


ometry of the gap. One such technique is the Follow-the-Gap

Method (FGM), which selects a gap based on its area and

computes the robot’s heading using the gap center’s direction

relative to both the robot and the final goal [10]. Another

approach is the sub-goal seeking method, which assigns a cost

to each sub-goal based on the goal heading error with respect

to the robot and the gap heading, and then selects the sub-goal

with the lowest cost (error) [11]. The Admissible Gap (AG)

method [12], an iterative algorithm that takes into account the

exact shape and kinematic constraints of the robot, identifies

possible admissible gaps, and selects the nearest gap as the

goal.

Different from all these strategies, our proposed framework

leverages a Sparse variant of Gaussian Process (SGP) which

is a new perception model by “abstracting” local perception

data so that the local sub-goal for navigation can be naturally

extracted. Specifically, we introduce the GP-MPPI control

strategy, which enhances the state-of-the-art sampling-based

MPC, Model Predictive Path Integral (MPPI) [13], by incor-

porating the GP-subgoal recommender policy. Such a policy

takes advantage of the SGP occupancy model to learn about

the navigable space surrounding the robot, identifies a set of

suggested subgoals, and ultimately recommends the optimal

subgoal that minimizes a predefined cost function to the MPPI

local planner, as demonstrated in Fig. 1. Subsequently, MPPI

computes the optimal control sequence that satisfies the robot

and collision avoidance constraints while moving towards the

recommended subgoal, followed by executing the first optimal

control u0 to the robot. In summary, the contributions of this

work can be summarized as follows:

1) We propose an online learning-based control strategy

that recommends subgoals solely based on local sensory

information, ensuring safety and persistent feasibility;

such an approach eliminates the need for a global map of

the environment or an offline training process as in RL

techniques, resulting in a more flexible and agile control

framework that can be easily deployed in different

unexplored environments, as revealed in Section III.

2) To the best of the authors’ knowledge, this is the

first attempt to utilize the SGP occupancy model in

conjunction with sampling-based trajectory optimization

methods, specifically MPPI, to efficiently explore the

navigable space surrounding the robot.

3) In Sections IV and V, we validate our GP-MPPI control

strategy for collision-free navigation in complex and

unknown cluttered environments, using both simulation

and experimental demonstrations; by comparing it with

two baseline sampling-based approaches (namely, MPPI

[13], and log-MPPI [14]), we show its effectiveness in

overcoming local minima that may arise when the sam-

pled trajectories of MPPI are concentrated in high-cost

regions or due to challenging environmental conditions.

II. PRELIMINARIES

To provide the necessary background for our proposed work,

in this section, we formulate the optimal control problem and

present a concise overview of the MPPI control strategy that

can be utilized to address this problem, along with a brief

introduction to the Sparse Gaussian Process (SGP) which is

the backbone of our GP-subgoal recommender policy.

A. Problem Formulation

Consider a nonlinear discrete-time stochastic dynamical

system xk+1 = f (xk,uk + δuk) , (1)

with xk ∈ R
nx and uk ∈ R

nu representing the state of

the system and its control input, respectively. The distur-

bance introduced into the control input, δuk, is modeled as

a zero-mean Gaussian noise with co-variance Σu. Given a

finite time-horizon N , we define the control sequence U

as U = [u0,u1, . . . ,uN−1]
⊤ ∈ R

nuN and the resulting

state trajectory of the system being controlled as X =
[x0,x1, . . . ,xN ]

⊤ ∈ R
nx(N+1). Furthermore, X d is used

to represent the d-dimensional space with Xrob (xk) ⊂ X
d

and Xobs ⊂ X
d representing the robot’s occupied area and

obstacles’ area, respectively. Let xs and xf denote the initial

and desired (goal) state of the robot, respectively. Given

Xrob (xk) ,Xobs,xs, and xf , we aim to find the optimal

control sequence, U, that allows the robot to safely and

efficiently navigate from its initial state, xs, to the desired

state, xf , by avoiding both getting stuck in local minima and

collisions with obstacles, while minimizing a cost function

J . The optimization problem at hand can be approached

utilizing the classical MPPI control strategy described in [13].

This optimization can be mathematically expressed as in (2),

with the objective of minimizing the cost function, J , which

is comprised of the expectation of a combination of state

terminal cost ϕ(xN ), running cost q(xk), and control inputs

uk, weighted by the positive-definite matrix R ∈ R
nu×nu ,

taking into consideration the system dynamics outlined in

(2b) and constraints such as collision avoidance and control

constraints as stated in (2c).

min
U

J = E

[

ϕ (xN ) +
N−1∑

k=0

(

q (xk) +
1

2
u⊤
k Ruk

)]

, (2a)

s.t. xk+1 = f (xk,uk + δuk) , δuk ∼ N (0,Σu), (2b)

Xrob (xk) ∩ Xobs = ∅, h(xk,uk) ≤ 0, (2c)

x0 = xs, uk ∈ U, xk ∈ X. (2d)

B. Overview of MPPI Control Strategy

In order to solve the optimization control problem defined

in (2), MPPI leverages Monte Carlo simulation to generate

a significant number of real-time simulated trajectories by

propagating them from the underlying system dynamics. It

then evaluates the cost-to-go of each trajectory based on

a predefined cost function and updates the optimal control

sequence by considering a weighted average cost from all of

the simulated trajectories. More details are given in [13], [14].

Subsequently, each trajectory τi in the time-horizon N can

have its cost-to-go evaluated as given in (3), where the cost-

to-go S̃(τi) is calculated as the sum of the terminal state cost

ϕ(xN ) and the instantaneous running cost q̃(xk,uk, δuk,i)
over all time steps. The instantaneous running cost, q̃, ex-

pressed in (4), is comprised of the state-dependent running

cost q(xk) and the quadratic control cost q(uk, δuk), where

γu = ν−1
2ν and the aggressiveness in exploring the state-space
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is determined by the parameter ν ∈ R
+. Specifically,

S̃ (τi) = ϕ (xN) +
N−1∑

k=0

q̃ (xk,uk, δuk,i) ∀i∈{0,· · ·,M − 1},

(3)

q̃= q (xk)
︸ ︷︷ ︸

State-dep.

+ γuδu
⊤
k,iRδuk,i+ u⊤

k Rδuk,i+
1

2
u⊤
k Ruk

︸ ︷︷ ︸

q (uk, δuk): Quadratic Control Cost

. (4)

As outlined in (5) from [13], the optimal control sequence

{uk}
N−1
k=0 in the vanilla MPPI algorithm is iteratively updated

by taking a weighted average cost from all simulated tra-

jectories, where S̃ (τm) represents the cost-to-go of the mth

trajectory, and λ ∈ R
+ denotes the “inverse temperature”,

which regulates the selectiveness of the weighted average of

the trajectories. After smoothing the resulting control sequence

with a Savitzky-Galoy filter [15], the first control u0 is

executed in the system, with the remaining sequence utilized

as a warm-start for the next optimization step. Formally,

uk ← uk +

∑M−1
m=0 exp

(
−1
λ
S̃ (τm)

)

δuk,m

∑M−1
m=0 exp

(
−1
λ
S̃ (τm)

) . (5)

C. Sparse Gaussian Process

Gaussian Process (GP) is a well-established non-parametric

model described by a mean function m(z) and a co-variance

function k(z, z′) (also referred to as kernel function), where

z ∈ R
ng is the input to the GP [16]; it can be mathematically

expressed as

f(z) ∼ GP (m(z), k (z, z′)) . (6)

Let D = {(zi, yi)}
n
i=1 denote a dataset consisting of n

input-output pairs, where each output yi ∈ R is assumed to

be the sum of an unknown underlying function f(zi) and

Gaussian noise ϵi with a zero-mean and variance σ2, i.e.,

ϵi ∼ N
(
0, σ2

)
. In the context of GP regression, to estimate

the output y∗ for a given new input z∗, the following GP

prediction equation is employed

p(y∗|y) = N (y∗|my(z
∗), ky(z

∗, z∗) + σ2),

my(z) = Kzn

(
σ2I +Knn

)−1
y,

ky (z, z
′) = k (z, z′)−Kzn

(
σ2I +Knn

)−1
Knz′ ,

(7)

where my(z) and ky(z, z′) are the GP posterior mean and

co-variance functions, respectively, while Knn ∈ R
n×n refers

to the n × n co-variance matrix of the training inputs and

Kzn ∈ R
n is n-dimensional row vector of kernel function

values between z and the training inputs, with Knz = K⊤
zn.

Achieving a more accurate GP prediction requires the op-

timization of hyper-parameters, such as kernel parameters

Θ and noise variance σ2, by maximizing the log marginal

likelihood

log p(y) = log
[
N

(
y | 0, σ2I +Knn

)]
. (8)

The standard GP can be computationally intensive due

to its complexity of O(n3), where n represents the num-

ber of training instances. To mitigate this issue, various

approximation methods, collectively known as Sparse Gaus-

sian Process (SGP), have been developed as an alternative

approach. Instead of using the complete training data, SGP

employs a smaller set of ms training points, called inducing

points Zms
, resulting in a more efficient process and a lower

computation complexity of O(nm2
s) [17]–[19]. Our present

work leverages the variational SGP method, proposed in [19],

to approximate the true posterior of a GP p(f |y) using

an approximated variational posterior distribution q(f, fms
),

where fms
are the values of the underlying function f at

the inducing points Zms
. This approximation is done by

augmenting the true posterior with the variable fms
such as

p(f, fms
|y) = p(f |fms

)p(fms
|y). Then, the approximated

variational distribution q(f, fms
) can be factorized in the same

manner as the augmented true posterior, as follows

q(f, fms
) = p(f |fms

)ϕ(fms
), (9)

where ϕ(fms
) is an unconstrained variational distribution

over fms
and p(f |fms

) is the conditional GP prior. By

minimizing the Kullback-Leibler (KL) divergence between the

approximated and true posteriors, KL[q(f, fms
)||p(f |y)], the

variational SGP obtains estimates of the inducing inputs Zms

and hyperparameters (Θ, σ2).

III. GP-MPPI CONTROL STRATEGY

The goal of our present research, as outlined in (2), is to deter-

mine the optimal control sequence U = {uk}
N−1
k=0 that enables

safe and efficient navigation of the mobile robots through

complex and unknown cluttered environments, while avoiding

collisions with obstacles and getting trapped in local minima.

Although the MPPI control framework, as summarized in

[20], has many positive attributes, it is prone to generating

infeasible control sequences or trajectories, particularly when

the distribution of all sampled trajectories are concentrated

within high-cost regions. To mitigate this issue, new sampling

strategies proposed in [14], [21] have enabled more efficient

exploration of the state-space, allowing the algorithm to find

better solutions and potentially reduce the risk of trapping in

local minima. Nevertheless, for specific tasks such as the one

depicted in Fig. 3(b), eliminating the local minima remains a

potential challenge that needs to be tackled.

One solution could be incorporating MPPI with a global

planner, such as the solution presented in [22], which utilizes

the RRT algorithm to guide MPPI. Instead, we introduce the

GP-MPPI control strategy, a new online navigation technique

that leverages the SGP occupancy model to learn about the

navigable space surrounding the robot. Specifically, we intro-

duce the GP-subgoal recommender policy, which identifies a

set of recommended subgoals and subsequently suggests the

optimal subgoal that minimizes a predefined cost function to

the MPPI local planner, as depicted in Fig. 1 and explained

in detail in Section III-B. Unlike conventional methods, a

distinctive aspect of the proposed control strategy is that it

does not require either a global map for long-term planning

or an offline training process.

A. SGP Occupancy Surface Representation

Our proposed GP-subgoal recommendation policy relies on

our earlier work presented in [23], [24], where we transformed

pointcloud data into an occupancy surface and modeled it

using a Sparse Gaussian Process (SGP). Within this approach,

the occupancy surface takes the form of a 2D circular surface

centered around the sensor origin and has a predefined radius
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GP frontier f∗, which leads the robot to its desired state xf .

C. Real-Time GP-MPPI Control Algorithm

Algorithm 1 summarizes the real-time control cycle of the

GP-MPPI algorithm, which includes two primary components:

the local MPPI motion planner (described earlier in Section II-

B) and the GP-subgoal recommender (explained in Section III-

B). Each time-step ∆t, the GP policy recommends the optimal

subgoal g∗, the current state is estimated, and a M × N
random control variations δu are generated (lines 2 : 4).

Then, M trajectories are simulated in parallel, propagated

from the system dynamics defined in (1), and evaluated

using (3) (lines 5 : 13). It is noteworthy that the minimum

sampled cost trajectory, denoted as S̃min, among all simulated

trajectories prevents numerical overflow or underflow without

affecting the optimality of the algorithm [27]. After that, the

optimal control sequence {uk}
N−1
k=0 is updated, smoothed with

a Savitzky-Galoy filter, and the first control u0 is applied to

the system (lines 14 : 18), while the remaining sequence of

length N − 1 is slid down to be utilized at next time-step

(lines 19 : 22). In lines 25 to 38, the function known as GP-

SubgoalRecommender is described, which takes a pointcloud

input (PCL) and returns the optimal subgoal g∗ for the local

planner. To optimize the hyper-parameters Θ and inducing

points Zms
of the SGP occupancy model, the pointcloud data

is transformed into training data D (lines 26 : 29). The mean

occupancy µoc and variance σoc are then estimated over the

surface Z∗, and the GP frontiers are defined as those with

σoc > Vth, where the centroids of these frontiers are converted

to Cartesian coordinates (lines 30 : 34). Finally, the cost

function Jgp in (11) is used to select the optimal subgoal

g∗ (lines 35 : 37).

In this study, we introduce two operating modes for the

GP-MPPI algorithm: the simple mode (SM) and the recovery

mode (RM). Under the simple mode, MPPI consistently

leverages the optimal subgoal g∗ suggested by the GP policy.

In contrast, in the recovery mode, MPPI generates the optimal

control sequence that steers the robot towards its desired state

xf , adhering to the recommended subgoal only when the robot

is at risk of encountering local minima. Such local minima

occur when the robot’s linear velocity is zero (v = 0) and its

current state xk does not match xf (i.e., xk ̸= xf ). Thanks

to the optimal control sequence {uk}
N−1
k=0 obtained by MPPI,

we can efficiently anticipate the occurrence of local minima

by imposing a condition on the mean of the predicted linear

velocities over the time-horizon N , expressed as follows:

µu =
1

N

N−1∑

i=0

|vi| < uth, (12)

where uth ∈ R
+ represents a control switching threshold

set based on N . If this condition is fulfilled, then MPPI

will follow the subgoal recommended by the GP rather than

navigating directly towards its desired state xf .

IV. SIMULATION-BASED EVALUATION

In this section, the effectiveness of our proposed control strat-

egy is assessed and compared with both vanilla MPPI and log-

MPPI control strategies in a goal-oriented autonomous ground

Algorithm 1 Real-Time GP-MPPI Control Algorithm

Given:

M,N : Number of rollouts (samples) & timesteps

(u0,u1, . . . ,uN−1) ≡ U: Initial control sequence

f,∆t: Dynamics & time-step size

ϕ, q, λ, ν,Σu, Q,R: Cost & control hyper-parameters

SGF: Savitzky-Galoy (SG) convolutional filter

PCL,Z∗: Pointcloud & 2D variance surface (Grid)

Θ,ms, kdst, kdir, km: GP policy hyper-parameters

1: while task not completed do

2: g∗ ← GP-SubgoalRecommender(PCL),

3: x0 ← StateEstimator(), x0 ∈ R
nx

4: δu← GaussianNoiseGenerator(), δu ∈ R
M×N

5: for m← 0 to M − 1 in parallel do

6: x← x0, S̃ (τm)← 0, S̃ (τm) ∈ R
+

7: for k ← 0 to N − 1 do

8: xk+1 ← xk + f (xk,uk + δuk,m)∆t,
9: S̃ (τm)← S̃ (τm) + q̃,

10: end for

11: S̃ (τm)← S̃ (τm) + ϕ (xN ),
12: end for

13: S̃min ← minm[S̃ (τm)], ∀m = {0, . . . ,M − 1}
14: for k ← 0 to N − 1 do

15: uk ← uk +
∑M−1

m=0
exp

(
−1

λ [S̃(τm)−S̃min]
)
δuk,m

∑M−1

m=0
exp

(
−1

λ [S̃(τm)−S̃min]
) ,

16: end for

17: u← SGF(u),
18: u0 ← SendToActuators(u),

19: for k ← 1 to N − 1 do

20: uk−1 ← uk,

21: end for

22: uN−1 ← ControlSequenceInitializer(uN−1),

23: Check for task completion

24: end while

25: function GP-SubgoalRecommender(PCL),

26: (θi, αi, ri) ← Cartesian2Spherical(PCL(xi, yi, zi)),
27: oci = roc − ri, D = {(zi, oci)}

n
i=1,

28: f(z) ∼ SGP (m(z), k (z, z′)), k ← RQ,

29: Optimize (Θ, Zms
) ← D,

30: (µoc, σoc)← SGP-Predict(Z∗),
31: vm ← Mean(σoc), Vth ← Kmvm,

32: GP-Frontiers← (σoc > Vth),
33: (θfi , αfi)← CentroidOfGP-Frontiers,

34: (xfi , yfi , 0)← Spherical2Cartesian(θfi , αfi , roc),

35: dfs ← EuclideanDistance((xfi , yfi),xf ),

36: f∗ = argminfi∈F (Jgp (fi)),
37: g∗ ← (xf∗ , yf∗ , θf∗),
38: return g∗

39: end function

vehicle (AGV) navigation task conducted in 2D cluttered

environments of unknown nature.

A. Simulation Setup:

In this study, we consider the kinematics model of a

differential wheeled robot presented in [14], specifically the
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as depicted in Fig. 6. The assigned control mission of the

robot is to navigate from xs = [0, 0, 0]⊤ and arrive at xf =
[7.5, 13, 90]⊤.

2) Experimental Results: The performance statistics of our

proposed GP-MPPI control scheme, gathered from four trials

conducted in our indoor environment, are summarized in

Table II for the two operating modes. From all trials, we

can conclude that both operating modes provide collision-

free navigation in the cluttered environment with an average

linear velocity of 0.80m/sec, without the risk of being trapped

in local minima (as Rlm = 0) while moving towards its

desired state. This ensures the safety and consistent feasibility

of the receding-horizon planning. In contrast, it is observed

that the vanilla MPPI and log-MPPI consistently failed to

complete any of the trials due to being trapped in the first edge

of the L-shaped environment. However, MPPI managed to

avoid such traps with the aid of the GP-subgoal recommender

policy in the recovery mode (RM), which provides an average

assistance percentage Agp of roughly 31.36%. More details

about the simulation and experimental results, including the

behavior of the baselines, are provided in the supplementary

video: https://youtu.be/et9t8X1wHKI.

TABLE II: Performance statistics of the two modes of GP-MPPI.

Mode Tc [%] (Rlm) dav [m] vav [m/sec] Agp[%]
SM 100 (0) 20.06± 0.21 0.80± 0.012 −

RM 100 (0) 20.18± 0.30 0.76± 0.066 31.36± 11.72

VI. CONCLUSION

In this work, we proposed the GP-MPPI control strategy,

which comprises two primary components: the GP-subgoal

recommender policy and the local planner, the MPPI. First,

the GP-subgoal recommender utilized the learning capacity of

SGP to create a reliable SGP variance surface, which served

as an indicator for differentiating between occupied and free

spaces around the robot. Consequently, a set of suggested sub-

goals was identified, and the optimal subgoal that minimizes a

predefined cost function was recommended to the local MPPI

planner. Based on the recommended subgoal, MPPI computes

the optimal control input that enables the robot to navigate

towards the goal efficiently and safely while accounting for

its dynamics and avoiding collisions. By conducting a com-

bination of simulated and real-world experiments, we have

shown that our proposed control strategy is superior to the

vanilla MPPI and log-MPPI methods in achieving efficient

and safe navigation in unknown and complex environments,

thereby avoiding the risk of getting stuck in local minima.
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