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Virtual reality (VR) simulations can be used for prosthetic device training and patient rehabilitation. Prior studies
found that using VR simulations can reduce mental workload and increase perceived usability of prosthetic devices.
Although previous studies have evaluated the usability of prostheses in VR settings, they mainly relied on user-testing
which require a functional device or prototype. However, assessing the usability of prosthetic devices in early stages
of the design process can be cost effective and help developers design a more usable prosthetic device. Therefore, the
objective of this study was to present an approach to predict usability of prostheses in VR training settings. A human-
subject study with 20 participants was conducted. Two prosthetic device configurations (i.e., direct control and pattern
recognition) and a daily living task (i.e., clothespin relocation test) were simulated in a VR setting. The results
suggested that the model outcomes were similar to the results of the human-subject experiment. The tool was able to
predict the usability dimensions based on a few input parameters (e.g., device calibration quality, first impression of
the device) and using a graphical user interface. The findings provided a quick and practical tool for a prototype-level
usability analysis of prostheses. Furthermore, the tool could eventually help clinicians find, test, and recommend
prosthetic devices that better fit the needs of amputees.
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1. Introduction

Virtual reality (VR) offers immersive training for complex situations [1] and allows for customizing prosthetic devices
to individual needs, enabling personalized training [2, 3]. Furthermore, training in VR gives immediate feedback on
user movements, aiding in movement adjustment and prosthesis control [3]. It also enables safe and repetitive practice,
critical for developing muscle memory and improving prosthesis handling [4]. Lack of usability in prostheses can lead
to device underuse or rejection [5]. Existing questionnaires like System Usability Scale (SUS) [6] and Usefulness,
Satisfaction, and Ease of Use (USE) [7] assess the usability of prosthetic devices but are typically used in later design
stages, requiring functional devices and costly, time-consuming human subject studies [8]. These methods also have
self-report biases. Therefore, this study aims to present an approach to predict usability of upper-limb prostheses during
VR-based training (i.e., Human Performance Model for Upper Limbs; HPM-UP).

2. Human Performance Model for Upper Limb (HPM-UP)

HPM-UP predicts six dimensions of usability including learnability, error rate, efficiency, memorability, satisfaction,
and cognitive workload. The model is developed based on human performance models and a machine learning
approach. To calculate learnability, (1) the adaptive learning curve formulation [9] was used; (2) based on the
learnability formula, error rate was calculated using a natural exponential function, (3) memorability was calculated
based on the ACT-R declarative module [10], (4) efficiency was formulated based on Cognitive-Perceptual-Motor
Goals, Operators, Methods, and Selection rules (CPM-GOMS) [11] and motion-time measurement (MTM) [12], (5)
satisfaction was formulated based on the expectation confirmation theory [13], and (6) cognitive workload classification
model was developed using the Naive Bayes algorithm [14, 15]. CPM-GOMS extends the original GOMS framework
by incorporating a detailed model of human cognitive, perceptual, and motor processes, as described in the Cognitive,
Perceptual, and Motor (CPM) theory [16]. The model is released to Github including instructions and other researchers
can modify or update it. The computational details of the model can be found in Park [17]. Figures 1 and 2 illustrate the
input parameters and output of HPM-UP respectively. To calculate the usability dimensions, the model requires some
inputs including: the control mode (physical or virtual prosthetic device), task (e.g., clothespin relocation tasks; CRT),
control scheme (e.g., pattern recognition; PR), minimum and maximum training time duration (based on analysts’
previous knowledge or pilot test results), device calibration quality (0-1), first impression (a number between -1 and 1),
and effort (0-1) based on the end users’ interaction with the device. To classify cognitive workload, input measures
including percentage change in pupil size (PCPS) and blink rate (collected using eye-tracking device embedded in the
VR goggles), and task performance (collected from training trials) need to be added. Once all the input parameters are
added, analysts can see the outcomes in terms of the six usability dimensions (Figure 2). More information regarding
the interpretation of outputs is provided in [17].
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3. Model Validation

This experiment aimed to collect data from human subjects using VR for activities for daily living (ADL), validating
HPM-UP results. It involved 20 participants (13 males, 7 females, average age 26.9 years) at Texas A&M University,
all with normal or corrected vision and no experience with prosthetic or myoelectric upper limb devices. The study,
approved by Texas A&M IRB (IRB2021-0990D), used direct control (DC) and patter recognition (PR) configurations.

The experiment setup consisted of three modules: (1) EMG/kinematic data collection and processing, (2) a server
module, and (3) a VR module, with detailed input/output data formats for compatibility. The VR simulation used the
HTC VIVE Pro Eye head-mounted interface which included a built-in eye tracking, and was developed on the Unity
Game Engine v2019.4.28f [18]. The virtual prosthesis was modeled after the Fillauer Motion Control Electric Terminal
Device 2. EMG signals were collected using a Delsys Trigno Wireless Biofeedback system and four Trigno Avanti
Sensors, set to a sampling rate of 1,111 Hz. For the DC configuration, which requires EMG from an agonist-antagonist
muscle pair [19], sensors were placed on the flexor carpi radialis and extensor carpi radialis longus. The open/close and
pronation/supination motions could be controlled via wrist flexion and extension in the DC mode. To switch between
the modes (e.g., open/close to pronation/supination), the user must co-contract their muscles, i.c., make a fist. In the PR
mode, the open/close and pronation/supination motions are controlled via their natural hand motions (e.g., prosthesis
pronation is achieved by pronation of the intact hand for able-bodied subjects or imagined pronation of the missing
hand for amputees).

The VR application simulated the Clothespin Relocation Test (CRT) (Figure 3). CRT is a commonly applied ADL for
assessing upper limb prostheses [20, 21]. It requires participants to move as many pins as possible from one bar to
another within 2 minutes. The experiment included three trials. Between each trial, there was a 2-minute rest. The virtual
prosthesis must be in the open position and close enough to a clothespin to see the highlighted outline cue to pick up a
clothespin in the VR environment. This yellow outline is a visual indicator that the virtual prosthesis is close enough to
grip a clothespin. Visual cues for interaction are necessary features as there is no tactile feedback afforded by the VR
environment. The participant must then generate the command to close the hand to grip the clothespin. Clothespins in
hand can be released by generating another open command. If a clothespin is released in a position in which it clamps
onto any one of the bars of the base station, it will lock to that position until it is gripped again. If a clothespin is released
anywhere other than onto one of the four bars, it will automatically respawn in the last valid position in which it was
placed. If a clothespin is dropped immediately after removing it from the start position, it will return to the starting
position.

The usability measures were collected after the experiment to be used as a ground truth and to compare with the HPM-
UP outcomes. For example, the USE questionnaire was used at the end of experiment and the number of training trials
to achieve mastery was counted for each participant. A benchmark model was developed using the CPM-GOMS method
with Cogulator software [22] to be compared with HPM-UP and human-subject experiment outcomes. We chose
Cogulator as it is open-sourced, has been continuously updated, and has CPM-GOMS/ ACT-R logics [23].

Figure 3: Clothespin Relocation Test in Virtual Reality

Due to the limited number of data points for each device configuration, nonparametric analysis was conducted to assess
the differences in usability dimensions among the human subject data, HPM-UP, and benchmark model. For the
comparison between two sets of data, Wilcoxon rank sum test was conducted [24]. The Wilcoxon test statistic “W” was
used to determine the significance of the difference. All the statistical analysis was conducted using R 4.0.5. Effect size

for Wilcoxon signed-rank test was calculated with r = N where Z-score is a test statistic and standardized score of U-

value calculated from Mann-Whitney U-test [25] and n is the total number of observations. The effect size of Kruskal-
Wallis test was calculated using Eta-squared [26].
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3.2. Results

Table 1 summarizes the descriptive statistics. All research hypotheses were supported by the data (Table 2). The
benchmark model does not provide learnability, error rate, satisfaction, and cognitive workload estimates, and therefore,
these cells are marked with “N/A” in Table 1. However, HPM-UP was able to generate all six dimensions.

Table 1. Descriptive statistics from the experiment (mean (sd))

Usability Dimensions  Human subject experiment HPM-UP Benchmark model
DC PR DC PR DC PR
Learnability 5.5(2.33) 3.6 (0.49) 3.4 (0.92) 4.3 (1.10) N/A N/A
Error rate N/A 0.25 (0.06)  0.30(0.07) N/A
Memorability N/A 3.48 (0.13) 0 3.60 (0.00) 0
Efficiency 26.27 (10.19)  9.05(3.06) 17.83(1.67) 8.42(0.94) 13.3(0.00) 6.9 (0.00)
Satisfaction 0.68 (0.16) 0.74(0.14)  0.74(0.12)  0.75(0.11) N/A N/A
Accuracy of N/A 65.00 80.00 N/A
Cognitive Workload

Classification (%)

Table 2. Summary hypothesis test results

Hypothesis ID  Hypothesis Test Result Test statistics, p-value, effect
size
HI The results of HPM-UP learnability =~ Cannot reject W=436.5,p=.85r=.03
(Learnability) dimension would be similar to the
human-subject data.
H2 The results of HPM-UP Cannot reject W==65,p=.23,r=.28

(Memorability)  memorability dimension would be
similar to the benchmark model.

H3 The results of HPM-UP efficiency Cannot reject Z=0.26,p=.79,r=.03
(Efficiency) dimension would be similar to the

human subject data
H4 The results of HPM-UP satisfaction ~ Cannot reject W =413,p=.59,r=.07
(Satisfaction) dimension would be similar to the

human-subject data

4. Discussion

All research hypotheses were supported by the data. The model's formulations were based on well-established human
performance models and theories, such as CPM-GOMS and MTM. Furthermore, unlike previous prosthetic device
studies that used 2D-displays [27, 28], this study used an immersive VR (i.e., VR headset) for training. This could
provide potential benefits to researchers who are planning to conduct VR-based trainings for amputees.

The findings suggested that the model can estimate usability of prosthetic devices by simulating an ADL in VR settings.
Once the analyst knows the tasks, device control modes, and users’ characteristics as input measures, they can get the
usability estimate for the prosthesis and compare that with the existing thresholds for acceptable usability [17]. Using
these estimates, the analyst can provide personalized training programs in VR with diverse prostheses, adjusting control
schemes and settings to suit individual users' needs, thereby facilitating user’s learning [3, 29].

Using these dimensions, the analysts can conduct a holistic assessment of prosthetic devices. For example, the
learnability dimension can help improve the quality of the training. By adjusting the device calibration, the analyst or
VR developers can work together to reduce the number of training trials required for prostheses’ users to get familiarized
with the device. The learnability dimension has impact on other usability dimensions. This was to emphasize the
prostheses’ foremost functionality as an assistive device, which means if the device is hard to be used or learned for
users, it does not provide good efficiency or satisfaction [17]. Therefore, the analyst can test their prostheses with
emphasis on having reasonable learnability. The designers can improve the intuitiveness of the control scheme by
minimizing the memory chunks required to use the prosthetic devices, which can impact users’ memory load. sing this
model, the VR developers can compare several prostheses and their control modes in VR. This could lead to a more
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efficient design and development cycle, as compared to conducting user testing studies with each prosthetic device. The
model not only helps in customizing the prosthesis to the user's specific needs [30], but also can reduce the error rate,
memory load, and thereby increasing efficiency and satisfaction for the user. Furthermore, the model can make the VR
training environment more engaging for users, which is one of the important factors for training in VR [29].

This study also contributes to the field of human performance modeling (HPM) by highlighting the importance of timing
in predicting the usability of the final product. Traditionally, HPMs have been used during the early phases of product
or service development [16, 31]. However, with the advent of VR development and testing, it is possible to create HPMs
using VR prototypes before initiating the prosthetic device development process.

There are several aspects of this study that may limit the generalizability of findings. First, HPM-UP has some free
parameters, especially in learnability and satisfaction dimensions. Second, decision to work with an able-bodied
population was made due to the limited number of trans-radial amputees in the surrounding area. Third, with the GUI,
analysts can develop scenarios only with mouse clicks however, they need to have basic knowledge of human
performance modeling. Lastly, although HPM-UP provides estimates of device usability, it cannot guarantee the fitness
or feeling of embodiment of a prosthesis to amputees.

5. Conclusion

This study proposed an approach to predict usability of upper-limb prostheses in VR settings, which is expected to save
time and effort for VR designers, experimenters, or prosthetic device developers. The model can be modified and used
to estimate usability for future prostheses with new control schemes.
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