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Abstract—Robot data collected in complex real-world sce-
narios are often biased due to safety concerns, human prefer-
ences, and mission or platform constraints. Consequently, robot
learning from such observational data poses great challenges
for accurate parameter estimation. We propose a principled
causal inference framework for robots to learn the parameters
of a stochastic motion model using observational data. Specifi-
cally, we leverage the de-biasing functionality of the potential-
outcome causal inference framework, the Inverse Propensity
Weighting (IPW), and the Doubly Robust (DR) methods, to
obtain a better parameter estimation of the robot’s stochastic
motion model. The IPW is a re-weighting approach to ensure
unbiased estimation, and the DR approach further combines
any two estimators to strengthen the unbiased result even if one
of these estimators is biased. We then develop an approximate
policy iteration algorithm using the bias-eliminated estimated
state transition function. We validate our framework using both
simulation and real-world experiments, and the results have
revealed that the proposed causal inference-based navigation
and control framework can correctly and efficiently learn the
parameters from biased observational data.

I. INTRODUCTION

Modern robots gain complex skills by leveraging existing
robotic data. However, the data collection processes are often
biased due to robotic safety issues, human preferences, or
system constraints. This results in a gap between many data-
driven approaches and the target robotic applications. Take
the mobile robot navigation as an example, we generally
disallow the robot to randomly explore the environments
especially in complex, cluttered, or unstructured outdoor sce-
narios. The data collected by other agents (human operators
or a carefully designed system) that ensure the robot’s safety
is termed as observational data. In this context, the data lack
sufficient “randomness” because the robot motion is directly
affected by, and thus biased from, many extraneous factors,
which can lead to highly inaccurate parameter estimation
and learning results. For instance, to train a mobile robot
to navigate and control, the observational trajectory datasets
can be collected from human-piloted trials/demonstrations, or
from unmanned autopilot missions where the robot follows
some motion planners exclusive to specific missions. In both
cases, the data can be highly biased from different humans
or missions. This is because while operating a robot, humans
typically have preferences (e.g., due to safety concerns) over
control strategies under different environmental conditions,
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and the robot motion trajectories can also vary significantly
even for the same control strategy but with differing mission
constraints (e.g., with vs. without a map as prior knowledge).
The bias caused by different platforms is also important. A
large vehicle may be able to ignore small bumps whereas
a small vehicle might choose to avoid them. If we use (or
leverage) the data collected by large vehicles to train small
robots, the models and behaviors may not be transferrable.
Additionally, the data collection processes are typically un-
known, and one cannot always infer the processes as data
was collected in the past.

In many scenarios, the bias can be hardly eliminated while
collecting data. Our objective is the “de-biased” learning
from the biased observational data. We propose to design
a fundamental causal inference framework for autonomous
systems to learn parameters of stochastic motion using offline
observational data. Since the decision-making of a robot
moving in unstructured environments typically requires the
robot to account for uncertain action (motion) outcomes
and meanwhile maximize the long-term return, we base our
formulation on the Markov Decision Process (MDP) which
has been shown as a powerful framework for formulating
robot decision making problems [1].

Our work implicitly builds upon the Neyman-Rubin causal
model [2], [3], and we integrate the causal effect into a
continuous-state MDP. The resulting state of action can be
viewed as the potential outcome. In this work, we leverage
a diffusion approximation to MDP for stochastic motion
control [4], which allows us to narrow our attention to
the estimation of only the first and second moments of
robot stochastic state transition for every action rather than
estimating the complete and exact form of the distribution.
This reduces the complexity of the original problems and
allows us to draw on existing causal inference approaches
most of which also concentrate on exploiting the first two
moments of the potential outcomes in the sample space. Our
contributions are summarized as follows: leftmargin=20pt

o First, to reduce the bias in offline observational data, we

apply the Inverse Propensity Weighting (IPW) method
to estimate the first and second moments of transition
probabilities. Different from existing work where typ-
ically binary actions are assumed/used, we generalize
the methods to multiple actions in the robotics context.
o Second, given any regression model, we improve the
estimation by combining together the IPW and regres-
sion estimators. Such an approach possesses the Doubly
Robust (DR) property in the sense that if either the
propensity score model or the regression is incorrect,
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the final estimation still remains unbiased (in subpopu-
lation) as long as the other model is correct.

o Finally, we develop an efficient policy iteration algo-
rithm that can seamlessly integrate [IPW or DR methods
in the diffusion approximate MDPs which only require
the first and second moments of the state transition func-
tions. The algorithm is able to correctly and efficiently
learn the parameters in the diffusion approximate MDPs
from biased observational data.

Extensive simulated experiments and real-world experiments
on rough terrains show that the policy iteration algorithm
equipped with causal inference-based model-learning gener-
ates safer navigational behaviors than the baseline methods.

II. RELATED WORK AND BACKGROUND

This paper focuses on learning motion models using
observational or offline data. A major problem involved in
observational or offline data is that the collection mechanisms
are typically unknown to the users. This may cause potential
bias if researchers directly estimate a model from these data.
The vast literature on causal inference has already recog-
nized the difficulties in identifying and estimating action
(treatment) effects and researchers have developed tools for
estimating these effects in different research communities
[5], [6]. Yet using causal inference to solve robotics problems
is a new topic and related work is scarce.

Neyman-Rubin Causal Model and Structural Causal
Model: A common causal model in statistics and economics,
the so-called Neyman-Rubin causal model, is based on the
idea of potential outcomes [7], [8]. It assumes that a potential
outcome associated with an individual when an action is
taken. For example, in a study of a medicine’s effect on
patients with hypertension, the potential outcomes for this
patient are the blood pressure with and without the medicine
treatment (action), respectively. In practice, the patients are
sorted into treatment and control groups for clinical trial
reasons, and data scientists may not be able to control the
treatment assignment. We will be able to observe only one
potential outcome, the factual outcome (e.g., after taking
real medicine); we cannot obtain the counterfactual potential
outcome for that patient at the same time (e.g., taking a
placebo instead of real medicine). Here the “counterfactual”
means the result in the other scenario is often not allowed or
possible to obtain. The problem is, to measure the causal ef-
fect, we need to compare both the factual and counterfactual
potential outcomes for the same patient at the same time.
The Neyman-Rubin causal model concerns the treatment
assignment processes and aims to estimate the population-
level average causal effect by inferring the counterfactual
potential outcomes. Obviously, certain assumptions about
treatment assignment need to be imposed to identify the
causal effect [9]. Under these assumptions, various methods
based on the propensity score, matching methods, or tree-
based models have been investigated [10]-[12]. In this work,
we leverage the de-biasing functionality of the potential-
outcome framework to obtain better estimations of the robot
motion model outcome (which can be viewed as a causal

effect of the robot’s action) from observational data. Other
de-biasing methods have also been proposed in the litera-
ture [13], but these methods do not consider action selection
strategy or continuous features. Another popular framework
in artificial intelligence or machine learning communities
is the causal structural models based on directed acyclic
graphs [14]-[16]. This framework describes causal relations
by graphs and employs a set of simultaneous structural
equations to detect the causal effect [17], [18]. The above
two causal frameworks are complementary and appropriate
for different questions [19]. The relevant methods are em-
ployed in reinforcement learning [20]-[22], recommendation
systems [23], and computer vision [24].

Offline Reinforcement Learning: Our work is comple-
mentary to the recently rising offline reinforcement learning
(RL) [25]-[28], in particular, offline model-based RL [28]-
[30] that leverages previously collected data or available
logs to learn a transition model for planning. We focus on
leveraging the offline data because the conventional online
(deep) model-free and model-based reinforcement learning
(RL) methods [31], [32] attempt to explore the environment
and utilize data collected online to improve the model, the
value function, or the policy, which incurs risk in field
robotics as data collection is expensive and with safety risks.
On the other hand, learning from offline data ensure safety
during robot learning because there is no online interaction
with the environment. Most constraint-based offline model-
based RL methods learn a transition model using the standard
(regression) techniques (without de-biasing) and penalize
the unknown (infrequently visited) state-action space [28]—
[30] during planning, while our work focuses on causal
inference methods to de-bias the transition model estimates.
Thus, causal-based methods can be used to improve the
constraint-based offline model-based RL by improving the
model estimation in the observed part of the state-action
space from the data, which we demonstrate in Secion IV.

Contextual Markov Decision Processes: We model our
decision-making problem by Contextual Markov Decision
Processes (MDPs) {S, A, P, R,C} [33], where the first four
elements are state space, action space, transition probability
measure, and reward function, respectively [33], [34]. The
additional element C denotes a set of environmental feature
vectors. In mobile robot navigation, for example, a state
can include the robot’s pose and body velocity, and the
features can be associated with terrain type and roughness
(grass, sand, rocks), terrain elevation (hills, cliffs), and
wheel traction with respect to the surface roughness. These
environmental features affect the transition probability but
cannot be controlled by robots. Accordingly, the function
of transitioning to the next state s’ from s is dependent on
features ¢ € C and is written as p(s’|s, a; ¢), where p is the
density (or mass) function of measure P.

We consider the class of deterministic policies m € II :
S x C — A, which is a mapping from state and feature to
an action. We will write m(s) instead of m(s,c) to simplify
the notation. And the same convention is applied to the
value function and reward function. We consider the infinite-
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horizon case, and the value function at any state s is defined
as v™(s) = E7[Y ;2 Y R(sk, m(sk))|[so = s, where v
is the discount factor. The above equation can be written
recursively as

v™(s) = R(s,m(s)) + YEL ., [v" (s) | ). (D

The goal of the robot is to find an optimal policy that
maximizes the value function at every state 7*(s) =
argmax, ey { R(s, w(s))+yEL, [0 (s')|s] }. In many real-
world scenarios, the transition function p(s’|s,a;c) is un-
known before deploying the robots to the field, making it
impossible to obtain the optimal policy. In this work, we
demonstrate how to correctly utilize the offline observational
data to estimate the transition and then compute the optimal
policy.
III. METHODOLOGY

We first formulate a diffusion-approximated MDP frame-
work [4] where the main learning task is to estimate the first
and second moments of transition functions (Sect. III-A). We
then develop two principled learning methods for the offline
data by causal inference approaches (Sect. III-B and III-C).

A. Diffusion Approximation to Contextual MDP

It is difficult to learn an exact state transition probability
distribution for robotic systems in complex unstructured
environments. Thus, we opt to build upon a diffusion-
approximated MDP which computes an approximation to the
optimal value function only using the first and second-order
moments of the transition probability.

We consider a continuous k-dimensional state space S and
a finite set of actions .A. Suppose that the value function
v™ () for any given policy 7 has continuous first and second
order derivatives. We subtract both hand-sides by v™(s) from
Eq. (1) and then take Taylor expansions of value function
around s up to second order:

¥ ((M’J)TVU”(S) + %V : 0§Vl’”(8)) — (1 =7)v"(s) >~ —R(s,7(s))

2)
where V is vector differential operator; p7 and
ol are the first moment (a Fk-dimensional vector)
and the second moment (a k-by-k matrix) of
transition functions, respectively, with the following
form (us) = [p(sls,m(s);c)(As);ds’, (07)i; =
[ p(s']s, m( )(As) (As);ds’, where (As); denotes the

i-th component of s’ — s. Because it is generally impossible
to represent the value function for an infinite number of
states over the continuous state space, we represent the value
function at any state s’ by its values at only a predefined
finite number of supporting states s = {s',...,s"V}. Such
representation is done through a kernel approximation
v () = k(s,8)T W\I+K)"' V™, where k() is a
generic kernel function [35]; A > 0 is a regularization
factor; K is the Gram matrix with (i, j)-th entry k(s s);
k(-,s) is a column vector with i-th component k(-,s’);
and V™, a N x 1 vector with i-th component v™(s?),
is state-values at the supporting states and needs to be
computed. The following linear system is derived to

compute V™: (M™(ANI+K)  —(1—7) I) VT = RT,
where I is an identity matrix, R™ is a vector with i-th

element R(s‘ m(st)), and M7 is a matrix whose (4, j)-th
entry is y((u%) Vi 4+ 4V - 07 Ve )k(s', s7).

When the two moments are known, the optimal policy
solution can be computed by the policy iteration algorithm
[1], [36]. Suppose that the value function under the current
policy 7, is obtained at the ¢ iteration. We then improve the
policy by the following equation to get 7, at every state s,
argmax,c 4 {R(s, a) + ’y((uZ)T V+iv. J?V)v”f (s)}
Since ps and og are unknown, next we need to estimate
these two parameters for each action a from the observational
trajectory dataset D. A similar kernel-based RL method has
been proposed in [37], which uses kernel-based methods
(e.g., Gaussian Processes) to approximate the reward func-
tion and the transition function. In contrast, we leverage
the diffusion approximated MDP [4], which can be seen
as a Laplace approximation to the transition probability
distribution. Then, we use the kernel function to approximate
the value function. Note that estimation error (bias) due to
learning from a biased observational dataset will present
regardless of the model choice. In the following sections, we
present two approaches for de-biasing the model estimation.

B. Propensity Score Based Causal Inference Approach

When estimating the moment functions for action a given
the state s and feature c in the dataset D, it is likely or
even typical that there are not enough observations with the
designated (s, c) for action a. Thus, we have to leverage a
subset of data with the state and feature close fo (s,c) and
also associated with the action a. If each data in this subset
does not have the same chance of having action a, directly
estimating the first and second moments of the transition
function from D produces undesirable and biased results.
To de-bias the estimation, we can place less weight on the
samples that lead to biased results. To choose such weight,
we must take into account how the observations with action
a distribute across states and features. That is, we have to
infer the data collection processes.

We define propensity score to be the probability of as-
signing an action a given state s and feature c in the
dataset [2], e,(u) = Plalu := (s,c¢)], where u denotes
(s,c). The propensity score measures the probability of
generating a specific action from some specific state and
feature in the observational data. An implicit assumption here
is that the observed state and feature “govern” the action
generation processes. For the data collection process with
one robot in a particular mission, propensity score might be
viewed as a stochastic policy regarding MDP. However, its
meaning can be beyond this scope. When the observational
dataset includes data logged from multiple robots in different
missions, it reflects the overall random action assignment by
pulling diverse data together.

We estimate the average first moment of transition func-
tions for action a within a subset around u = (s, ¢). Suppose
that a subset N'(u) of the observational data D is chosen
for this task, and this subset can be defined as neighboring
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samples measured by the Euclidean distance from u. We
denote the average first moment by fp,(u) = Ef(As),
where the subscript “sb” denotes the expectation taken in
the subpopulation N(u). If e,(u) is known, it can be
utilized to weigh the data to reduce the estimation bias.
The corresponding estimator, known as Inverse-Propensity
Weighting (IPW), reads

~TPW 1

As;
P (U)ZW Z Ha(ai)li_v 3)

i€N (u)

where |N(u)| is the number of samples in N (u); I,(-) is
an indicator function for a, i.e., I,(a;) = 1 if and only
if a; = a; As; = s, — s; is the observed state shift of
sample ¢ in the state values between the current state s; and
next state s, in the data. (Depending on the applications,
the state shift can be formulated differently. Note that a
non-zero propensity score e, (u) is required in Eq. (3). This
assumption is reasonable because it means that there should
be at least one action taken under the feature u. Otherwise,
no data point can be used to estimate the action outcome. For
example, the state can be its pose for a ground vehicle, so
the As represents the amount of translational and rotational
displacement.)

In Eq. (3), the estimator employs the inverse propen-
sity score as the weight for observed state shifts. Intu-
itively, if many samples are generated toward some value
u for action a, ie., the corresponding propensity score
is large, then the estimator puts a small weight when
counting these samples into the final estimation. If ac-
tions are completely randomly assigned regardless of w,
then all e, (u) are equal, no weights are needed. Similarly,
the average second moment estimator can be expressed

T

as 617V (u) = IV ()| 71 35 pruy Ta(a:) 22555 Now we
discuss the estimation of e, (u). For propensity score e, (u),
we should have ) e,(u) = 1. We use a non-parametric
approach to estimate the propensity score as é,(u) =
sPapas, where p(a) = W(u)| ™ Xiepru Talai);
p(ula) is given by the kernel density estimation (KDE)
p(ula) o¢ 32 e n(u) lalai)k(c — ¢i; h), where k is any kernel
function and £ is the lengthscale parameter of the kernel [38]
to get the corresponding estimates.

C. Doubly Robust Estimator

Regression models are commonly employed in practice
to learn transition functions in model-based RL [28]. This
approach works well when the model is not misspecified
or the aforementioned observational data issues are not a
concern. By a misspecified model we mean that a wrong
model form is used or the model does not include key
features. On the other hand, if the propensity score model is
misspecified, the IPW approach may not produce unbiased
results. It is natural to ask whether it is possible to combine
the IPW estimator and regression estimator such that if one
of them is incorrectly specified, the other correctly specified
estimator can ensure the final unbiased result. We adopt the
doubly robust (DR) mechanism [39] to achieve this goal and
to develop the estimation methods for our problem.

nnnnn

oo [ Regression
s DR
mm PV
Emm Randomized Experiment

10000

15000

0% 2% &% B 100%
ccccccccc 9

Fig. 1: The cumulative reward of the four methods averaged over
50 runs. The x-axis and y-axis represent the percentage of ice
coverage and the cumulative undiscounted reward, respectively.
Regression denotes the standard regression via KNN; DR and IPW
are the proposed causal-based approach. All three methods use
observational data. The last method, Randomized Experiment, is the
behavior policy that uses the data collected by unbiased randomized
action selection.

Suppose the following (non-parametric) regression is fitted
in the subset of sample A (u) for all state shifts associated
with action a, As; = f,(u;) + €, i € N(u), where f()
is a vector non-parametric function and a noise term e;
follows the zero-mean normal distribution. Denote the fitted
regression by f and the estimation at u by Y% (u), ie.,
ANE(u) := fu(u). The following estimator combines IPW
and regression estimators for the first moment
BBy (1- 2D i @

éalui) €alui)

iR () = L
A = ]

iEN (u) {

This estimator possesses the DR property: if the propen-
sity score model is incorrect, the estimation is still un-
biased as long as the regression model is correct. The
reverse is also true. Because E(As;As]) = E(eel) +
fa(ui) fF (u;), the regression estimator for the second mo-
ment of the transition function can be written as 62 % (u) :=
m S5 (Falwi) £T (u;) +¢; €7) where ¢; denotes the resid-
uals. In practice, the product f fT is usually the dominant
term and can be used as an approximate second-moment
estimate. The DR estimator 6% (u) is defined similarly
&5%):m 3 [H“(ali)AS’AS’T+<1—M>fr§”(u,)]. Finally, to com-

o A Zalus)
pute the oﬁteir(n)al value function, we first apply the proposed
causal inference-based methods in Sect. III-B and III-C
to learn the first and second moments of the state shift
at each supporting state. Second, we solve the diffusion
approximated MDP via the kernel methods described in
Sect. III-A.

IV. SIMULATED EXPERIMENTS

Proof-of-Concept Experiment: We first conduct experi-
ments in a fully-controllable simulated environment to eval-
uate the advantage of our method without considering the
full complexity of the real-world experiments. The task of
the robot is to drive as fast as possible on a cross-terrain
elliptical track consisting of ice, concrete, and pebbles. In the
simulation, the mobile robot dynamics is similar to the one
used in the highway-env environment [40], but this model is
not known to the robot and needs to be learned. To generate
the observational data, we use the behavior policy computed
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Fig. 2: Statistics for action executions of the three methods. In all figures, the x-axis represents the ice coverage percentage. (a) The
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speeds, respectively. (b) Average linear speeds for five environments; (c) Average angular speeds. The statistics averaged over 50 trials.
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Fig. 3: Race car environment in the PyBullet simulator.

using an unbiased dataset (by randomizing the actions) and
a safety control strategy to collect the observational data.
Although this data collection strategy ensures the safety of
the vehicle, it also introduces a large bias.

We compare the performance of the policy generated via
the planner introduced in Sect. III-A using the model learned
by our proposed estimators (inverse propensity score and
doubly robust) with the standard regression method. To make
a fair comparison, we use the k-nearest neighbors (KNN)
for the standard regression method, which is the same as the
AN E(u) in the doubly robust method in Eq. (4). We run 50
trials in each environment with 20000 time steps and then
average statistics.

We first compare the cumulative undiscounted reward
averaging over 50 runs as shown in Fig. 1. In addition
to the standard regression approach, we also compare to
the behavior policy that uses the unbiased dataset obtained
by randomized action selection. We can observe that the
regression method achieves slightly better performance when
the ice coverage is below 20%. However, as soon as the
environment becomes more challenging, i.e., ice coverage
greater than 60%, the causal inference-based methods start to
excel, and are comparable with the model using the unbiased
dataset! This is because the biased data mostly exist on the
ice surfaces due to the intervention during data collection. As
a result, when the ice coverage becomes larger, the regression
method uses more biased data, and the performance degrades
drastically. The comparison of the action execution statistics
among the three methods shown in Fig. 2 also reveals why
the causal-based methods can achieve better performance.
Fig. 2(a) shows the average number of aggressive actions
(with large linear and angular velocities simultaneously)
taken by each method in the five environments. The general
trend for all three methods shows that the robot motion
becomes less aggressive when the environment is covered

60%
Ice Coverage

(b)

80% 100% 10% 20%

Ice Coverage

(©)

80% 100%

by more ice. In general, the causal-based methods take
less aggressive actions than the regression-based model,
and this is the desired behavior due to the safety concern.
This phenomenon also explains why IPW and DR achieve
more stable performances and can outperform regression in
challenging environments.

Experiments in Physics-Engine Simulator: We further
evaluate our method in PyBullet [41] which is a high-
fidelity physics simulator. The observational data collection
process is similar to the previous section, but here we
use the vehicle’s body mass as a feature. In addition to
comparing with the standard regression method, we also
include a comparison with an offline model-based method,
MOReL [28], and two methods that combine causal-based
de-biasing with MOReL, i.e., IPW-MORel and DR-MOReL.
This comparison is to show that our de-biasing method
can be used to improve offline model-based RL. MOReL
categorizes the state-action pairs as unknown if they are not
frequently appeared in the dataset, and adds a large penalty to
them. The original MOReL uses the disagreement of deep
ensembles to decide which state-action pairs to be viewed
as unknown. In our experiment, we use a similar approach:
we detect the unknown state-feature-action tuples by using
the number of examples within an e ball of the current
queried point. We also include two model-free methods, Q-
learning [31] and imitation learning (IL) [42]. We use the
same observational dataset described above to train all the
methods. Since we do not allow the robot to interact online
with the environment, the Q-learning method is trained only
on the static dataset collected by the behavioral policy.
Because PyBullet is a deterministic simulator, we add a small
Gaussian noise to the actions before execution to simulate
stochastic effects. The normalized cumulative rewards for
different methods are shown in Table I. We can see all
model-based methods outperform the model-free ones. We
conjecture that learning the first and second moments of
the motion model is easier than learning a Q function or
a policy from only the offline data due to the distributional
shift [27], [43]. We can also observe the causal inference-
based methods perform better than the standard regression
estimator. Specifically, the DR estimator generates the best
results across all different vehicle masses in the uncombined
methods. By comparing the combined method (IPW-MOReL
and DR-MOReL), we observe that the two methods can
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| Regression | IPW | DR | MOReL [30] | IPW-MOReL | DR-MOReL | Q-Learning | IL

m = 15kg 0.64 0.72 | 0.75 0.71 0.81 0.82 0.24 0.33
m = 20kg 0.72 0.73 | 0.84 0.85 0.86 0.92 0.33 0.39
m = 25kg 0.75 0.78 | 0.81 0.79 0.87 0.91 0.38 0.41
m = 30kg 0.71 0.83 | 0.89 0.88 0.95 0.97 0.51 0.52
RwiRrand

TABLE I: Performance comparison for the PyBullet experiment. The scores are normalized according to

™ rand *
R _pRprand > where R 5 R 5 R

are cumulative rewards for the policy computed using the learned model, randomized policy, and the policy computed by the ground-truth

simulator, respectively. IL stands for imitation learning.

| Success Rate (%) |

Traversal Time (s) |

Average 0, (degree)

Waypoints | DR RG | DR RG | DR RG
A 0.8 0.5 23.73+£1.28 21.62+2.11 | 1.91+£0.67 2.93+0.81
B 0.6 0.3 21.76 £ 3.88 26.27 + 4.6 3.48+1.2 4.79+0.77
C 0.9 0.8 34.66 + 1.7 31.66 £2.21 | 241 +£0.46 2.42+1.02

TABLE II: Comparison between DR (doubly robust) and RG (regression) for the field experiments.

Fig. 4: Field experiment using a ClearPath Jackal. Left: The
environment is an uneven dirt field. Right: Visualization of the
elevation map constructed using LiDAR points shown in the 2.5D
color map. The black trajectory is a successful run of our method
navigating through three waypoints.

leverage the strengths of each other and outperform all other
methods. We conclude the causal inference-based method
provides a better estimate of the motion model from offline
data, and the planner leverages this estimation to compute a
better policy.

V. HARDWARE EXPERIMENTS

We further conducted hardware experiments using a Jackal
ground vehicle navigating in an off-road environment. The
environment and its elevation map, which is used as the
feature for estimating the motion moments, are shown in
Fig. 4. This environment contains dirt fields with uneven
surfaces. The robot’s task is to arrive at three pre-defined
waypoints sequentially (A — B — C). We compare the DR
version of the causal-based method with a regression model
which does not have causal-based bias correction. We per-
form 10 experiments for each method and use the following
three commonly-used metrics for robotic navigation tasks to
evaluate the performance [44].

o Success rate: the success rate indicates the ratio between
successful trials and the total trials. A trial is successful
if the robot can navigate from the starting position to the
ending position within 0.5m. If the robot cannot move,
e.g., due to flipping, the run is viewed as a failure.

o Travel time: these metric averages travel time (in sec-
onds) over the successful trials. It measures the effi-
ciency of the robot in completing the navigation task.

o Averaged pitch angle: it measures the average pitch
angle of the robot over one successful experiment. It
is crucial to keep the pitch angle low to avoid flipping.

We summarize the results of the above metrics of the
DR and regression methods in Table II. Each row shows
the performance of navigating to the corresponding waypoint
from the previous one. The DR method has a consistently
better success rate and smaller average pitch angle than
regression for all the waypoints. It is worth noting that
although the regression-based method outperforms DR in
terms of the traversal time when navigating to waypoints
A and C in successful runs, the low success rate and large
0, indicate the unreliable and aggressive performance of
the regression-based method due to the bias in the dataset.
Additionally, compared to the standard regression method,
we observe that the reason for a slightly longer traversal
time for DR is that it tried to avoid many inclined terrains to
keep safe, which caused it to deviate from the straight line
path between two waypoints. This observation is consistent
with the simulated experiments’ results — the causal-based
methods can provide better estimates by properly handling
the bias in the dataset, resulting in safer and more reliable
planning performance.

VI. CONCLUSION

We present a principled framework by synthesizing causal
inference with a diffusion-approximated MDP for robot
decision-making with unknown motion model parameters. It
enables the robot to compute a correct policy by learning
only the first two moments of the stochastic transition
model from biased observational data, which is data-efficient
(only learning important statistics) and behaviorally safe
(no random robot explorations). We conducted extensive
experiments in both simulation and real world, and the results
show our method can learn the parameters of the motion
model correctly and efficiently in challenging environments,
and is evidently superior to the conventional regression-based
framework in terms of de-biasing and utilizing offline data.
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