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Abstract—Gaussian Process (GP) models are widely used for
Robotic Information Gathering (RIG) in exploring unknown en-
vironments due to their ability to model complex phenomena with
non-parametric flexibility and accurately quantify prediction
uncertainty. Previous work has developed informative planners
and adaptive GP models to enhance the data efficiency of RIG by
improving the robot’s sampling strategy to focus on informative
regions in non-stationary environments. However, computational
efficiency becomes a bottleneck when using GP models in large-
scale environments with limited computational resources. We
propose a framework – Probabilistic Online Attentive Mapping
(POAM) – that leverages the modeling strengths of the non-
stationary Attentive Kernel while achieving constant-time compu-
tational complexity for online decision-making. POAM guides the
optimization process via variational Expectation Maximization,
providing constant-time update rules for inducing inputs, varia-
tional parameters, and hyperparameters. Extensive experiments
in active bathymetric mapping tasks demonstrate that POAM
significantly improves computational efficiency, model accuracy,
and uncertainty quantification capability compared to existing
online sparse GP models.

I. INTRODUCTION

Robotic Information Gathering (RIG) is a fundamental
research domain in robotics, focused on how robots can
efficiently collect informative data to construct an accurate
model of an unknown target function while adhering to robot
embodiment constraints. RIG has broad applications, including
autonomous environmental monitoring, active 3D reconstruc-
tion and inspection, and robotic exploration of uncharted
environments [1, 18, 20, 28, 30, 34, 57, 58, 65, 67, 71].

To achieve effective active information acquisition, certain
key features are desired in a model. Firstly, it should efficiently
quantify uncertainty in its predictions to guide informed data
collection, necessitating a probabilistic approach. Secondly,
to facilitate real-time decision-making with limited on-board
computational and memory resources, an online model is
essential. Finally, the model should exhibit attentiveness in
two specific ways: by directing the robot to focus on areas
with high modeling errors, and by prioritizing the modeling
of the most characteristic aspects of the target function,
given the limited computational resources. Considering these
requirements, we conclude that a probabilistic, online, and
attentive model is necessary.

In spatial modeling, Gaussian Processes (GPs) are widely
adopted due to their non-parametric flexibility and precise
uncertainty quantification capabilities [5, 14, 20, 21, 37, 55].

While previous research has primarily focused on developing
informative planners and non-stationary kernels to enhance the
data efficiency of RIG, there has been a significant gap in
addressing computation efficiency [31, 32, 42]. This oversight
presents a bottleneck in large-scale environments, especially
when computational resources are limited.

In this work, we aim to address this critical gap by
proposing an online and attentive GP model, building upon
the recently introduced Attentive Kernel (AK) [13], which
effectively guides robots to focus on informative regions. This
paper tackles the computational limitations of standard GP
regression, enabling long-term, long-range RIG missions. Our
goal is to achieve constant-time computational complexity,
which is essential for online decision making, without com-
promising prediction accuracy and precision in uncertainty
quantification.

To address the computational challenge, sparse Gaussian
Process (GP) methods are widely used to scale GP models for
handling large-scale problems effectively [7, 26, 54]. While
numerous efforts aim to reduce the computational cost of GPs,
existing methods often fail when the data or kernel are non-
stationary or when data is collected sequentially in a stream,
as in RIG. Initially, we attempted to integrate the AK with
established online SGP methods, such as Streaming Sparse
GPs (SSGP) introduced by Bui et al. [6] and Online Variational
Conditioning (OVC) by Maddox et al. [43]. However, these
approaches present several limitations that motivated us to de-
velop a novel framework. Specifically, when these methods are
used with the AK they face difficulties in adapting the input-
dependent lengthscale, essentially degenerating to a stationary
kernel. SSGP also has suboptimal runtime performance due
to the complexity of its online objective function calculation.
Additionally, the numerical stability of this method was oc-
casionally compromised, leading to Cholesky decomposition
errors. With OVC, the critical aspect of hyperparameter op-
timization is absent from their discussion, posing a gap in
understanding and potentially impacting the overall efficacy
of the method.

To overcome these limitations, we introduce the Probabilis-
tic, Online, and Attentive Mapping (POAM) framework for
learning SGP models with the AK. Our analysis reveals that
the primary cause of the existing methods’ inability to properly
learn the lengthscale is the interplay between the optimization
of inducing inputs and the kernel lengthscale within SGP



methods. To address this, we propose a solution that strate-
gically guides the optimization process by focusing solely on
learning the lengthscale and directly computing the inducing-
point locations using a lengthscale-dependent strategy. Fur-
thermore, we recognize that optimizing inducing inputs, varia-
tional parameters, and hyperparameters should be orchestrated
within a variational Expectation-Maximization (EM) frame-
work. For efficient online decision-making, we introduce a
constant-time update rule for variational parameters, lever-
aging the additive property of the data-dependent variables
in the posterior distribution. Additionally, for hyperparameter
optimization, our approach employs mini-batch stochastic op-
timization on the entire dataset, thereby bypassing the extra
computational cost associated with computing the Kullback-
Leibler (KL) divergence in an online objective function.

In summary, the contributions of this work are threefold:

• We diagnose the failure of SGP methods with non-
stationary kernels like AK, providing insights for learning
input-dependent lengthscales.

• We develop constant-time update rules for inducing in-
puts, variational parameters, and hyperparameters in the
SGP framework, enabling real-time decision-making.

• We show that the proposed POAM framework outper-
forms existing methods in modeling accuracy, uncertainty
quantification, and computational efficiency in active
bathymetric mapping tasks. We also open-source the code
for future research1.

II. RELATED WORK

Robotic Information Gathering Mobile robots have
been widely utilized as autonomous data-collecting devices,
significantly advancing scientific research, especially in remote
hazardous environments [18, 35, 38]. These robots find appli-
cations in diverse domains, including environmental mapping
and monitoring [22, 25, 29, 44, 64], search and rescue mis-
sions [46, 48, 51], and 3D reconstruction projects [36, 69, 71].

In RIG research, the primary focus is on informative plan-
ning – strategically planning action sequences or learning
policies to acquire valuable data [53]. This emphasis has led to
various planners, including recursive greedy approaches [4, 47,
61], dynamic programming methods [10, 40], mixed-integer
quadratic programming solutions [68], sampling-based algo-
rithms [1, 3, 28, 30, 34, 49, 57, 59], and trajectory optimization
techniques [2, 16, 45]. Additionally, efforts have been made to
enhance the computational efficiency of information-theoretic
objective functions in RIG [11, 12, 67, 70]. Last but not
least, there is a small but growing body of work focusing
on the development of probabilistic models and their multi-
robot extensions for RIG [31–33, 41, 42, 52]. An independent
yet closely related research direction is ergodic search, which
plans a continuous sampling trajectory such that the time
a robot spends in a region is generally proportional to the
information available in that region [17, 56, 63].

1https://github.com/Weizhe-Chen/POAM

Online Sparse Gaussian Processes Sparse Gaussian
process reduce the computational complexity of GP by per-
forming inference through a reduce set of data points or pseudo
data points [24, 54, 60, 66]. For the online setting Csató
and Opper [15] employed Expectation Propagation (EP) for
inference and used a projection method to achieve sparsity, but
they did not estimate hyperparameters. In contrast, Bui et al.
[6] introduced Streaming Sparse Gaussian Processes (SSGP),
which are capable of estimating hyperparameters through an
online evidence lower bound (ELBO). They observed that EP
performed worse than variational inference (VI). A different
perspective is provided by Maddox et al. [43], who interpreted
SSGP as Sparse Gaussian Process Regression (SGPR) on an
augmented dataset. This interpretation simplifies derivations
and implementation but does not address hyperparameter
optimization. Additionally, Stanton et al. [62] enhanced the
computational efficiency of SGPR by adopting a structured
covariance function, which may limit the model’s flexibility.

Relationship Between Existing Work and Our Work
Our work is closely related to SSGP [6] and OVC [43].

Compared to SSGP, in addition to the difference in optimiza-
tion objective, our method has three key differences. First,
we use a different update rule for variational parameters,
leading to improved performance and numerical stability.
Second, while SSGP initializes inducing inputs by randomly
sampling from old inducing inputs and new training inputs
and then optimizes the inducing point locations using the
online ELBO, we employ pivoted Cholesky decomposition
for inducing point selection without further optimization.
This approach is faster and avoids training difficulties. Third,
for hyperparameter optimization, SSGP optimizes the online
ELBO on new batches until convergence and discards the
data. In contrast, we sample mini-batches from the entire
dataset and use stochastic optimization for a fixed number
of iterations, leveraging the fact that RIG is not a streaming
problem and all data is available for training. Compared to
OVC, our method has two differences: it saves different data-
dependent terms for updating variational parameters, resulting
in significantly better performance in the experiments, and it
addresses hyperparameter optimization, a crucial aspect for
RIG that OVC does not discuss extensively.

III. BACKGROUND

A. Problem Formulation

We consider a regression problem where the robot observes
training data D = {(xi, yi)}Ni=1. Here, xi ∈ RD is the i-
th input and yi ∈ R is the corresponding target value. We
build a GP model using the training dataset to predict the
outputs y⋆ given any test input x⋆, while taking into account
the uncertainty about the prediction for active information
gathering. The number of training data N grows as the robot
collects more data. Our goal is to develop an algorithm that
can efficiently update the GP model and make predictions in
constant time for online decision making.

https://github.com/Weizhe-Chen/POAM


B. Attentive Kernel (AK)

We use the Attentive Kernel (AK) [13], which is non-
stationary and has been shown to provide improved prediction
accuracy and uncertainty quantification compared to com-
monly used stationary kernels. The kernel is defined as:

k(x,x′) = αw̄
⊺
w̄′

M∑
m=1

w̄mw̄′
mkm(x,x′),

where α is the kernel amplitude, w̄ = wθ(x)/∥wθ(x)∥2 is the
normalized weight vector, and w̄m is its m-th element. The
vector-valued function wθ(x) : RD 7→ [0, 1]M is the output
of a neural network parameterized by θ.

We use Gaussian kernels with fixed lengthscales ℓm equidis-
tant spaced from ℓmin to ℓmax as the base kernels:

km(x,x′) = exp

(
−∥x− x′∥22

2ℓm
2

)
.

AK captures mild spatially-varying variability by adaptively
blending multiple base kernels with different length-scales
via input-dependent weights w̄mw̄′

m. It also handles sharp
transitions by zeroing out the correlation between two points
through the dot product of their membership vectors w̄⊺w̄′.
The parameters of the weighting function wθ are learned from
data by maximizing the standard marginal likelihood or the
evidence lower bound.

Compared to commonly used stationary kernels in RIG, AK
can better capture key characteristic patterns of the under-
lying environment and provide more informative uncertainty
estimates to guide the robot’s sampling process, making it
particularly suitable for our problem.

C. Gaussian Process Regression (GPR)

Model In Gaussian process regression (GPR), the target
values y are assumed to be the latent function values f(x)
corrupted by an additive Gaussian white noise:

y = f(x) + ε, ε ∼ N (ε | 0, σ2).

A zero-mean GP prior is placed over the latent function:

f(x) ∼ GP(0, kθ(x,x
′)), (1)

where kθ(x,x
′) is the covariance function, a.k.a. kernel func-

tion, with kernel parameters θ.
Prediction The GP prior and the Gaussian likelihood are

conjugate, which yields an elegant closed-form solution for
the predictive distribution of the latent function f⋆ at any test
input x⋆:

p(f⋆ | y) = N (f⋆ | µ, ν), (2)

µ = k
⊺
f⋆K

−1
yy y,

ν = k⋆⋆ − k
⊺
f⋆K

−1
yy kf⋆,

where kf⋆ ∈ RN is the kernel values between training inputs
and the test input, Kyy = Kff +Σ is the summation of the
training covariance matrix Kff and the diagonal observational
noise matrix Σ = σ2I, and k⋆⋆ ≜ k(x⋆,x⋆).

Optimization The prediction quality of GPR depends on
the settings of the hyperparameters ϕ ≜ [α, σ, θ], which can
be optimized via model selection by maximizing the model
evidence, a.k.a. log marginal likelihood:

max
ϕ

log pϕ(y) = max
ϕ

logN (y | 0,Kyy) (3)

=max
ϕ

−1

2
y
⊺
K−1

yy y − 1

2
log |Kyy| −

N

2
log(2π),

where |Kyy| is the matrix determinant of Kyy . We refer to
hyperparameter optimization as training hereafter.

Complexity Training complexity of GPR is O(N3) due
to the inversion and determinant computation of Kyy and
prediction complexity is O(N2) per test input due to matrix
multiplications.

D. Sparse Gaussian Process Regression (SGPR)

Model Sparse Gaussian process regression (SGPR) al-
leviates the computational burden by approximating the full
GP model with a sparse model that shifts the expensive
computations to a small set of inducing points [24, 54, 60, 66].
Specifically, the model is augmented by a small number of
M inducing points {(zm, um)}Mm=1, where inducing outputs
u = [f(z1), . . . , f(zM )]⊺ are evaluated at corresponding
inducing inputs Z = [z1, . . . , zM ]⊺. The augmented model
p(y, f ,u) can be factorized as

p(y, f ,u) = p(y | f) p(f | u) p(u).

Assuming that the inducing outputs u effectively capture the
information from the training outputs f (i.e., any other function
value and f are independent given u), the posterior predictive
distribution of f⋆ can be expressed as:

p(f⋆ | y) =
∫

p(f⋆ | u, f) p(f | u,y) p(u | y) df du

=

∫
p(f⋆ | u) p(u | y) du,

which indicates that prediction can be made by only consid-
ering the inducing points.

In practice, however, the assumption that u serves as suffi-
cient statistics is unlikely to hold, and the posterior distribution
becomes intractable in non-conjugate cases. To address these
issues, the posterior distribution is typically approximated by
a structured variational distribution:

p(f ,u | y) ≈ q(f ,u) = p(f | u) q(u),

where p(f | u) is the conditional prior and q(u) = N (u |
m,S) is the approximate posterior of the inducing variables,
assumed to follow a Gaussian distribution. The parameters m
and S can be optimized via variational inference [24, 60, 66].

Prediction Choosing a Gaussian distribution for q(u)
leads to a closed-form solution for the predictive distribution
p(f⋆ | y) ≈ q(f⋆):

q(f⋆) = N (f⋆ | µ̃, ν̃) , (4)

µ̃ = k
⊺
u⋆K

−1
uum,

ν̃ = k⋆⋆ − k
⊺
u⋆K

−1
uuku⋆ + k

⊺
u⋆K

−1
uuSK

−1
uuku⋆.



Optimization Variational inference optimizes the pa-
rameters Z, m, and S by minimizing the Kullback-Leibler
(KL) divergence, KL[q(f ,u)∥p(f ,u |y)]. This is equivalent to
maximizing the evidence lower bound (ELBO) [66]:

log p(y) ≥
∫

q(f ,u) log
p(y, f ,u)

q(f ,u)
df du ≜ ELBO, (5)

ELBO = logN (y | 0,Qyy)−
1

2σ2
tr(Kff −Qff ). (6)

Here, Qff = K⊺
ufK

−1
uuKuf and Qyy = Qff + Σ. This

bound is referred to as the collapsed form of the ELBO, as the
variational parameters m and S are analytically marginalized
out due to the Gaussian likelihood used in the regression case.

The optimal variational parameters correspond to the col-
lapsed ELBO are given by

m =
1

σ2
KuuA

−1Kufy, (7)

S =KuuA
−1Kuu, where (8)

A =Kuu +
1

σ2
KufK

⊺
uf . (9)

Note that, although m and S are analytically marginalized out
and thus do not require optimization, we still need to optimize
the inducing inputs Z and the hyperparameters ϕ. This can be
achieved simultaneously by maximizing the ELBO.

Complexity The matrix inversion operations in SGPR
are O(M3) instead of O(N3) in GPR, which is no longer the
bottleneck. The time complexity of SGPR is O(NM2) due to
the matrix multiplications, which is much lower than that of
GPR when M ≪ N .

E. Stochastic Variational Gaussian Processes (SVGP)

Optimization The linear complexity of SGPR can be
further reduced to constant time using Stochastic Variational
Gaussian Processes (SVGP) [24]. The ELBO in Eq. (5) before
marginalizing out the variational parameters can be written in
an uncollapsed form:

ELBO =

N∑
n=1

Eq(fn) [log p(yn | fn)]− KL[q(u) ∥ p(u)], (10)

where the marginal predictive distribution q(fn) is given by
Eq. (4). The expectation can be computed analytically when
the likelihood is Gaussian or approximated by Monte Carlo
sampling otherwise [27]. Writing the ELBO as a sum of N
terms allows us to use mini-batch stochastic optimization to
update the parameters. Specifically, the gradient of the ex-
pected log-likelihood term can be approximated by B training
data sampled uniformly at random:

N

B

B∑
b=1

∇Eq(fb)[log p(yb | fb)]. (11)

All the parameters, including the variational parameters m and
S, the inducing inputs Z, and the hyperparameters ϕ, can be
optimized by maximizing the uncollapsed ELBO in Eq. (10)
using stochastic gradient ascent.

(a) Environment (b) Dataset

Fig. 1. An elevation dataset sampled via lawnmower path in the
environment for illustrative purposes. (a) The ground-truth elevation map
of the environment. Red and blue colors represent high and low elevations,
respectively. (b) A dense dataset sampled by lawnmower path in the environ-
ment, which is used to train the GP model for elevation mapping.

Prediction The resulting variational parameters m and
S can be directly plugged into Eq. (4) to make predictions,
bypassing the need to compute them analytically from the
training data, which would take linear time.

Complexity The time complexity becomes O(BM2 +
M3) per training iteration and O(M3) when making predic-
tions on a test input, which is independent of the number of
training data N .

IV. METHODOLOGY

Before introducing the complete Probabilistic, Online, and
Attentive Mapping (POAM) framework, we first explain how
to achieve probabilistic attentive mapping using SVGP with
AK on the entire training dataset. Understanding this offline
learning case is crucial for developing the online model. For
illustrative purposes, we use the environment and dataset
shown in Fig. 1 as a running example. The goal in this
example is to make predictions that closely match the ground-
truth environment using the collected data and to learn the
underlying lengthscale map. Specifically, the left and center
parts should have a large lengthscale, while the other three
sides should have a small lengthscale. We then introduce
the online update rules for the inducing inputs, variational
parameters, and hyperparameters, enabling the model to be
updated incrementally and efficiently as new data arrives.

A. Probabilistic Attentive Mapping with SVGP

Direct Use of SVGP with AK A straightforward solution
to achieve probabilistic, online, and attentive mapping is to
use an AK in SVGP and optimize all parameters using mini-
batch stochastic optimization on an ever-growing dataset.
Thus, directly training an SVGP with AK on the entire
dataset is our initial attempt to achieving probabilistic attentive
mapping. However, as shown in Fig. 2, this method encounters
difficulties in learning the appropriate lengthscale map. The
primary issue lies in the coupling of inducing input and kernel
lengthscale optimization.

During the early stages of training, the hyperparameters of
the AK have not yet been optimized and the input-dependent
lengthscale behaves like a stationary kernel. At this stage,
optimizing the ELBO in Eq. (10) results in inducing inputs



becoming uniformly distributed across the input space, en-
compassing the training data. When the optimization attempts
to allocate a small lengthscale to a region with high variability,
it requires a rapid relocation of more inducing inputs to that
region. Failure to achieve this relocation incurs a high training
loss because regions with small lengthscales require dense
inducing-point support. However, gradient-based optimization
restricts the movement of inducing inputs in each iteration,
making it difficult to meet this requirement promptly. As a
result, the optimizer tends to maintain a large lengthscale in
AK even in regions of high variability. This ultimately leads to
an inability to learn the input-dependent lengthscale, causing
the model to degenerate into a stationary kernel, with inducing
point locations becoming uninformative.

Pivoted Cholesky Decomposition Building upon the
aforementioned observations, we introduce a novel strategy
to guide the optimization process: focusing solely on learning
the lengthscale while directly computing the inducing input
locations. For the latter, we leverage Pivoted Cholesky De-
composition (PCD) [23], as proposed by Burt et al. [9] and
used in OVC [43], to efficiently select inducing points from
the training data.

Specifically, PCD computes a low-rank Cholesky factor-
ization of a positive-definite matrix by iteratively selecting
pivots to compute the permutation matrix for rearranging rows
and columns. The algorithm starts with a residual matrix
and a permutation matrix, which are initialized as the input
matrix and an identity matrix, respectively. Iteratively, the
algorithm selects pivots (the maximum diagonal elements of
the residual matrix) to construct the Cholesky factor and
update the residual matrix. This process continues until a
specified rank is achieved or the remaining diagonal elements
fall below a predefined error tolerance. Dynamic reordering
of rows and columns using a permutation matrix derived from
the selected pivot occurs throughout the iterations. With a
computational complexity of O(NR2), where R is the rank of
the decomposition, PCD strikes a balance between numerical
accuracy and efficiency.

When applied to inducing input selection, the input is the
kernel matrix Kff , and the output is the low-rank factor of
Kff ≈ LL⊺ along with the selected pivots. These pivots are
then used to index the training data, enabling the selection of
corresponding training inputs as the inducing inputs.

Intuitively, PCD allocates more inducing inputs in complex
regions (small-lengthscale regions) and fewer inducing inputs
in simple regions (large-lengthscale regions). This results in
a more attentive inducing input distribution, enhancing the
model’s adaptability to spatially-varying complexities. Theory-
wise, Burt et al. [9] derived upper bounds on the KL-
divergence between the approximate posterior and the true
posterior, which depend on either the trace or the largest
eigenvalues of the low-rank Nyström approximation error.
PCD provides a simple way to compute a low-rank approxi-
mation to a positive-definite matrix such that the trace error is
rigorously controlled. It also enjoys exponential convergence
rates when the eigenvalues of the full matrix exhibit a fast

(a) SVGP Mean (b) SVGP Lengthscale

Fig. 2. Prediction and lengthscale maps from jointly training all
parameters with an Adam optimizer. (a) The predictive mean map exhibits
uniform smoothness due to the uniform scattering of inducing points (black
dots) across the space and the failure to learn an input-dependent lengthscale.
(b) The lengthscale map is flat, indicating that the attentive kernel has
degenerated to a stationary kernel.

(a) PAM Mean (b) PAM Lengthscale

Fig. 3. Prediction and lengthscale maps from the proposed Probabilistic
Attentive Mapping (PAM) training paradigm. (a) A higher density of
inducing points is allocated to the complex region, enabling the predictive
mean to capture finer elevation details. (b) The learned lengthscale map
delineates the relatively smooth area on the left (large lengthscale) from the
highly varying region near the right boundary (small lengthscale).

exponential decay [23]. These theoretical properties, along
with the computational efficiency and numerical stability,
make PCD a good choice for inducing input updates.

Analytic Computation of the Variational Parameters
As shown in the ablation study in Section V-C, using PCD
for inducing input selection and jointly optimizing all other
parameters still results in poor performance. This is because
the variational parameters m and S depend on the inducing
inputs. When inducing inputs are updated instantaneously
rather than being slowly optimized by gradient descent, the
gradient optimization of the variational parameters cannot
adjust accordingly, leading to poor performance. To resolve
this, we also compute the variational parameters analytically
using the closed-form expressions in Eqs. (7) and (8).

Variational Expectation Maximization Training To
account for the interdependence of inducing inputs, varia-
tional parameters, and hyperparameters, we adopt a variational
Expectation-Maximization (EM) approach to update these
three sets of parameters. In the E-step, we fix the hyperparame-
ters and sequentially update the inducing inputs and variational
parameters. In the M-step, we fix the inducing inputs and
variational parameters while optimizing the hyperparameters.
This systematic updating process, when applied to SVGP with
AK, is referred to as Probabilistic Attentive Mapping (PAM).

The effectiveness of PAM is showcased in Fig. 3, where
it demonstrates the ability to learn input-dependent length-
scales and strategically allocate more inducing inputs in high-



variability regions, leading to more accurate predictions.
However, while PAM excels in learning input-dependent

lengthscales, its suitability for online learning is limited due
to the non-incremental nature of variational parameter and
inducing input computations. In the subsequent sections, we
develop constant-time update rules specifically designed for
inducing inputs and variational parameters.

B. Online Update of Inducing Inputs

Suppose we have M existing inducing inputs Z′ selected
from old training data X′ and now receive Nnew new training
data X ∈ RNnew×D. Updating the inducing inputs by concate-
nating the old and new training data [X′⊺,X⊺]⊺ and running
PCD again on the resulting N × N kernel matrix requires
linear time complexity with respect to the number of training
data N , which is not ideal for online learning.

To address this limitation, we opt for a more efficient
recursive update rule for inducing inputs. Specifically, we
concatenate the old inducing inputs and new training data
[Z′⊺,X⊺]⊺ and perform PCD on the resulting square kernel
matrix of size M + Nnew, which is independent of the total
number of training data. Note that M + Nnew ≪ N , and
this recursive update rule allows us to efficiently update the
inducing inputs in constant time complexity with respect to
N , making it ideal for online learning.

C. Online Update of Variational Parameters

Recomputing the variational parameters using Eqs. (7)
and (8) after receiving new data involves linear time complex-
ity with respect to the number of training data. For real-time
decision-making, we also need an incremental update strategy
for the variational parameters. The key idea is to preserve
the old data-dependent terms and compute only the new data-
dependent terms related to the recently acquired data.

Denoting old variables with a prime symbol and explicitly
writing out the data-dependent terms, we have:[

Kuf ′ Kuf

] [y′

y

]
= Kuf ′y′

old

+Kufy

new

, (12)

[
Kuf ′ Kuf

] [Kf ′u

Kfu

]
= Kuf ′Kf ′u

old

+KufKfu

new

. (13)

The additive property of the data-dependent terms allows
us to update the variational parameters incrementally. How-
ever, if we save the old data-dependent terms, K′

u′f ′y′ and
K′

u′f ′K′
f ′u′ , they are computed using the old inducing inputs

u′ and hyperparameters ϕ′. To address this issue, we use a
projection matrix to transform the saved terms to align with
the new inducing inputs and hyperparameters. Formally, we
would like to find P ∈ RM×M such that

P⊤K′
u′f ′y′ = Kuf ′y′, (14)

P⊤K′
u′f ′K′

f ′u′P = Kuf ′Kf ′u′ . (15)

This requires solving the following linear system for P:

P⊤K′
u′f ′ = Kuf ′ , or equivalently, K′

f ′u′P = Kf ′u. (16)

Since K′
f ′u′ is not a square matrix, the solution can be

computed using the pseudo inverse:

P =(K′
u′f ′K′

f ′u′)−1K′
u′f ′Kf ′u. (17)

The computation of K′
f ′u′ and Kf ′u requires all the old

inputs X′ before the current time step, which still requires
linear time complexity with respect to the number of training
data. To bypass this issue, we can choose a small set of
“representative” old inputs for computing the kernel matrices.
One computationally convenient choice is to use the old
inducing inputs. By replacing K′

f ′u′ with K′
u′u′ and Kf ′u

with Ku′u in Eq. (17), the projection matrix P is given by:

P = (K′
u′u′K′

u′u′)−1K′
u′u′Ku′u, (18)

= K′−1
u′u′Ku′u. (19)

Here, the first term is the inverse of the self-covariance matrix
of the old inducing inputs, and the second term is the cross-
covariance matrix between the old inducing inputs and the new
inducing inputs.

In summary, we can update the variational parameters in-
crementally by adding the projected old data-dependent terms
to the new data-dependent terms:

P⊤ K′
u′f ′y′

saved

+Kufy, (20)

P⊤ K′
u′f ′K′

f ′u′

saved

P+KufKfu. (21)

We then plug these updated terms into Eqs. (7) and (8) to
update the variational parameters.

It is important to note that although Eqs. (20) and (21)
resemble the projection-view of OVC, they actually store
distinct sets of data-dependent terms: K′

u′f ′Σ−1y′ and
K′

u′f ′Σ−1K′
f ′u′ . This difference results in significantly bet-

ter performance of POAM in our experiments.

D. Online Update of Hyperparameters

For the online update of hyperparameters, our key insight
is that RIG does not conform to a strict streaming problem.
Typically, the robot retains access to all past data accumulated
and stored onboard. To take advantage of this, we leverage the
entire training set for hyperparameter updates while maintain-
ing constant training complexity with respect to the number
of training data.

Given that SVGP supports mini-batch stochastic optimiza-
tion, we incorporate new data by appending it to the contin-
ually expanding training set. Hyperparameter optimization is
then performed for a specified number of steps using Eq. (10),
with gradients approximated through a Monte-Carlo estimate,
as described in Eq. (11), computed from a mini-batch of
randomly selected samples.

While this approach reduces the number of updates on the
newly collected data because it may not be sampled in the
mini-batch, this turns out to be advantageous in the context of
RIG problems. During the initial phases, when the robot lacks
sufficiently representative data of an unknown environment,



Algorithm 1: RIG with POAM
1 Collect X0 and y0 by following a pilot survey path;
2 Initialize Z0, m0, S0, and ϕ0;
3 Decision epoch t = 0;
4 while not collected enough number of samples do
5 Decision epoch t = t+ 1;
6 Select an informative waypoint;
7 Collect samples Xt and yt by navigating to the

selected informative waypoints.;
8 Concatenate Zt−1 and Xt;
9 Update Zt via PCD on the kernel matrix computed

on the concatenated inputs;
10 Update the data-dependent terms using Eqs. (20)

and (21);
11 Update mt and St via Eqs. (7) and (8);
12 Optimize hyperparmeters ϕ on all data by

mini-batch stochastic gradient ascent on Eq. (10);

frequent hyperparameter updates can prematurely lead the
robot into an exploitative mode. Deliberately slowing down
hyperparameter updates, especially for the lengthscale, allows
the robot to initially explore the environment and gather more
representative data for refining its model.

E. Probabilistic, Online, and Attentive Mapping (POAM)

The overarching POAM framework is outlined in Algo-
rithm 1. Initially, the robot conducts a pilot survey to collect
training data, which is essential for computing normalizing
statistics for data preprocessing and initializing the GP model.
To achieve this, the initial path should cover various locations
within the workspace boundaries to gather representative sam-
ples. During each decision epoch, the robot selects informative
waypoints and collects new samples while navigating to these
waypoints. The newly acquired training inputs, along with the
previous inducing inputs, are then used to update the inducing
inputs via PCD (Section IV-B). Once the inducing inputs
are updated, the variational parameters are adjusted using the
online updates described in Section IV-C. Finally, hyperpa-
rameters are optimized by performing mini-batch stochastic
gradient ascent on the ELBO for several steps (Section IV-D).
Overall, POAM enables accurate and efficient probabilistic
mapping of the unknown target function.

V. EXPERIMENTS

We evaluate the proposed POAM framework’s accuracy,
uncertainty quantification capability, and computational ef-
ficiency through extensive experiments. In benchmarking,
POAM is compared with two state-of-the-art online sparse
GP models or their enhanced versions. The results, both
quantitative and qualitative, are discussed in Section V-B.
Additionally, an ablation study is conducted to validate the
importance of the POAM components, detailed in Section V-C.

Fig. 4. Illustration of the initial waypoints generated by a Bézier curve.

A. Experiment Setup

Task Setting Consider an Autonomous Underwater Ve-
hicle (AUV) following a Dubins’ car kinematic model on
a fixed altitude plane, with a maximum linear velocity of
1 m/s and a control frequency of 10 Hz. The AUV is
equipped with a single-beam range sensor that collects noisy
elevation measurements at 3 Hz, with unit Gaussian white
noise. The probabilistic model’s inputs are two-dimensional
sampling locations, and it can predict elevation at any query
location along with the corresponding prediction uncertainty.
In this active bathymetric mapping task, the AUV aims to
minimize elevation prediction error efficiently, given a budget
of 5000 samples. A superior method should achieve a lower
prediction error by the end of the task and show a faster
reduction in the prediction error curve. For simplicity, all
compared methods use the same planner proposed in [13]. This
planner evaluates prediction entropy at 2000 random candidate
locations and selects a point maximizing high-entropy and
minimizing distance to the current location of the robot as
the next informative waypoint. As discussed in Section V-D
the conclusions of the experiments are still valid when the
planner is changed.

Initial Sampling The robot initiates its trajectory by
following a Bézier curve produced by 15 control points that
adapt to the dimensions of the workspace, as illustrated in
Fig. 4. It is important to note that the pilot survey path is not
limited to this Bézier curve, and the robot starting from the
lower-right is an arbitrary choice; any initial path that helps the
robot collect representative initial samples can be used. Exper-
iments showing robustness to different initialization strategies
are discussed in Section V-D. These samples initialize the GP
model and compute the statistics needed to normalize the input
values to fall within the range of -1 to 1 and standardize the
target values to have a mean of 0 and a standard deviation
of 1. This preprocessing step enhances training efficacy and
numerical stability, which is a common practice in GPR.

Environment Description We use digital elevation
maps from the NASA Shuttle Radar Topography Mission
(SRTM) [19] to simulate the ground-truth environments for



TABLE I
BENCHMARKING RESULTS. THE TABLE SHOWS THE AVERAGE PERFORMANCE ACROSS ALL DECISION EPOCHS FOR THE PROPOSED POAM AND THE

COMPARED BASELINES IN FOUR DIFFERENT ENVIRONMENTS. METRICS INCLUDE SMSE, MSLL, AND TRAINING TIME. THE BEST-PERFORMING
METHOD IS HIGHLIGHTED IN BOLD. RESULTS ARE AVERAGED OVER 10 RUNS, WITH THE STANDARD DEVIATION INDICATED BY THE PLUS-MINUS SIGN.

SUPERSCRIPTS AND SUBSCRIPTS DENOTE MAXIMUM AND MINIMUM VALUES, WHILE ARROWS INDICATE THE DIRECTION OF IMPROVEMENT.

Name Environment Method Averaged SMSE↓10 Averaged MSLL↓0 Averaged Time (s)↓0

Env1

SSGP++ (3.22 ± 0.17) × 10−1 (−6.52 ± 0.78) × 10−1 (1.57 ± 0.02) × 100

OVC (3.18 ± 0.11) × 10−1 (−6.16 ± 0.18) × 10−1 1.18 × 100

OVC++ (3.13 ± 0.21) × 10−1 (−6.70 ± 0.24) × 10−1 (8.51 ± 0.10) × 10−1

POAM (3.09 ± 0.11) × 10−1 (−7.08 ± 0.11) × 10−1 (8.56 ± 0.09) × 10−1

Env2

SSGP++ (8.40 ± 0.45) × 10−2 (−1.34 ± 0.04) × 100 (1.57 ± 0.02) × 100

OVC (9.35 ± 0.38) × 10−2 (−1.13 ± 0.01) × 100 (1.18 ± 0.01) × 100

OVC++ (8.39 ± 0.20) × 10−2 (−1.30 ± 0.01) × 100 (8.53 ± 0.12) × 10−1

POAM (7.73 ± 0.28) × 10−2 (−1.46 ± 0.04) × 100 (8.43 ± 0.06) × 10−1

Env3

SSGP++ (1.68 ± 0.11) × 10−1 (−1.06 ± 0.05) × 100 (1.58 ± 0.03) × 100

OVC (1.74 ± 0.06) × 10−1 (−8.82 ± 0.13) × 10−1 (1.18 ± 0.01) × 100

OVC++ (1.72 ± 0.05) × 10−1 (−1.03 ± 0.04) × 100 (8.50 ± 0.12) × 10−1

POAM (1.62 ± 0.09) × 10−1 (−1.14 ± 0.02) × 100 (8.46 ± 0.11) × 10−1

Env4

SSGP++ (9.79 ± 2.34) × 10−2 (−1.22 ± 0.16) × 100 (1.58 ± 0.02) × 100

OVC (7.09 ± 0.29) × 10−2 (−1.28 ± 0.02) × 100 (1.18 ± 0.01) × 100

OVC++ (1.06 ± 0.26) × 10−1 (−1.15 ± 0.14) × 100 (8.59 ± 0.10) × 10−1

POAM (8.30 ± 1.16) × 10−2 (−1.42 ± 0.05) × 100 (8.54 ± 0.07) × 10−1

bathymetric mapping2. The workspace dimensions are de-
fined as 31 × 31 meters. For better visual comparison, the
elevation maps of the four environments are shown later in
Fig. 7. Thumbnails of these environments are also provided
in the second column of Table I for easier reference. These
environments have distinct elevation patterns, which helps
evaluate the performance of the compared methods across
diverse scenarios, offering insights into their generalization
capabilities.

• Env1: The topography is relatively smooth on the left side
and the center, but rocky in the other three directions.

• Env2: The terrain is relatively flat in the left two-thirds
and mountainous in the remaining one-third.

• Env3: There is high variability in the lower part and small
variation in the upper section.

• Env4: It has two rugged regions at the top and bottom,
and a flat area in the upper-left corner.

Compared Methods As discussed in Section IV-A,
optimizing the locations of inducing points while learning
an input-dependent lengthscale in the AK via gradient opti-
mization is challenging. Consequently, the vanilla Streaming
Sparse GP (SSGP) [6] and the original Online Variational
Conditioning (OVC) [43] methods do not perform well. To
make these baseline methods comparable, we apply the same
PCD strategy for selecting the inducing inputs for SSGP and
OVC, without further gradient optimization. These improved
baselines are referred to as SSGP++ and OVC++. All methods
utilize 500 inducing points and are optimized with 10 gradient
steps per decision epoch. We keep all other settings unchanged,

2The elevation map can be viewed and downloaded from the 30-Meter
SRTM Tile Downloader https://dwtkns.com/srtm30m/.

modifying only the update strategies for the inducing inputs,
variational parameters, and hyperparameters.

Evaluation Metrics Following standard practice in the
GP literature [55], we use Standardized Mean Squared Er-
ror (SMSE) and Mean Standardized Log Loss (MSLL) to
evaluate model accuracy and uncertainty quantification. SMSE
is calculated as the mean squared error divided by the variance
of the test targets. After standardization, a simple method
that predicts using the mean of the training targets will
have an SMSE of approximately 1. MSLL standardizes the
log loss by subtracting the log loss of a naive model that
predicts using a Gaussian distribution with the mean and
variance of the training targets. An MSLL value close to zero
indicates a naive method, while negative values indicate better
performance. Additionally, we compare the training time to
assess computational efficiency. Since all methods are variants
of SVGP, prediction times are similar and thus not included
in the comparison.

B. Benchmarking Results

Table I shows that POAM consistently outperforms the
baselines in terms of averaged accuracy (SMSE), uncertainty
quantification (MSLL), and computational efficiency (training
time) in the first three environments. In the fourth environment,
OVC achieves a better SMSE than POAM, while POAM still
excels in MSLL and training time. The superior SMSE of
OVC in this environment is due to its joint optimization of
the inducing inputs and lengthscale via stochastic gradient,
resulting in a constant lengthscale across the spatial domain.
This causes GPR to assign high uncertainty to data-scarce
areas, disregarding the complexity of the underlying function,
and guiding the robot to explore the environment uniformly,

https://dwtkns.com/srtm30m/
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Fig. 5. Benchmarking results of the evaluated methods across four environments and three metrics. The proposed method (POAM) is compared
against an online sparse GP baseline (OVC) and two improved baselines (OVC++ and SSGP++) in terms of standardized mean squared error (SMSE), mean
standardized log loss (MSLL), and training time.

(a) SSGP++ (b) OVC (c) OVC++ (d) POAM

Fig. 6. Prediction and sampling path of different methods in Env2. The sampling paths of SSGP++ and OVC++ do not cover the right boundary
extensively enough. OVC uniformly explores the environment. POAM effectively discovers and covers the complex region.

thus increasing the likelihood of discovering the two isolated
rugged regions. In contrast, the other three methods learn
input-dependent lengthscales. After discovering one rugged
region, these models assign high uncertainty to the complex
region, causing the robot to stay and collect more samples
until the uncertainty in that area is significantly reduced. This
delayed discovery of the other rugged region results in a slower
decrease in SMSE.

Fig. 5 shows the changes in SMSE, MSLL, and training
time as the robot collects between 1000 and 5000 samples.
POAM exhibits the most rapid decline in both SMSE and
MSLL across all environments except the fourth. In Env4, the
SMSE curve for POAM initially shows a higher SMSE than
OVC and decreases more slowly. However, after collecting
around 3000 samples, POAM quickly catches up and surpasses
OVC when sampling in the second rugged region. Thus while
Table I shows that, when averaging over decision epochs, the
SMSE of OVC in Env4 is lower, the final SMSE value of

POAM is better. SSGP++, OVC++, and POAM have higher
standard deviations in SMSE and MSLL curves because their
performance depends on when the robot encounters rugged
regions. Notably, POAM’s MSLL curve is significantly lower
than those of other methods, indicating better uncertainty
quantification. The myopic planner used in the experiments
focuses only on a nearby waypoint with the highest entropy,
making it challenging to guide the robot to other important
regions after discovering the first rugged region unless the
uncertainty in the first region is significantly reduced. An
advanced informative planner could better utilize POAM’s
uncertainty quantification capability to improve performance.

The training time curves consistently demonstrate constant
runtimes across all methods. POAM and OVC++ have the
fastest runtimes, closely followed by OVC. SSGP++ has the
slowest runtime due to the complex online ELBO computation.
The vanilla SSGP can be more time-consuming because it
optimizes all parameters until convergence, whereas SSGP++
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Fig. 7. Visualization of the four environments and the learned lengthscale maps. Red means high elevation while blue indicates low. The black dots
represent the inducing points.
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Fig. 8. Results of ablation study. The experiment is conducted in Env1. Changing the inducing input update strategy to gradient-based optimiza-
tion (POAM-Z-OPT) or random allocation (POAM-Z-RAND) deteriorates the performance. Updating the variational parameters using SSGP’s strategy
(POAM-VAR-SSGP) slightly reduces the performance. Training with the online evidence lower bound of SSGP (POAM-ONLINE-ELBO) does not change
SMSE or MSLL but increases training time.

only takes several gradient steps. OVC++ has a runtime
nearly identical to POAM, as these methods are similar,
differing only in what they cache. POAM saves variables
related to the training data, while OVC++ saves noise-weighted
data-dependent variables. This subtle difference significantly
enhances POAM’s accuracy and uncertainty quantification
capabilities.

The most substantial performance disparity among the four
environments is evident in Env2, which is therefore used
for a qualitative assessment. Fig. 6 shows the prediction

and sampling trajectories of the four methods. Notably, OVC
demonstrates uniform exploration throughout the environment
because it faces challenges in learning an input-dependent
length scale for AK. In contrast, the other three methods guide
the robot to collect more samples in the mountainous region.
Additionally, SSGP++ and OVC++ ignore the complex plateau
at the right border and primarily gather samples along the steep
slope. POAM captures the plateau comprehensively, collecting
samples in a more balanced manner.

Fig. 7 presents the learned lengthscale and inducing inputs



across all environments. OVC’s lengthscale maps are excluded
because they remain flat in all environments. Comparing the
lengthscale maps in Env1 to those learned with dense full
data in Fig. 3b, we observe that all three methods appropri-
ately learn the input-dependent lengthscale from sequentially
received data batches.

While the lengthscale maps appear similar in Env1, the
learned lengthscale maps differ in the other three environ-
ments. In Env2, SSGP++ and OVC++ show a large lengthscale
in the far-right region, whereas POAM assigns a smaller
lengthscale to the same area. This results in SSGP++ and
OVC++ allocating low uncertainty and fewer inducing inputs
in this region, leading to sparser sampling near the right border.
In Env3, all three methods assign small length scales in the
lower part where the terrain variation is evident. However,
POAM delineates the boundary between the two regions
more clearly. The most significant differences in lengthscale
maps are observed in Env4. While all methods capture the
rugged region at the bottom, OVC++ does not place a small
lengthscale in the upper rugged region. Additionally, SSGP++
and OVC++ consider the right part of the environment to be
smooth, while POAM considers the upper-left corner to be
smooth.

C. Ablation Study

To evaluate the effectiveness of each component in our
method, we conducted an ablation study by examining various
configurations:

• POAM-Z-OPT: Optimizes inducing inputs using gradi-
ents instead of PCD.

• POAM-Z-RAND: Selects inducing inputs randomly rather
than using PCD.

• POAM-VAR-OPT: Optimizes variational parameters us-
ing gradients instead of computing them analytically.

• POAM-VAR-SSGP: Replaces the variational parameter
update rules of POAM with those of SSGP.

• POAM-ONLINE-ELBO: Trains hyperparameters using
the online ELBO of SSGP rather than the standard ELBO.

Fig. 8 shows the results of the ablation study. Changing
any part of POAM leads to a noticeable drop in perfor-
mance, except for POAM-ONLINE-ELBO, which performs
similarly to POAM but is more computationally expensive.
The results for POAM-Z-OPT and POAM-VAR-OPT show that
using analytical methods for inducing inputs and variational
parameters is better than using gradient-based optimization.
Compared to POAM-Z-RAND, we see that pivoted Cholesky
decomposition is essential for POAM’s performance. The
result of POAM-VAR-SSGP indicates that POAM’s method
for updating variational parameters is more effective than the
SSGP method.

D. Robustness

The appendix include additional experiments that explore
the robustness of the algorithm and experimental setting. In
particular, we repeat the experiments with a different initial-
ization strategy that uses random points instead of the Bézier

curve, and with an uninformed planner that chooses waypoints
randomly. The experiments show that the conclusions given
above are valid and hence robust to such modifications. In
addition, we include a baseline that uses the full dataset for
updates of variational parameters. The results show that the
performance of POAM is very close to that of using the
full dataset, indicating it provides an effective approximation
method.

VI. CONCLUSION

In this paper, we developed the Probabilistic Online At-
tentive Mapping (POAM) framework to achieve computa-
tional efficiency and data efficiency simultaneously in robotic
information gathering in non-stationary environments. This
is achieved by constant-time model updates and variational
Expectation-Maximization training of sparse Gaussian process
regression with the Attentive Kernel. Extensive experiments
in active bathymetric mapping tasks show that POAM outper-
forms existing online sparse Gaussian Process models in terms
of accuracy, uncertainty quantification, and efficiency.

Despite the promising results, POAM has limitations. The
recursive update of the inducing inputs may lead to suboptimal
performance in streaming time-series data because some old
inducing inputs will be removed in order to make room for
new ones, which is a common issue in online sparse GPs. The
online update expressions for the variational parameters are for
regression tasks. Other tasks such as classification requires dif-
ferent update rules. The hyperparameters are updated slowly,
which may not be optimal when prompt hyperparameter
adaptation is needed. Addressing these limitations provides
opportunities for future work. Additionally, POAM can be
extended to other active information gathering tasks such as
active implicit surface mapping [39], online active dynamics
learning [8], and online active perception for locomotion [50].

ACKNOWLEDGEMENTS

We acknowledge the support of NSF with grant numbers
2006886, 2047169 and 2246261. We appreciate the construc-
tive comments from the anonymous conference reviewers,
which have significantly improved this paper. This research
was supported in part by Lilly Endowment, Inc., through
its support for the Indiana University Pervasive Technology
Institute.

REFERENCES

[1] Akash Arora, P. Michael Furlong, Robert Fitch, Salah
Sukkarieh, and Terrence Fong. Multi-modal active per-
ception for information gathering in science missions.
Autonomous Robots (AURO), 43(7):1827–1853, October
2019.

[2] Shi Bai, Jinkun Wang, Fanfei Chen, and Brendan En-
glot. Information-theoretic exploration with Bayesian
optimization. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1816–1822,
2016.

https://doi.org/10.1007/s10514-019-09836-5
https://doi.org/10.1007/s10514-019-09836-5
https://ieeexplore.ieee.org/abstract/document/7759289
https://ieeexplore.ieee.org/abstract/document/7759289


[3] Graeme Best, Oliver M Cliff, Timothy Patten, Ram-
gopal R Mettu, and Robert Fitch. Dec-MCTS: decen-
tralized planning for multi-robot active perception. The
International Journal of Robotics Research (IJRR), 38
(2-3):316–337, 2019.

[4] Jonathan Binney, Andreas Krause, and Gaurav S
Sukhatme. Optimizing waypoints for monitoring spa-
tiotemporal phenomena. The International Journal of
Robotics Research (IJRR), 32(8):873–888, 2013.

[5] Lorenzo Booth and Stefano Carpin. Informative path
planning for scalar dynamic reconstruction using core-
gionalized Gaussian processes and a spatiotemporal ker-
nel. In 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 8112–8119,
2023.

[6] Thang D Bui, Cuong Nguyen, and Richard E Turner.
Streaming sparse Gaussian process approximations. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 30, 2017.

[7] Thang D Bui, Josiah Yan, and Richard E Turner. A
unifying framework for Gaussian process pseudo-point
approximations using power expectation propagation.
The Journal of Machine Learning Research (JMLR), 18
(1):3649–3720, 2017.

[8] Mona Buisson-Fenet, Friedrich Solowjow, and Sebastian
Trimpe. Actively learning gaussian process dynamics. In
Learning for dynamics and control, pages 5–15, 2020.

[9] David R Burt, Carl Edward Rasmussen, and Mark Van
Der Wilk. Convergence of sparse variational inference in
Gaussian processes regression. The Journal of Machine
Learning Research (JMLR), 21(1):5120–5182, 2020.

[10] Nannan Cao, Kian Hsiang Low, and John M Dolan.
Multi-robot informative path planning for active sensing
of environmental phenomena: A tale of two algorithms.
In International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 7–14, 2013.

[11] Henry Carrillo, Yasir Latif, Maria L Rodriguez-Arevalo,
Jose Neira, and Jose A Castellanos. On the monotonicity
of optimality criteria during exploration in active SLAM.
In 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 1476–1483. IEEE, 2015.

[12] Benjamin Charrow, Gregory Kahn, Sachin Patil, Sikang
Liu, Ken Goldberg, Pieter Abbeel, Nathan Michael,
and Vijay Kumar. Information-Theoretic Planning with
Trajectory Optimization for Dense 3D Mapping. In
Proceedings of Robotics: Science and Systems, pages 1–
10, 2015.

[13] Weizhe Chen, Roni Khardon, and Lantao Liu. AK: At-
tentive Kernel for Information Gathering. In Proceedings
of Robotics: Science and Systems (RSS), pages 1–16,
2022.

[14] Weizhe Chen, Roni Khardon, and Lantao Liu. Adaptive
Robotic Information Gathering via non-stationary Gaus-
sian processes. The International Journal of Robotics
Research (IJRR), pages 1–32, 2023.
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APPENDIX

The appendix provides a detailed derivation and explanation
of prior work and how POAM fits in that context, as well
as additional experimental results showing the robustness of
POAM and the experimental setup used in the main paper.

A. Detailed Discussion of SSGP and OVC

We provide detailed explanations on the updates of varia-
tional parameters and hyperparameters in the related work.
Additionally, we describe how we adapt existing methods
to serve as robust baselines for our proposed approach. We
analyze various methods from the perspective of updating
data-dependent variables to highlight their similarities and
differences, positioning our work within the existing methods
for online sparse Gaussian process regression. Consistent
mathematical notations, as summarized in Table II, are used
throughout the paper.

1) Sparse Gaussian Process Regression (SGPR): We rein-
troduce the predictive distribution of SGPR for easier refer-
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TABLE II
MATHEMATICAL NOTATIONS.

Meaning Example Remark

variable n lower-case
constant N upper-case
vector x bold, lower-case
matrix X bold, upper-case
set/space R blackboard
function f(·)
functional KL[·] typewriter with square brackets
special density N calligraphy capital
definition ≜ normal
transpose m

⊺ customized command
Euclidean norm ∥·∥2 customized command

ence:

q(f⋆) =N (f⋆ | µ̃, ν̃)
µ̃ =k

⊺
u⋆K

−1
uum,

ν̃ =k⋆⋆ − k
⊺
u⋆K

−1
uuku⋆ + k

⊺
u⋆K

−1
uuSK

−1
uuku⋆,

S =KuuA
−1Kuu, (22)

m =KuuA
−1KufΣ

−1y, (23)

A =Kuu +KufΣ
−1K

⊺
uf .

Here, ku⋆ is the kernel vector between the inducing inputs
and the test inputs, Kuu is the kernel matrix of the inducing
inputs, Kuf is the kernel matrix between the inducing inputs
and the training inputs, and Σ is a diagonal matrix with the
noise variance σ2 on the diagonal. We discuss different meth-
ods from the perspective of how they update the variational
parameters m and S via the data-dependent terms, which are
highlighted in blue (for the y-related term) and red.

2) Streaming Sparse Gaussian Processes (SSGP): Stream-
ing sparse GPs (SSGP) extends SGPR to the streaming setting
where data arrives sequentially and the model can only process
each batch of data once before discarding it [6]. To derive
an online update that facilitates hyperparameter optimization,
SSGP approximates the likelihood of the old data with the old
posterior q′(u′) and prior p′(u′) at the old inducing inputs u′.
This results in two additional KL regularization terms in the
ELBO:

ELBO =

Nnew∑
n=1

Eq(fn) [log p(yn | fn)]− KL[q(u) ∥ p(u)]

+KL[q(u′) ∥ p′(u′)]− KL[q(u′) ∥ q′(u′)]. (24)

The first line of Eq. (24) is the uncollapsed ELBO of SVGP in
Eq. (10) applied to the new data, and the second line involves
two KL regularization terms for online update.

As in SGPR, this generic ELBO can be further simplified
in the regression case to a collapsed form:

ELBO = logN (ỹ | 0,Qỹỹ)−
1

2σ2
tr(Kff −Qff )

− 1

2
tr(Σ̂−1(Ku′u′ −Qu′u′)) + constants. (25)

We follow appendix C.4 of Maddox et al. [43] and collect
variables that are not related to the trainable parameters to

the constants term. Here, some notations are introduced
to reveal the similarity and difference between the collapsed
ELBO of SSGP and that of SGPR:

Σ̂ = (S′−1 −K′−1
u′u′)−1, Qu′u′ = K

⊺
uu′K−1

uuKuu′ ,

ỹ = [ŷ
⊺
,y

⊺
]
⊺
, ŷ = Σ̂S′−1

m′,

Qỹỹ = Qf̃ f̃ + Σ̃, Qf̃ f̃ = K
⊺
uf̃
K−1

uuKuf̃ ,

Σ̃ =

[
Σ̂ 0
0 Σ

]
, Kuf̃ = [Kuu′ ,Kuf ]. (26)

The first line of Eq. (25) has a similar form as the collapsed
ELBO of SGPR in Eq. (6) and the second trace term regu-
larizes the new inducing inputs to be close to the old ones.
Other terms that are not related to the trainable parameters
are represented as “constants” in the equation above. With this
online ELBO, the old data is not needed and hyperparameters
and inducing inputs can be directly optimized using only
new data. To aid the optimization of the inducing inputs, Bui
et al. [6] also propose a resampling heuristic for initialization
of inducing inputs. Specifically, some randomly selected old
inducing inputs are moved to randomly selected inputs in the
new batch.

From Eq. (42) and Eq. (45) in Bui et al. [6]’s appendix3, the
predictive distribution is given by:

q(f⋆) =N (f⋆ | µ̃, ν̃) ,
µ̃ =k

⊺
u⋆K

−1
uum̃,

ν̃ =k⋆⋆ − k
⊺
u⋆K

−1
uuku⋆ + k

⊺
u⋆K

−1
uu S̃K

−1
uuku⋆,

where S̃ =(K−1
uu +K−1

uuKuf̃ Σ̃
−1Kf̃uK

−1
uu )

−1,

m̃ =S̃K−1
uuKuf̃ Σ̃

−1ỹ.

To see how the data-dependent terms are updated, we simplify
the expressions of S̃ to make it similar to SGPR’s expression
in Eq. (22):

S̃ =(K−1
uu +K−1

uuKuf̃ Σ̃
−1Kf̃uK

−1
uu )

−1

=KuuK
−1
uu (K

−1
uu +K−1

uuKuf̃ Σ̃
−1Kf̃uK

−1
uu )

−1K−1
uuKuu

=Kuu(Kuu +Kuf̃ Σ̃
−1Kf̃u)

Ã

−1
Kuu. (27)

Plugging the simplified S̃ into m̃, we have an m̃ expression
that resembles SGPR’s m in Eq. (23):

m̃ = KuuÃ
−1Kuf̃ Σ̃

−1ỹ. (28)

According to Eq. (33) and Eq. (38) in Bui et al. [6]’s appendix,
these data-dependent terms are expanded as

Kuf̃ Σ̃
−1ỹ

=KufΣ
−1y +K

⊺
u′uS

′−1
m′, (29)

Kuf̃ Σ̃
−1Kf̃u

=KufΣ
−1Kfu +K

⊺
u′u(S

′−1 −K′−1
u′u′)Ku′u. (30)

3We refer to equations in their revised arXiv paper available at https://
arxiv.org/abs/1705.07131, noting that the equation numbering differs from the
proceeding version.

https://arxiv.org/abs/1705.07131
https://arxiv.org/abs/1705.07131


Now we can see that SSGP updates the variational parameters
m and S by saving the old variational parameters and kernel
matrix (highlighted in green), correcting/projecting them via
the cross-covariance matrix Ku′u, and adding the new data-
dependent terms KufΣ

−1y and KufΣ
−1Kfu.

3) Online Variational Conditioning (OVC): Observing the
similarity between Eqs. (22) and (27) as well as Eqs. (23)
and (28), Maddox et al. [43] view SSGP’s variational update as
a sequence of SGPR updates on an augmented dataset {X̃, ỹ}
that consists of pseudo data {Z′, ŷ} and the current data
{X,y} through a special likelihood function p(ỹ | f̃) = N (ỹ |
0, Σ̃). Specifically, the augmented covariance matrix Σ̃ is a
block-diagonal matrix with the pseudo covariance Σ̂ and the
new covariance Σ on the diagonal, and the augmented dataset
is defined as X̃ = [Z′⊺,X⊺]⊺, ỹ = [ŷ⊺,y⊺]⊺. Intuitively,
the information of the old data is preserved in the pseudo
data {Z′, ŷ} and the pseudo covariance Σ̂. In the following,
variables related to the augmented dataset are denoted with a
tilde symbol ·̃ while those related to the pseudo dataset are
denoted with a hat ·̂.

Computing the pseudo targets ŷ and the pseudo covariance
matrix Σ̂ is the key step in constructing the augmented dataset.
Maddox et al. [43] show that (cf. Eq. (A.6) and Eq. (A.7)) they
can be derived by reversing the equations of the old variational
parameters m′ and S′ in Eqs. (22) and (23) when assuming
that the old data are observed only at the old inducing inputs
X′ = Z′:

S′ = K′
u′u′(K′

u′u′ +K′
u′u′Σ̂−1K′

u′u′)−1K′
u′u′

⇔K′−1
u′u′S′K′−1

u′u′ = (K′
u′u′ +K′

u′u′Σ̂−1K′
u′u′)−1

⇔K′
u′u′S′−1

K′
u′u′ = K′

u′u′ +K′
u′u′Σ̂−1K′

u′u′

⇔K′
u′u′S′−1

K′
u′u′ −K′

u′u′ = K′
u′u′Σ̂−1K′

u′u′

⇔S′−1 −K′−1
u′u′ = Σ̂−1

⇔Σ̂ = (S′−1 −K′−1
u′u′)−1, (31)

m′ = K′
u′u′(K′

u′u′ +K′
u′u′Σ̂−1K′

u′u′)−1K′
u′u′Σ̂−1ŷ

⇔ŷ = Σ̂K′−1
u′u′(K′

u′u′ +K′
u′u′Σ̂−1K′

u′u′)K′−1
u′u′m′

⇔ŷ = Σ̂(K′−1
u′u′ + Σ̂−1)m′

⇔ŷ = Σ̂(K′−1
u′u′ + S′−1 −K′−1

u′u′)m′ = Σ̂S′−1
m′. (32)

The expressions of Σ̂ and ŷ are consistent with those defined
in Eq. (26) and substituting the augmented dataset and co-
variance into the m and S equations of SGPR in Eqs. (22)
and (23) yields the same update equations of the variational
parameters m̃ and S̃ of SSGP.

Following the idea of constructing the pseudo data and
covariance matrix by reversing some equations that involve
ŷ, Σ̂ and some saved parameters, Maddox et al. [43] propose
to cache the data-dependent terms c = KufΣ

−1y and
C = KufΣ

−1K⊺
uf , and reverse these equations to obtain

the pseudo targets ŷ and pseudo covariance matrix Σ̂, under
the same assumption that the old inputs are the old inducing

inputs:

C′ = K′
u′u′Σ̂−1K′

u′u′

⇔Σ̂−1 = K′−1
u′u′C′K′−1

u′u′ , (33)

c′ = K′
u′u′Σ̂−1ŷ

⇔ŷ = Σ̂K′−1
u′u′c′

⇔ŷ = (K′−1
u′u′C′K′−1

u′u′)−1K′−1
u′u′c′

⇔ŷ = K′
u′u′C′−1

c′. (34)

Comparing the expressions of Σ̂ and ŷ in Eqs. (33) and (34)
with those in Eqs. (31) and (32), reversing the equations of
data-dependent terms rather than the variational parameters
eliminates the subtraction of two inverse matrices in the
expression of Σ̂, which helps numerical stability.

Maddox et al. [43] propose Online Variational Condition-
ing (OVC) that computes the pseudo covariance matrix and
pseudo targets following Eqs. (33) and (34) and feeds the
augmented dataset {X̃, ỹ} with a pseudo likelihood function
p(ỹ | f̃) = N (ỹ | 0, Σ̃) to a GPR or SGPR for online
conditioning – online update of the posterior distribution to
condition on the new data. This explains their update of
variational parameters. For inducing inputs, they use PCD
on the augmented dataset. The target application in OVC is
Bayesian optimization, where online conditioning is crucial for
computing some advanced look-ahead acquisition functions
while hyperparameter optimization is less important, hence not
extensively discussed in their paper.

When applying the augmented dataset constructed by OVC
to a SGPR, the data-dependent terms of the variational param-
eters are updated as

Kuf̃ Σ̃
−1Kf̃u

=KufΣ
−1Kfu +Kuu′Σ̂−1Ku′u,

=KufΣ
−1Kfu +K

⊺
u′u(K

′−1
u′u′C′K′−1

u′u′)Ku′u, (35)

Kuf̃ Σ̃
−1ỹ

=KufΣ
−1y +Kuu′Σ̂−1ŷ,

=KufΣ
−1y +K

⊺
u′u(K

′−1
u′u′C′K′−1

u′u′)K′
u′u′C′−1

c′,

=KufΣ
−1y +K

⊺
u′uK

′−1
u′u′c′. (36)

Eqs. (35) and (36) can be viewed as updating C′ and c′ via a
projection matrix P ≜ K′−1

u′u′Ku′u and adding the new data-
dependent terms:

C =KufΣ
−1Kfu +P

⊺
C′P, (37)

c =KufΣ
−1y +P

⊺
c′. (38)

Our proposed POAM shares the same idea of projecting the
old data-dependent terms and adding the new data-dependent
terms, but we save K′

u′f ′y′ and K′
u′f ′K′

f ′u′ instead of c′

and C′, which leads to better performance in our experiments.
In other words, the observational noise Σ = σ2I is not data-
dependent, so we should use the new Σ rather than projecting
the old one.



TABLE III
SUMMARY OF RELATED WORK AND BASELINE METHODS. SSGP AND OVC ARE TWO EXISTING METHODS THAT ARE CLOSELY RELATED TO POAM,

WHICH ARE IMPROVED (I.E., SSGP++ AND OVC++) TO WORK BETTER WITH NON-STATIONARY KERNELS AND SERVE AS STRONG BASELINES.

Method Saved Variables Projection Matrix Hyperparameters Update Inducing Inputs Update

SSGP [6] S′−1m′, S′−1 − K′−1

u′u′ Ku′u L-BFGS-B with Online ELBO Resampling & Optimization

SSGP++ S′−1m′, S′−1 − K′−1

u′u′ Ku′u Adam Optimizer with Online ELBO Pivoted Cholesky Decomposition (PCD)

OVC [43] KufΣ
−1y, KufΣ

−1K
⊺
uf K′−1

u′u′Ku′u PCD & Optimization

OVC++ KufΣ
−1y, KufΣ

−1K
⊺
uf K′−1

u′u′Ku′u Variational EM, Mini-Batch SGD, ELBO PCD

POAM (ours) K′
u′f′y′, K′

u′f′K′
f′u′ K′−1

u′u′Ku′u Variational EM, Mini-Batch SGD, ELBO PCD

4) Baseline Methods: We found that optimizing the induc-
ing inputs with the online ELBO of SSGP performs poorly
in our experiments, regardless of the initialization strategy, so
SSGP++ uses pivoted Cholesky decomposition (PCD) [9] for
updating inducing inputs and does not optimize them with the
online ELBO. Also, SSGP++ uses the Adam optimizer for up-
dating the hyperparameters because the L-BFGS-B optimizer
is not suitable for the Attentive Kernel (AK) that has many
more parameters than the commonly used stationary kernels.
The hyperparameter optimization of OVC is not properly
discussed in [43], so we use the same strategy as POAM.
The vanilla OVC still optimizes the inducing inputs after
initializing them with PCD, while OVC++ does not optimize
them. Table III summarizes the differences of each component
in the aforementioned methods.

We note that during the experiments, SSGP++ sometimes
throws a numerical error, requiring an increase in the “jitter”
value added to the diagonal elements of positive-definite
matrices for stable Cholesky decomposition and re-running
the experiment. Although not reported in the results, this is
an important factor to consider when deploying SSGP++ in
practice.

B. Additional Experiments

To gauge the robustness of the proposed method to different
initial conditions and to disentangle the contributions of the
proposed model and the planner, we have conducted two
additional sets of experiments. These experiments also include
an additional baseline as follows.

• Random Initialization: A set of experiments with initial
samples and the robot’s starting positions uniformly and
randomly sampled from the environment and the same
max-entropy planner used in the original experiments.
These experiments are conducted to evaluate the robust-
ness of the proposed method to different initial condi-
tions.

• Random Planner: A set of experiments with the same
random-initialization strategy and a random planner that
uniformly samples a waypoint at random from the envi-
ronment at each decision epoch. These experiments com-
pare different models when the robot executes the same
path that is independent of the model being evaluated.

• Full dataset baseline: We include an additional baseline
using the full-update version of POAM (FULL) to verify
the effectiveness of the proposed online update rule. The
FULL method uses the full dataset to update the vari-
ational parameters instead of using the proposed online
update rule, so it is expected to be slower but has better
performance compared to POAM.

The experiments are repeated 10 times with different ran-
dom seeds and the mean and standard deviation of the results
are reported in Fig. 9.

Results of Random Initialization Experiments Under
the randomized initialization, the rankings of the compared
methods are consistent across different environments: the
proposed method (POAM) and its full-update version (FULL)
outperform the baselines in terms of SMSE and MSLL,
SGGP++ and OVC++ perform similarly, and OVC performs
the worst. Since the SMSE of OVC is much worse than other
approaches in the random initialization experiments, we use a
separate y-axis at the right side of the SMSE plots to better
visualize the performance of the other methods.

Results of Random Planner Experiments POAM outper-
forms the baselines in terms of SMSE and MSLL, SGGP++
and OVC++ perform similarly, and OVC performs the worst.
Additionally, by contrasting the two sets of experiments which
only differ in the planner, we can see the performance gain
brought by the active learning strategy is also evident.

Comparison with Full Update The difference between
the proposed online update rule and the full update is neg-
ligible. This indicates that the proposed online update rule
is accurate and robust, without significant error accumulation
over time.
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Fig. 9. Standardized Mean Squared Error (SMSE) and Mean standardized log-loss (MSLL) curves for three baseline methods (SSGP++, OVC, OVC++) are
compared against the proposed method (POAM) and its full-update version (FULL) which performs a full update of the variational parameters at each time
step. The random initialization experiments use the max-entropy planner and the initial samples and robot’s starting positions are uniformly and randomly
sampled from the environment. The random planner experiments use the same random-initialization strategy and a random planner that uniformly samples a
waypoint at random from the environment at each decision epoch. Note that, in the random initialization experiments, the y-axis of SMSE on the right is for
the OVC method alone, as its performance is much worse than the other approaches.
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