873 0.906 0.930 0.948 0.959 0.969 0.976 0.982

9 0.748 0.823 0.875 0.906 0.929 0.948 0.960 0.968 0.976 0.981

10 0.741 0.824 0.873 0.907 0.929 0.948 0.960 0.968 0.977 0.982



Table 19: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.8,0.1) over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.796 0.796 0.890 0.892 0.937 0.940 0.964 0.964 0.979 0.979

1 0.793 0.848 0.897 0.926 0.947 0.962 0.972 0.980 0.985 0.989

2 0.794 0.849 0.899 0.927 0.948 0.962 0.973 0.979 0.985 0.989

3 0.795 0.849 0.898 0.927 0.947 0.963 0.972 0.979 0.984 0.989

4 0.793 0.847 0.898 0.926 0.948 0.962 0.973 0.980 0.985 0.989

5 0.795 0.847 0.898 0.927 0.946 0.961 0.971 0.980 0.985 0.989

6 0.796 0.848 0.897 0.926 0.949 0.962 0.972 0.980 0.985 0.990

7 0.794 0.848 0.898 0.928 0.947 0.962 0.972 0.980 0.986 0.989

8 0.795 0.849 0.897 0.929 0.948 0.962 0.971 0.979 0.985 0.989

9 0.795 0.847 0.898 0.928 0.949 0.961 0.972 0.980 0.985 0.989

10 0.794 0.848 0.897 0.927 0.947 0.963 0.972 0.980 0.985 0.989



Table 20: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.8,0.4) over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.756 0.756 0.849 0.851 0.902 0.903 0.935 0.935 0.956 0.956

1 0.759 0.836 0.887 0.916 0.940 0.954 0.966 0.974 0.981 0.985

2 0.757 0.838 0.886 0.916 0.939 0.955 0.967 0.975 0.980 0.986

3 0.757 0.837 0.885 0.916 0.940 0.955 0.966 0.975 0.981 0.986

4 0.758 0.838 0.887 0.916 0.940 0.956 0.966 0.975 0.981 0.986

5 0.755 0.836 0.884 0.918 0.940 0.954 0.967 0.975 0.981 0.986

6 0.756 0.837 0.885 0.917 0.939 0.955 0.967 0.974 0.981 0.985

7 0.756 0.836 0.885 0.918 0.939 0.954 0.966 0.975 0.981 0.985

8 0.757 0.838 0.885 0.918 0.938 0.955 0.966 0.974 0.981 0.985

9 0.757 0.838 0.884 0.917 0.939 0.955 0.966 0.974 0.982 0.986

10 0.755 0.838 0.886 0.917 0.939 0.955 0.966 0.975 0.981 0.985



Table 21: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.9,0.1) over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.871 0.870 0.954 0.954 0.983 0.982 0.993 0.993 0.997 0.997

1 0.871 0.916 0.956 0.975 0.986 0.991 0.995 0.997 0.998 1.0

2 0.872 0.915 0.957 0.975 0.985 0.992 0.995 0.997 0.998 1.0

3 0.870 0.917 0.957 0.975 0.985 0.992 0.995 0.997 0.998 1.0

4 0.871 0.915 0.956 0.975 0.985 0.991 0.995 0.997 0.998 1.0

5 0.869 0.916 0.956 0.974 0.985 0.992 0.995 0.997 0.998 1.0

6 0.870 0.916 0.957 0.975 0.985 0.991 0.994 0.997 0.998 1.0

7 0.871 0.915 0.957 0.976 0.986 0.992 0.995 0.997 0.998 1.0

8 0.871 0.915 0.956 0.974 0.986 0.992 0.995 0.997 0.998 1.0

9 0.869 0.914 0.956 0.975 0.985 0.991 0.995 0.997 0.998 1.0

10 0.871 0.914 0.957 0.975 0.986 0.991 0.994 0.997 0.998 1.0



Table 22: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.9,0.4) over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.768 0.767 0.866 0.865 0.914 0.913 0.946 0.946 0.964 0.964

1 0.766 0.850 0.894 0.926 0.947 0.961 0.972 0.980 0.985 0.989

2 0.768 0.847 0.895 0.926 0.947 0.962 0.972 0.979 0.985 0.990

3 0.767 0.850 0.896 0.926 0.946 0.961 0.972 0.980 0.985 0.989

4 0.768 0.849 0.896 0.927 0.947 0.962 0.972 0.979 0.985 0.989

5 0.769 0.847 0.896 0.925 0.947 0.962 0.973 0.979 0.985 0.989

6 0.767 0.848 0.897 0.925 0.947 0.961 0.972 0.980 0.986 0.989

7 0.767 0.850 0.895 0.928 0.948 0.962 0.973 0.979 0.985 0.989

8 0.769 0.849 0.895 0.927 0.947 0.962 0.972 0.981 0.985 0.990

9 0.768 0.850 0.896 0.927 0.948 0.963 0.973 0.980 0.985 0.989

10 0.769 0.847 0.895 0.925 0.947 0.961 0.972 0.980 0.985 0.988



Table 23: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.5,0.1) over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.499 0.501 0.500 0.502 0.499 0.499 0.502 0.501 0.501 0.501

1 0.498 0.502 0.500 0.499 0.501 0.501 0.499 0.500 0.502 0.501

2 0.500 0.502 0.497 0.500 0.500 0.501 0.500 0.503 0.500 0.498

3 0.502 0.502 0.502 0.499 0.503 0.502 0.499 0.499 0.500 0.496

4 0.501 0.500 0.498 0.498 0.499 0.502 0.499 0.501 0.497 0.499

5 0.498 0.503 0.500 0.499 0.499 0.499 0.500 0.498 0.501 0.500

6 0.501 0.501 0.500 0.498 0.501 0.499 0.501 0.499 0.501 0.500

7 0.499 0.502 0.500 0.499 0.501 0.498 0.501 0.497 0.501 0.500

8 0.498 0.499 0.501 0.500 0.499 0.498 0.499 0.498 0.501 0.502

9 0.500 0.498 0.499 0.499 0.500 0.499 0.499 0.501 0.500 0.502

10 0.496 0.500 0.500 0.498 0.500 0.501 0.500 0.498 0.499 0.502



Table 24: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.5,0.4) over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.502 0.501 0.499 0.498 0.497 0.499 0.496 0.503 0.500 0.498

1 0.498 0.498 0.502 0.499 0.498 0.497 0.498 0.498 0.499 0.499

2 0.500 0.499 0.498 0.498 0.497 0.499 0.497 0.499 0.501 0.498

3 0.501 0.502 0.500 0.499 0.500 0.499 0.499 0.497 0.498 0.500

4 0.499 0.501 0.502 0.497 0.499 0.499 0.499 0.498 0.501 0.500

5 0.500 0.499 0.498 0.500 0.498 0.501 0.498 0.496 0.499 0.499

6 0.500 0.500 0.498 0.499 0.499 0.495 0.499 0.498 0.499 0.502

7 0.500 0.498 0.498 0.501 0.500 0.498 0.498 0.500 0.499 0.502

8 0.498 0.500 0.500 0.501 0.497 0.499 0.500 0.498 0.499 0.497

9 0.500 0.497 0.497 0.496 0.502 0.496 0.501 0.497 0.500 0.497

10 0.498 0.498 0.498 0.499 0.501 0.502 0.497 0.498 0.499 0.496



Table 25: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.6,0.1) over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.600 0.599 0.651 0.649 0.683 0.684 0.708 0.710 0.735 0.733

1 0.582 0.609 0.631 0.653 0.666 0.681 0.694 0.701 0.712 0.721

2 0.598 0.636 0.668 0.687 0.706 0.721 0.737 0.749 0.760 0.771

3 0.605 0.646 0.677 0.703 0.722 0.739 0.756 0.771 0.785 0.799

4 0.610 0.652 0.687 0.712 0.734 0.751 0.768 0.785 0.797 0.808

5 0.614 0.658 0.690 0.717 0.740 0.758 0.774 0.788 0.803 0.815

6 0.616 0.658 0.690 0.718 0.742 0.759 0.779 0.792 0.807 0.819

7 0.617 0.663 0.695 0.721 0.742 0.761 0.779 0.795 0.809 0.822

8 0.618 0.660 0.697 0.722 0.744 0.762 0.781 0.797 0.810 0.822

9 0.617 0.663 0.692 0.722 0.746 0.764 0.783 0.796 0.808 0.822

10 0.620 0.662 0.697 0.724 0.746 0.764 0.778 0.795 0.812 0.825



Table 26: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.6,0.4) over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.541 0.538 0.562 0.566 0.574 0.578 0.590 0.590 0.599 0.603

1 0.532 0.543 0.547 0.552 0.553 0.556 0.558 0.563 0.563 0.565

2 0.543 0.553 0.566 0.573 0.576 0.579 0.580 0.582 0.586 0.589

3 0.551 0.567 0.576 0.586 0.594 0.595 0.599 0.598 0.606 0.603

4 0.554 0.577 0.590 0.596 0.602 0.611 0.611 0.617 0.617 0.617

5 0.561 0.586 0.598 0.611 0.616 0.621 0.623 0.632 0.634 0.632

6 0.569 0.592 0.603 0.617 0.628 0.632 0.637 0.638 0.643 0.645

7 0.573 0.599 0.616 0.626 0.635 0.643 0.646 0.649 0.655 0.657

8 0.577 0.605 0.625 0.635 0.645 0.650 0.657 0.661 0.664 0.664

9 0.579 0.612 0.630 0.646 0.652 0.661 0.662 0.668 0.674 0.677

10 0.586 0.617 0.635 0.647 0.661 0.669 0.672 0.678 0.680 0.683



Table 27: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.7,0.1) over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.701 0.697 0.785 0.785 0.838 0.837 0.873 0.873 0.902 0.901

1 0.690 0.744 0.790 0.820 0.845 0.866 0.883 0.897 0.908 0.917

2 0.699 0.753 0.797 0.832 0.859 0.880 0.901 0.913 0.925 0.934

3 0.703 0.755 0.802 0.837 0.861 0.881 0.900 0.915 0.927 0.937

4 0.702 0.755 0.801 0.836 0.860 0.884 0.900 0.916 0.927 0.937

5 0.699 0.752 0.800 0.838 0.861 0.883 0.901 0.916 0.926 0.938

6 0.703 0.754 0.803 0.836 0.861 0.882 0.899 0.915 0.926 0.937

7 0.700 0.755 0.800 0.836 0.860 0.884 0.900 0.915 0.927 0.937

8 0.702 0.755 0.803 0.836 0.860 0.883 0.901 0.914 0.927 0.937

9 0.701 0.758 0.802 0.837 0.863 0.884 0.898 0.916 0.927 0.938

10 0.701 0.754 0.802 0.835 0.861 0.883 0.900 0.915 0.927 0.938



Table 28: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.7,0.4) over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.581 0.583 0.622 0.621 0.654 0.653 0.675 0.677 0.696 0.694

1 0.559 0.582 0.593 0.604 0.611 0.617 0.622 0.622 0.627 0.625

2 0.581 0.612 0.628 0.640 0.649 0.655 0.663 0.666 0.666 0.668

3 0.600 0.632 0.651 0.668 0.677 0.683 0.691 0.696 0.699 0.703

4 0.611 0.647 0.674 0.689 0.701 0.709 0.718 0.724 0.726 0.731

5 0.618 0.660 0.690 0.707 0.720 0.730 0.738 0.744 0.749 0.754

6 0.630 0.676 0.702 0.724 0.738 0.748 0.757 0.762 0.766 0.770

7 0.635 0.685 0.715 0.734 0.755 0.761 0.772 0.778 0.784 0.786

8 0.645 0.697 0.728 0.748 0.765 0.777 0.785 0.793 0.799 0.804

9 0.651 0.703 0.737 0.761 0.777 0.791 0.796 0.805 0.811 0.816

10 0.657 0.712 0.748 0.769 0.787 0.800 0.810 0.813 0.823 0.827



Table 29: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.8,0.1) over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.795 0.795 0.891 0.892 0.937 0.938 0.964 0.964 0.979 0.978

1 0.793 0.846 0.896 0.925 0.946 0.962 0.972 0.978 0.983 0.988

2 0.794 0.848 0.900 0.928 0.948 0.962 0.972 0.980 0.985 0.988

3 0.795 0.847 0.897 0.927 0.947 0.962 0.972 0.980 0.985 0.989

4 0.796 0.848 0.898 0.927 0.947 0.962 0.973 0.979 0.985 0.989

5 0.794 0.849 0.899 0.928 0.948 0.961 0.972 0.979 0.985 0.988

6 0.794 0.848 0.898 0.928 0.949 0.962 0.972 0.980 0.985 0.989

7 0.791 0.849 0.897 0.927 0.947 0.962 0.971 0.979 0.985 0.989

8 0.793 0.846 0.898 0.927 0.948 0.961 0.972 0.979 0.985 0.989

9 0.794 0.848 0.898 0.928 0.947 0.962 0.972 0.979 0.985 0.989

10 0.796 0.847 0.898 0.927 0.949 0.962 0.972 0.980 0.984 0.989



Table 30: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.8,0.4) over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.621 0.620 0.677 0.678 0.721 0.717 0.750 0.752 0.776 0.778

1 0.595 0.622 0.641 0.657 0.663 0.672 0.679 0.683 0.682 0.686

2 0.621 0.663 0.686 0.705 0.717 0.725 0.737 0.741 0.741 0.746

3 0.640 0.691 0.719 0.739 0.754 0.766 0.770 0.781 0.783 0.789

4 0.654 0.709 0.743 0.766 0.783 0.795 0.804 0.810 0.817 0.818

5 0.670 0.728 0.763 0.788 0.804 0.817 0.826 0.834 0.839 0.843

6 0.677 0.741 0.778 0.804 0.824 0.835 0.845 0.853 0.858 0.867

7 0.688 0.752 0.791 0.817 0.840 0.851 0.862 0.870 0.875 0.882

8 0.693 0.762 0.802 0.829 0.850 0.863 0.876 0.885 0.890 0.895

9 0.700 0.767 0.808 0.838 0.861 0.876 0.888 0.894 0.900 0.906

10 0.705 0.774 0.815 0.848 0.868 0.886 0.895 0.905 0.911 0.917



Table 31: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.9,0.1) over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.870 0.871 0.955 0.953 0.983 0.982 0.993 0.993 0.997 0.997

1 0.872 0.914 0.956 0.975 0.985 0.992 0.995 0.997 0.998 1.0

2 0.871 0.916 0.957 0.975 0.985 0.992 0.995 0.997 0.998 1.0

3 0.871 0.915 0.956 0.975 0.985 0.991 0.995 0.997 0.998 1.0

4 0.871 0.916 0.957 0.975 0.986 0.992 0.995 0.997 0.998 1.0

5 0.871 0.915 0.957 0.974 0.985 0.992 0.995 0.997 0.998 1.0

6 0.871 0.917 0.957 0.975 0.985 0.991 0.995 0.997 0.998 1.0

7 0.869 0.913 0.957 0.974 0.985 0.992 0.995 0.997 1.0 1.0

8 0.869 0.916 0.956 0.974 0.985 0.991 0.995 0.997 0.998 1.0

9 0.871 0.914 0.957 0.975 0.986 0.992 0.995 0.997 0.998 1.0

10 0.872 0.915 0.957 0.974 0.985 0.992 0.995 0.997 0.998 1.0



Table 32: Accuracy with judge and expert competences from
truncated Gaussian distribution N (0.9,0.4) over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.658 0.659 0.728 0.729 0.777 0.776 0.813 0.813 0.840 0.838

1 0.621 0.663 0.689 0.703 0.716 0.724 0.728 0.734 0.739 0.743

2 0.656 0.710 0.740 0.763 0.777 0.789 0.795 0.802 0.805 0.810

3 0.677 0.741 0.774 0.801 0.817 0.831 0.839 0.845 0.851 0.855

4 0.696 0.761 0.802 0.827 0.842 0.861 0.868 0.876 0.884 0.885

5 0.706 0.774 0.816 0.847 0.865 0.879 0.892 0.899 0.905 0.909

6 0.718 0.788 0.830 0.860 0.880 0.897 0.907 0.916 0.922 0.924

7 0.722 0.797 0.841 0.873 0.893 0.907 0.918 0.927 0.934 0.938

8 0.725 0.803 0.850 0.878 0.903 0.918 0.928 0.937 0.942 0.947

9 0.729 0.809 0.853 0.888 0.908 0.922 0.935 0.944 0.952 0.956

10 0.736 0.812 0.859 0.893 0.913 0.929 0.942 0.950 0.957 0.960



A.3 Exponentially Distributed competences

Table 33: Accuracy with judge and expert competences from
exponential distributionwith scale 1 truncated over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.711 0.710 0.795 0.795 0.847 0.848 0.886 0.885 0.912 0.912

1 0.708 0.789 0.837 0.874 0.899 0.920 0.937 0.949 0.957 0.966

2 0.707 0.794 0.840 0.873 0.903 0.920 0.937 0.949 0.959 0.966

3 0.710 0.788 0.839 0.876 0.901 0.921 0.936 0.949 0.958 0.967

4 0.710 0.788 0.841 0.873 0.900 0.921 0.937 0.947 0.959 0.966

5 0.708 0.792 0.839 0.876 0.902 0.921 0.937 0.949 0.959 0.966

6 0.709 0.790 0.840 0.874 0.901 0.921 0.936 0.949 0.958 0.966

7 0.710 0.786 0.839 0.873 0.900 0.921 0.937 0.949 0.960 0.967

8 0.712 0.789 0.838 0.874 0.902 0.922 0.936 0.948 0.960 0.966

9 0.711 0.789 0.840 0.876 0.902 0.923 0.936 0.950 0.958 0.967

10 0.708 0.789 0.840 0.877 0.902 0.922 0.936 0.949 0.958 0.966



Table 34: Accuracy with judge and expert competences from
exponential distributionwith scale 2 truncated over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.672 0.672 0.750 0.747 0.797 0.799 0.834 0.835 0.862 0.865

1 0.674 0.745 0.795 0.831 0.857 0.881 0.897 0.913 0.925 0.935

2 0.672 0.744 0.795 0.829 0.858 0.882 0.898 0.912 0.926 0.936

3 0.675 0.744 0.796 0.829 0.858 0.879 0.899 0.913 0.925 0.936

4 0.671 0.747 0.791 0.830 0.858 0.880 0.897 0.913 0.924 0.938

5 0.672 0.746 0.794 0.831 0.857 0.879 0.897 0.912 0.925 0.936

6 0.672 0.746 0.791 0.829 0.858 0.880 0.898 0.913 0.926 0.935

7 0.674 0.742 0.793 0.831 0.857 0.880 0.896 0.913 0.925 0.936

8 0.672 0.745 0.792 0.829 0.858 0.880 0.897 0.913 0.925 0.937

9 0.671 0.747 0.796 0.829 0.858 0.881 0.898 0.913 0.925 0.936

10 0.674 0.745 0.795 0.832 0.857 0.878 0.897 0.912 0.927 0.936



Table 35: Accuracy with judge and expert competences from
exponential distributionwith scale 3 truncated over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.640 0.641 0.705 0.706 0.751 0.751 0.785 0.783 0.813 0.811

1 0.639 0.705 0.750 0.786 0.813 0.833 0.853 0.870 0.882 0.895

2 0.636 0.704 0.749 0.783 0.811 0.834 0.852 0.870 0.883 0.896

3 0.642 0.706 0.747 0.783 0.813 0.836 0.851 0.870 0.884 0.896

4 0.642 0.706 0.751 0.785 0.811 0.833 0.852 0.870 0.885 0.896

5 0.639 0.703 0.750 0.784 0.811 0.835 0.852 0.870 0.885 0.896

6 0.640 0.708 0.749 0.783 0.810 0.835 0.853 0.869 0.886 0.897

7 0.642 0.705 0.750 0.785 0.810 0.832 0.851 0.870 0.884 0.897

8 0.642 0.702 0.748 0.786 0.810 0.831 0.853 0.868 0.883 0.898

9 0.639 0.704 0.748 0.783 0.811 0.833 0.855 0.870 0.884 0.896

10 0.639 0.704 0.750 0.783 0.811 0.834 0.853 0.871 0.883 0.896



Table 36: Accuracy with judge and expert competences from
exponential distributionwith scale 4 truncated over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.618 0.617 0.668 0.673 0.709 0.713 0.741 0.740 0.766 0.765

1 0.617 0.670 0.712 0.741 0.768 0.790 0.808 0.826 0.839 0.853

2 0.617 0.672 0.710 0.742 0.769 0.789 0.806 0.826 0.838 0.850

3 0.613 0.670 0.710 0.741 0.766 0.787 0.807 0.824 0.840 0.853

4 0.618 0.671 0.708 0.740 0.767 0.788 0.809 0.824 0.841 0.853

5 0.615 0.672 0.709 0.743 0.766 0.788 0.810 0.825 0.839 0.853

6 0.615 0.670 0.710 0.741 0.766 0.789 0.807 0.824 0.838 0.853

7 0.614 0.671 0.710 0.743 0.768 0.792 0.808 0.825 0.842 0.850

8 0.616 0.669 0.709 0.740 0.763 0.790 0.810 0.822 0.839 0.852

9 0.614 0.669 0.711 0.740 0.765 0.787 0.808 0.825 0.838 0.853

10 0.617 0.672 0.711 0.742 0.769 0.788 0.809 0.827 0.838 0.852



Table 37: Accuracy with judge and expert competences from
exponential distributionwith scale 5 truncated over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.597 0.596 0.645 0.644 0.678 0.677 0.703 0.705 0.729 0.727

1 0.599 0.646 0.681 0.704 0.733 0.748 0.767 0.782 0.797 0.810

2 0.594 0.642 0.681 0.708 0.733 0.750 0.764 0.784 0.797 0.811

3 0.596 0.644 0.679 0.707 0.727 0.751 0.767 0.785 0.799 0.810

4 0.595 0.646 0.679 0.704 0.728 0.751 0.769 0.783 0.794 0.808

5 0.598 0.642 0.679 0.703 0.728 0.750 0.769 0.780 0.797 0.810

6 0.598 0.646 0.679 0.705 0.726 0.750 0.768 0.781 0.795 0.809

7 0.601 0.642 0.681 0.704 0.730 0.750 0.768 0.783 0.799 0.808

8 0.600 0.642 0.679 0.705 0.728 0.747 0.766 0.783 0.797 0.811

9 0.598 0.644 0.679 0.705 0.728 0.749 0.769 0.784 0.798 0.811

10 0.597 0.643 0.679 0.706 0.731 0.748 0.766 0.781 0.796 0.809



Table 38: Accuracy with judge and expert competences from
exponential distributionwith scale 6 truncated over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.584 0.582 0.621 0.621 0.652 0.651 0.675 0.676 0.697 0.697

1 0.583 0.623 0.652 0.679 0.699 0.717 0.732 0.747 0.759 0.773

2 0.586 0.626 0.656 0.679 0.699 0.715 0.733 0.744 0.760 0.771

3 0.582 0.625 0.653 0.676 0.697 0.716 0.730 0.744 0.761 0.772

4 0.581 0.624 0.654 0.678 0.696 0.714 0.733 0.747 0.761 0.774

5 0.581 0.621 0.652 0.676 0.699 0.717 0.731 0.746 0.758 0.773

6 0.584 0.626 0.653 0.677 0.696 0.717 0.731 0.747 0.757 0.771

7 0.583 0.623 0.653 0.678 0.695 0.716 0.733 0.747 0.760 0.773

8 0.583 0.621 0.652 0.678 0.699 0.718 0.731 0.747 0.759 0.773

9 0.584 0.625 0.653 0.675 0.699 0.716 0.732 0.748 0.760 0.772

10 0.584 0.621 0.653 0.679 0.697 0.716 0.732 0.745 0.761 0.772



Table 39: Accuracy with judge and expert competences from
exponential distributionwith scale 7 truncated over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.574 0.570 0.608 0.607 0.634 0.635 0.652 0.654 0.672 0.671

1 0.572 0.606 0.634 0.654 0.672 0.689 0.702 0.717 0.727 0.740

2 0.571 0.606 0.632 0.655 0.675 0.689 0.703 0.718 0.730 0.742

3 0.572 0.610 0.634 0.654 0.672 0.688 0.702 0.715 0.727 0.742

4 0.574 0.607 0.636 0.654 0.673 0.689 0.701 0.716 0.728 0.741

5 0.572 0.605 0.636 0.656 0.672 0.690 0.702 0.716 0.730 0.741

6 0.571 0.606 0.635 0.655 0.671 0.691 0.703 0.716 0.730 0.737

7 0.573 0.607 0.632 0.655 0.677 0.690 0.703 0.716 0.728 0.739

8 0.576 0.607 0.631 0.655 0.673 0.689 0.705 0.716 0.728 0.738

9 0.569 0.606 0.634 0.657 0.672 0.686 0.703 0.718 0.728 0.738

10 0.570 0.608 0.634 0.656 0.671 0.688 0.703 0.716 0.727 0.741



Table 40: Accuracy with judge and expert competences from
exponential distributionwith scale 8 truncated over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.566 0.563 0.593 0.596 0.615 0.615 0.639 0.634 0.653 0.650

1 0.564 0.594 0.620 0.636 0.653 0.668 0.679 0.692 0.704 0.711

2 0.564 0.593 0.616 0.635 0.651 0.668 0.678 0.694 0.706 0.711

3 0.564 0.594 0.616 0.635 0.653 0.666 0.681 0.691 0.701 0.713

4 0.564 0.594 0.617 0.635 0.654 0.670 0.682 0.692 0.702 0.715

5 0.567 0.592 0.618 0.637 0.650 0.665 0.682 0.691 0.704 0.714

6 0.564 0.592 0.616 0.638 0.651 0.669 0.682 0.692 0.701 0.712

7 0.563 0.595 0.617 0.637 0.652 0.668 0.685 0.692 0.703 0.713

8 0.561 0.596 0.617 0.635 0.651 0.667 0.681 0.691 0.705 0.714

9 0.562 0.593 0.619 0.636 0.651 0.666 0.680 0.691 0.705 0.714

10 0.564 0.594 0.617 0.636 0.651 0.668 0.679 0.693 0.699 0.715



Table 41: Accuracy with judge and expert competences from
exponential distributionwith scale 9 truncated over (0.5, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.557 0.557 0.585 0.583 0.607 0.602 0.620 0.619 0.636 0.637

1 0.558 0.584 0.603 0.623 0.640 0.649 0.663 0.671 0.681 0.693

2 0.552 0.583 0.602 0.622 0.636 0.650 0.663 0.669 0.684 0.693

3 0.559 0.586 0.604 0.620 0.638 0.647 0.662 0.672 0.684 0.693

4 0.554 0.585 0.604 0.623 0.636 0.649 0.662 0.672 0.685 0.692

5 0.558 0.582 0.605 0.624 0.633 0.650 0.662 0.672 0.683 0.689

6 0.556 0.583 0.610 0.624 0.638 0.649 0.662 0.669 0.683 0.688

7 0.554 0.584 0.604 0.623 0.637 0.649 0.665 0.672 0.681 0.692

8 0.556 0.586 0.603 0.622 0.640 0.649 0.662 0.670 0.684 0.694

9 0.557 0.584 0.604 0.623 0.634 0.650 0.662 0.671 0.683 0.692

10 0.558 0.585 0.602 0.621 0.636 0.649 0.660 0.673 0.684 0.692



Table 42: Accuracy with judge and expert competences from
exponential distribution with scale 10 truncated over (0.5,
1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.551 0.551 0.577 0.577 0.595 0.596 0.610 0.607 0.628 0.621

1 0.551 0.574 0.597 0.610 0.621 0.637 0.645 0.656 0.663 0.671

2 0.549 0.577 0.596 0.609 0.625 0.637 0.645 0.657 0.663 0.674

3 0.551 0.576 0.594 0.610 0.624 0.635 0.646 0.654 0.666 0.675

4 0.552 0.578 0.595 0.609 0.624 0.635 0.645 0.656 0.667 0.675

5 0.548 0.574 0.595 0.608 0.620 0.636 0.648 0.657 0.663 0.674

6 0.549 0.576 0.593 0.610 0.621 0.638 0.648 0.653 0.666 0.676

7 0.551 0.576 0.593 0.612 0.620 0.634 0.647 0.657 0.663 0.673

8 0.552 0.576 0.594 0.611 0.622 0.635 0.645 0.656 0.667 0.674

9 0.552 0.575 0.593 0.608 0.623 0.638 0.644 0.652 0.666 0.672

10 0.552 0.576 0.595 0.610 0.624 0.635 0.648 0.655 0.664 0.674



Table 43: Accuracy with judge and expert competences from
exponential distributionwith scale 1 truncated over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.418 0.415 0.376 0.377 0.349 0.349 0.322 0.326 0.302 0.307

1 0.437 0.418 0.406 0.397 0.392 0.390 0.385 0.384 0.381 0.380

2 0.420 0.391 0.376 0.364 0.357 0.352 0.346 0.345 0.345 0.340

3 0.401 0.369 0.349 0.338 0.330 0.323 0.319 0.314 0.315 0.308

4 0.388 0.353 0.327 0.314 0.306 0.297 0.294 0.291 0.290 0.285

5 0.375 0.337 0.315 0.297 0.288 0.280 0.274 0.269 0.267 0.263

6 0.367 0.323 0.296 0.283 0.271 0.261 0.255 0.251 0.247 0.244

7 0.358 0.312 0.285 0.268 0.253 0.244 0.240 0.235 0.232 0.229

8 0.349 0.300 0.273 0.253 0.243 0.230 0.224 0.221 0.217 0.215

9 0.343 0.289 0.263 0.244 0.228 0.221 0.214 0.207 0.201 0.200

10 0.336 0.283 0.251 0.233 0.221 0.209 0.200 0.195 0.193 0.188



Table 44: Accuracy with judge and expert competences from
exponential distributionwith scale 2 truncated over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.342 0.345 0.274 0.272 0.226 0.225 0.188 0.188 0.162 0.158

1 0.375 0.336 0.315 0.297 0.292 0.285 0.282 0.276 0.274 0.274

2 0.341 0.294 0.261 0.245 0.235 0.225 0.219 0.217 0.212 0.210

3 0.316 0.261 0.227 0.207 0.194 0.183 0.177 0.170 0.167 0.165

4 0.299 0.234 0.202 0.176 0.162 0.152 0.144 0.138 0.134 0.131

5 0.283 0.218 0.181 0.155 0.139 0.128 0.120 0.116 0.111 0.108

6 0.271 0.204 0.165 0.139 0.124 0.110 0.101 0.096 0.090 0.089

7 0.266 0.192 0.152 0.126 0.107 0.096 0.085 0.080 0.077 0.074

8 0.261 0.184 0.143 0.114 0.098 0.084 0.077 0.070 0.065 0.063

9 0.255 0.178 0.133 0.107 0.090 0.074 0.066 0.060 0.055 0.051

10 0.250 0.173 0.129 0.099 0.082 0.068 0.058 0.053 0.049 0.045



Table 45: Accuracy with judge and expert competences from
exponential distributionwith scale 3 truncated over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.283 0.281 0.190 0.190 0.138 0.139 0.103 0.102 0.076 0.078

1 0.316 0.264 0.235 0.219 0.206 0.197 0.192 0.188 0.187 0.187

2 0.278 0.214 0.177 0.156 0.142 0.133 0.127 0.124 0.117 0.116

3 0.253 0.181 0.143 0.119 0.104 0.093 0.088 0.082 0.079 0.077

4 0.241 0.164 0.123 0.098 0.079 0.068 0.062 0.057 0.053 0.052

5 0.229 0.150 0.108 0.083 0.066 0.053 0.047 0.041 0.039 0.035

6 0.221 0.144 0.100 0.074 0.056 0.045 0.038 0.031 0.028 0.025

7 0.219 0.139 0.097 0.067 0.050 0.039 0.031 0.025 0.021 0.019

8 0.218 0.135 0.091 0.063 0.046 0.034 0.025 0.022 0.018 0.015

9 0.215 0.134 0.088 0.062 0.043 0.030 0.024 0.018 0.015 0.012

10 0.215 0.132 0.088 0.060 0.041 0.029 0.022 0.016 0.013 0.010



Table 46: Accuracy with judge and expert competences from
exponential distributionwith scale 4 truncated over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.230 0.232 0.136 0.137 0.085 0.084 0.054 0.055 0.037 0.035

1 0.264 0.206 0.174 0.153 0.142 0.134 0.128 0.123 0.122 0.121

2 0.226 0.156 0.118 0.096 0.082 0.073 0.067 0.063 0.062 0.061

3 0.208 0.133 0.093 0.069 0.055 0.045 0.040 0.035 0.033 0.030

4 0.199 0.120 0.081 0.056 0.041 0.032 0.026 0.021 0.019 0.017

5 0.196 0.115 0.074 0.050 0.034 0.025 0.019 0.015 0.013 0.010

6 0.193 0.112 0.073 0.046 0.031 0.022 0.015 0.011 0.009 0.007

7 0.191 0.113 0.071 0.046 0.029 0.020 0.013 0.010 0.007 0.005

8 0.192 0.110 0.070 0.044 0.029 0.018 0.014 0.009 0.006 0.005

9 0.191 0.111 0.068 0.044 0.029 0.018 0.012 0.008 0.006 0.004

10 0.192 0.111 0.069 0.044 0.028 0.019 0.013 0.008 0.006 0.004



Table 47: Accuracy with judge and expert competences from
exponential distributionwith scale 5 truncated over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.192 0.194 0.097 0.096 0.052 0.053 0.030 0.030 0.017 0.016

1 0.217 0.158 0.125 0.103 0.093 0.086 0.083 0.081 0.078 0.078

2 0.187 0.118 0.080 0.059 0.047 0.038 0.035 0.032 0.029 0.029

3 0.177 0.103 0.065 0.042 0.031 0.022 0.017 0.015 0.013 0.012

4 0.169 0.097 0.060 0.036 0.024 0.016 0.012 0.009 0.007 0.006

5 0.169 0.096 0.057 0.035 0.021 0.013 0.009 0.006 0.004 0.003

6 0.171 0.092 0.057 0.034 0.021 0.012 0.008 0.005 0.003 0.002

7 0.170 0.096 0.055 0.034 0.020 0.013 0.008 0.005 0.003 0.002

8 0.168 0.095 0.055 0.033 0.020 0.012 0.008 0.006 0.003 0.002

9 0.169 0.095 0.056 0.033 0.020 0.013 0.008 0.005 0.003 0.002

10 0.170 0.095 0.055 0.033 0.021 0.013 0.008 0.005 0.003 0.002



Table 48: Accuracy with judge and expert competences from
exponential distributionwith scale 6 truncated over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.163 0.165 0.071 0.072 0.034 0.034 0.017 0.017 0.008 0.008

1 0.184 0.121 0.089 0.070 0.062 0.056 0.051 0.051 0.048 0.049

2 0.159 0.091 0.057 0.039 0.028 0.021 0.018 0.015 0.014 0.013

3 0.153 0.085 0.049 0.028 0.018 0.012 0.008 0.006 0.005 0.004

4 0.151 0.082 0.046 0.026 0.016 0.010 0.006 0.004 0.003 0.002

5 0.150 0.081 0.046 0.025 0.015 0.009 0.005 0.003 0.002 0.001

6 0.153 0.083 0.044 0.025 0.015 0.009 0.005 0.003 0.002 0.001

7 0.151 0.081 0.046 0.025 0.015 0.009 0.005 0.003 0.002 0.001

8 0.150 0.080 0.046 0.026 0.015 0.009 0.005 0.003 0.002 0.001

9 0.152 0.082 0.045 0.026 0.015 0.009 0.005 0.003 0.002 0.001

10 0.150 0.083 0.045 0.026 0.015 0.008 0.005 0.003 0.002 0.001



Table 49: Accuracy with judge and expert competences from
exponential distributionwith scale 7 truncated over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.143 0.142 0.054 0.056 0.022 0.023 0.010 0.010 0.004 0.004

1 0.155 0.095 0.065 0.048 0.040 0.035 0.034 0.031 0.030 0.030

2 0.138 0.077 0.043 0.025 0.016 0.011 0.009 0.008 0.007 0.006

3 0.136 0.071 0.038 0.021 0.012 0.007 0.004 0.003 0.002 0.002

4 0.137 0.071 0.037 0.020 0.011 0.006 0.004 0.002 0.001 0.001

5 0.136 0.072 0.038 0.019 0.011 0.006 0.003 0.002 0.001 0.001

6 0.134 0.071 0.037 0.019 0.011 0.006 0.004 0.002 0.001 0.001

7 0.135 0.070 0.037 0.020 0.011 0.006 0.004 0.002 0.001 0.001

8 0.132 0.070 0.037 0.020 0.011 0.006 0.003 0.002 0.001 0.001

9 0.134 0.070 0.038 0.020 0.011 0.006 0.004 0.002 0.001 0.001

10 0.135 0.072 0.038 0.020 0.011 0.006 0.003 0.002 0.001 0.001



Table 50: Accuracy with judge and expert competences from
exponential distributionwith scale 8 truncated over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.126 0.125 0.043 0.042 0.016 0.015 0.006 0.006 0.003 0.003

1 0.135 0.079 0.048 0.033 0.026 0.022 0.021 0.020 0.019 0.018

2 0.122 0.064 0.034 0.018 0.011 0.007 0.005 0.004 0.003 0.003

3 0.120 0.062 0.031 0.016 0.009 0.005 0.002 0.002 0.001 0.001

4 0.119 0.062 0.032 0.016 0.008 0.004 0.002 0.001 0.001 0.000

5 0.119 0.062 0.031 0.016 0.009 0.004 0.002 0.001 0.001 0.001

6 0.121 0.061 0.030 0.015 0.008 0.004 0.003 0.001 0.001 0.000

7 0.120 0.063 0.032 0.017 0.009 0.004 0.002 0.001 0.001 0.000

8 0.121 0.062 0.032 0.015 0.009 0.004 0.003 0.001 0.001 0.000

9 0.122 0.062 0.033 0.015 0.008 0.004 0.002 0.001 0.001 0.000

10 0.120 0.063 0.031 0.016 0.008 0.004 0.002 0.001 0.001 0.000



Table 51: Accuracy with judge and expert competences from
exponential distributionwith scale 9 truncated over (0.0, 1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.108 0.112 0.034 0.034 0.011 0.011 0.004 0.004 0.001 0.001

1 0.117 0.065 0.038 0.023 0.017 0.014 0.013 0.011 0.011 0.011

2 0.110 0.057 0.026 0.014 0.007 0.004 0.003 0.002 0.002 0.001

3 0.109 0.055 0.026 0.013 0.007 0.003 0.002 0.001 0.001 0.000

4 0.109 0.055 0.026 0.012 0.006 0.003 0.002 0.001 0.001 0.000

5 0.109 0.055 0.026 0.012 0.006 0.003 0.001 0.001 0.000 0.000

6 0.107 0.054 0.027 0.013 0.006 0.003 0.001 0.001 0.000 0.000

7 0.109 0.055 0.026 0.012 0.006 0.003 0.002 0.001 0.000 0.000

8 0.110 0.055 0.026 0.013 0.006 0.003 0.002 0.001 0.001 0.000

9 0.110 0.055 0.026 0.012 0.006 0.003 0.002 0.001 0.000 0.000

10 0.109 0.055 0.026 0.013 0.006 0.003 0.002 0.001 0.000 0.000



Table 52: Accuracy with judge and expert competences from
exponential distribution with scale 10 truncated over (0.0,
1.0)

𝑚 1 2 3 4 5 6 7 8 9 10

𝑛

0 0.101 0.099 0.028 0.027 0.009 0.009 0.003 0.003 0.001 0.001

1 0.104 0.056 0.029 0.017 0.012 0.009 0.008 0.007 0.007 0.007

2 0.098 0.050 0.022 0.011 0.005 0.003 0.001 0.001 0.001 0.001

3 0.098 0.049 0.022 0.010 0.005 0.002 0.001 0.001 0.000 0.000

4 0.097 0.050 0.023 0.010 0.005 0.002 0.001 0.001 0.000 0.000

5 0.098 0.049 0.023 0.010 0.004 0.002 0.001 0.000 0.000 0.000

6 0.100 0.049 0.023 0.010 0.005 0.003 0.001 0.000 0.000 0.000

7 0.097 0.051 0.022 0.010 0.005 0.002 0.001 0.001 0.000 0.000

8 0.098 0.050 0.022 0.010 0.005 0.002 0.001 0.001 0.000 0.000

9 0.098 0.050 0.022 0.010 0.005 0.002 0.001 0.001 0.000 0.000

10 0.098 0.050 0.022 0.010 0.005 0.002 0.001 0.001 0.000 0.000



A SINGLE JUDGE
A.1 Uniformly Distributed competences





A.2 Exponentially Distributed competences









A.3 Normally Distributed competences in (0, 1)
with 5 Experts

































A.4 Normally Distributed competences in
(0.5, 1) with 5 Experts



























A.5 Normally Distributed competences in (0, 1)
with 11 Experts























A.6 Normally Distributed competences in
(0.5, 1) with 11 Experts























B PARTITIONING AGENTS INTO ROLES
B.1 Exponentially Distributed competences in

(0.5, 1)









B.2 Uniformly Distributed competences
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