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Abstract. When robots share the same workspace with other intelli-
gent agents (e.g., other robots or humans), they must be able to rea-
son about the behaviors of their neighboring agents while accomplishing
the designated tasks. In practice, frequently, agents do not exhibit ab-
solutely rational behavior due to their limited computational resources.
Thus, predicting the optimal agent behaviors is undesirable (because it
demands prohibitive computational resources) and undesirable (because
the prediction may be wrong). Motivated by this observation, we remove
the assumption of perfectly rational agents and propose incorporating
the concept of bounded rationality from an information-theoretic view
into the game-theoretic framework. This allows the robots to reason other
agents’ sub-optimal behaviors and act accordingly under their computa-
tional constraints. Specifically, bounded rationality directly models the
agent’s information processing ability, which is represented as the KL-
divergence between nominal and optimized stochastic policies, and the
solution to the bounded-optimal policy can be obtained by an efficient
importance sampling approach. Using both simulated and real-world ex-
periments in multi-robot navigation tasks, we demonstrate that the re-
sulting framework allows the robots to reason about different levels of
rational behaviors of other agents and compute a reasonable strategy
under its computational constraint. *

Keywords: Bounded Rationality, Game Theory, Multi-Robot System

1 Introduction

We consider the problem of generating reasonable decisions for robots in multi-
agent environments. This decision-making problem is complex because each
robot’s motion trajectory depends on and affects the trajectories of others. Thus

LA preliminary version of this work appeared as a poster in 2021 NeurIPS Workshop
on Learning and Decision-Making with Strategic Feedback.
The video of the real-world experiments can be found at https://youtu.be/hzCit
SSuWil.
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they need to anticipate how others will respond to their decisions. The game-
theoretic framework provides an appealing model choice to describe this com-
plex decision-making problem among agents [16] and has been applied to various
robotics applications, e.g., drone racing [24] and swarm coordination [1]. In an
ideal situation, where all the agents are perfectly rational (i.e., they have unlim-
ited computational resources), they can select the motion trajectories that reach
the Nash equilibrium (if exists). However, since these trajectories live in a contin-
uous space, agents need to evaluate infinitely many trajectories and the interac-
tion among them, which is intractable. As a remedy, most of the works consider
constraining the search space of the multi-robot problem via sampling [25] or
locally perturbing the solution [24] to find a good trajectory within a reasonable
amount of time.

Most game-theoretic planners mentioned above do not explicitly consider the
agents’ computational limitations in their modeling process, i.e., they assume
each agent is perfectly rational. They consider these limitations only externally,
e.g., by truncating the number of iterations during optimization. In contrast, we
propose a novel and more principled treatment for modeling agents with limited
computational resources by directly modeling the agents being only bounded-
rational [6] in the game-theoretic framework. Bounded Rationality (BR) has
been developed in economics [22] and cognitive science [7] to describe behav-
iors of humans (or other intelligent agents), who have limited computational
resources and partial information about the world but still need to make deci-
sions from an enormous number of choices, and has been applied to analyze the
robustness of controllers in the single-agent setting [17]. In this work, we use
the information-theoretic view of BR [6], which states that the agent optimizes
its strategy under an information-theoretic constraint (e.g., KL-divergence), de-
scribing the cost of transforming its a-prior strategy into an optimized one. This
problem can be solved efficiently by evaluating a finite number of trajectory
choices from its prior trajectory distribution. Since BR explicitly considers the
computational constraints during the modeling process, the resulting solution
provides an explainable way to trade-off computational efficiency and perfor-
mance. Furthermore, by incorporating BR into the game-theoretic framework,
robots can naturally reason about other agents’ sub-optimal behaviors and use
these predictions to take advantage of (or avoid) other agents with less (or higher)
computational resources.

2 Related Work

Our work is related to motion planning in multi-agent systems and game-theoretic
frameworks. Here we provide a brief overview of these topics. The game-theoretic
approach in robotics has gained increasing popularity recently. For example, the
authors in [23, 24] combine Model-Predictive Control (MPC) and Iterated Best
Response (IBR) to approximate the Nash Equilibrium solution of a two-player
vehicle racing game. Recently, a game-theoretic iterative linear quadratic reg-
ulator (iLQR) has been proposed to solve a general-sum stochastic game [21].
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In addition, the game-theoretic framework is also used in self-driving vehicles
for trajectory prediction [5, 20] and motion planning among pedestrians [4, 12].
The above works are all based on the concept of rational agents who are as-
sumed to be able to maximize their utility. In contrast, the proposed bounded
rational framework explicitly considers the information-processing constraints of
intelligent agents.

Although bounded rational solutions are used in almost all robotic systems
in practice, e.g., anytime planners terminate the computation if the time runs
out [8], only a few works attempt to model this bounded rational assumption
explicitly. Recently, authors in [17] analyze the single-agent robust control per-
formance using the information-theoretic bounded rationality [6, 15]. Another
closely related but independently developed literature is KL-Control [3, 9]. When
computing the optimal policy, it includes an additional information-theoretic
cost measured by the KL-divergence between a prior policy distribution and a
posterior after optimization. This is similar to the effect of the information-
theoretic constraints of bounded rationality, where the final optimal control
distribution can be sampled from the exponential family using approximate
Bayesian inference [10, 26]. Although these methods have similar traits, they
generally only focus on single-agent problems. In contrast, our work integrates
the bounded rationality idea into the game-theoretic framework and provides a
method to compute agents’ strategies under computational limits.

3 Problem Formulation

In this section, we define multi-agent decision-making using the formulation of
Multi-Agent Markov Decision Processes (MMDPs) or Markov Game (MGs) [11],
and provide the resulting Nash Equilibrium (NE) solution concept under the
perfect rationality assumption. In the subsequent sections, we show how this
assumption can be mitigated using the BR concept and derive a sampling-based
method to find a Nash Equilibrium strategy profile under bounded rationality.

3.1 Multi-Agent Markov Decision Process

In an MMDP with N agents, each agent i has its own state space s € S and
action space a* € A?, where o' and s* denote the state and action of agent i; S*
and A? denote the corresponding spaces. We denote the joint states and actions of
all the agents as S = [s?,...,sV] and A = [a!, ..., a”]. The agents progress in the
environment as follows. At every timestep ¢, all the agents simultaneously execute
their actions A; to advance to the next states S;;1 according to their stochastic
transition function s, ~ p*(si,|S, A). At the same time, they receive rewards
Ry = [r},...,r]N], where 7i = fi(S;, A;) is the reward function for agent i. Each
agent’s stochastic transition and reward functions depend on all agents’ states
and actions in the system. Under the perfectly rational assumption, the goal for
agent 7 is to find a strategy that maximizes an expected utility function

T = arg max,.; U*(Sy, IT), (1)
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where U'(S;, II;) = E ,?:J;t rg(Sk,Ak)} is agent ¢’s utility function at ¢; H

is planning horizon, and II; = [r},..., "] denotes the strategy profile for ev-
ery agent. In this work, we assume that the agents’ strategies take a spe-
cific form: a distribution over the action sequence ai ~ ¢ (at|S;, IT; %), where
a} = [ai,...,al, ;] is the action sequence up to horizon H and II; " is the strat-
egy profile without agent i. This policy form is well-suited for most robotics
problems because the trajectory induced by the action sequence can be tracked
by a low-level controller.

3.2 Iterative Best Response for MMDPs

To solve the problem defined in Eq. (1), each agent needs to predict how other
agents will behave and respond to each other. For brevity, we will write 7¢(a?|S;)
as agent i’s strategy and omit the dependency on IT~*. One possible and com-
mon way to predict other agents’ behaviors is by assuming all other agents are
perfectly rational, and thus the strategy profile of all the agents reaches the Nash
Equilibrium (NE) (if exists) [16], which satisfies the following relationship:

UM (S, I my ™) 2 UMy, I wp), Vi € {1, N} for any ,  (2)

Intuitively, if the agents satisfy the NE, no agent can improve its utility by
unilaterally changing its strategy. To compute NE, we can apply a numerical
procedure called Iterative Best Response (IBR) [19]. Starting from an initial
guess of the strategy profiles of all the agents, we update each agent’s strategy
to the best response to the current strategies of all other agents. The above
procedure is applied iteratively for each agent until the strategy profile does
not change. If every agent is perfectly rational, the robot can use NE strategy
profile to predict other agents’ behaviors and act correspondingly.?. However,
there is a gap between this perfect rational assumption and the real world, as
most existing methods can only search the strategy profile in a neighborhood of
the initial guess [23, 24] due to computational limits. In the following section,
we fill this gap by explicitly formulating this bounded rational solution.

4 Methodology

This section first provides details on the formulation of bounded rationality and
integrates it into the game-theoretic framework. Then, we propose a sampling-
based approach to generate bounded-rational stochastic policies.

4.1 Bounded Rational Agents in Game-Theoretic Framework

In the standard game-theoretic frameworks, agents are rational, i.e., they opti-
mize their decisions via evaluating an infinite number of action sequences with-
out considering the computational resources. In contrast, we model each agent

2 We make a simplifying assumption that there is only one NE in the game.
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as bounded rational — it makes decisions that maximize its utility subject to a
certain computational constraint. Following the work in information-theoretic
bounded rationality [6, 14], this constraint is explicitly defined by the neighbor-
hood of a default policy ¢*. Intuitively, this default policy describes the nominal
behavior of the agent. For example, in a driving scenario, the default policy of
an aggressive driver may be more likely to drive at a high speed. The agent’s
goal is to search for an optimized posterior policy bounded within the neighbor-
hood of ¢*. This size of the neighborhood may reflect the limited computational
resources or other practical considerations. In the following, we omit the time
subscript ¢ for clarity. We use KL-divergence to characterize this neighborhood

7t = argmax U*(S, IT), s. t. KL(r'||¢") < K. (3)

i
K; is a constant denoting the amount of computation (measured in bits) agent i
can deviate from the default policy. Using Lagrange multipliers, we can rewrite
the constrained optimization problem in Eq. (3) as an unconstrained one 7%* =
argmax,: U'(S, IT) — iKL(wini), where ; > 0 indicates the rationality level.
To see how this bounded-optimal stochastic policy can be computed, we can first
observe that the unconstrained problem can be written as

W@mfgmmww

_ 1! (KL(HHq) - BU(S, H))

B @
L i i ‘(a’ls) i
_E/ﬂ(a |S)(10g(1i((,i71;);(]|1(5717))d

=—%KLWWW%

where v (a’ls) o« ¢'(a’)e?U(). Since KL-divergence is non-negative, the max-
imum of —5 K L(r’|[¢") is obtained only when K L(w*|[¢) = 0, which means
7t = 1)?. Therefore, the optimal action sequence distribution of agent i (while
keeping other agents’ strategies fixed) under the bounded rationality constraint
is

ik (i —i L i iy B0
T (a'|S 1) = —q' (@), ()

where Z = fqi(ai)eﬁ'Ul(S’H)dai is a normalization constant. This bounded-
optimal strategy provides an intuitive and explainable way to trade-off between
computation and performance. When § increases from 0 to infinity, the agent
becomes more rational and requires more time to compute the optimal behavior.
When j; = 0, the bounded-rational policy becomes the prior, meaning agent %
has no computational resources to leverage. On the other hand, when 3; —
0o, the agent becomes entirely rational and selects the optimal action sequence
deterministically. The rationality parameter 8 allows us to model agents with
different amounts of computational resources.
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Similar to the rational case, our goal is to find the Nash Equilibrium strategy
profile for a group of bounded-rational agents whose bounded-optimal policies
are defined in Eq. (5). This can be done using the IBR procedure analogous to
Section 3. Instead of optimizing the policy in Eq. (1), each bounded-rational
agent finds the optimal strategy distribution defined in Eq. (5) while keeping
other agents’ strategies fixed. This procedure is carried out for each agent for a
fixed number of iterations or until no agent’s stochastic policy changes.

4.2 Importance Sampling for Computing Bounded-Rational
Strategies

The previous section describes the bounded rationality concept, its integration
with the game-theoretic framework, and uses the IBR numerical method to solve
for a bounded rational Nash Equilibrium strategy profile. To actually compute
the bounded-rational strategies, we need an efficient way to query samples from
the distribution in Eq. (5) for each agent. Since it is relatively easier to sample
the actions from the default ¢’(a’), we can use importance sampling to estimate
the expectation of the optimal action sequence as the best response for the agent
i while keeping others’ actions fixed [2]

i —i 1 i i i
Eai'*Nwtiv*[a{ |Se, IT;'] = E/atQt(at)eﬁU (St’m)dat

1 i\ i
= E]Eaiwqf(ait)[w(at)at] (6)

where w(al) = exp{8 Yt 71 (Sk, Ag)} and a} ;, denotes the k' sample from
the default policy with IV samples in total. Similarly, the normalization constant
can also be approximated as

2= [ (aiyer” S e

At a high level, the importance sampling procedure proceeds as follows. The
agents first propose action sequence samples from their default policies ¢i(a)
and then assign each sequence a weight w(at’) indicating its value based on
the agents’ utilities and rationality levels. Finally, by combining Eq. (6) and
Eq. (7), we can use the weighted average to compute the expected optimal action
sequence

N . .
N Zk:l w(ai,k)ai,k

Sy, 1171 ~ :
ol ZkN:1w(ai,k)

(8)

E . . [ai,*
R
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To find the bounded-rational Nash Equilibrium strategy profile, we replace the
optimization procedure in IBR Eq. (2) using the above importance sampling. One
important observation is that the shape of the prior distribution ¢*, the number
of samples for evaluation N, and the rationality level 8 play essential roles in
the final performance. Their relationships will be explored in the experimental
section.

5 Simulated Experiments

We conduct extensive simulation experiments to demonstrate that integrating
bounded rationality with the game theory framework (1) allows each agent to
reason about other agents’ rationality levels to exploit (or avoid) others with less
(or higher) computational capabilities and (2) explicitly trades-off between the
performance and computation by varying the rationality level 8 and the number
of sampled trajectories. We also show qualitatively that our method can generate
group behaviors that approximately reach a bounded rational Nash Equilibrium
strategy profile for a varying number of agents.

5.1 Simulation Setup

In this experiment, we consider the task of navigating a group of aerial ve-
hicles in a 3D space. Each agent’s goal is to swap its position with the dia-
metrically opposite one while avoiding collisions with each other. The distance
between each agent and its goal is 6m. This environment is neither fully coop-
erative as each agent has a different goal location nor fully competitive because
their objectives are not totally reversed (zero-sum). Thus, the agents need to
collaborate with each other to avoid blockage in the center and at the same
time compete with each other to follow their shortest paths to the goals. The
agents are homogeneous in terms of their sizes and physical capabilities. Each
agent has a size of 0.125m in z,y, 2 directions (similar to the dimension of
Crazyfly drones used in the next section). Similar to [24], we set their transition
functions using a deterministic single integrator model with the minimum and
maximum speeds as amin = 0m/s and apmqe, = 1m/s. We set a uniform prior
q'(a) = Uni form(amin, @maz) as the default policy for all the agents. The num-
ber of IBR iterations is set to 10 as we found that under varying parameters,
IBR usually converges to a bounded rational NE strategy at 10 iterations. In all
the simulations, we assume that the rationality levels of all the agents are known
to each other. The one-step reward function is the same for each agent and set
to penalize collisions and large distances to the goal. We run 50 times for each
simulation with 7" = 80 timesteps.

5.2 Results

We first show that using the proposed framework agents can naturally reason
about the behaviors of others with the same physical capabilities but different



8 J. Xu, D. Pushp, et al.

|
2l |
Lt [ eRe

v om o o o on S —T e TT——
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Fig. 1. (a) Comparison of the performance by increasing the ego’s rationality level from
B = 0.01 to 8 = 0.13 while keeping other agents’ rationality levels fixed in six (solid
lines) and eight (dashed lines) agent environments. The x-axis and y-axis indicate the
ego’s B values and traveled distances. The green lines are the average travel distance
of other agents and the red lines indicate the ego’s travel distance. (b)(c) Show the
agents’ trajectories in six-agent environment with 8 = 0.01 and 8 = 0.13, respectively.
The ego’s trajectories are depicted in red.

rationality levels 8. Since we want to examine how varying 3 affects the perfor-
mance, we need to ensure that the policy converges to the “optimal” one under
the computational constraints. Thus, we sample a large number of trajectories,
5 x 10°, for policy computation for each agent. In this simulation, we fix other
agents’ 8 = 0.05 and vary one agent’s (called ego agent) 8 from 0.01 to 0.13 and
compare the travel distances between the robot and other agents (the distance
of other agents is averaged). Fig. 1(a) shows the performance comparison in six
and eight agent environments. In general, when the ego has a lower rationality
level B than other agents, it avoids them by taking a longer path. When all the
agents have the same [, the ego and other agents have a similar performance.
As f increases, the ego begins to exploit its advantage in computing more ra-
tional decisions and taking shorter paths. We also notice that the ego generally
performs better with a large S when there are more agents in the scene. The
trajectories of the six-agent environment for 8 = 0.01 and 8 = 0.13 are plotted
in Fig 1(b) and Fig 1(c), respectively. When the ego’s § = 0.01 (in the red tra-
jectory), it takes a detour by elevating to a higher altitude to avoid other agents.
In contrast, when its g = 0.13, it pushes other agents aside and takes an almost
straight path. These results are aligned with Fig. 1(a). We omit the trajecto-
ries of eight agent environments to avoid clutter. The readers are encouraged to
watch the videos at https://youtu.be/hzCitSSuWil

Next, we evaluate the performance of a group of agents with the same 8 to
show that the trade-off between the performance and computation can be di-
rectly controlled by the rationality level. Since most of the computation occurs
when evaluating a large number of sampled trajectories in the proposed impor-
tance sampling-based method, we can use the number of evaluated trajectories as
a proxy to measure the amount of computation an agent possesses. In Fig. 2(c),
we analyze the relationship between § and the computation constraint in the
six-agent environment. We can observe that when the computation is limited,
i.e., only a small number of action sequences can be evaluated, a larger 8 (more
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Fig.2. (a) Compares the performance (average traveled distance of the group) of
different 8 values using a different number of trajectories in the six-agent environment.
E The z and y axes are the number of trajectories and the average traveled distance
of the group. (b) Shows the number of trajectories required to converge for different g
in four, six, and eight agent environments.

Fig. 3. Minimum distances of each agent to other agents at every timestep in (a)
four-agent (b) six-agent (c) ten-agent environments. The x-axis and y-axis are the
timesteps and agents’ minimum distances, respectively. The colored solid lines represent
the statistics of each agent, which is the same as their trajectory color in Fig. 4.
The dashed grey line shows the minimum safety distance (0.25m) that needs to be
maintained to avoid collisions.

rational) actually hurts the performance. When the more rational agents have
the resources to evaluate more trajectories, they travel less distance on average
than the less rational groups. This result demonstrates that by controlling the
rationality parameter the bounded rational framework can effectively trade-off
between optimality and limited computation. In Fig. 2(b), we also evaluate the
number of trajectories that need to be sampled for the method to converge at
different rationality levels in four, six, and eight agent environments. The result
aligns with the previous observation — in general, when [ is larger, more trajec-
tories need to be evaluated to converge to “optimal” under the bounded rational
constraints. Furthermore, when more agents are present in the environment, the
method requires more trajectories to converge.

Finally, we show qualitative trajectory results of the group behaviors under
bounded rationality using a fixed 8 = 0.1 and number of samples N = 5 x 10°
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Fig. 4. Agents’ trajectories in environments with four, six, and ten agents. The three
columns show the snapshots at ¢t = 20, 60, 80, respectively. Each agent, its trajectory,
and its goal are assigned the same unique color. We only show the last 10 steps of
trajectories to avoid clutter.

for each agent in Fig. 4. Additionally, we provide the minimum distances of each
agent to other agents in Fig. 3. The result shows that in each environment, the
agent can maintain a safe distance > 0.25m to avoid collisions.

6 Physical Experiments

We use the Crazyflie 2.1 nano-drones under a motion capture system to vali-
date our method in the real world. For this hardware experiment, we consider
two types of tasks with a varying number of agents. The first task is to nav-
igate a group of drones to a designated goal region while avoiding static ob-
stacles and inter-drone collisions. The second task is position swapping similar
to the previous section. The size of the workspace considered in all the exper-
iments is 4.2m x 5.4m X 2m in the x, y, and z axes, and the size of the drone
is 92mm x 92mm x 29mm. To mitigate the downwash effect and control inac-
curacy, we buffer the drone’s collision size to be 0.5m x 0.5m x 0.5m. We use
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(a) (b)

Fig. 5. (a) Shows the experimental setup with 4 Crazyflie drones. Green arrow points
to the goal position. All the agents are navigating to the same goal point. (b) Snapshot
of the experiment. Shows the path followed by the agents to avoid the obstacles.

(a) (b)

Fig. 6. Shows the experimental setup with 6 Crazyflie drones. The drones are divided
into two groups - red and green. (a) Shows the initial position of the drones. The task
is to swap the positions. Black lines show assigned swapping tasks among agents. (b)
Snapshot of the experiment during swapping. It shows the path followed by the agents
to avoid collision with each other.

Crazyswarm [18] platform to control the drones. For each run, we generate tra-
jectories using N = 3 x 10° and 8 = 0.1 for all the agents using the proposed
method. These trajectories contain a sequence of (z,y,z) coordinates. We use
minimum snap trajectory optimization and control strategy [13] to track the
trajectories generated by the proposed planner.

We show two representative scenarios for each task. For complete experimen-
tal videos, please refer to https://youtu.be/hzCitSSuWil Fig. 5 shows that a
group of four drones have to go from the red zone to the green zone while avoid-
ing four obstacles of various sizes distributed around the center of the workspace.
Note that one of the drones opted to go over the obstacle of height 1.5m which
shows that it finds a path through the space as narrow as the size of the drone
(0.5m) in the z-axis. This event is captured in the snapshot shown in Fig. 5(b).
Fig. 6 shows the position swapping scenario. We use the same dynamics model
as the previous section to generate the trajectories. We observe that the out-


https://youtu.be/hzCitSSuWiI

12 J. Xu, D. Pushp, et al.

comes of the physical experiments are consistent with the results obtained in
the simulation.

7 Conclusion

This paper considers the problem of making sequential decisions for agents with
finite computational resources, where they need to interact with each other
to complete their designated tasks. This problem is challenging because each
agent needs to evaluate its infinite number of decisions (e.g., waypoints or actu-
ator commands) and reason how others will respond to its behavior. While the
game-theoretic formulation provides an elegant way to describe this problem,
it is based on an unrealistic assumption that agents are perfectly rational and
have the ability to evaluate the large decision space. We propose a formulation
that replaces this rational assumption with the bounded rationality concept and
presents a sampling-based approach to computing agents’ policies under their
computational constraints. As shown in the experiments, by removing the per-
fect rational assumption, the proposed formulation allows the agents to take
advantage of those with less computational power or avoid those who are more
computational-capable. Additionally, when all the agents are similarly compu-
tational capable, they exhibit behaviors that avoid being taken advantage of by
others.

Bibliography

[1] Mohamed Abdelkader, Samet Giiler, Hassan Jaleel, and Jeff S Shamma. Aerial
swarms: Recent applications and challenges. Current Robotics Reports, 2(3):309—
320, 2021.

[2] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine
learning, volume 4. Springer, 2006.

[3] Matthew Botvinick and Marc Toussaint. Planning as inference. Trends in cognitive
sciences, 16(10):485-488, 2012.

[4] Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P How. Socially aware
motion planning with deep reinforcement learning. In 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 1343-1350.
IEEE, 2017.

[5] Jaime F Fisac, Eli Bronstein, Elis Stefansson, Dorsa Sadigh, S Shankar Sastry, and
Anca D Dragan. Hierarchical game-theoretic planning for autonomous vehicles.
In 2019 International Conference on Robotics and Automation (ICRA), pages
9590-9596. IEEE, 2019.

[6] Tim Genewein, Felix Leibfried, Jordi Grau-Moya, and Daniel Alexander
Braun. Bounded rationality, abstraction, and hierarchical decision-making: An
information-theoretic optimality principle. Frontiers in Robotics and AI, 2:27,
2015.

[7] Gerd Gigerenzer and Henry Brighton. Homo heuristicus: Why biased minds make
better inferences. Topics in cognitive science, 1(1):107-143, 20009.

[8] Félix Ingrand and Malik Ghallab. Deliberation for autonomous robots: A survey.
Artificial Intelligence, 247:10-44, 2017.



[9]
[10]
[11]

[12]

[13]

[14]

[15]
[16]

[17]

18]

[19]

[20]

21]
22]

23]

[24]

[25]

[26]

Decision-Making Among Bounded Rational Agents 13

Hilbert J Kappen, Viceng Gémez, and Manfred Opper. Optimal control as a
graphical model inference problem. Machine learning, 87(2):159-182, 2012.
Alexander Lambert, Adam Fishman, Dieter Fox, Byron Boots, and Fabio Ramos.
Stein variational model predictive control. arXiv preprint arXiv:2011.07641, 2020.
Michael L Littman. Markov games as a framework for multi-agent reinforcement
learning. In Machine learning proceedings 199/, pages 157-163. Elsevier, 1994.
Bjorn Liitjens, Michael Everett, and Jonathan P How. Safe reinforcement learning
with model uncertainty estimates. In 2019 International Conference on Robotics
and Automation (ICRA), pages 8662-8668. IEEE, 2019.

Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and
control for quadrotors. In 2011 IEEE International Conference on Robotics and
Automation, pages 2520-2525, 2011.

Pedro A Ortega and Daniel A Braun. Thermodynamics as a theory of decision-
making with information-processing costs. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 469(2153):20120683, 2013.
Pedro A Ortega, Daniel A Braun, Justin Dyer, Kee-Eung Kim, and Naftali Tishby.
Information-theoretic bounded rationality. arXiv preprint arXiv:1512.06789, 2015.
Martin J Osborne et al. An introduction to game theory, volume 3. Oxford
university press New York, 2004.

Vincent Pacelli and Anirudha Majumdar. Robust control under uncertainty via
bounded rationality and differential privacy. arXiv preprint arXiv:2109.08262,
2021.

James A. Preiss*, Wolfgang Hoénig*, Gaurav S. Sukhatme, and Nora Ayanian.
Crazyswarm: A large nano-quadcopter swarm. In IEEE International Conference
on Robotics and Automation (ICRA), pages 3299-3304. IEEE, 2017. Software
available at https://github.com/USC-ACTLab/crazyswarm.

Daniel Reeves and Michael P Wellman. Computing best-response strategies in
infinite games of incomplete information. arXiv preprint arXiv:1207.4171, 2012.
Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. Planning and decision-
making for autonomous vehicles. Annual Review of Control, Robotics, and Au-
tonomous Systems, 1:187-210, 2018.

Wilko Schwarting, Alyssa Pierson, Sertac Karaman, and Daniela Rus. Stochastic
dynamic games in belief space. IEEE Transactions on Robotics, 2021.

Herbert A Simon. A behavioral model of rational choice. The quarterly journal
of economics, 69(1):99-118, 1955.

Riccardo Spica, Eric Cristofalo, Zijian Wang, Eduardo Montijano, and Mac Schwa-
ger. A real-time game theoretic planner for autonomous two-player drone racing.
IEEE Transactions on Robotics, 36(5):1389-1403, 2020.

Mingyu Wang, Zijian Wang, John Talbot, J Christian Gerdes, and Mac Schwager.
Game theoretic planning for self-driving cars in competitive scenarios. In Robotics:
Science and Systems, 2019.

Grady Williams, Brian Goldfain, Paul Drews, James M Rehg, and Evangelos A
Theodorou. Best response model predictive control for agile interactions between
autonomous ground vehicles. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 2403-2410. IEEE, 2018.

Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M Rehg,
Byron Boots, and Evangelos A Theodorou. Information theoretic mpc for model-
based reinforcement learning. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 1714-1721. IEEE, 2017.


https://github.com/USC-ACTLab/crazyswarm

	 Decision-Making Among Bounded Rational Agents 

