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Abstract— Robot data collected in complex real-world sce-
narios are often biased due to safety concerns, human prefer-
ences, and mission or platform constraints. Consequently, robot
learning from such observational data poses great challenges
for accurate parameter estimation. We propose a principled
causal inference framework for robots to learn the parameters
of a stochastic motion model using observational data. Specifi-
cally, we leverage the de-biasing functionality of the potential-
outcome causal inference framework, the Inverse Propensity
Weighting (IPW), and the Doubly Robust (DR) methods, to
obtain a better parameter estimation of the robot’s stochastic
motion model. The IPW is a re-weighting approach to ensure
unbiased estimation, and the DR approach further combines
any two estimators to strengthen the unbiased result even if one
of these estimators is biased. We then develop an approximate
policy iteration algorithm using the bias-eliminated estimated
state transition function. We validate our framework using both
simulation and real-world experiments, and the results have
revealed that the proposed causal inference-based navigation
and control framework can correctly and efficiently learn the
parameters from biased observational data.

I. INTRODUCTION

Modern robots gain complex skills by leveraging existing

robotic data. However, the data collection processes are often

biased due to robotic safety issues, human preferences, or

system constraints. This results in a gap between many data-

driven approaches and the target robotic applications. Take

the mobile robot navigation as an example, we generally

disallow the robot to randomly explore the environments

especially in complex, cluttered, or unstructured outdoor sce-

narios. The data collected by other agents (human operators

or a carefully designed system) that ensure the robot’s safety

is termed as observational data. In this context, the data lack

sufficient “randomness” because the robot motion is directly

affected by, and thus biased from, many extraneous factors,

which can lead to highly inaccurate parameter estimation

and learning results. For instance, to train a mobile robot

to navigate and control, the observational trajectory datasets

can be collected from human-piloted trials/demonstrations, or

from unmanned autopilot missions where the robot follows

some motion planners exclusive to specific missions. In both

cases, the data can be highly biased from different humans

or missions. This is because while operating a robot, humans

typically have preferences (e.g., due to safety concerns) over

control strategies under different environmental conditions,
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and the robot motion trajectories can also vary significantly

even for the same control strategy but with differing mission

constraints (e.g., with vs. without a map as prior knowledge).

The bias caused by different platforms is also important. A

large vehicle may be able to ignore small bumps whereas

a small vehicle might choose to avoid them. If we use (or

leverage) the data collected by large vehicles to train small

robots, the models and behaviors may not be transferrable.

Additionally, the data collection processes are typically un-

known, and one cannot always infer the processes as data

was collected in the past.

In many scenarios, the bias can be hardly eliminated while

collecting data. Our objective is the “de-biased” learning

from the biased observational data. We propose to design

a fundamental causal inference framework for autonomous

systems to learn parameters of stochastic motion using offline

observational data. Since the decision-making of a robot

moving in unstructured environments typically requires the

robot to account for uncertain action (motion) outcomes

and meanwhile maximize the long-term return, we base our

formulation on the Markov Decision Process (MDP) which

has been shown as a powerful framework for formulating

robot decision making problems [1].

Our work implicitly builds upon the Neyman-Rubin causal

model [2], [3], and we integrate the causal effect into a

continuous-state MDP. The resulting state of action can be

viewed as the potential outcome. In this work, we leverage

a diffusion approximation to MDP for stochastic motion

control [4], which allows us to narrow our attention to

the estimation of only the first and second moments of

robot stochastic state transition for every action rather than

estimating the complete and exact form of the distribution.

This reduces the complexity of the original problems and

allows us to draw on existing causal inference approaches

most of which also concentrate on exploiting the first two

moments of the potential outcomes in the sample space. Our

contributions are summarized as follows: leftmargin=20pt

• First, to reduce the bias in offline observational data, we

apply the Inverse Propensity Weighting (IPW) method

to estimate the first and second moments of transition

probabilities. Different from existing work where typ-

ically binary actions are assumed/used, we generalize

the methods to multiple actions in the robotics context.
• Second, given any regression model, we improve the

estimation by combining together the IPW and regres-

sion estimators. Such an approach possesses the Doubly

Robust (DR) property in the sense that if either the

propensity score model or the regression is incorrect,
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the final estimation still remains unbiased (in subpopu-

lation) as long as the other model is correct.
• Finally, we develop an efficient policy iteration algo-

rithm that can seamlessly integrate IPW or DR methods

in the diffusion approximate MDPs which only require

the first and second moments of the state transition func-

tions. The algorithm is able to correctly and efficiently

learn the parameters in the diffusion approximate MDPs

from biased observational data.

Extensive simulated experiments and real-world experiments

on rough terrains show that the policy iteration algorithm

equipped with causal inference-based model-learning gener-

ates safer navigational behaviors than the baseline methods.

II. RELATED WORK AND BACKGROUND

This paper focuses on learning motion models using

observational or offline data. A major problem involved in

observational or offline data is that the collection mechanisms

are typically unknown to the users. This may cause potential

bias if researchers directly estimate a model from these data.

The vast literature on causal inference has already recog-

nized the difficulties in identifying and estimating action

(treatment) effects and researchers have developed tools for

estimating these effects in different research communities

[5], [6]. Yet using causal inference to solve robotics problems

is a new topic and related work is scarce.

Neyman-Rubin Causal Model and Structural Causal
Model: A common causal model in statistics and economics,

the so-called Neyman-Rubin causal model, is based on the

idea of potential outcomes [7], [8]. It assumes that a potential

outcome associated with an individual when an action is

taken. For example, in a study of a medicine’s effect on

patients with hypertension, the potential outcomes for this

patient are the blood pressure with and without the medicine

treatment (action), respectively. In practice, the patients are

sorted into treatment and control groups for clinical trial

reasons, and data scientists may not be able to control the

treatment assignment. We will be able to observe only one

potential outcome, the factual outcome (e.g., after taking

real medicine); we cannot obtain the counterfactual potential

outcome for that patient at the same time (e.g., taking a

placebo instead of real medicine). Here the “counterfactual”

means the result in the other scenario is often not allowed or

possible to obtain. The problem is, to measure the causal ef-

fect, we need to compare both the factual and counterfactual
potential outcomes for the same patient at the same time.

The Neyman-Rubin causal model concerns the treatment

assignment processes and aims to estimate the population-

level average causal effect by inferring the counterfactual

potential outcomes. Obviously, certain assumptions about

treatment assignment need to be imposed to identify the

causal effect [9]. Under these assumptions, various methods

based on the propensity score, matching methods, or tree-

based models have been investigated [10]–[12]. In this work,

we leverage the de-biasing functionality of the potential-

outcome framework to obtain better estimations of the robot

motion model outcome (which can be viewed as a causal

effect of the robot’s action) from observational data. Other

de-biasing methods have also been proposed in the litera-

ture [13], but these methods do not consider action selection

strategy or continuous features. Another popular framework

in artificial intelligence or machine learning communities

is the causal structural models based on directed acyclic

graphs [14]–[16]. This framework describes causal relations

by graphs and employs a set of simultaneous structural

equations to detect the causal effect [17], [18]. The above

two causal frameworks are complementary and appropriate

for different questions [19]. The relevant methods are em-

ployed in reinforcement learning [20]–[22], recommendation

systems [23], and computer vision [24].

Offline Reinforcement Learning: Our work is comple-

mentary to the recently rising offline reinforcement learning

(RL) [25]–[28], in particular, offline model-based RL [28]–

[30] that leverages previously collected data or available

logs to learn a transition model for planning. We focus on

leveraging the offline data because the conventional online

(deep) model-free and model-based reinforcement learning

(RL) methods [31], [32] attempt to explore the environment

and utilize data collected online to improve the model, the

value function, or the policy, which incurs risk in field

robotics as data collection is expensive and with safety risks.

On the other hand, learning from offline data ensure safety

during robot learning because there is no online interaction

with the environment. Most constraint-based offline model-

based RL methods learn a transition model using the standard

(regression) techniques (without de-biasing) and penalize

the unknown (infrequently visited) state-action space [28]–

[30] during planning, while our work focuses on causal

inference methods to de-bias the transition model estimates.

Thus, causal-based methods can be used to improve the

constraint-based offline model-based RL by improving the

model estimation in the observed part of the state-action

space from the data, which we demonstrate in Secion IV.

Contextual Markov Decision Processes: We model our

decision-making problem by Contextual Markov Decision

Processes (MDPs) {S,A, P,R, C} [33], where the first four

elements are state space, action space, transition probability

measure, and reward function, respectively [33], [34]. The

additional element C denotes a set of environmental feature

vectors. In mobile robot navigation, for example, a state

can include the robot’s pose and body velocity, and the

features can be associated with terrain type and roughness

(grass, sand, rocks), terrain elevation (hills, cliffs), and

wheel traction with respect to the surface roughness. These

environmental features affect the transition probability but

cannot be controlled by robots. Accordingly, the function

of transitioning to the next state s′ from s is dependent on

features c ∈ C and is written as p(s′|s, a; c), where p is the

density (or mass) function of measure P .

We consider the class of deterministic policies π ∈ Π :
S × C → A, which is a mapping from state and feature to

an action. We will write π(s) instead of π(s, c) to simplify

the notation. And the same convention is applied to the

value function and reward function. We consider the infinite-
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horizon case, and the value function at any state s is defined

as vπ(s) = E
π[
∑∞

k=0 γ
kR(sk, π(sk))|s0 = s], where γ

is the discount factor. The above equation can be written

recursively as

vπ(s) = R(s, π(s)) + γ Eπ
s′∼p[v

π(s′) | s]. (1)

The goal of the robot is to find an optimal policy that

maximizes the value function at every state π∗(s) =
argmaxπ∈Π

{
R(s, π(s))+γ Eπ

s′∼p[v
π(s′)|s]}. In many real-

world scenarios, the transition function p(s′|s, a; c) is un-

known before deploying the robots to the field, making it

impossible to obtain the optimal policy. In this work, we

demonstrate how to correctly utilize the offline observational

data to estimate the transition and then compute the optimal

policy.

III. METHODOLOGY

We first formulate a diffusion-approximated MDP frame-

work [4] where the main learning task is to estimate the first

and second moments of transition functions (Sect. III-A). We

then develop two principled learning methods for the offline

data by causal inference approaches (Sect. III-B and III-C).

A. Diffusion Approximation to Contextual MDP

It is difficult to learn an exact state transition probability

distribution for robotic systems in complex unstructured

environments. Thus, we opt to build upon a diffusion-

approximated MDP which computes an approximation to the

optimal value function only using the first and second-order

moments of the transition probability.

We consider a continuous k-dimensional state space S and

a finite set of actions A. Suppose that the value function

vπ(s) for any given policy π has continuous first and second

order derivatives. We subtract both hand-sides by vπ(s) from

Eq. (1) and then take Taylor expansions of value function

around s up to second order:

γ
(
(μπ

s )
T ∇vπ(s) +

1

2
∇ · σπ

s∇vπ(s)
)
− (1− γ) vπ(s) � −R(s, π(s))

(2)

where ∇ is vector differential operator; μπ
s and

σπ
s are the first moment (a k-dimensional vector)

and the second moment (a k-by-k matrix) of

transition functions, respectively, with the following

form (μπ
s )i =

∫
p(s′|s, π(s); c)(Δs)i ds

′, (σπ
s )i,j =∫

p(s′|s, π(s); c)(Δs)i(Δs)j ds
′, where (Δs)i denotes the

i-th component of s′ − s. Because it is generally impossible

to represent the value function for an infinite number of

states over the continuous state space, we represent the value

function at any state s′ by its values at only a predefined

finite number of supporting states s = {s1, . . . , sN}. Such

representation is done through a kernel approximation

vπ(s′) = k(s′, s)T (λI+K)
−1

V π , where k(·, ·) is a

generic kernel function [35]; λ ≥ 0 is a regularization

factor; K is the Gram matrix with (i, j)-th entry k(si, sj);
k(·, s) is a column vector with i-th component k(·, si);
and V π , a N × 1 vector with i-th component vπ(si),
is state-values at the supporting states and needs to be

computed. The following linear system is derived to

compute V π:
(
Mπ (λI+K)

−1 − (1− γ) I
)
V π = Rπ,

where I is an identity matrix, Rπ is a vector with i-th
element −R(si, π(si)), and Mπ is a matrix whose (i, j)-th
entry is γ((μπ

si)
T∇si +

1
2∇si · σπ

si∇si)k(s
i, sj).

When the two moments are known, the optimal policy

solution can be computed by the policy iteration algorithm

[1], [36]. Suppose that the value function under the current

policy πt is obtained at the t iteration. We then improve the

policy by the following equation to get πt+1 at every state s,

argmaxa∈A
{
R(s, a) + γ

(
(μa

s)
T ∇ + 1

2∇ · σa
s∇

)
vπt(s)

}
.

Since μs and σs are unknown, next we need to estimate

these two parameters for each action a from the observational

trajectory dataset D. A similar kernel-based RL method has

been proposed in [37], which uses kernel-based methods

(e.g., Gaussian Processes) to approximate the reward func-

tion and the transition function. In contrast, we leverage

the diffusion approximated MDP [4], which can be seen

as a Laplace approximation to the transition probability

distribution. Then, we use the kernel function to approximate

the value function. Note that estimation error (bias) due to

learning from a biased observational dataset will present

regardless of the model choice. In the following sections, we

present two approaches for de-biasing the model estimation.

B. Propensity Score Based Causal Inference Approach

When estimating the moment functions for action a given

the state s and feature c in the dataset D, it is likely or

even typical that there are not enough observations with the

designated (s, c) for action a. Thus, we have to leverage a

subset of data with the state and feature close to (s, c) and

also associated with the action a. If each data in this subset

does not have the same chance of having action a, directly

estimating the first and second moments of the transition

function from D produces undesirable and biased results.

To de-bias the estimation, we can place less weight on the

samples that lead to biased results. To choose such weight,

we must take into account how the observations with action

a distribute across states and features. That is, we have to

infer the data collection processes.

We define propensity score to be the probability of as-

signing an action a given state s and feature c in the

dataset [2], ea(u) = P[a|u := (s, c)], where u denotes

(s, c). The propensity score measures the probability of

generating a specific action from some specific state and

feature in the observational data. An implicit assumption here

is that the observed state and feature “govern” the action

generation processes. For the data collection process with

one robot in a particular mission, propensity score might be

viewed as a stochastic policy regarding MDP. However, its

meaning can be beyond this scope. When the observational

dataset includes data logged from multiple robots in different

missions, it reflects the overall random action assignment by

pulling diverse data together.

We estimate the average first moment of transition func-

tions for action a within a subset around u = (s, c). Suppose

that a subset N (u) of the observational data D is chosen

for this task, and this subset can be defined as neighboring
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samples measured by the Euclidean distance from u. We

denote the average first moment by μa(u) := E
a
sb(Δs),

where the subscript “sb” denotes the expectation taken in

the subpopulation N (u). If ea(u) is known, it can be

utilized to weigh the data to reduce the estimation bias.

The corresponding estimator, known as Inverse-Propensity

Weighting (IPW), reads

μ̂IPW
a (u) =

1

|N (u)|
∑

i∈N (u)

Ia(ai)
Δsi
ea(ui)

, (3)

where |N (u)| is the number of samples in N (u); Ia(·) is

an indicator function for a, i.e., Ia(ai) = 1 if and only

if ai = a; Δsi = s′i − si is the observed state shift of

sample i in the state values between the current state si and

next state s′i in the data. (Depending on the applications,

the state shift can be formulated differently. Note that a

non-zero propensity score ea(u) is required in Eq. (3). This

assumption is reasonable because it means that there should

be at least one action taken under the feature u. Otherwise,

no data point can be used to estimate the action outcome. For

example, the state can be its pose for a ground vehicle, so

the Δs represents the amount of translational and rotational

displacement.)

In Eq. (3), the estimator employs the inverse propen-
sity score as the weight for observed state shifts. Intu-

itively, if many samples are generated toward some value

u for action a, i.e., the corresponding propensity score

is large, then the estimator puts a small weight when

counting these samples into the final estimation. If ac-

tions are completely randomly assigned regardless of u,

then all ea(u) are equal, no weights are needed. Similarly,

the average second moment estimator can be expressed

as σ̂IPW
a (u) = |N (u)|−1

∑
i∈N (u) Ia(ai)

ΔsiΔsTi
ea(u)

. Now we

discuss the estimation of ea(u). For propensity score ea(u),
we should have

∑
a ea(u) = 1. We use a non-parametric

approach to estimate the propensity score as êa(u) =
p(a) p(u|a)∑
a p(a) p(u|a) , where p(a) = |N (u)|−1

∑
i∈N (u) Ia(ai);

p(u|a) is given by the kernel density estimation (KDE)

p(u|a) ∝ ∑
i∈N (u) Ia(ai)k(c− ci;h), where k is any kernel

function and h is the lengthscale parameter of the kernel [38]

to get the corresponding estimates.

C. Doubly Robust Estimator

Regression models are commonly employed in practice

to learn transition functions in model-based RL [28]. This

approach works well when the model is not misspecified

or the aforementioned observational data issues are not a

concern. By a misspecified model we mean that a wrong

model form is used or the model does not include key

features. On the other hand, if the propensity score model is

misspecified, the IPW approach may not produce unbiased

results. It is natural to ask whether it is possible to combine

the IPW estimator and regression estimator such that if one

of them is incorrectly specified, the other correctly specified

estimator can ensure the final unbiased result. We adopt the

doubly robust (DR) mechanism [39] to achieve this goal and

to develop the estimation methods for our problem.

Fig. 1: The cumulative reward of the four methods averaged over
50 runs. The x-axis and y-axis represent the percentage of ice
coverage and the cumulative undiscounted reward, respectively.
Regression denotes the standard regression via KNN; DR and IPW
are the proposed causal-based approach. All three methods use
observational data. The last method, Randomized Experiment, is the
behavior policy that uses the data collected by unbiased randomized
action selection.

Suppose the following (non-parametric) regression is fitted

in the subset of sample N (u) for all state shifts associated

with action a, Δsi = fa(ui) + εi, i ∈ N (u), where f(·)
is a vector non-parametric function and a noise term εi
follows the zero-mean normal distribution. Denote the fitted

regression by f̂ and the estimation at u by μ̂NR
a (u), i.e.,

μ̂NR
a (u) := f̂a(u). The following estimator combines IPW

and regression estimators for the first moment

μ̂DR
a (u) =

1

|N (u)|
∑

i∈N (u)

[
Ia(ai)Δsi
êa(ui)

+

(
1− Ia(ai)

êa(ui)

)
μ̂NR
a (ui)

]
. (4)

This estimator possesses the DR property: if the propen-

sity score model is incorrect, the estimation is still un-

biased as long as the regression model is correct. The

reverse is also true. Because E(ΔsiΔsTi ) = E(ε εTi ) +
fa(ui)f

T
a (ui), the regression estimator for the second mo-

ment of the transition function can be written as σ̂NR
a (u) :=

1
|N (u)|

∑
i(f̂a(ui)f̂

T
a (ui)+ ε̂i ε̂

T
i ) where ε̂i denotes the resid-

uals. In practice, the product f̂ f̂T is usually the dominant

term and can be used as an approximate second-moment

estimate. The DR estimator σ̂DR
a (u) is defined similarly

σ̂DR
a (u) =

1

|N (u)|
∑

i∈N (u)

[
Ia(ai)ΔsiΔsTi

êa(ui)
+

(
1− Ia(ai)

êa(ui)

)
σ̂NR
a (ui)

]
. Finally, to com-

pute the optimal value function, we first apply the proposed

causal inference-based methods in Sect. III-B and III-C

to learn the first and second moments of the state shift

at each supporting state. Second, we solve the diffusion

approximated MDP via the kernel methods described in

Sect. III-A.

IV. SIMULATED EXPERIMENTS

Proof-of-Concept Experiment: We first conduct experi-

ments in a fully-controllable simulated environment to eval-

uate the advantage of our method without considering the

full complexity of the real-world experiments. The task of

the robot is to drive as fast as possible on a cross-terrain

elliptical track consisting of ice, concrete, and pebbles. In the

simulation, the mobile robot dynamics is similar to the one

used in the highway-env environment [40], but this model is

not known to the robot and needs to be learned. To generate

the observational data, we use the behavior policy computed
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(a) (b) (c)

Fig. 2: Statistics for action executions of the three methods. In all figures, the x-axis represents the ice coverage percentage. (a) The
frequency of taking aggressive actions. These actions are defined as a set {a|v ≥ 6 ∧ |ω| ≥ π

2
}, where v and ω are linear and angular

speeds, respectively. (b) Average linear speeds for five environments; (c) Average angular speeds. The statistics averaged over 50 trials.

Fig. 3: Race car environment in the PyBullet simulator.

using an unbiased dataset (by randomizing the actions) and

a safety control strategy to collect the observational data.

Although this data collection strategy ensures the safety of

the vehicle, it also introduces a large bias.

We compare the performance of the policy generated via

the planner introduced in Sect. III-A using the model learned

by our proposed estimators (inverse propensity score and

doubly robust) with the standard regression method. To make

a fair comparison, we use the k-nearest neighbors (KNN)

for the standard regression method, which is the same as the

μ̂NR
a (u) in the doubly robust method in Eq. (4). We run 50

trials in each environment with 20000 time steps and then

average statistics.

We first compare the cumulative undiscounted reward

averaging over 50 runs as shown in Fig. 1. In addition

to the standard regression approach, we also compare to

the behavior policy that uses the unbiased dataset obtained

by randomized action selection. We can observe that the

regression method achieves slightly better performance when

the ice coverage is below 20%. However, as soon as the

environment becomes more challenging, i.e., ice coverage

greater than 60%, the causal inference-based methods start to

excel, and are comparable with the model using the unbiased

dataset! This is because the biased data mostly exist on the

ice surfaces due to the intervention during data collection. As

a result, when the ice coverage becomes larger, the regression

method uses more biased data, and the performance degrades

drastically. The comparison of the action execution statistics

among the three methods shown in Fig. 2 also reveals why

the causal-based methods can achieve better performance.

Fig. 2(a) shows the average number of aggressive actions

(with large linear and angular velocities simultaneously)

taken by each method in the five environments. The general

trend for all three methods shows that the robot motion

becomes less aggressive when the environment is covered

by more ice. In general, the causal-based methods take

less aggressive actions than the regression-based model,

and this is the desired behavior due to the safety concern.

This phenomenon also explains why IPW and DR achieve

more stable performances and can outperform regression in

challenging environments.

Experiments in Physics-Engine Simulator: We further

evaluate our method in PyBullet [41] which is a high-

fidelity physics simulator. The observational data collection

process is similar to the previous section, but here we

use the vehicle’s body mass as a feature. In addition to

comparing with the standard regression method, we also

include a comparison with an offline model-based method,

MOReL [28], and two methods that combine causal-based

de-biasing with MOReL, i.e., IPW-MORel and DR-MOReL.

This comparison is to show that our de-biasing method

can be used to improve offline model-based RL. MOReL

categorizes the state-action pairs as unknown if they are not

frequently appeared in the dataset, and adds a large penalty to

them. The original MOReL uses the disagreement of deep

ensembles to decide which state-action pairs to be viewed

as unknown. In our experiment, we use a similar approach:

we detect the unknown state-feature-action tuples by using

the number of examples within an ε ball of the current

queried point. We also include two model-free methods, Q-

learning [31] and imitation learning (IL) [42]. We use the

same observational dataset described above to train all the

methods. Since we do not allow the robot to interact online

with the environment, the Q-learning method is trained only

on the static dataset collected by the behavioral policy.

Because PyBullet is a deterministic simulator, we add a small

Gaussian noise to the actions before execution to simulate

stochastic effects. The normalized cumulative rewards for

different methods are shown in Table I. We can see all

model-based methods outperform the model-free ones. We

conjecture that learning the first and second moments of

the motion model is easier than learning a Q function or

a policy from only the offline data due to the distributional

shift [27], [43]. We can also observe the causal inference-

based methods perform better than the standard regression

estimator. Specifically, the DR estimator generates the best

results across all different vehicle masses in the uncombined

methods. By comparing the combined method (IPW-MOReL

and DR-MOReL), we observe that the two methods can
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Regression IPW DR MOReL [30] IPW-MOReL DR-MOReL Q-Learning IL

m = 15kg 0.64 0.72 0.75 0.71 0.81 0.82 0.24 0.33

m = 20kg 0.72 0.73 0.84 0.85 0.86 0.92 0.33 0.39

m = 25kg 0.75 0.78 0.81 0.79 0.87 0.91 0.38 0.41

m = 30kg 0.71 0.83 0.89 0.88 0.95 0.97 0.51 0.52

TABLE I: Performance comparison for the PyBullet experiment. The scores are normalized according to Rπ−Rrand

R∗−Rrand , where Rπ, Rrand, R∗

are cumulative rewards for the policy computed using the learned model, randomized policy, and the policy computed by the ground-truth
simulator, respectively. IL stands for imitation learning.

Success Rate (%) Traversal Time (s) Average θy (degree)

Waypoints DR RG DR RG DR RG

A 0.8 0.5 23.73± 1.28 21.62± 2.11 1.91± 0.67 2.93± 0.81
B 0.6 0.3 21.76± 3.88 26.27± 4.6 3.48± 1.2 4.79± 0.77
C 0.9 0.8 34.66± 1.7 31.66± 2.21 2.41± 0.46 2.42± 1.02

TABLE II: Comparison between DR (doubly robust) and RG (regression) for the field experiments.

Fig. 4: Field experiment using a ClearPath Jackal. Left: The
environment is an uneven dirt field. Right: Visualization of the
elevation map constructed using LiDAR points shown in the 2.5D
color map. The black trajectory is a successful run of our method
navigating through three waypoints.

leverage the strengths of each other and outperform all other

methods. We conclude the causal inference-based method

provides a better estimate of the motion model from offline

data, and the planner leverages this estimation to compute a

better policy.

V. HARDWARE EXPERIMENTS

We further conducted hardware experiments using a Jackal

ground vehicle navigating in an off-road environment. The

environment and its elevation map, which is used as the

feature for estimating the motion moments, are shown in

Fig. 4. This environment contains dirt fields with uneven

surfaces. The robot’s task is to arrive at three pre-defined

waypoints sequentially (A → B → C). We compare the DR

version of the causal-based method with a regression model

which does not have causal-based bias correction. We per-

form 10 experiments for each method and use the following

three commonly-used metrics for robotic navigation tasks to

evaluate the performance [44].

• Success rate: the success rate indicates the ratio between

successful trials and the total trials. A trial is successful

if the robot can navigate from the starting position to the

ending position within 0.5m. If the robot cannot move,

e.g., due to flipping, the run is viewed as a failure.

• Travel time: these metric averages travel time (in sec-

onds) over the successful trials. It measures the effi-

ciency of the robot in completing the navigation task.

• Averaged pitch angle: it measures the average pitch

angle of the robot over one successful experiment. It

is crucial to keep the pitch angle low to avoid flipping.

We summarize the results of the above metrics of the

DR and regression methods in Table II. Each row shows

the performance of navigating to the corresponding waypoint

from the previous one. The DR method has a consistently

better success rate and smaller average pitch angle than

regression for all the waypoints. It is worth noting that

although the regression-based method outperforms DR in

terms of the traversal time when navigating to waypoints

A and C in successful runs, the low success rate and large

θy indicate the unreliable and aggressive performance of

the regression-based method due to the bias in the dataset.

Additionally, compared to the standard regression method,

we observe that the reason for a slightly longer traversal

time for DR is that it tried to avoid many inclined terrains to

keep safe, which caused it to deviate from the straight line

path between two waypoints. This observation is consistent

with the simulated experiments’ results – the causal-based

methods can provide better estimates by properly handling

the bias in the dataset, resulting in safer and more reliable

planning performance.

VI. CONCLUSION

We present a principled framework by synthesizing causal

inference with a diffusion-approximated MDP for robot

decision-making with unknown motion model parameters. It

enables the robot to compute a correct policy by learning

only the first two moments of the stochastic transition

model from biased observational data, which is data-efficient

(only learning important statistics) and behaviorally safe

(no random robot explorations). We conducted extensive

experiments in both simulation and real world, and the results

show our method can learn the parameters of the motion

model correctly and efficiently in challenging environments,

and is evidently superior to the conventional regression-based

framework in terms of de-biasing and utilizing offline data.
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