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Virtual reality (VR) simulations can be used for prosthetic device training and patient rehabilitation. Prior studies 
found that using VR simulations can reduce mental workload and increase perceived usability of prosthetic devices. 
Although previous studies have evaluated the usability of prostheses in VR settings, they mainly relied on user-testing 
which require a functional device or prototype. However, assessing the usability of prosthetic devices in early stages 
of the design process can be cost effective and help developers design a more usable prosthetic device. Therefore, the 
objective of this study was to present an approach to predict usability of prostheses in VR training settings. A human-
subject study with 20 participants was conducted. Two prosthetic device configurations (i.e., direct control and pattern 
recognition) and a daily living task (i.e., clothespin relocation test) were simulated in a VR setting. The results 
suggested that the model outcomes were similar to the results of the human-subject experiment. The tool was able to 
predict the usability dimensions based on a few input parameters (e.g., device calibration quality, first impression of 
the device) and using a graphical user interface. The findings provided a quick and practical tool for a prototype-level 
usability analysis of prostheses. Furthermore, the tool could eventually help clinicians find, test, and recommend 
prosthetic devices that better fit the needs of amputees.   
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1. Introduction 
Virtual reality (VR) offers immersive training for complex situations [1] and allows for customizing prosthetic devices 
to individual needs, enabling personalized training [2, 3]. Furthermore, training in VR gives immediate feedback on 
user movements, aiding in movement adjustment and prosthesis control [3]. It also enables safe and repetitive practice, 
critical for developing muscle memory and improving prosthesis handling [4]. Lack of usability in prostheses can lead 
to device underuse or rejection [5]. Existing questionnaires like System Usability Scale (SUS) [6] and Usefulness, 
Satisfaction, and Ease of Use (USE) [7] assess the usability of prosthetic devices but are typically used in later design 
stages, requiring functional devices and costly, time-consuming human subject studies [8]. These methods also have 
self-report biases. Therefore, this study aims to present an approach to predict usability of upper-limb prostheses during 
VR-based training (i.e., Human Performance Model for Upper Limbs; HPM-UP). 

2. Human Performance Model for Upper Limb (HPM-UP) 
HPM-UP predicts six dimensions of usability including learnability, error rate, efficiency, memorability, satisfaction, 
and cognitive workload. The model is developed based on human performance models and a machine learning 
approach. To calculate learnability, (1) the adaptive learning curve formulation [9] was used; (2) based on the 
learnability formula, error rate was calculated using a natural exponential function, (3) memorability was calculated 
based on the ACT-R declarative module [10], (4) efficiency was formulated based on Cognitive-Perceptual-Motor 
Goals, Operators, Methods, and Selection rules  (CPM-GOMS) [11] and motion-time measurement (MTM) [12], (5) 
satisfaction was formulated based on the expectation confirmation theory [13], and (6) cognitive workload classification 
model was developed using the Naïve Bayes algorithm [14, 15].  CPM-GOMS extends the original GOMS framework 
by incorporating a detailed model of human cognitive, perceptual, and motor processes, as described in the Cognitive, 
Perceptual, and Motor (CPM) theory [16]. The model is released to Github including instructions and other researchers 
can modify or update it. The computational details of the model can be found in Park [17]. Figures 1 and 2 illustrate the 
input parameters and output of HPM-UP respectively. To calculate the usability dimensions, the model requires some 
inputs including: the control mode (physical or virtual prosthetic device), task (e.g., clothespin relocation tasks; CRT), 
control scheme (e.g., pattern recognition; PR), minimum and maximum training time duration (based on analysts’ 
previous knowledge or pilot test results), device calibration quality (0-1), first impression (a number between -1 and 1), 
and effort (0-1) based on the end users’ interaction with the device. To classify cognitive workload, input measures 
including percentage change in pupil size (PCPS) and blink rate (collected using eye-tracking device embedded in the 
VR goggles), and task performance (collected from training trials) need to be added. Once all the input parameters are 
added, analysts can see the outcomes in terms of the six usability dimensions (Figure 2). More information regarding 
the interpretation of outputs is provided in [17]. 
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Figure 1:  Input parameters for HPM-UP 

 

 
Figure 2:  Predicted usability dimensions from HPM-UP 
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3. Model Validation 
 
This experiment aimed to collect data from human subjects using VR for activities for daily living (ADL), validating 
HPM-UP results. It involved 20 participants (13 males, 7 females, average age 26.9 years) at Texas A&M University, 
all with normal or corrected vision and no experience with prosthetic or myoelectric upper limb devices. The study, 
approved by Texas A&M IRB (IRB2021-0990D), used direct control (DC) and patter recognition (PR) configurations. 

The experiment setup consisted of three modules: (1) EMG/kinematic data collection and processing, (2) a server 
module, and (3) a VR module, with detailed input/output data formats for compatibility. The VR simulation used the 
HTC VIVE Pro Eye head-mounted interface which included a built-in eye tracking, and was developed on the Unity 
Game Engine v2019.4.28f [18]. The virtual prosthesis was modeled after the Fillauer Motion Control Electric Terminal 
Device 2. EMG signals were collected using a Delsys Trigno Wireless Biofeedback system and four Trigno Avanti 
Sensors, set to a sampling rate of 1,111 Hz. For the DC configuration, which requires EMG from an agonist-antagonist 
muscle pair [19], sensors were placed on the flexor carpi radialis and extensor carpi radialis longus. The open/close and 
pronation/supination motions could be controlled via wrist flexion and extension in the DC mode. To switch between 
the modes (e.g., open/close to pronation/supination), the user must co-contract their muscles, i.e., make a fist. In the PR 
mode, the open/close and pronation/supination motions are controlled via their natural hand motions (e.g., prosthesis 
pronation is achieved by pronation of the intact hand for able-bodied subjects or imagined pronation of the missing 
hand for amputees).  

The VR application simulated the Clothespin Relocation Test (CRT) (Figure 3). CRT is a commonly applied ADL for 
assessing upper limb prostheses [20, 21]. It requires participants to move as many pins as possible from one bar to 
another within 2 minutes. The experiment included three trials. Between each trial, there was a 2-minute rest. The virtual 
prosthesis must be in the open position and close enough to a clothespin to see the highlighted outline cue to pick up a 
clothespin in the VR environment. This yellow outline is a visual indicator that the virtual prosthesis is close enough to 
grip a clothespin. Visual cues for interaction are necessary features as there is no tactile feedback afforded by the VR 
environment. The participant must then generate the command to close the hand to grip the clothespin. Clothespins in 
hand can be released by generating another open command. If a clothespin is released in a position in which it clamps 
onto any one of the bars of the base station, it will lock to that position until it is gripped again. If a clothespin is released 
anywhere other than onto one of the four bars, it will automatically respawn in the last valid position in which it was 
placed. If a clothespin is dropped immediately after removing it from the start position, it will return to the starting 
position. 

The usability measures were collected after the experiment to be used as a ground truth and to compare with the HPM-
UP outcomes. For example, the USE questionnaire was used at the end of experiment and the number of training trials 
to achieve mastery was counted for each participant. A benchmark model was developed using the CPM-GOMS method 
with Cogulator software [22] to be compared with HPM-UP and human-subject experiment outcomes. We chose 
Cogulator as it is open-sourced, has been continuously updated, and has CPM-GOMS/ ACT-R logics [23]. 

 
Figure 3:  Clothespin Relocation Test in Virtual Reality  

Due to the limited number of data points for each device configuration, nonparametric analysis was conducted to assess 
the differences in usability dimensions among the human subject data, HPM-UP, and benchmark model. For the 
comparison between two sets of data, Wilcoxon rank sum test was conducted [24]. The Wilcoxon test statistic “W” was 
used to determine the significance of the difference. All the statistical analysis was conducted using R 4.0.5. Effect size 
for Wilcoxon signed-rank test was calculated with 𝑟 = 𝑍

√𝑛
, where Z-score is a test statistic and standardized score of U-

value calculated from Mann-Whitney U-test [25] and n is the total number of observations. The effect size of Kruskal-
Wallis test was calculated using Eta-squared [26].  
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3.2. Results 
Table 1 summarizes the descriptive statistics. All research hypotheses were supported by the data (Table 2). The 
benchmark model does not provide learnability, error rate, satisfaction, and cognitive workload estimates, and therefore, 
these cells are marked with “N/A” in Table 1. However, HPM-UP was able to generate all six dimensions. 

Table 1. Descriptive statistics from the experiment (mean (sd)) 

Usability Dimensions Human subject experiment  HPM-UP Benchmark model 
DC PR DC PR DC PR 

Learnability  5.5 (2.33) 3.6 (0.49) 3.4 (0.92) 4.3 (1.10) N/A N/A 
Error rate N/A 0.25 (0.06) 0.30 (0.07) N/A 

Memorability N/A 3.48 (0.13) 0 3.60 (0.00) 0 
Efficiency  26.27 (10.19) 9.05 (3.06) 17.83 (1.67) 8.42 (0.94) 13.3 (0.00) 6.9 (0.00) 

Satisfaction 0.68 (0.16) 0.74 (0.14) 0.74 (0.12) 0.75 (0.11) N/A N/A 
Accuracy of 

Cognitive Workload 
Classification (%) 

N/A 65.00 80.00 N/A 

 

Table 2. Summary hypothesis test results 

Hypothesis ID Hypothesis Test Result Test statistics, p-value, effect 
size 

H1 
(Learnability) 

The results of HPM-UP learnability 
dimension would be similar to the 
human-subject data. 

Cannot reject W = 436.5, p = .85, r = .03 

H2 
(Memorability) 

The results of HPM-UP 
memorability dimension would be 
similar to the benchmark model. 

Cannot reject W = 65, p = .23, r = .28 

H3 
(Efficiency) 

The results of HPM-UP efficiency 
dimension would be similar to the 
human subject data 

Cannot reject Z = 0.26, p = .79, r = .03 

H4 
(Satisfaction) 

The results of HPM-UP satisfaction 
dimension would be similar to the 
human-subject data 

Cannot reject W =413, p = .59, r = .07 

4. Discussion 
All research hypotheses were supported by the data. The model's formulations were based on well-established human 
performance models and theories, such as CPM-GOMS and MTM. Furthermore, unlike previous prosthetic device 
studies that used 2D-displays [27, 28], this study used an immersive VR (i.e., VR headset) for training. This could 
provide potential benefits to researchers who are planning to conduct VR-based trainings for amputees. 

The findings suggested that the model can estimate usability of prosthetic devices by simulating an ADL in VR settings. 
Once the analyst knows the tasks, device control modes, and users’ characteristics as input measures, they can get the 
usability estimate for the prosthesis and compare that with the existing thresholds for acceptable usability [17]. Using 
these estimates, the analyst can provide personalized training programs in VR with diverse prostheses, adjusting control 
schemes and settings to suit individual users' needs, thereby facilitating user’s learning [3, 29].  

Using these dimensions, the analysts can conduct a holistic assessment of prosthetic devices. For example, the 
learnability dimension can help improve the quality of the training. By adjusting the device calibration, the analyst or 
VR developers can work together to reduce the number of training trials required for prostheses’ users to get familiarized 
with the device. The learnability dimension has impact on other usability dimensions. This was to emphasize the 
prostheses’ foremost functionality as an assistive device, which means if the device is hard to be used or learned for 
users, it does not provide good efficiency or satisfaction [17]. Therefore, the analyst can test their prostheses with 
emphasis on having reasonable learnability. The designers can improve the intuitiveness of the control scheme by 
minimizing the memory chunks required to use the prosthetic devices, which can impact users’ memory load. sing this 
model, the VR developers can compare several prostheses and their control modes in VR. This could lead to a more 
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efficient design and development cycle, as compared to conducting user testing studies with each prosthetic device. The 
model not only helps in customizing the prosthesis to the user's specific needs [30], but also can reduce the error rate, 
memory load, and thereby increasing efficiency and satisfaction for the user. Furthermore, the model can make the VR 
training environment more engaging for users, which is one of the important factors for training in VR [29].  

This study also contributes to the field of human performance modeling (HPM) by highlighting the importance of timing 
in predicting the usability of the final product. Traditionally, HPMs have been used during the early phases of product 
or service development [16, 31]. However, with the advent of VR development and testing, it is possible to create HPMs 
using VR prototypes before initiating the prosthetic device development process.  

There are several aspects of this study that may limit the generalizability of findings. First, HPM-UP has some free 
parameters, especially in learnability and satisfaction dimensions. Second, decision to work with an able-bodied 
population was made due to the limited number of trans-radial amputees in the surrounding area. Third, with the GUI, 
analysts can develop scenarios only with mouse clicks however, they need to have basic knowledge of human 
performance modeling. Lastly, although HPM-UP provides estimates of device usability, it cannot guarantee the fitness 
or feeling of embodiment of a prosthesis to amputees. 

5. Conclusion 
This study proposed an approach to predict usability of upper-limb prostheses in VR settings, which is expected to save 
time and effort for VR designers, experimenters, or prosthetic device developers. The model can be modified and used 
to estimate usability for future prostheses with new control schemes. 
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