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Abstract— Biological agents, such as humans and animals,
are capable of making decisions out of a very large number of
choices in a limited time. They can do so because they use their
prior knowledge to find a solution that is not necessarily optimal
but good enough for the given task. In this work, we study
the motion coordination of multiple drones under the above-
mentioned paradigm, Bounded Rationality (BR), to achieve co-
operative motion planning tasks. Specifically, we design a prior
policy that provides useful goal-directed navigation heuristics
in familiar environments and is adaptive in unfamiliar ones
via Reinforcement Learning augmented with an environment-
dependent exploration noise. Integrating this prior policy in the
game-theoretic bounded rationality framework allows agents
to quickly make decisions in a group considering other agents’
computational constraints. Qur investigation assures that agents
with a well-informed prior policy increase the efficiency of the
collective decision-making capability of the group. We have
conducted rigorous experiments in simulation and in the real
world to demonstrate that the ability of informed agents to
navigate to the goal safely can guide the group to coordinate
efficiently under the BR framework.

I. INTRODUCTION

Efficient decision-making algorithms that can operate un-
der computational constraints are essential in developing
robotic systems. These systems need to select reasonable
decisions from an extensive range of options within a limited
time frame while constrained by finite computational re-
sources. In multi-agent scenarios, such as generating motion
trajectories that coordinate multiple agents, the challenge
is further amplified, as the trajectories of different agents
are interdependent, and the decisions made by one agent
can impact the decisions of others. Moreover, when agents
have different goals, balancing individual and collective
decision-making objectives while considering each agent’s
computational limitations can make the problem even more
complex.

While game theory is a powerful framework for describing
multi-agent interaction and computing interdependent motion
trajectories that reach Nash Equilibrium among agents [1],
[2], it assumes that each agent is rational and has unlimited
computational limits. This assumption can be limiting in
practical applications, as it may not accurately reflect the
finite computational constraint of real-world agents. This lim-
itation can be alleviated by combining it with information-
theoretic bounded rationality (BR) [3]. It explicitly models
each agent’s computational limits by constraining the amount
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of information an agent is allowed to process when transi-
tioning from a default policy, which describes the nominal
behavior of an agent before it initiates the planning process,
to an optimal one [4]-[6]. This transformation is typically
computed via importance sampling [7], which samples a
set of trajectories from the default policy to estimate the
expected bounded-rational trajectories for each agent.

The performance of the resulting trajectory is highly de-
pendent on the quality of the samples from the default policy.
Previous works in the game-theoretic BR framework have
typically used samples from uninformative distributions, such
as a uniform or univariate Gaussian distribution [5], [8],
[9], to estimate the expected bounded-rational trajectories for
individual agents across all potential trajectories. However,
this “brute-force” approach may be inefficient compared with
the scenario when agents are equipped with certain prior
knowledge about how to navigate in the environment. We are
inspired by the biological agents who can leverage their prior
knowledge to select reasonably good decisions, although
suboptimal with limited processing effort. To achieve a
similar mechanism, we propose two criteria that charac-
terize a reasonable default policy — informativeness and
adaptiveness. Informativeness emphasizes that the default
policy should provide prior knowledge to guide the sampling
process toward regions of higher utility, while adaptiveness
ensures that the default policy explores additional regions
when it underperforms. To accomplish this, we leverage
Goal-Conditioned RL [10] to train a goal-directed policy
and use it as the default policy in the bounded-rational
game-theoretic framework. Additionally, an environment-
dependent exploration noise is added to the policy to allow
exploration in underperforming environments. This noise
provides additional variance to the agent’s actions and allows
them to deviate from their default policy to search for better
trajectories when necessary. We integrate this default policy
into the best response algorithm under the bounded rational
framework. By providing a reasonable guide for the sampling
process, our algorithm can reduce the trajectories needed to
optimize and predict agents’ trajectories, resulting in a more
efficient computational process overall.

Our experimental results from simulations and physical
experiments provide strong evidence that incorporating an
informed prior policy within the BR framework reduces the
number of candidate choices that need to be evaluated while
promoting intelligent group behavior. Our study reveals
noteworthy findings concerning the improved performance
of uninformed agents when working collaboratively with
informed agents, which strikingly mirrors real-world organi-
zational behavior. As shown in the experiments, the presence
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of informed agents in the group significantly enhances the
decision-making efficiency of uninformed ones, as the in-
formed default behaviors allow them to select decisions that
not only optimize their objectives but also guide the less
informed towards areas with higher rewards. Thus, overall
group performance is significantly enhanced. These findings
underscore the relevance and applicability of our research to
real-world scenarios, where informed and uninformed agents
synergistically contribute to enhanced group dynamics and
overall performance.

II. RELATED WORK

Our research is relevant to the field of planning in multi-
agent systems and game-theoretic frameworks. Here, we
present a brief summary of these areas.

The game-theoretic framework has been widely used to
model the interactions among multiple agents with different
goals [11]. One approach to obtain a numerical solution for
computing Nash Equilibrium is the iterative best response
algorithm, which has been utilized in various multi-robot
applications such as racing [2], [12] and trajectory prediction
and motion planning in self-driving vehicles [13]-[16]. In the
context of uncertain environments, [17] proposed a robust
version of the algorithm by solving the minimax objective. It
is worth noting, however, that the game-theoretic framework
is based on the assumption of rational agents with unlimited
computational power. This assumption may not hold in real-
world scenarios, and thus other modeling approaches may
be required.

Recently, there has been a growing interest in bounded
rationality models [18] that aim to formalize decision-making
with limited resources, such as time, energy, memory, and
computational effort. While several works have addressed the
idea of terminating computation when time runs out, as docu-
mented in [19], only a handful have made an explicit attempt
to model this bounded rational assumption. A recent study
[20] examines the performance of single-agent robust con-
trol using information-theoretic bounded rationality, which
has been previously explored in the works of Ortega and
Braun [3] and Genewein et al. [21]. Additionally, a related
but independently developed literature known as KL-Control
has been studied in works such as Botvinick et al. [22]
and Kappen et al. [4]. The KL-divergence between a prior
and a posterior policy is added as an additional constraint
during the computation of the optimal policy. However, most
of the work has been limited to single-agent problems. [5]
extends information-theoretic bounded rationality to multi-
agent problems by incorporating an iterated best response
algorithm to find Nash equilibrium in a Markov game.
However, it does not address the issue of an uninformative
default policy. Although the proposed solution is motivated
by biological agents naturally making complex decisions by
selecting the satisfying option from a set of good options, this
work does not address how to identify the good options. The
identification of a set of good options is highly dependent
on prior knowledge of the task. Therefore, in this work,
we address this issue by incorporating an informed prior

policy into a multi-agent bounded rational decision-making
framework.

III. BACKGROUND
A. Markov Games for Multi-Agent Trajectory Generation

We consider the problem of generating motion trajec-
tories in an environment consisting of multiple agents,
where each agent’s trajectory depends on and affects oth-
ers. This problem can be formulated using the frame-
work of Markov Games [23], which extends Markov
Decision Processes [24] to consider interactions among
multiple agents. A Markov Game is defined by a tuple
(N AS Yienrs {A'ienr {f ' Yienrs { R Yien), where N =
{1,..., N} denotes the set of N agents’ indices; s* € S* and
a’ € A denote the state and action spaces of agent 7, respec-
tively. We use bold letters to denote agents’ joint variables,
e.g., joint states and actions are denoted as s = {s!,...,s"V}
and a = {a',...,a™}. In this paper, we assume that each
agent’s transition function is deterministic and independent
of others’ states and actions, i.e., f’ : S’ x A* — S'. The
reward functions R’ : S x A — R specifies the immediate
reward of agent ¢ after all the agents take actions a at state
s.

At every timestep t, each agent ¢ € A simultaneously
samples a sequence of actions until the planning horizon
H from their policies A} ~ 7i(Al|s;, 7, "), where Al =
{at11,af49, - aj g 1}, s is the agents’ joint state at
time ¢, and 7, ' denotes the joint policy excludes agent
1. The conditioning of other agents’ policies is necessary
because each agent’s reward and transition functions depend
on the joint state and actions. The sequence of actions is
then used to simulate the agents’ states forward, generating
state trajectories S; = {s},s},;...,si, ;}, where the next
state is sampled based on the transition function sy, ;. , =
f4(Stak,aryr). This policy form is well-suited for most
robotics problems because a low-level controller can be used
to track the generated motion trajectories induced by the
action sequence at every timestep [25]. The goal for each
agent is to find a policy 7! that maximizes its expected long-
term reward (or the utility function) given the joint state

Tt = argrnabxﬁzU"(st,Tr,g)7 (1)

where U'(s;, ;) = E[ZkH;f R (s, ak)} is agent i’s utility
function at ¢, m; = {mi};en is the joint policy of all the
agents, and ay is the joint action at time k extracted from the
action sequence sampled from their corresponding policies.

B. Solution Concept in Markov Games

Since the utility function of each agent in a multi-agent
setting depends not only on its own decisions but also
on the actions taken by other agents, it is inadequate to
optimize each agent’s utility in isolation. Consequently, when
optimizing the policies defined in Eq. (1), each agent must
also consider the potential actions of other agents and how
they may react to each other’s decisions. A commonly
used solution concept to capture this interdependency among
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multiple interacting agents is Nash Equilibrium (NE) [1]
defined as follows:

U'se,my " my™) 2U (84,70 ), )
Vi€ {1,..,N}, Vi € IT",

where ;" ¢ denotes the joint policy without agent i and
IT' is the space of agent i’s policy. Intuitively, Eq. (2)
suggests that agents cannot increase their utility through
unilateral policy changes in equilibrium. To compute NE,
a numerical technique called Iterative Best Response (IBR)
can be applied [26]. This process begins with an initial
estimate of the policies for all agents, which are then updated
iteratively for each agent by determining the best response
to the current trajectories of all other agents. It continues
until convergence, i.e., no further changes occur in the joint
policy.

IV. METHODOLOGY

A. Information-Theoretic Bounded Rationality in Markov
Games

To exactly solve the decision problem in Eq. (1), even
restricted to a single agent, is intractable, as it requires
enumerating all possible action sequences (usually infinite)
and selecting the optimal one. This intractability is exac-
erbated when multiple interacting agents are involved. In
such scenarios, the agent must not only optimize its action
sequence but also anticipate other agents’ unknown behaviors
(action outcomes). This requirement translates into the need
to solve a single-agent decision problem for each agent
multiple times, as reflected by the best response numerical
solution stated in Eq (2). Consequently, the assumption of
perfect rationality, commonly adopted in the standard game-
theoretic framework, typically cannot be realized in the
real world, as agents are constrained by their computational
resources, forcing them only to evaluate a limited and finite
number of trajectories to make a decision.

Instead, information-theoretic bounded rationality offers
a more realistic modeling framework by explicitly con-
sidering agents’ computational limits to trade-off between
the available computational resources and the number of
trajectories for evaluation [5], [21], [27]. This is achieved by
defining a constraint considering the amount of information
(computation) the agent can afford to transfer from a default
(or prior) policy ¢’ to the optimal one. Intuitively, this default
policy describes the nominal behavior of the agent before
initiating the planning process, and the bounded-rational
agent seeks to identify an optimized posterior policy that falls
within the neighborhood of the default policy. One might
view the amount of available computational resources as an
affordable amount of information. It is also referred to as
uncontrolled “free” dynamics, as previously discussed in [4].

Formally, following the work [4], [5], we use KL-
divergence to characterize this information-processing con-
straint

7" =argmax U'(sy, ™), s. t. D (mi||qt) < K, 3)

i
T

where D1 is the KL divergence between the two stochastic
policies, and K; is a constant denoting the amount of
information (measured in bits) agent ¢ can deviate from the
default policy. To optimize the policy under the constraint in
Eqg. (3), we first rewrite the constrained optimization problem
as an unconstrained one 7, = arg max,; U sy, ) —
57 K L(n{]|qf), where j; > 0 indicates the rationality level.
As shown in [5], the unconstrained problem is equivalent to
1 W[y

FDiElvd ) @

bk
Ty =argmaxq —

i B
T

where 1% (A?|s;) o gt (A?)ef U (36:7)  The maximization of
—%D 1 (7| [¥}) occurs only when the two distributions are
equal. As a result, while keeping other agents’ policies fixed,
the bounded-optimal policy is

1

= (A6

™" (Aflse, m")
where Z} = [g¢'(Ai)eP " U'(st:m)dAL denotes the normal-
ization constant. When /* — 0, the bounded-rational policy
is equivalent to the prior, reflecting the agent’s inability to
leverage computational resources. Conversely, when 3; —
oo, the agent’s decision-making becomes entirely rational
and ignores the influence of the default policy. Compared
to the optimal policy expressed in Eq. (1), this bounded-
optimal policy enables a trade-off between performance and
computational complexity via changing the rationality level

B

B. Efficient Bounded-Rational Trajectories Computation via
Informative Default Policy

1) Bounded-Rational Policy Computation: Selecting an
action sequence using the bounded-optimal policy (Eq.(5)) is
equivalent to querying a sample from this distribution. In this
work, we build upon the importance sampling strategy pro-
posed in [5], which estimates the expected action sequence
of the distribution Eq. (5). The core idea is that since the
default policy is generally easy to sample, each agent can
compute the expected bounded-optimal action sequence by
a weighted average over samples generated from their default
policies, where the weights depend on the corresponding
action sequence’s utility. Specifically, at the best response
iteration [, suppose that agent i’s predictions over other
agents’ action sequences as A, ol where the upper bar
denotes the expected value. To update agent 7’s best response
to these predictions, we first sample d € D,D = {1, ..., D}
action sequences from the default policy {AAZZ AAi:fi ~
q;}aep They are then used to generate perturbed action
sequences around the current mean estimates of agent 7’s best
response A;ld = flz’_ii + AAild Combined with the current
estimates of other agents’ mean action sequences A, o are
used to compute the mean for the next best response iteration
l + 1 using the importance sampling strategy

D il g —idy qd,l
D=1 w(Ai;d’At ' )Ai,d
D il a—il
Dd—1 w(AzlS,d“At ")

) (6)

T+l
AL
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where AP = E[A"|s, 7] denotes the expected
bounded-action sequence for agent 7 at the [+ 1 best response
iteration, and the weights are based on the trajectory utility
given the perturbed action sequence and other agents’ mean
estimates w(ALY Ay ") = exp{5'U}"; }. The trajectory util-
ity (A]Z,lC is computed analogously to Eq. (1), which roll out
the agents’ dynamics based on the given action sequences
Al ld and A, " !. The above update rule is integrated into the
best response algorithm. It computes the bounded-rational
Nash Equilibrium until a pre-defined number of iterations is
reached or the policies converge.

2) Informative Default Policy Design: The perturbation
strategy over the current mean estimate is critical for the final
performance. Typically, it is achieved by adding noisy actions
from an uninformative default policy ¢!, e.g., a uniform
distribution over all possible action sequences, to the mean
estimation for each agent, as suggested in previous works [4].
While this approach ensures perturbing the action sequences
unbiasedly, as all possible action sequences are covered with
equal probability, it may be less efficient when heuristics
are available to guide the process. Under this circumstance,
this can lead to the need to sample more action sequences
than necessary. To address this issue, we propose two criteria
for designing a more informative default policy to increase
computational efficiency.

The first criterion is to ensure that the sampled action
sequences concentrate on high-utility regions, meaning they
should yield higher utility than an uninformative one. In other
words, the distance, e.g., KL divergence, between the in-
formed policy and the optimal one is smaller so that a smaller
sample size can be used to converge. While constructing a
generalized informed policy that works well in all possible
environments is challenging, generating a policy in a specific
environment can be more approachable. To achieve this, we
leverage a task-conditioned RL policy trained using Proximal
Policy Gradient (PPO) [28]. The trained policy takes the
navigation goal g’ for agent i and the agent’s state si as
input and samples the best action a} ~ ¢i(Al|si, g%) in a
single-agent environment. In contrast to the uninformative
policy, which does not consider any environments or tasks,
this default policy is closed-loop. Thus, to integrate the policy
into the best-response bounded-rational framework, at each
best-response iteration /, we compute the weight in Eq. (6)
by rolling out the trajectory through perturbing the mean
action based on the closed-loop policy.

Spemﬁcally, the agent 'S perturbed action is given by
akl Aa};l + ay’, where ay ! denotes i*" agent’s mean
of the bounded- optlmal action distribution at the I best
response iteration, and Aakd ~ q (Aa;ld|sk 1, g") is the
noisy action sampled from the informed default pohcy At the
same time, the reward function is computed to accumulate
the utility, which is used to calculate the weight. This
computation is performed along the action sequence until
the end of the horizon by rolling out next states sk d =
fl(sk 1 ak '),k € {t,....t + H — 1}. The informative policy
guides this perturbatlon strategy by directing the agent’s

Algorithm 1 Bounded-Optimal Trajectories Computation via

Informative Default Policies

Input: Each agent default policies {q! };cnr; Transition func-
tions {f*};en; Reward functions {R'};cn; Rational-
ity parameter {3‘};cn; Agents’ current state s;; Each
agent’s goal g; Number of action sequence samples D;
Number of agents N; Number of best response iteration
Nrpr; Number of action updates Ny p;

Output: The expected bounded-optimal action sequences of
each agent A},

1: Initialize the mean of each agent to 0, A? <0 .
2: for i € {1,..., N;gr} do
3. forie N do
4: for n € {1,...,Nyp} do
5: Assign 1n1t1al states s;, < st,d €D
6 Rollout other agents’ states based on A, bl
and s,
7: 1 Addlng guided exploration action to the current
action sequence
8: for d € D do .
9: Initialize action sequence utility U, ’(li +~0
10: fork:e{t7 t+H—1}d0 7
1 Aa;’d = (Aa;fld‘sk 9 9')
12: akl—Aakl—l—ak + €
13: Uttglz Utl’é“‘Rz(Sk > Q)
14 Ski1.d = f’(SZld»aZ’ld)
15: end for
16: end for
17: // Update i agent mean action sequence
18: Ai,l — ZdD:1 w(AZ:l(;‘laAt o 1)A1l !
¢ Z:?:l w(Al,fi lvAt, . 1)
19: end for
20:  end for
21: end for

22: return A"V'P® for every agent i € ¥

actions toward the goal, providing more efficient sampling.

The default policy for goal-point navigation can be viewed
as a useful heuristic, but its performance is limited to the
trained environment. In new environments, using samples
from the default policy may perform worse than those from
the uninformed one. To address this issue, we propose a
second criterion that introduces diversity into the generated
action sequences, covering wider regions in environments
where the default policy may not perform reasonably. To
achieve this, we augment the default pohcy with an ad-
ditional noise term, denoted by Aak 4 + €, where a is
the sampled action, and €' is the added noise for agent
i. The spread of the noise, such as the variance in the
Gaussian distribution, controls the degree of adaptation of
the default policy, with larger ranges facilitating the agent’s
performance in unfamiliar environments but requiring more
samples to converge. Incorporating this exploration noise is
necessary for deploying in unfamiliar environments, and it
enhances the flexibility and effectiveness of the importance
sampling strategy in adapting to different scenarios. This is
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examined by varying the range of the noise parameter on the
performance of the bounded-rational policy, shedding light
on the trade-off between adaptability and noise variance.

The final algorithm for each agent’s computation process is
illustrated in Alg. 1. To compute the bounded-optimal action
sequence of agent i at the I*" best response iteration, we first
rollout the trajectories of other agents based on their current
mean estimates A, ! Then, while keeping other agents’
trajectories fixed from line 8 to line 15, we compute utilities
of D sampled trajectories of agent ¢ by incorporating the
guided action noise into the mean. These utilities are used
in Eq. (6) to update the expected action sequence of agent
1 € N at the best response iteration [. This best response
computation is carried out until a pre-defined number of
iterations is reached.

V. SIMULATION EXPERIMENTS

N AW
* | * =l * ;m_: *
7 N sgaN SRS

(a) Training  (b) Test(Envl) (c) Test(Env2) (d) Test(Env3)

Fig. 1. Shows the training and testing environments. Star represents the
pre-defined goal position during training and testing single agent behavior.

We perform comprehensive simulation experiments to in-
vestigate the impact of incorporating prior knowledge about
a task on the decision-making performance of agents oper-
ating within a Bounded Rationality framework. Our findings
reveal that integrating an informed prior policy into the BR
framework significantly reduces the number of candidate
choices required to be evaluated for identifying a satisfying
(i.e., satisfactory and sufficient) trajectory. In this section,
we specifically demonstrate that utilizing an informed prior
policy enables a single agent to (1) rapidly adapt to novel
environments, and (2) reason about the behavior of other
agents in a multi-agent system while requiring fewer trajec-
tory samples than the uninformed one.

A. Simulation Setup and Performance Metrics

We designed two sets of experiments to validate the
effectiveness of our proposed approach. The first experiment
involves navigating a single robot in a 3D environment to a
pre-defined goal point, while the second experiment involves
navigating a group of aerial vehicles in a 3D space to a pre-
defined goal while avoiding collisions with each other as well
as obstacles in the environment.

Performance Metric: We use the normalized score to
compare performance across different denvironment setups.
The score is calculated as %, where 7 7",
and 7% are the trajectories of a uniform policy, computed
policy, and the expert policy computed by using a large
number of trajectories, and J(-) is the utility of the trajectory.
The larger the score, the better the performance, and a score
of 0 indicates that the performance of a computed policy is
the same as the uniform policy.

rand
b

Environments: We train a single agent in an obstacle-free
environment and test the performance of its adaptability in 3
different environments with increasing difficulties as shown
in the Fig. 5.

We intentionally select an obstacle-free training envi-
ronment to illustrate the efficacy of the proposed method.
However, it is imperative to note that a closer similarity
between the training and testing environments is expected
to yield superior performance results.

Agent’s Description and Fixed Parameters: Homoge-
neous agents are used in both experiments with identical
sizes and physical capabilities. The transition functions of the
agents are set using a deterministic single integrator model
with the minimum and maximum speeds as a,,;, = O0m/s
and amqa: = 1m/s. Rationality levels of all agents are
assumed to be known in all simulations. The one-step reward
function is designed to penalize collisions and large distances
to the goal. Each simulation is run 10 times for 7" = 80
timesteps.

Baseline: The method employed as the baseline for com-
parison uses a uninformative uniform prior policy in the
game theoretic bounded rationality framework, as described
in the literature [5].

B. Adaptability of Single-Agent in Unknown Environment

We first show that an Informed agent adapts faster in
unknown environment. To compare their performance, we
gradually increase the number of sampled trajectories from
5 to 30, while maintaining a constant level of rationality (5 =
0.03) and variance (¢ = 0.50) as depicted in Fig. 2(a). The
informed policy method (Informed-BR) achieves 84% per-
formance by sampling 10 trajectories. However, the uniform
policy (Uniform-BR) agent needs more than 20 trajectories
on average to gain the same performance. The comparison
of the performance of both methods across all environments,
while keeping the number of sampled trajectories fixed at
30 (where the Uniform-BR performs best), is presented
in Fig. 2(b). Our observations reveal that the Informed-
BR agent outperforms the Uniform-BR in all environments,
thus validating our proposal of employing Informed-BR.
Fig. 2(c) shows the importance of variance in determining
the informativeness of the default policy.

Fig. 3 displays the generated trajectories for both the
Informed-BR and Uniformed-BR methods at 5 consecu-
tive optimization iterations, i.e., n € {1,...,5} (see Algo-
rithm 1). Despite only using 5 trajectories, the Informed-BR
method achieves a satisfactory performance compared to the
Uniform-BR method. The readers are encouraged to watch
the experimental videos at https://youtu.be/iD6xy
yxQCGI.

C. Faster Adaptability in Multi-Agent Scenario

After demonstrating the adaptability of a single Informed-
BR agent in previously unseen environments, we now present
the performance of multiple agents to further validate the
superiority of our method over Uniform-BR. We added four
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(a) Performance vs Sampled Trajectories

(b) Performance vs Test Environments

(c) Performance vs Variance

Fig. 2. The performance comparison across different training environments. Y-axis indicates the normalized scores while the X-axis indicates the number
of sampled trajectories in (a) and the environment density level in (b), ranging from sparse (Envl) to dense (Env3) as depicted in Fig. 5. (c) shows the

performance by changing variance of the prior distribution.
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Fig. 3.

Shows the adaptation process from default to satisficing path in the proposed method and the baseline. (a) to (e) shows the proposed method’s

performance on the adaptability. (f) to (j) shows the baseline method’s performance. The snapshot has been taken after the same number of iteration to

shoe the comparison. Both the method uses 5 sampled trajectories.

additional agents in all three environments at various loca-
tions and assigned them the same goal as specified in Fig. 5.
The rationality levels 3; of all agents were fixed at 0.1 in
all trials. Fig. 4(a) shows that when all agents are informed,
they can achieve a normalized score of approximately 0.80
with 400 trajectories, while the Uniform-BR agents can only
achieve half of that. This result indicates that the informed
policy not only adapts to the static unseen environment
faster than the Uniform-BR, but it can also adapt to avoid
dynamic objects (other agents in this case) in multi-agent
environments.

Fig. 4(b) demonstrates the effect of increasing environ-
mental complexity, measured by the space occupied by the
obstacles, on the performance of Informed-BR and Uniform-
BR methods. While both methods exhibit a decrease in
performance as environmental complexity increases, the
Informed-BR consistently outperforms the Uniform-BR in all
environments. Specifically, in the most complex environment
(Env3), the Informed-BR method achieves a normalized
score of around 0.5 while the Uniform-BR method only
achieves around 0.2, indicating the effectiveness of our
method in adapting to complex environments.

In the final experiment, we investigated the impact of
replacing Uniform-BR agents with Informed-BR agents on
group performance. As illustrated in Fig. 4(c), the hetero-
geneous group’s performance gradually improves as more

Uniform-BR agents are replaced with Informed-BR agents.
Interestingly, replacing the uninformed agents with informed
ones not only increases the performance of the informed
group, but also induces a positive effect on the uniform
group, as demonstrated by the increasing trend of the blue
line in Fig. 4(d) and more clearly shown in Fig. 4(f). More-
over, Fig. 4(e) shows that adding more informed members
to the group enhances its overall performance. This effect
is commonly observed in human organizations, where the
addition of more intelligent agents can help overcome the
limitations of bounded rationality. Our modelled agents ex-
hibit the same behavior, as they are also boundedly rational.
We posit that the presence of more informed agents in a
group may positively affect uninformed agents’ performance.
We speculate that this could be due to the fact that informed
agents reduce the search space for the other agents and
their trajectories guide the uninformed agents in the right
direction. However, further research is needed to confirm
whether this phenomenon holds true in different scenarios
and configurations of robot states.

VI. PHYSICAL EXPERIMENTS

In this section, we present the physical experiments con-
ducted to validate the proposed method using Crazyflie 2.1
nano-drones under a motion capture system. Two tasks were
considered for the hardware experiment. In the first task, two
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and (f) the X-axis represents the number of Informed-BR agents in a 5-agent group, and the Y-axis represents the performance of the group. (c) Depicts the
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performance of Group-1 and Group-2 is zero, when there are no agents assigned to those groups.

(b) Experiment-1 (snapshot)

(a) Experiment-1 (set up)

Fig. 5.

(c) Experiment-2 (set up) (d) Experiment-2 (snapshot)

Illustrates the experimental setup and snapshots of drones in action. (a) Depicts the position swapping experiment setup, where one agent uses a

uniform prior policy and the other uses an informed prior policy. (b) Shows a snapshot during the experiment. (c) Demonstrates the experimental setup
for five agents heading to the same goal, with three being informed and two uninformed. (d) Presents a snapshot during the experiment where uninformed

drones crash and fail to reach the goal.

agents with informed and uniform prior policies were used to
swap their positions while avoiding obstacles and each other,
as shown in Fig.5(a). Note that the narrow gap between the
agents can only allow one agent at a time. The agent with
the informed prior policy successfully took the shortest path
through the narrow gap, while the agent with the uniform
prior policy took a longer route to the destination, as shown
in Fig.5(b). This interesting behavior supports our simulation
results and also shows the importance to having informed
prior policy.

In the second task, a group of five nano-drones was
selected and divided into two groups, namely Group-1 and
Group-2. Group-1, indicated by the red circles in Fig. 5(c),
employed a uniform prior policy, while Group-2, shown
by the blue circles, utilized an informed prior policy. The
objective of both groups was to navigate through a narrow
passage and reach the goal point. The experimental results

demonstrate that the Uniform-BR agents failed to accomplish
the task, whereas the Informed-BR agent succeeded. This is
attributed to the insufficiency of the number of trajectories
sampled from the default policy in the baseline, while the
proposed method performs optimally.

VII. CONCLUSION

This paper presents a novel approach to multi-agent mo-
tion coordination by leveraging Bounded Rationality and an
informative prior policy. Our experiments demonstrate that
using learned navigation strategies in familiar environments
and adaptive exploration in unfamiliar ones can increase the
efficiency of the collective decision-making capability of the
group. Moreover, integrating the prior policy in the game-
theoretic BR framework allows agents to make decisions
while considering other agents’ computational constraints
quickly. Through various experiments in simulation and the
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real world, we validate our approach’s effectiveness. To the
best of our knowledge, this study is the first to investigate

the

use of a well-informed prior policy in coordinating

multiple drones under the BR framework. Our findings
suggest that the proposed approach has significant potential
for designing efficient and adaptive swarm systems. Future
research can explore the generalizability of our approach to
other multi-agent systems and further improve its robustness
to uncertainty and partial observability.
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