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Abstract—Navigating and exploring an unknown environment
is a challenging task for autonomous robots, especially in complex
and unstructured environments. We propose a new framework
that can simultaneously accomplish multiple objectives that are
essential to robot autonomy including identifying free space
for navigation, building a metric-topological representation for
mapping, and ensuring good spatial coverage for unknown space
exploration. Different from existing work that model these critical
objectives separately, we show that navigation, mapping, and
exploration can be derived with the same foundation modeled
with a sparse variant of a Gaussian process. Specifically, in our
framework the robot navigates by following frontiers computed
from a local Gaussian process perception model, and along the
way builds a map in a metric-topological form where nodes
are adaptively selected from important perception frontiers.
The topology expands towards unexplored areas by assessing a
low-cost global uncertainty map also computed from a sparse
Gaussian process. Through evaluations in various cluttered
and unstructured environments, we validate that the proposed
framework can explore unknown environments faster and with a
shorter distance travelled than the state-of-the-art frontier explo-
ration approaches. Through field demonstration, we have begun
to lay the groundwork for field robots to explore challenging
environments such as forests that humans have yet to set foot
in1.

I. INTRODUCTION

3D LiDARs and other high-definition ranging sensors have
long been used for autonomous systems to navigate and map
unknown yet man-made environments such as indoor buildings
and on freeways. LiDARs are used less often for robot nav-
igation and exploration in highly unstructured environments
where there are numerous indistinguishable small objects
such as in crop fields and wild forests. Indeed, navigation
in highly unstructured environment is challenging even for
humans. Think of a scenario where humans need to cross
a wild unknown forest with no road in it. We typically
identify navigable spaces by identifying traversable passages
across random vegetation in our field of view. In this case,
obstacles such as clusters of shrubs are inherently grouped
and abstracted, and a navigation decision is made by moving
into the identified open space.

In previous studies, solving navigation, exploration, and
mapping simultaneously is mostly structured on the paradigm
of occupancy mapping and frontier based exploration [36, 7].
However, this framework has limitations when deployed in

1Video material: https://youtu.be/WcbngSewXBw

highly unstructured environments. The first issue is that the
global occupancy map relies on an accurate representation of
the environmental geometry and thus the number of map cells
grows quadratically with the length-scale of the environment,
incurring a prohibitive computational cost for a large environ-
ment. The second issue is the inappropriate assumption that
the discretized occupancy/map cells are independent of each
other. In the real world, space has continuity and features are
correlated — these useful properties have not been sufficiently
leveraged. The third issue is that a global occupancy map
that attempts to memorize details of the whole environment
typically assumes the environment is static and therefore be-
comes sensitive to any small changes. In unstructured environ-
ments this assumption can be easily violated because natural
environments are constantly changing, for example foliage
movements due to winds or raindrops, walking animals, flying
birds/insects, etc.

In this work, we propose a principled framework that lever-
ages the abstracted representation of multiple key autonomy
components including perception, navigation and mapping,
which is particularly useful for complex environments such
as those off-road scenarios (e.g., forest trails). Our framework
is based on a Gaussian process, which we use to model local
perception, assess global exploration quality, and guide to map
the navigable spaces. The proposed representation reduces the
sensitivity to small objects and enables the robot to identify
navigable passages in a noisy environment and adaptively
construct a light-weight map that best characterizes the en-
vironmental navigability while ensuring full spatial coverage.

This paper includes the following contributions:

• We use a sparse Gaussian process (SGP) to model the lo-
cal perception of 3D occupied points. The SGP correlates
points of a neighborhood, eliminating the independence
assumption of the prevalent occupancy representation
framework. More importantly, the SGP also provides
uncertainty assessment of the perception modeling. We
show that the uncertainty can be used to uniquely sketch
spatial navigability so that we can identify navigation
guidance frontiers in an extremely convenient way. This
model also reveals that local perception can naturally lead
to local navigation.

• We demonstrate the SGP can provide guidance for con-
structing a (metric) topological map incrementally which

https://youtu.be/WcbngSewXBw


can be viewed as a high-level characterization of the
navigable spaces of the environment. The topology is
very lightweight because its nodes are adaptively added
only when the robot enters a new location that has a
high exploration uncertainty (in contrast to pre-defined
equi-distance node addition process). One might view
the topological nodes as condensed and salient local
perceptions filtered by the SGP.

• We show that by using the SGP, exploring very large
environments becomes possible. The nodes of the topol-
ogy map are passed to another separate layer of a
global SGP whose uncertainty quantification represents
the global exploration status in a computationally efficient
way (computation bounded through SGP). By integrating
the topology map with the global SGP model, we can
define and identify topology frontiers that guide future
exploration, which is different from existing exploration
frontier mechanisms.

• We provide evaluation in multiple domains including
a variety of simulated environments, structured indoor
corridors and a challenging outdoor forest. The results
demonstrate that our framework is able to solve simulta-
neously the navigation, exploration, and mapping tasks.
Our algorithm explored the simulated environment faster,
with a traveled distance less than the start-of-art frontier
exploration approaches.

II. RELATED WORK

Most autonomous navigation, mapping and exploration ap-
proaches have been developed on top of occupancy grid
maps where each cell is represented as free, occupied, or
unknown [36, 7, 13, 10]. Occupancy grid maps ignore the
structural dependency between cells and has a fixed resolution.
To mitigate the issues brought by the discrete cells, kernel-
based models such as Gaussian pocess have been proven
robust in representing the dependencies of spatially correlated
data [26, 38] overcoming the cell independence assump-
tion. Continuous-map-based exploration approaches exploit
the information-theoretic gain over a probabilistic map [6].
For example the continuous frontier map [15] represents
the occupancy probability distribution as a continuous map.
In general, the continuous approaches demonstrate efficient
map building by reducing the entropy of a probabilistic map
representation [6, 5], however, they depend on explicit path
and trajectory planning which makes them scale poorly with
environment size and require accurate metric-map estimates.

Another form of frontiers is proposed by [30] where fron-
tiers are represented as particles placed in the free space,
bounded by the occupied space, and growing into the unknown
space. There also exist works that formulate the exploration
problem as a next-best-view problem [12, 3] where a sequence
of depth scans are optimized to reconstruct 3D objects [21].
Thus the exploration problem is also treated as an open space
attraction and contours detection problem [16, 19, 20].

Another line of related exploration approaches represent the
environment as a topological graph [9]. For example, a basic

Voronoi topological map can be built on an existing occupancy
map of the environment by identifying the corner points, where
the Voronoi diagram vertices are used as the topological map
nodes [32]. However, this representation can easily lead to
cluttered graphs. Similar approaches have also been exploited
to leverage the generalized Voronoi diagram [29], Voronoi
random fields [11], and Voronoi decomposition and distance
maps [37]. The graph-based exploration has been proven
practical and efficient in tunnels [33, 8] and maze-like indoor
environments [24]. Graphs are extremely efficient for planning
in contrast to accurate trajectory computation over a metric
map [4]. However, most existing graph-based explorations
explicitly or implicitly rely on occupancy maps to establish
the map’s topology.

Different from existing works, our proposed framework
combines the advantages of the continuous global uncertainty
model and the graph-based approaches. First, our method
includes a kernel-based global SGP uncertainty model that
overcomes the discrete models’ independence assumption
of [36, 14] and reduces the computation cost of existing
continuous models [26, 38, 15]. This is achieved by repre-
senting only the global exploration uncertainty information
instead of the occupancy information. Second, our method
consists of a local perception model which efficiently identifies
local frontiers and exploits their abstract representation of the
local observation to incrementally build a metric-topological
map. The metric-topological map is built on top of a local
occupancy model rather than an occupancy map [32, 33, 8].
Additionally, frontiers obtained from our local perception
model serve as local navigation subgoals. The proposed local
perception model is more robust and less susceptible to noise
than traditional frontier extraction approaches.

In our framework, the most computationally costly compo-
nents are the models represented with Gaussian processes. To
overcome the computation complexity limitations of Gaussian
processes [28], we select an efficient variational variant of
SGPs [34] which jointly estimates the kernel hyperparame-
ters and the inducing points. The variational approximation
distinguishes between the inducing points (as a variational
parameter) and the kernel hyperparameters, resulting in a
flexible training process with high computational efficiency.

III. PRELIMINARIES ON THE SPARSE GAUSSIAN PROCESS

The standard Gaussian process (GP) is defined as a set of
random variables which is described by a mean function m(x),
and a co-variance function (kernel) k(x,x′), where x is the GP
input [27]:

f (x)∼ GP
(
m(x),k

(
x,x′

))
. (1)

Consider a data set D = {(xi,yi)}N
i=1 with N training inputs

x and their corresponding scalar outputs (observations) y. In
GP regression, we assume that yi = f (xi)+ εi where f (xi) is
the unknown underlying function and εi is a Gaussian noise
N
(
0,σ2

)
. The GP posterior can then be defined by a mean

my(x) and a posterior co-variance function ky(x,x′) [34],



my(x) = Kxn
(
σ

2I +Knn
)−1 y,

ky
(
x,x′

)
= k
(
x,x′

)
−Kxn

(
σ

2I +Knn
)−1

Knx′ ,
(2)

where Knn is the n×n co-variance matrix of the training inputs,
Kxn is n-dimensional row vector of kernel function values
between x and the training inputs; Knx = KT

xn. After training
the GP, the prediction y∗ for any new input x∗ is estimated
using the GP prediction equation:

p(y∗|y) = N(y∗|my(x∗),ky(x∗,x∗)+σ
2). (3)

GP prediction depends on the kernel parameters Θ and the
noise variance σ2. The hyperparameters (Θ,σ2) are estimated
by maximizing the log marginal likelihood:

log p(y) = log
[
N
(
y | 0,σ2I +Knn

)]
. (4)

A standard GP has a computation complexity of O(N3)
where N is the number of the training samples. Many approxi-
mation approaches, known collectively as the Sparse Gaussian
Process (SGP) [18, 31, 34], propose replacing the entire data
set with only M samples to represent the entire training data
to overcome the computation cost of GP. These M samples are
called the inducing points Xm and their corresponding values of
the underlying function f (x) are called the inducing variables
fm. We opt to jointly estimate the kernel hyperparameters
(Θ,σ) and the inducing points Xm by approximating the
true exact posterior of a GP p( f |y,Θ) through a variational
posterior distribution [34],

q( f , fm) = p( f | fm)φ( fm), (5)

where φ( fm) is the free variational Gaussian distribution.
This variational approximation uses the Kullback-Leibler (KL)
divergence to describe the discrepancy between the approxi-
mated and the true posteriors, KL[q( f )||p( f |y,Θ)]. Minimiz-
ing the KL[q( f )||p( f |y,Θ)] is identical to maximizing the
variational lower bound of the true log marginal likelihood

FV (Xm) = log
[
N
(
y | 0,σ2I +Qnn

)]
− 1

2σ2 Tr(K̃),

Qnn = KnmK−1
mmKmn,

K̃ = Cov(f | fm) = Knn −KnmK−1
mmKmn,

(6)

where FV (Xm,φ) is the variational objective function, Tr(K̃) is
a regularization trace term, Kmm is m×m co-variance matrix
on the inducing inputs, Knm is n×m cross-covariance matrix
between training and inducing points, and Knm = KT

mn.

IV. METHODOLOGY

We propose a new framework that can simultaneously ac-
complish multiple autonomy objectives including identifying
free space for navigation, building a metric-topological rep-
resentation for mapping, and ensuring good spatial coverage
for unknown space exploration. A systematic overview of the
proposed framework is shown in Fig. 1. Briefly, the point cloud
in Fig. 1(b) measured by the robot is converted and represented
as a SGP occupancy model in Fig. 1(e) with its associated
SGP variance surface in Fig. 1(f). The variance surface allows

us to identify local navigable spaces (in white) and define
local navigation frontiers (circles of color-scale representing
different levels of navigability). A global uncertainty map
in Fig. 1(h) is used to assess the exploration state of the
whole environment. A metric-topological map in Fig. 1(i–m) is
incrementally and adaptively built along the exploration path,
where red vertices with low exploration uncertainty denote
explored free spaces and green vertices with large exploration
uncertainty are those to be explored.

Different from existing work that model these critical ob-
jectives separately, we show that navigation, mapping, and
exploration can be derived with the same foundation modeled
with a sparse variant of Gaussian processes. We present all
modules in the following subsections.

A. From Pointcloud to SGP Occupancy Model

Each local observation (pointcloud) is transformed into an
occupancy surface by projecting the observed points onto a
2D circular surface with a predefined radius roc, see Fig. 1(c)
and (d). Specifically, the sensor observation is converted to
spherical coordinates, where each sensing point is described
by a tuple (θi,αi,ri) which represents the azimuth, elevation,
and radius values, respectively. Each point defined in Carte-
sian coordinates (xi,yi,zi) can be transformed into spherical
coordinates (θi,αi,ri) using the following equations:

ri =
√

x2
i + y2

i + z2
i , θi = tan−1(yi/xi), αi = cos−1(zi/ri).

(7)
All observed points on or outside the circular occupancy
surface (with a radius ri ≥ roc) are discarded and considered as
the free space. The rest of the points that are inside the circular
surface (with a radius ri < roc) are projected on the occupancy
surface and called the occupied points. Each occupied point
xi on the surface is defined by two attributes: the azimuth and
elevation angles xi = (θi,αi), and assigned an occupancy value
f (xi). The probability of occupancy f (xi) at each point on the
occupancy surface is modeled by an SGP:

f (x)∼ SGP
(
m(x),k

(
x,x′

))
. (8)

Given that the sensor measurements will have noise, we
add white noise ε ∼N

(
0,σ2

n
)

to the occupancy function f (x),
so the observed occupancy at any point xi on the occupancy
surface is described as yi = f (xi)+ ε .

The occupancy of a point f (xi) is related to its radius ri
by the following equation f (xi) = roc − ri. This mapping is
encoded in our SGP model as a zero-mean function m(x) = 0
which sets the occupancy value of the non-occupied points
to zero. This mapping process mimics the mechanism of the
sensor itself. The final model of the occupancy surface is a 2D
SGP, see Fig. 1(e), where the input is the azimuth and elevation
angles, x ∈ {(θ ,α)}n

i=1, and the corresponding output yi is the
expected occupancy.

The rational quadratic (RQ) covariance function is selected
as the SGP kernel, kRQ (x,x′), because a GP prior with an RQ
kernel is expected to have functions that vary across different



Fig. 1: Block flow diagram of our system modules.

length-scales [27]. Formally,

kRQ
(
x,x′

)
= σ

2
k

(
1+

(x−x′)2

2αkℓ2

)−αk

, (9)

where σ2
k is the signal variance, ℓ is the length-scale, and αk

sets the relative weighting of large vs. small scale variations.
Given the RQ kernel, the kernel parameters Θ are defined as
σ2

k , ℓ and αk. We believe that the RQ kernel is more expressive
for modeling the occupancy surface than the commonly used
Squared Exponential (SE) kernel because the RQ is equivalent
to a scaled mixture of SE kernels with mixed characteristic
length-scales [27]. We also exploit our knowledge about the
resolution of the LiDAR to initiate different length-scales
along the azimuth and the elevation axes. (The capability of the
SGP occupancy model to re-construct the original pointcloud

has been investigated in [1], where an SGP occupancy model
with only 400 inducing points has an average error of around
12 cm compared with the original ground-truth pointcloud.)

One advantage of the GP and its variants over other mod-
eling approaches is that GPs provide a variance value that
assesses the uncertainty level for each prediction. Therefore,
the construction of the SGP occupancy surface is accompanied
by a corresponding SGP variance (uncertainty) surface, as
shown in Fig. 1(f). Intuitively, while the occupancy surface can
be considered as a local 3D map projected on a circular surface
of the robot locality, the variance surface associated with the
reconstructed occupancy surface can be viewed as a local
circular uncertainty-map around the robot, see Fig. 2. It is also
worth mentioning that, since the GP utilizes a kernel function
that correlates neighboring data points, spatial continuity is
thus leveraged. This also allows the SGP occupancy model



to possess a smoothing property where cluttered objects (e.g.,
clusters of shrubs) are grouped as one entity and small, noisy
features such as individual grass blades or leaves can be
ignored.

B. Gaussian Process Frontier for Navigation

It is interesting to observe that the SGP variance surface can
model local free space effectively. The high-variance values
of the SGP variance surface correspond to either large free
space area (i.e., no obstacles nearby, and thus no data points)
or gaps between obstacles (with discontinuities on occupancy
values), see bright regions on the variance surface in Fig. 1(f).
A Gaussian Process frontier (GP frontier) is defined as the
point with the greatest variance in a local high variance region,
as illustrated in Fig. 1(g). Since high variance regions indicate
local free space, GP frontiers thus act as local navigation
points directing towards such open/free spaces, as illustrated in
Fig. 3. (The terms GP frontiers and local navigation points are
used interchangably throughout the remainder of the paper.)
Note that the GP frontier is different from the well-known
frontier concept introduced in [35] and the C-frontier [15],
as both of these techniques rely on a global occupancy map.
In contrast, our proposed GP frontier considers only the
current observation and is defined by variance (uncertainty)
quantification.

Formally, a GP frontier fi is defined by its centroid point
on the variance surface (θ f i,α f i), and the radius (distance)
r f i between the frontier centroid and the occupancy surface
origin (sensor origin). This radius is estimated using the SGP
occupancy model, where the occupancy at the GP frontier is
oc f i = SGP((θ f i,α f i)) and r f i = roc−oc f i. As a consequence,
when the GP frontier lies in the free space, the frontier radius
is equal to the occupancy radius (oc f i = 0, and r f i = roc), while
when the GP frontier lies in the gaps between obstacles, the
frontier radius is less than the occupancy radius (r f i < roc, and
oc f i > 0). When there are two or more GP frontiers, we can
choose the one that is closest to the robot’s current heading,
enabling continuous and smooth motion at high speeds. When
the task is exploring an unknown environment, the selection
among multiple GP frontiers will also take into account
exploration status, which is discussed in later subsections.

C. Exploration with Global Uncertainty Map

We model the global exploration state for the whole environ-
ment with a separate SGP. We again leverage the uncertainty
quantification of this global SGP to guide exploration towards
unexplored regions with no observations. Therefore, we refer
to this SGP model as the global uncertainty map. Formally,
the global uncertainty map is a SGP whose training inputs Z
are the (x,y) coordinates of the robot poses where different
observations were acquired, Z = {(xi,yi)}K

i=1, where K is
the number of observations. In our framework, observations
are acquired if and only if the robot enters an uncertain
(unexplored) area. The global uncertainty map predicts the
exploration uncertainty g(z) of any point z = (x,y) in the

continuous domain, where regions with high certainty mean
explored and otherwise unexplored. Specifically,

g(z)∼ SGP
(
m(z),k

(
z,z′
))

, (10)

where m(z),k (z,z′) are the mean and co-variance functions,
respectively.

An exploration utility function Uexp is used to select the
GP frontier fi with the maximum exploration gain as the
next navigation subgoal. The exploration utility function Uexp
maximizes the exploration gain based on three attributes of the
GP frontier: i) Exploration uncertainty u f i of the GP frontier
which is calculated using the global uncertainty map. This
attribute is prioritized as it differentiates between explored vs.
unexplored GP frontier. ii) The size (area) a f i of the high-
variance region, in the SGP variance surface where the GP
frontier lies. Larger gaps indicate higher exploration gain.
iii) GP frontier direction θ f i with respect to the robot heading,
where the GP frontier that is more aligned with the robot’s
heading (smaller azimuth angle) leads to lower total energy
cost to be reached. Formally,

Uexp ( fi) = kuu f i + kaa f i − kdθ
2
f i,

f ∗ = argmax
fi∈F

(Uexp ( fi)) ,
(11)

where ku, ka, and kd are weighting factors associated with the
exploration uncertainty, area, and direction of the GP frontier,
respectively. The azimuth angle θ f i is squared to indicate
the absolute direction and to imply a low penalty for small
directions (≤ 1 radian).

Our SGP uncertainty map offers significant computational
efficiency, with an update time significantly faster than other
mapping techniques (e.g., an octomap [14], GPOM [26], and
fGPOM [38]). The uncertainty map is essentially a sparse
GP, allowing us to predict the exploration state (explored vs.
unexplored) with bounded computation (as explained in Sec-
tion III), while other mapping techniques encode unexplored,
occupied, and free information. Also, our global uncertainty
map is updated sparsely, meaning that the update is triggered
only when the robot enters an area that is sufficiently uncertain,
while other techniques continuously update the map with new
sensor observations. Finally, a complete LiDAR observation is
represented in our uncertainty map as one “condensed” point,
regardless of its occupancy information (free/occupied), to
indicate that the location where the observation was acquired
has been explored. While other occupancy mapping techniques
necessitate separating occupancy information into occupied
and free points and subsequently updating cells/voxels occu-
pancy (in the case of a discrete map e.g. OGM, octomap) or the
free and occupied training points (in the case of a continuous
map e.g. GPOM, fGPOM). Therefore, a point used to update
our global uncertainty map is equivalent to the combined set
of the occupied Noc and the free points N f r needed to update
the occupancy map,

ηθ .ηα ≤ Noc +N f r ≤ (1+(
L

δ −1
))ηθ .ηα , (12)



(a) (b) (c) (d)
Fig. 2: The SGP occupancy model as a local 3D map. (a) Variance (uncertainty) surface associated with the SGP occupancy model (same as
Fig. 1(f)); (b) Variance surface after removing high variance regions; (c) SGP occupancy model (outer surface) compared with the original
occupancy (inner surface). Warmer colors indicate higher occupancy values; (d) Reconstructed pointcloud from the SGP occupancy model
(rainbow-colored, where color represents z-axis) versus the raw pointcloud of the scene shown in Fig. 1(a) (in red).

where ηθ and ηα represent the number of the horizontal and
vertical beams of LiDAR, respectively. L is LiDAR’s maxi-
mum range, and δ represents the distance between free points
sampled along LiDAR’s beam (in our case ηθ .ηα =16000).

In addition, in the context of an expansive/large environment
where a high volume of observations are received, the accuracy
of the global uncertainty map tends to remain relatively stable,
even though we bound the number of the inducing points. This
is explained as the inducing points are used to characterize
mainly the “borderline” between explored and unexplored
spaces, which necessitates fewer points than the scenario for
characterizing explored “areas”. Consequently, even the explo-
ration space enlarges, the impact on the performance of the
global uncertainty map does not exhibit severe deterioration.

D. Uncertainty-Driven Metric-Topological Mapping

To represent the explored spaces, we also propose a map-
ping framework in the paradigm of metric-topological map-
ping [25, 23], that is, a graph representation of the free space
with metric position information attached to the nodes of the
graph. In contrast to dense representations of environment
geometry, a metric-topological map allows us to represent both
the topological connectivity of the free space and the metric
paths that move through the free space. One may view the
metric-topological map as a high-level characterization of the
navigable spaces of the environment.

Formally, a metric-topological map is an undirected graph
M = (V,E), where V denotes the vertices (nodes), and E
represents the edges between nodes. Each node v ∈V encodes
the (x,y) location of the node, and each edge e ∈ E encodes
the connectivity between two connected nodes (and is also
labeled with the Euclidean distance between the two nodes).
The vertex set V includes two types of nodes, explored nodes
set V e ∈V (red squares in Fig. 1(i-m)), and map frontier nodes
set V f ∈ V (green squares in Fig. 1(i-m)). The map frontier
nodes keep track of the unexplored spaces.

While a metric-topological map is computationally efficient,
we are faced with the challenge of building it with a rea-
sonable number of nodes that can sufficiently represent the
environment. To incrementally build M, instead of adding
equi-distance nodes, we adaptively add a new node only when
the robot enters a new location that has a high exploration
uncertainty (greater than a predefined threshold Uth). The

acquired observation at that high uncertain area is used to
update the global uncertainty map and subsequently reduces
the total uncertainty of the global uncertainty map and to
expand the topological map based on the following rules:

• A node vt added at time t will be connected to any node
vi that lies inside the current field of view (FoV) if the
length of the edge et,i, that connects the two nodes, is less
than the radius predicted by the SGP occupancy model
along the edge direction, which means that there is no
obstacle between the two nodes.

• When two or more GP frontiers have high exploration
uncertainty values (unexplored), the GP frontier that has
the highest exploration gain Uexp, is selected as the next
navigation subgoal. Other high uncertain GP frontiers are
added to M as map frontier nodes v f to be revisited later.

• At any time, if a map frontier node v f lies inside the
robot’s current FoV, this map frontier node is converted
to an explored node ve.

An illustration of the update of the global uncertainty map and
the metric-topological map is shown in Fig. 1(i–m). For the
uncertainty map, darker regions mean certain (explored) areas
and brighter regions mean uncertain (unexplored) areas. The
number of the inducing points of the global uncertainty map
is bounded to a maximum number Jmax for real-time compu-
tation. However, the size of the topological map (number of
nodes) is not restricted and it depends on the area and the
structure of the navigable space.

If all GP frontiers are located in explored (certain) locations,
the nearest map frontier node from M is selected to be
explored next. The nearest map frontier node is selected based
on the distance information encoded in M. The shortest path
to the nearest map frontier is calculated by running the A*
algorithm on the previously-generated nodes of the metric-
topological map. The A* path consists of explored nodes that
lead to the nearest map frontier node, and those explored nodes
act as intermediate navigation waypoints (no new nodes need
to be created during the navigation to the nearest map frontier).

E. Analysis

Our algorithm consists of two main computational steps:
computing the local SGP perception model and updating the
global uncertainty map.



(a) (b)

Fig. 3: (a) Local navigation points (colored spheres) on a variance
surface represent the GP frontiers; (b) The GP frontiers are assigned
in the middle of the free space which maximizes the distance to
surrounding obstacles when the robot moves towards the free space.

1) Computation complexity of local SGP perception model:
The local SGP perception model is computed for each ob-
servation independently, and it is trained using only the
occupied points Noc. Noc is bounded to 0 ≤ Noc ≤ ηθ .ηα ,
where Noc max =ηθ .ηα means all beams return hit points. If M
is the number of the inducing points for the local SGP model,
then the local SGP computation complexity is O(NocM2).

2) Computation complexity of global uncertainty map: Our
global uncertainty map uses only one point to represent one
observation. Let K be the number of observations and J be
the number of the inducing points for the global map, the
computation complexity of the uncertainty map is O(KJ2).

Combining the computational complexities of these two
main steps, we have

Remark 4.1: The proposed navigation, mapping and explo-
ration algorithm has an overall computational complexity of
O(NocM2 +KJ2).

We are also interested in understanding the exploration
performance:

Remark 4.2: The proposed SGP exploration algorithm with
the metric-topological map M=(V,E) achieves an approxima-
tion of guarantee of (1− 1

e )OPT where OPT is the optimality
of exploration gain of all possible configurations/solutions of
the |V | map nodes.

Proof: Our SGP exploration problem can be reduced to
the sensor placement and coverage problem [2, 17] with a suf-
ficient number of sensors. For the proposed metric-topological
map M = (V,E), one might view each node as a sensor that
observes surrounding space defined by the proposed local SGP
perception model. The observation radius r of the sensor is de-
termined by the global SGP’s length-scale. In this way, we can
transform each node v∈V into a “disk” model with its sensing
area Av. For all nodes V , the covered area CA(V ) =

⋃
v∈V Av.

Recall that any function f from sets to real values is called
submodular if and only if it satisfies the “diminishing returns”
property, i.e., f (S

⋃
{v})− f (S)≥ f (T

⋃
{v})− f (T ) whenever

S ⊂ T . We can see that CA(V ) well satisfies this property and
is thus submodular. This means that, optimizing placements
(measured by information gain) for the disk model is a sub-
modular maximization problem with a well-known approxi-
mation guarantee of

(
1− ( |V |−1

|V | )|V |
)

OPT ≥ (1− 1
e )OPT [22],

where e is the base of the natural logarithm and OPT is the
optimality of all possible configurations of the |V | nodes.

V. RESULTS

We perform both simulation and real-world experiments
to demonstrate the performance of our framework in mul-
tiple environments with different configurations. To validate
our framework, we compare our method with two baseline
approaches including the standard and widely used frontier
exploration method [36] as well as the recent state-of-the-
art exploration algorithm GBPlanner [8]. The GBPlanner is
a graph-based exploration method that, similar to our method,
keeps a graph representation of the environment during the
exploration. We consider the GBPlanner as our baseline be-
cause of its proven reliable performance in exploring unknown
cave environments in DARPA Subterranean Challenge. We
also demonstrate the performance of our method in a real
forest environment. The values of critical parameters and the
method for tuning them are outlined in the Appendix.

A. Simulation

We first evaluate our framework in two simulated environ-
ments: a cluttered indoor environment and a forest trail envi-
ronment. For GBPlanner, we use the ETHZ SuperMegaRobot
(SMB) robot with the default configuration [8] which requires
two 3D LiDARs. Each simulated experiment includes 15 trials
for an average performance. The maximum linear and angular
velocities are set to 1.0 meters per second and 1.0 radians per
second, respectively. These maximum velocities are applied
for both our approach and the comparative baselines.

1) Simulated cluttered indoor environment: We test the
framework in an indoor space with a few obstacles distributed,
see Fig. 4a. The simulated indoor environment is used for
comparing our approach with the GBPlanner and the frontier
exploration (two baselines). For our global uncertainty map,
we calculate the explored (certain) area as the area that has
uncertainty value under the predefined threshold Uth. For
the 3D voxblox map generated by GBPlanner, instead of
calculating the volume of the explored space in 3D, we are
only interested in the explored area and compare that between
our approach and the other baseline. The GBPlanner explored
area is calculated as the explored area in XY plane (z=0)
of the 3D voxblox map, see Fig. 4d. Two metrics are used
to evaluate the three approaches: the explored area and the
traveled distance. We also compare our metric-topological map
with the global graph generated by the GBPlanner.

Fig. 5 shows that our algorithm outperforms the baselines
in terms of exploration rate and total traveled distance. Specif-
ically, our algorithm explores the whole environment (around
300 m2) in an average time of 93 seconds with an average
traveling distance of 74 meters, while the GBPlanner needs an
average time of 169 seconds with an average traveling distance
of 91 meters. The standard frontier exploration algorithm
explores the environment in 257 seconds with an average
traveling distance of 103 meters.



(a) (b) (c) (d)

Fig. 4: (a) Simulated cluttered indoor environment; (b) Global uncertainty map (darker colors indicate more certain regions due to past
exploration); (c) Metric-topological map; (d) Global graph generated by the GBPlanner (vertices in blue and edges in light-brown ), and the
background (cyan color) represents the explored area (the XY plane of the 3D voxblox map).

Fig. 5: Exploration rate (explored area versus time) in the indoor
environment. Our method completed the task (end of the blue lines)
earlier than the two baselines.

Algorithm Ours GBPlanner Frontier

Time[s] 93 ± 1.30 169.20 ± 9.20 257 ± 29.50

Distance[m] 73 ± 3.90 91.50 ± 18.90 103 ± 39.10

TABLE I: Average time and average distance traveled by the
robot to complete the exploration.

Fig. 4d shows the global RRT-based graph generated by
the GBPlanner. The GBPlanner exploits its graph for both
local and global path planning. The GBPlanner graph can be
described as the combination of the local RRT trees used for
local planning task which however cannot effectively represent
the environment. While the GBPlanner global graph has an
average of 205 vertices and 902 edges for the indoor environ-
ments, our metric-topological map represents the environment
with an average of only 35 nodes and 44 edges which however
covers all navigable spaces with their connectivity, see Fig. 4c.

We also compare the average update time of our global
uncertainty map with different mapping algorithms; oc-
tomap [14], GPOM [26], and fGPOM [38]. Fig. 6 shows that
the global uncertainty map update time (0.065 Sec) requires
around one quarter of the fGPOM update time (0.27 Sec). The
average update time for octomap and GPOM are 0.1 and 1.6
seconds, respectively. For a fair comparison, all the mapping
algorithms were executed in the same CPU, including our

Fig. 6: Update time for different mapping algorithms.

uncertainty map.

(a) (b)
Fig. 7: Simulated forest environment with navigable trails. (a) An
air-view of the scene; (b) Metric-topological map generated using
our approach (in red) on top of the global uncertainty map (brighter
color means more certain area). The frontier nodes (green squares)
represent the exit of the trail.

2) Simulated trail environment: We then test in a forest-
like environment where the navigable space is composed of
narrow trails surrounded by trees and bushes, see Fig. 7.
This environment is a more challenging scenario because
trees and bushes produce more noisy LiDAR observations,
and the environment has a much longer traversal distance
than the indoor case. The navigable trails, deemed as the
area to explore, are approximately 2500 m2. Our algorithm
explores these trails in an average time of 430 seconds with an
average travel distance of 300 meters. We run the GBPLanner



(a) (b)
Fig. 8: GBPlanner exploring the simulated trail environment. (a) GB-
Planner detects fake frontiers inside the tree branches (e.g. frontiers
that are marked with information gains of 65 and 187); (b) A set of
voxels generated by tree leaves block a true frontier. We visualize the
3D voxblox here to show the fake frontiers inside the tree branches.

in the simulated trail environment, but it does not complete
the exploration. When using the GBPlanner with the default
parameters, it gets stuck before completing the exploration
because it cannot process the noisy pointcloud generated
from trees and bushes. We tuned different parameters for the
GBPLanner to adapt to the noisy pointcloud, but it was not
able to complete the exploration because GBPlanner either: i)
detects (fake) frontiers between tree branches and bushes but
the robot cannot go inside as its physical dimension is bigger
than the fake frontier, or ii) GBPlanner detects tree leaves
from both sides of the trail as obstacles, and connects them to
form a set of voxels, which blocks the trail and prevents the
algorithm from detecting (true) frontiers, see Fig. 8.

In this experiment, where the algorithm runs for a longer
duration than the cluttered environment experiment, we evalu-
ated the runtime performance of the individual components
of our framework. As illustrated in Fig. 9, the runtime of
the main components did not exhibit exponential growth. The
Local SGP curve represents the time taken to fit an occu-
pancy surface into an SGP model and construct the variance
surface, while the Global SGP Training curve shows the time
required to re-tune the global SGP parameters based on new
observations. The gaps in the Global SGP Training curve that
coincide with the activation of the A* algorithm reflect the
moments when the robot travels through a previously explored
area towards the nearest map frontier without incorporating
new observations into the global model. The computation time
for the A* algorithm is measured in range of microseconds
and it is only triggered a few times when the robot is in
an already explored area. Note that, our framework based on
SGP can be implemented in GPU, thus the update time for
the uncertainty map can be further reduced, resulting 0.11
milliseconds in Fig. 9. This is less than the average update
time (65 milliseconds) shown in Fig. 6 where we run it on
CPU to compare with other mapping techniques which do not
have GPU versions.
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Fig. 9: Time cost for each step for different components during the
simulated trail experiment.

(a) (b)

(c)

Fig. 10: GP frontier navigation behavior: (a) Simulated environment
with variable passage width; (b) Static obstacles avoidance, the path
generated by the local navigation algorithm is shown in green; (c)
5 paths (green lines) were generated by the GP frontier. For each
path, the robot has a different starting pose; The Voronoi Diagram
(VD) is plotted in orange to highlight the optimal path, considering
optimality as maximizing distance to nearby obstacles.

B. Navigation Performance

We are also interested in the robot local navigation be-
havior guided by the GP frontiers. We demonstrate that the
robot always attempts to maximize the distance to stationary
obstacles nearby, leading to safe navigation behavior. The
GP frontier local navigation behavior is investigated through
three scenarios. In the first scenario, shown in Fig. 10a, the
robot moves along a corridor with variable width. The optimal
path, where the distance to obstacles is maximized, can be
described by the Voronoi Diagram (VD) of the environment, as
illustrated in Fig. 10c. In order to test whether our GP frontier
algorithm can recover to the VD path, we demonstrate through
four challenging starting poses that are not aligned with the
optimal VD path. Specifically, two of the four poses are shifted



(a) (b)
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Fig. 11: GBPlanner behavior towards dynamic obstacles. (a) and
(b) show the behavior of the GBPlanner when a dynamic obstacle
is added in the environment after a path is planned, the robot keeps
following the old planned path and as a consequence, the robot hits
the obstacle. (c) and (d) show that when a dynamic obstacle is moved
from position ‘1’ to position ‘2’, the occupancy map behind the robot
is not updated accordingly.

from the VD path by a half meter in positive and negative
directions, and the other two poses have a wrong heading with
respect to the VD path, where the robot heading is shifted by
45 degrees clockwise and counterclockwise, respectively. The
results show that the paths followed by the robot are aligned
with the VD optimal path, even when the robot started in a
pose far from the VD path.

In the second scenario, a few stationary obstacles are placed
in the environment. The robot shows a similar behavior where
the GP frontier sets the navigation subgoals in the middle
of the free space to maximize the distance to surrounding
obstacles, see Fig. 10b.

In the third scenario, we observe the robot’s reactive be-
havior by inserting new obstacles while the robot is moving.
The robot can successfully avoid randomly inserted objects in
front of it. The behavior can be observed in the supplementary
video. We have also compared the behavior of our algorithm
with that of the GBPlanner. The results reveal that the GB-
Planner can run into dynamic obstacles that block the way,
see Fig. 11.

C. Demonstration in Real Environments

We then validate the proposed method through testing on a
real mobile robot—Jackal from Clearpath Robotics. The robot
is equipped with a Velodyne VLP-16 LiDAR and an Intel®
Core i7 PC with 32 GB RAM and 6 GB Geforce RTX2060
GPU. For robot pose estimation including both position and
orientation, we use the LOAM library [39]. (We believe other
pose estimation schemes such as a fusion of GPS and IMU will
also work.) An RGB camera is mounted in front of the robot

for first-person-view recording only. The maximum linear and
angular velocities are set to 0.4 meters per second and 1.0
radians per second, respectively.

The robot explores two different environments. The first
environment is an indoor environment where the robot ex-
plores the main corridor of the lab building, and the second
environment is a real forest.

1) Corridor navigation, mapping and exploration: In this
experiment, we demonstrate that our algorithm is able to
i) detect unexplored frontiers; ii) navigate the robot to the
nearest frontier when the robot enters an explored area; and
iii) connect unexplored frontier when they become inside the
robot FOV, which results in a connected metric-topological
map. Fig. 12a shows a camera view of the corridor which has
a traversal distance of 95 meters. This experiment is repeated
5 times, and the robot shows a consistent behavior when it
starts from the same initial pose. Fig. 12b shows the metric-
topological map generated by our algorithm on top of the
global uncertainty map.

It is worth mentioning that, our framework excels in clut-
tered, unstructured, and noisy environments, both indoors and
outdoors. Yet, in vast obstacle-free spaces (e.g., a large empty
parking lot), the performance declines due to high uncertainty
in the local SGP perception model, causing navigation to
resemble a random walk. To tackle this, we predefined a
certain number of GP frontiers (e.g., front, back, left, right)
within the circular SGP model, facilitating topological map
creation and space exploration. In such cases, the map’s
resolution depends on the preset number of frontiers.

We have also evaluated the runtime performance of the hard-
ware demonstration during the corridor experiment. Fig. 12c
shows that the runtime performance of the local and global
SGP models in the real hardware experiment is similar to that
of the simulation evaluation conducted previously. Fitting the
local SGP occupancy surface and reconstructing the variance
surface take around 40 milliseconds, whereas updating the
global uncertainty map with one observation takes approxi-
mately 0.11 milliseconds. The corridor experiment has more
local observations than the simulated trail due to the slower
movement of the robot in the real experiment, however, the
number of observations used to update the global uncertainty
map is not affected by the robot velocity, because the uncer-
tainty map is only updated if and only if the robot enters an
uncertain area.

2) Real forest trails: To validate the effectiveness of our
algorithm in a challenging real environment, we have con-
ducted a field trial in a local forest. Our goal is to compare
the results of real-world experiments to those from simulated
experiments. Since our neighborhood does not have a forest
environment like the simulated scenario with circular trails,
we have simplified the task to finding and marking unexplored
trails as GP frontiers. In the first field trial, the robot safely
navigated through an intersection of three trails and success-
fully recognized the unexplored GP frontiers. Additionally, it
efficiently updated the global uncertainty map in real-time, see
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Fig. 12: Experiment in a corridor. (a) Camera view of the corri-
dor; (b) Metric-topological map generated using our approach.
(c) Time cost for each step for different components.

Figs. 13a and 13b.
In the second field trial, the task is to navigate a long, curved

trail with a narrow passage, as shown in Figs. 13c and 13d.
The objective of this demonstration is to showcase the ability
of our framework to navigate safely in unstructured and noisy
environments, as well as to construct a topological map in
an adaptive manner based on exploration information encoded
in the global uncertainty map. The GP frontier navigation is
robust against noisy pointcloud data and the robot’s path is
aligned with the mid-line of the trail, resembling the Voronoi
navigation demonstrated in the simulation experiments. These
behaviors can be observed in the supplementary video.

VI. CONCLUSION

This paper presents a new framework for a mobile robot
to autonomously navigate, map, and explore unstructured
environments. In contrast to existing work, our algorithm is
derived from the sparse Gaussian process and does not rely
on a costly detailed occupancy map, instead, our final output
is a high-level structural representation of the environment
delivered as a metric-topological map, which utilizes a global
uncertainty map to identify the environmental locations that
have the highest valuable observations (information) as the
topological map nodes. Our experimental results demonstrate
that we are able to explore environments more rapidly and
cover more of the unknown space with a lower computational
cost than existing techniques.

APPENDIX

In this appendix we discuss how different parameters are
selected:

• M: the number of the inducing points for the local SGP
occupancy map is chosen to compromise on the com-
putations complexity and the accuracy of the occupancy
model. More inducing points will result in higher compu-
tations complexity O(Noc.M2), however, more inducing
points will increase the accuracy of the reconstructed
pointcloud. The number of the inducing points, M = 250,
was chosen to keep the average deviation between the
occupancy model and the original occupancy surface
below 0.2 (20 cm in terms of radius).

• Vth: the variance threshold that differentiates between
high (GP frontier) and low variance regions on the
variance surface. In fact, the variance related to the
SGP occupancy model is different from one sensor
observation to another, and it is affected by both the
number of the occupied points Noc, and their distribution
over the occupancy surface. Therefore, we choose the
variance threshold Vth as a variable that changes with
the distribution of the variance over the variance surface.
Vth is proportional to the variance mean vm over the
variance surface, Vth = Km ∗ vm where Km is constant.
High variance regions with a width less than a predefined
threshold (based on robot size and occupancy radius roc)
are neglected and are not considered GP frontiers. Also,
a high variance region with a width greater than π is
divided into multiple GP frontiers based on its width.

• J: the number of the inducing points for the global
SGP uncertainty map. As the exploration starts with
zero acquired observations K = 0, we choose an adaptive
value of J where its value will be equal to the number
of observations till it reaches a maximum number of
Jmax = 500.

J =

{
K if K < Jmax

Jmax otherwise
(13)

Table II shows the parameters we used during the experi-
ments.
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