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Abstract. Autonomous cyber-physical systems must be able to operate safely in a wide

range of complex environments. To ensure safety without limiting mitigation options,

these systems require detection of safety violations by mitigation trigger deadlines. As

a result of these system’s complex environments, multimodal prediction is often required.

For example, an autonomous vehicle (AV) operates in complex traffic scenes that result

in any given vehicle having the ability to exhibit several plausible future behavior modes

(e.g., stop, merge, turn, etc.); therefore, to ensure collision avoidance, an AV must be able

to predict the possible multimodal behaviors of nearby vehicles. In previous work, model

predictive runtime verification (MPRV) successfully detected future violations by a given

deadline, but MPRV only considers a single mode of prediction (i.e., unimodal prediction).

We design multimodal model predictive runtime verification (MMPRV) to extend MPRV

to consider multiple modes of prediction, and we introduce Predictive Mission-Time Lin-

ear Temporal Logic (PMLTL) as an extension of MLTL to support the evaluation of prob-

abilistic multimodal predictions. We examine the correctness and real-time feasibility of

MMPRV through two AV case studies where MMPRV utilizes (1) a physics-based multi-

modal predictor on the F1Tenth autonomous racing vehicle and (2) current state-of-the-art

deep neural network multimodal predictors trained and evaluated on the Argoverse

motion forecasting dataset. We found that the ability to meet real-time requirements was

a challenge for the latter, especially when targeting an embedded computing platform.

1 Introduction

Autonomous cyber-physical systems such as autonomous vehicles (AVs), unmanned aerial

systems (UAS), and robots are considered safety-critical due to their regular and close interaction

with humans. Runtime verification (RV) offers an approach to monitor these systems for safety

violations in a real-time online manner [9,24]. On-board RV can both detect safety violations

and trigger mitigation actions to ensure safety, but the most effective mitigation strategies could

require fault detection of future violations to prevent unsafe states [46,63,65,66]. For example,

if it takes an AV three seconds to come to a complete stop, then the AV must apply the brakes

three seconds before a complete stop is required to mitigate an impending crash. Due to the

complexity of these systems’ environments, multiple modes of future behavior are plausible

[27,44]. For example, a human driver can display different behaviors given a specific traffic

scene (e.g., stop, slow down, swerve, merge, turn, etc.). Therefore, for RV to be effective in

such systems, it must be able to support multimodal predictions.

Predictive runtime verification [46,66] employs model predictors to detect future specification

violations. In previous work, some utilize the given knowledge of a system to produce a model

predictor [16,22,46,65], while others learn a system model by statistical learning [6,7,8,47,63]

or machine learning [23,38,42], but all of these works focus solely on unimodal prediction.

While the complete set of a system’s reachable states is infeasible to directly compute in
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real-time, some have also looked at variations of reachability analysis that compute the reach-

ability offline or over-approximate the reachability online in real-time [1,3,10,12,15,17,55,64].

Overall, reachability analysis produces over-conservative results, potentially leading to numerous

false positives; therefore, multimodal prediction has become increasingly popular as it reduces

the complete set to a handful of the most plausible future behaviors, but to the best of our

knowledge, multimodality has not been considered in predictive runtime monitors. Therefore,

we introduce Multimodal Model Predictive Runtime Verification (MMPRV), which evaluates

a safety specification by a deadline d givenK finite sequences of future states.

MMPRV is a direct extension of Model Predictive Runtime Verification (MPRV) [65] and

leverages MPRV’s definition of deadline and unique utilization of maximum observed data

and minimum predicted data to make an on-deadline evaluation. The MPRV framework was

deployed on the R2U2 (Realizable, Responsive, Unobtrusive Unit) RV engine [29,50,51,53]

and was the first predictive RV framework to provide memory and real-time guarantees. We

also deploy MMPRV on the R2U2 RV engine as it is one of the few RV engines that can

operate in real-time [19]. Additionally, R2U2 has a strong history of being deployed on real-time,

resource-constrained, mission-critical systems [5,13,20,26,33] and has recently undergone

changes for added user usability and further reduction of memory requirements [29,30].

R2U2 natively encodes specifications expressed in Mission-time Linear Temporal Logic

(MLTL), but we introduce Predictive MLTL (PMLTL) as an extension of MLTL with the addi-

tion of four important features: (1) semantics that utilize maximum observed data and minimum

predicted data to evaluate a specification by a deadline d, (2) ability to reason overK finite se-

quences of future states (i.e., supports multimodality), (3) supports the evaluation of a sequence of

probabilistic atomic propositions, and (4) allows user-defined probabilistic inference techniques.

No existing logic supports even two of these features. Several extensions of Signal Temporal

Logic (STL) [43] reason about probabilistic signals by quantifying the probability of satisfying

an atomic predicate (C2TL [28], StTL [34], StSTL [36], STL-U [42], PrSTL [52], and ProbSTL

[59]), but they all make strong assumptions on the underlying probabilistic inference. There is

a single extension of Metric Temporal Logic (MTL) [4] called P-MTL [58] that allows the prob-

abilistic inference technique to be determined by the user. Additionally, STL-U is the only afore-

mentioned extension that can also reason about a sequence of probabilistic atomic predicates.

We design MMPRV to allow for any user-defined model predictor, extending its applicability

to a wide range of systems. To this extent, we minimize MMPRV’s memory requirements

for deployability to resource-constrained, real-time systems. We examine the correctness and

real-time feasibility of MMPRV through two case studies that employ (1) a physics-based

Monte Carlo (MC) multimodal predictor and (2) state-of-the-art (SOTA) deep neural network

(DNN) multimodal predictors. We illustrate that MMPRV determines the verdict of a PMLTL

specification ϕ by a deadline d utilizingK finite sequences of future states produced by these

predictors. In the first case study, we target an embedded computing platform (i.e., NVIDIA®

Jetson Xavier NX) and observe that our implementation is feasible in real-time with a 20 Hz

control loop, but we do not achieve SOTA accuracy through this approach. In the second case

study, we examine the real-time feasibility of SOTA DNNs, but none of these DNNs meet the

real-time requirements of a 10 Hz control loop on the NVIDIA® Jetson Xavier NX and instead

require the computing capabilities of a desktop GPU.

Our contributions include (1) syntax and semantics of PMLTL (Section 3.1), (2) the MMPRV

algorithm and proofs of correctness (Section 3.2), (3) memory requirements for MMPRV (Sec-

tion 3.3), and (4) application and real-time feasibility of MMPRV utilizing a physics-based MC

multimodal predictor on the F1Tenth autonomous racing vehicle (Section 4.1) and (5) utilizing

SOTA DNN multimodal predictors trained and evaluated on the Argoverse dataset (Section 4.2).
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2 Preliminaries

2.1 Mission-Time Linear Temporal Logic (MLTL) [35,50]

MLTL is a variant of LTL over finite traces with temporal intervals that are bounded, closed, and

discrete. MLTL expresses the most commonly utilized fragments of MTL [4] and STL [43].

Definition 1. (MLTL Syntax) The syntax of an MLTL formula ϕ over a set of atomic proposi-

tions AP is recursively defined as:

ϕ ::=true | false | p | ¬ψ | ψ ∧ ξ | ψ ∨ ξ |�Iψ |3Iψ | ψ UI ξ | ψ RI ξ
where p∈AP is an atom, ψ and ξ are MLTL formulas, and I is a closed interval [lb,ub] where

lb and ub denote the lower and upper bound, respectively, such that lb≤ub and lb,ub∈N0.

Definition 2. (Finite Trace) A finite trace, denoted by π, is a finite sequence of sets of atomic

propositions. The ith set is denoted by π(i) and contains the atomic propositions that are

satisfied at the ith time step. |π| denotes the length of π (where |π|<∞), and π[lb,ub] denotes

the trace segment π(lb),π(lb+1),...,π(ub).

Definition 3. (MLTL Semantics) We recursively define π,i |=ϕ (finite trace π starting from

time index i≥0 satisfies, or “models” MLTL formula ϕ) as

• π,i |=true

• π,i |=p for p∈AP iff p∈π(i)
• π,i |=¬ψ iff π,i 6|=ψ
• π,i |=ψ ∧ ξ iff π,i |=ψ and π,i |=ξ
• π,i |=ψ U[lb,ub] ξ iff |π| ≥ i+ lb and ∃j ∈ [i+ lb,i+ub] such that π,j |= ξ and ∀k < j

where k∈ [i+lb,i+ub] we have π,k |=ψ

Given two MLTL formulas ψ and ξ, they are semantically equivalent (denoted by ψ≡ξ) if

and only if π |= ψ⇔ π |= ξ for all traces π. To complete the MLTL semantics, we define

false≡¬true, ψ ∨ ξ≡¬(¬ψ ∧ ¬ξ), ¬(ψ UI ξ)≡(¬ψRI ¬ξ), and ¬3Iψ≡�I¬ψ. MLTL

also keeps the standard operator equivalences from LTL, including 3Iψ≡(true UI ψ), and

�Iψ≡(falseRI ψ). Notably, MLTL discards the next (X ) operator since Xψ≡2[1,1]ψ.

2.2 Abstract Syntax Tree Architecture

(a) tR=0 (b) tR=1

Fig. 1. Abstract syntax tree evaluation of ϕ=�[0,1]a0∧3[0,1]a1 where a0,a1∈AP. The highlighted

nodes are the nodes currently being updated at each step as verdicts are propagated upwards through the

tree. Results are shown for the current timestamp tR=0 and tR=1.

R2U2 is a stream-based RV engine that reevaluates MLTL formulas for each time index

i. These MLTL formulas are represented by decomposing them into subformula nodes in an

Abstract Syntax Tree (AST). R2U2 determines the evaluation of each subformula node from

the bottom-up and propagates the verdict to the parent node(s). Each node of the AST computes

and stores verdict-timestamp tuples Tψ=(v,τ) for its subformula ψ, where v∈{true,false}
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and τ∈N0. Each node stores the verdict-timestamp tuples in a shared connection queue (SCQ);

the SCQ is a circular buffer that overwrites verdict-timestamp tuples in a circular manner. Figure

1 demonstrates an example of how R2U2 evaluates over an AST.

Propogation Delay. To compute the SCQ size of each node in the AST, the propagation delay

of each subformula must first be computed.

Definition 4. (Propagation Delay [33]) The propagation delay of an MLTL formula ϕ is

the time between when a set of propositions π(i) arrives and when the verdict of π,i |=ϕ is

determinable. The best-case propagation delay (ϕ.bpd) is its minimum time delay, and the

worst-case propagation delay (ϕ.wpd) is its maximum time delay.

Definition 5. (Propagation Delay Semantics [33]) Let ψ and ξ be MLTL subformulas of
MLTL formula ϕ where the best- and worst-case propagation delay for an MLTL formula ϕ is
structurally defined as follows:

• ϕ∈AP :

{

ϕ.wpd=0

ϕ.bpd=0
• ϕ=¬ψ :

{

ϕ.wpd=ψ.wpd

ϕ.bpd=ψ.bpd

• ϕ=ψ ∨ ξ or ϕ=ψ ∧ ξ :

{

ϕ.wpd=max(ψ.wpd, ξ.wpd)

ϕ.bpd=min(ψ.bpd, ξ.bpd)

• ϕ=2[lb,ub]ψ or ϕ=3[lb,ub]ψ :

{

ϕ.wpd=ψ.wpd+ub

ϕ.bpd=ψ.bpd+lb

• ϕ=ψ U[lb,ub] ξ or ϕ=ψR[lb,ub] ξ :

{

ϕ.wpd=max(ψ.wpd, ξ.wpd)+ub

ϕ.bpd=min(ψ.bpd, ξ.bpd)+lb

SCQ Memory Size. To promote deployability to resource-constrained platforms, R2U2 mini-

mizes the size requirement for its SCQs. The minimum SCQ size of an AST node g is determined

by the worst-case propagation delay of its sibling nodes and its own best-case propagation delay.

A node g must store verdict-timestamp tuples in its SCQ until all of its siblings have the same

timestamp τ for these tuples to be consumed by their parent node. Therefore, the size of node g’s

SCQ corresponds to the maximum timestamp mismatch between node g and its siblings. If we let

Sg be the set of all of g’s sibling nodes, then the size of g’s SCQ is given by the following [33,65]:

SCQsize(g)=max(max{s.wpd | s∈Sg}−g.bpd, 0)+1 (1)

2.3 Model Predictive Runtime Verification (MPRV) [65]

MPRV strives to produce the most accurate evaluation of a specification ϕ possible by a

mitigation trigger deadline d to allow for effective mitigation triggering. Since observed data is

often more accurate than predicted data, MPRV utilizes maximum observed data (i.e., observed

data for time steps up to and including the current timestamp) and minimal predicted data (i.e.,

predicted data only after the current timestamp) to make an on-deadline evaluation.

Definition 6. (Deadline) Given an MLTL formula ϕ and trace π starting from time index i≥0,

the deadline d∈Z is the number of time steps measured relative to i by which the verdict of ϕ
must be determined such that 0≤i+d≤M , whereM denotes the timestamp at the end of the

mission (i.e., ϕ cannot be evaluated before the mission begins or after it ends).

Definition 7. (Finite Trace with Prediction) Trace π̂ is a finite trace (following from Definition

2) that has an observed and predicted segment such that the segment π̂[0,|π|−1]=π where π
is derived from observed data and |π|≤i+d, and the segment π̂[|π|,|π̂|−1] is populated using

prediction to determine the verdict of a MLTL specification ϕ for time index i by deadline d.
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Definition 8. (MLTL Semantics with Deadline) MLTL semantics with deadline d is an extension

of the MLTL Semantics in Definition 3. Given a finite trace π, time index i, and deadline d to

produce a finite trace with prediction π̂ (following from Definition 7), we recursively define

π,i,d |=ϕ (trace π starting from time index i≥0 satisfies, or “models” MLTL formula ϕ by

deadline d) as

• π,i,d |=true

• π,i,d |=p for p∈AP iff π̂,i |=p such that p∈ π̂(i)
• π,i,d |=¬ψ iff π,i,d 6|=ψ
• π,i,d |=ψ ∧ ξ iff π,i,d |=ψ and π,i,d |=ξ
• π,i,d |=ψ U[lb,ub] ξ iff |π̂|≥i+lb and ∃j∈ [i+lb,i+ub] such that π,j,d |=ξ and ∀k<j

where k∈ [i+lb,i+ub] we have π,k,d |=ψ

Definition 9. (Prediction Horizon) The prediction horizonHp is the length of the predicted

segment of π̂ (i.e.,Hp= |π̂|−|π|). Given an MLTL formula ϕ, the maximum prediction horizon

is denoted bymax(Hp) and is bounded such thatmax(Hp)=ϕ.wpd−d.

To prevent overwriting original SCQ data with any predicted data, we determinemax(Hp)
at design time and addmax(Hp) extra entries to each SCQ given by the following equation:

SCQsize(g)=max(max{s.wpd | s∈Sg}−g.bpd, 0)+max(Hp)+1 (2)

Note that we improve on these memory requirements in Section 3.3.

3 Multimodal Model Predictive Runtime Verification (MMPRV)

MMPRV extends MPRV [65] to support multimodal prediction and to reason over a finite

sequence of sets of probabilistic atomic propositions (i.e., atomic propositions with associated

probability). To determine the verdict of a PMLTL formula ϕ by a deadline d (Definition

6) such that π,i,d |=ϕ, either the verdict must be determinable by the trace π[0,i+d] (i.e.,

observed data only) or prediction must be utilized by populatingK finite traces with prediction

π̂0,π̂1,...,π̂K−2,π̂K−1 (Definition 10 below). In other words, if the verdict of π,i,d |=ϕ is

unknown at the current timestamp tR=i+d, then MMPRV must receive predicted values to

determine the verdict of ϕ by deadline d. If MMPRV reveals that ϕ does not hold (i.e., the

specification was violated), the result can trigger an appropriate mitigation action.

Definition 10. (K Finite Traces with Prediction) LetK∈N be the number of predicted finite

traces (following from Definition 2) denoted by π̂0,π̂1,...,π̂K−2,π̂K−1 where π̂j is the jth

predicted trace. Each trace has an observed and a predicted segment. Every trace has the

identical observed segment such that ∀j ∈ [0,K−1] we have π̂j[0,|π|−1] = π where π is

derived from observed data and |π|≤ i+d. We populate each trace segment π̂j[|π|,|π̂|−1]
(where j∈ [0,K−1]) using a different mode of prediction to make an evaluation decision by d.

Fig. 2. K finite traces with prediction evaluat-

ing π,8,−4 |=�[0.3]a. White boxes indicate

observed data and gray boxes are predicted data.

Consider an autonomous vehicle (AV) where

the specification violation of ϕ=�[0,3]a (where

a is an atomic proposition) indicates a collision

and the appropriate mitigation action is coming to

a complete stop. Let’s assume that the mitigation

trigger deadline for the AV to brake and come to

a complete stop is d=−4 (i.e., the verdict must

be determined four time steps before time index

i). Therefore, for this AV to ensure safety, it must

be able to determine the verdict of π,i,−4 |=ϕ.

At the current timestamp tR = 4, as illustrated

in Figure 2, MMPRV must determine the verdict
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of π,8,−4 |= ϕ (i.e., tR = i + d = 8 + (−4) = 4). Following from Definition 9, the

max(Hp)=ϕ.wpd−d=3−(−4)=7; therefore, MMPRV will obtain up to seven predicted

values of a for allK traces such that MMPRV will incrementally obtain predicted values for

π̂j(tR+1),π̂j(tR+2),...,π̂j(tR+max(Hp)) ∀j∈ [0,K−1] until ϕ evaluates to true or false.

In Figure 2, this means we incrementally populate π̂j(5),π̂j(6),...,π̂j(11) ∀j∈ [0,K−1] with

predicted values of a until the verdict of π,8,−4 |=ϕ is known. At the next timestamp (tR=5),

these predictions are no longer relevant; therefore, MMPRV will obtain new predicted values for

π̂j(6),π̂j(7),...,π̂j(12) ∀j∈ [0,K−1] until the verdict of π,9,−4 |=ϕ is determinable.

3.1 Predictive Mission-Time Linear Temporal Logic (PMLTL)

PMLTL is an extension of MLTL (Definition 3) that evaluates a specification ϕ utilizing K
finite traces with prediction π̂0,π̂1,...,π̂K−2,π̂K−1 (Definition 10) to determine the verdict of ϕ
by a deadline d. (Note that unimodal prediction is still supported within PMLTL whenK=1.)

Predictions often have an associated probability, and while it is often safe to assume that the

observed segment of a trace π̂ (i.e., π) has a probability of 1.0 because it has been physically

observed, observed data can also have an associated uncertainty (e.g., sensor error). As a result,

PMLTL introduces the probability operator Pδ, which allows specification and evaluation over

sequences of sets of probabilistic atomic propositions. To this extent, a PMLTL specification

can quantity the amount of uncertainty that is deemed acceptable by the user. For example,

P0.95(�[0,3]a) is a PMLTL formula that expresses “the probability of a being globally true

from 0 to 3 is greater than or equal to 95%”. PMLTL also supports the evaluation of observed

and predicted traces without the consideration of probability.

Definition 11. (PMLTL Syntax) The syntax of PMLTL is an extension of the MLTL syntax

defined in Definition 1. The syntax of a PMLTL formula ϕ overK sets of atomic propositions

AP is recursively defined as:

ϕ ::=true | false | p | ¬ψ | ψ ∧ ξ | ψ ∨ ξ |�Iψ |3Iψ | ψ UI ξ | ψ RI ξ | Pδψ
whereK∈N, p∈AP, ψ and ξ are PMLTL formulas, δ∈ [0,1] is the desired probability, and I
is a closed interval [lb,ub] where lb and ub denote the lower and upper bound, respectively,

such that lb≤ub and lb,ub∈N0.

Definition 12. (Probability Space of K Finite Traces) Given a time index i, K finite traces of

prediction π̂0,π̂1,...,π̂K−2,π̂K−1, and an atomic proposition p∈AP, let the sample space

Ωi={p∈ π̂0(i),p /∈ π̂0(i),p∈ π̂1(i),p /∈ π̂1(i),...,p∈ π̂K−2(i),p /∈ π̂K−2(i),p∈ π̂K−1(i),p /∈
π̂K−1(i)}. Let the σ-algebra Fi = 2Ωi (i.e., the powerset of Ωi) be a collection of events.

Let the probability measure Pi assign a probability Pi(A) to every event A in Fi such that

Pi :Fi 7→ [0,1] where Pi(Ωi)=1 and Pi(A)=
∑

ω∈A

Pi({ω})≤1 1. Note that the complement of

an event A∈Fi is denoted as Ac=Ωi\A such that Pi(A
c)=1−Pi(A). Then, (Ωi,Fi,Pi)

defines the probability space of K finite traces at time index i for p∈AP.

Definition 13. (PMLTL Semantics) PMLTL semantics are an extension of the MLTL semantics

with deadline in Definition 8. Given a finite trace π, time index i, and deadline d to produce

K finite traces with prediction π̂0,π̂1,...,π̂K−2,π̂K−1 (following from Definition 10) and a

probability space (Ωi,Fi,Pi) for each p∈AP (as defined in Definition 12) 2, we recursively

define π,i,d |=ϕ (trace π starting from time index i≥0 satisfies, or “models” PMLTL formula

ϕ by deadline d according to K predictions) as

1 For all ω∈Ωi, Pi({ω}) is defined by the user’s choice of probabilistic inference (e.g., Markov chain,

Bayesian inference, normal distribution, etc.) but must follow the properties defined in Definition 12.
2 The probability space (Ωi,Fi,Pi) is only required if p∈AP is an operand of Pδ.
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• π,i,d |=true

• π,i,d |=p for p∈AP iff ∀j∈ [0,K−1] we have p∈ π̂j(i)
• π,i,d |=¬ψ iff π,i,d 6|=ψ
• π,i,d |=ψ ∧ ξ iff π,i,d |=ψ and π,i,d |=ξ
• π,i,d |=ψ U[lb,ub] ξ iff ∀j∈ [0,K−1] we have |π̂j|≥ i+lb and ∃j∈ [i+lb,i+ub] such

that π,j,d |=ξ and ∀k<j where k∈ [i+lb,i+ub] we have π,k,d |=ψ
• π,i,d |=Pδψ iff Pr(π,i,d |=ψ)≥δ where Pr(π,i,d |=ψ) (the probability of π,i,d |=ψ) is

defined recursively as follows:

− Pr(π,i,d |=true)= 1
− Pr(π,i,d |= p) = Pi(A) for p ∈ AP, A is an independent event, and A ∈ Fi s.t.

A=
K−1
⋃

j=0

{ω∈Ωi | ω≡p∈ π̂j(i)}

− Pr(π,i,d |=¬ψ)=1−Pr(π,i,d |=ψ)
− Pr(π,i,d |=ψ ∧ ξ)=Pr(π,i,d |=ψ)∗Pr(π,i,d |=ξ)

− Pr(π,i,d |=ψ U[lb,ub] ξ)=Pr
(

∨i+ub
m=i+lb

(

(
∧m−1
k=i+lbπ,k,d |=ψ) ∧ π,m,d |=ξ

)

)

Given two PMLTL formulas ψ and ξ, they are semantically equivalent (denoted by ψ≡ ξ)
if and only if π,i,d |= ψ ⇔ π,i,dj |= ξ for all possible K finite traces with prediction

π̂0,π̂1,...,π̂K−2,π̂K−1. PMLTL keeps the standard operator equivalences from MLTL with

the addition that these equivalences also apply to Pδψ (i.e., Pδ(false)≡Pδ(¬true), Pδ(ψ ∨
ξ) ≡ Pδ(¬(¬ψ ∧ ¬ξ)), Pδ(¬(ψ UI ξ)) ≡ Pδ(¬ψ RI ¬ξ), Pδ(¬3Iψ) ≡ Pδ(�I¬ψ),
Pδ(3Iψ) ≡ Pδ(true UI ψ), and Pδ(�Iψ) ≡ Pδ(false RI ψ)). Figure 3 illustrates a few

examples of determining the probability of ϕ (i.e., Pr(π,i,d |=ϕ)).
Time index i

0 1 2 3 4

a0∈ π̂0(i) true true false true false

Pi({a0∈ π̂0(i)}) 0.40 0.45 0.90 0.80 0.85
Pi({a0 /∈ π̂0(i)}) 0.00 0.00 0.00 0.00 0.00
a0∈ π̂1(i) false true true false true

Pi({a0∈ π̂1(i)}) 0.60 0.55 0.10 0.20 0.15
Pi({a0 /∈ π̂1(i)}) 0.00 0.00 0.00 0.00 0.00

Pr(π,i,d |=a0) 0.40 1.00 0.10 0.80 0.15

Time index i
0 1 2 3 4

a1∈ π̂0(i) true false false true true

Pi({a1∈ π̂0(i)}) 0.95 0.35 0.20 0.90 0.85
Pi({a1 /∈ π̂0(i)}) 0.05 0.65 0.80 0.10 0.15

Pr(π,i,d |=a1) 0.95 0.65 0.80 0.90 0.85

Time index i
0 1 2 3 4

Pr(π,i,d |=a0∨a1) 0.97 1.00 0.82 0.98 0.8725
Pr(π,i,d |=�[0,1]a0) 0.40 0.10 0.08 0.12 −
Pr(π,i,d |=3[0,1]a1) 0.9825 0.93 0.98 0.985 −

Pr(π,i,d |=�[0,1]a0∧3[0,1]a1) 0.393 0.093 0.0784 0.1182 −
Pr(a0U[0,1]a1) 0.963 0.93 0.818 0.968 −

Fig. 3. Determining the probability of ϕ (i.e., Pr(π,i,d |=ϕ)) where a0,a1∈AP

3.2 MMPRV Algorithm

Algorithm 1 defines the MMPRV algorithm for the R2U2 engine. Offline, the Configuration

Compiler for Property Organization (C2PO) [29] compiles PMLTL formula(s) for input into

R2U2 by decomposing these formula(s) into an AST (Section 2.2). The AST is a list of nodes

in topological order (i.e., child nodes appear before their parent nodes); therefore, evaluating

the AST at a specific timestamp means sequentially evaluating each of its nodes (lines 1–2

and 11–12 of Algorithm 1). Algorithm 1 first evaluates the AST based on observed data only
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Algorithm 1: MMPRV Algorithm

Input: Current timestamp: tR; Deadline: d; Prediction modes:K; Finite trace: π[0,tR];
AST representing PMLTL formulaϕ:ϕAST

1 foreach Node g∈ϕAST do // Update ϕAST for current time stamp tR
2 Node step([π],tR,g); // Algorithm 2

3 if read(ϕ.Queue).τ <tR−d then // Prediction required

4 foreach Node g∈ϕAST do // store original AST state

5 Store Node g’s metadata; // e.g., read/write pointers

6 foreach j∈ [0,K−1] do π̂j←π ; // initialize π̂j,∀j∈ [0,K−1] with π
7 t←tR; // initialize t with current timestamp

8 while read(ϕ.Queue).τ <tR−d do // if prediction is needed, loop

9 t←t+1 ; // look into next prediction step

10 foreach j∈ [0,K−1] do π̂j(t)←model predict(t,j) ; // update π̂j(t)
11 foreach Node g∈ϕAST do
12 Node step([π̂0,π̂1,...,π̂K−1],t,g); // Algorithm 2

13 foreach Node g∈ϕAST do // restore original AST state

14 Store Node g’s metadata; // e.g., read/write pointers

Algorithm 2: Node step: Evaluate a node g in ϕAST for one timestamp

1 functionNode step([π0,π1,...,πK−1],i,g) is
Input: Array of finite traces: [π0,π1,...,πK−1]; Time index: i; Node: g

2 if g is a descendant ofPδ operator then
3 if g is anAP operator then // record the value of the atomic proposition

4 p←0
5 for j←0 toK−1 do // evaluate Pr(g) based on K finite traces

6 if g ∈ πj(i) then p←p+get Pr(g∈πj(i));
7 else p←p+get Pr(g /∈πj(i));
8 g.Queue.write((p,i)); // write Tg=(p,τ)
9 else

10 (p,τ)← evaluate Node g; // Algorithms 4, 5, and 6

11 g.Queue.write((p,τ)); // write Tg=(p,τ)
12 else
13 if g is anAP operator then // record the value of the atomic proposition

14 for j←0 toK−1 do // evaluate g based on K finite traces

15 if g ∈ πj(i) then continue;
16 else g.Queue.write((false,i)) return; // write Tg=(v,τ)
17 g.Queue.write((true,i)); // write Tg=(v,τ)
18 else
19 (v,τ)← evaluate Node g; // Algorithm 3 and Algorithms 3-6 from [33]

20 g.Queue.write((v,τ)); // write Tg=(v,τ)

(lines 1–2). If the latest time index for a PMLTL formula ϕ produced by the AST (i.e., the latest

Tϕ.τ found by reading the root node ϕ.Queue) is less than the current timestamp tR minus the

deadline d (i.e., the verdict of π,tR−d,d |=ϕ is unknown), then prediction is required (line 3).

MMPRV provides predictions based on maximum observed data; therefore, to retain observed

data in the SCQ that may still be relevant for future evaluations, we size each node according

to Equation 3 in Section 3.3. While the observed data is never overwritten, a node’s metadata

(e.g., its read and write pointers) will change as nodes are evaluated based on predicted data

(lines 11-12). Therefore, we store each node’s metadata before prediction starts (lines 4–5) and

restore it after prediction ends (lines 13–14) to ensure that predicted data is never unintentionally

reused at the next execution of Algorithm 1. To support multimodal prediction during the

prediction phase (lines 3–14), there areK finite traces with prediction (Definition 10) initialized

with observed data (line 6) and populated with predicted data generated by a user-defined

model predict function (line 10) until π,tR−d,d |=ϕ evaluates to true or false (line 8).

Each node of the AST contains a write pointer to store tuples within its SCQ and read

pointer(s) for its children’s SCQ(s). R2U2’s read and write SCQ operations are defined in [33].

With the addition of MMPRV, the write operation must never write past tR−d when utilizing

prediction to ensure maximum observed data is utilized for all future verdicts. Previously, each

node’s SCQ stored verdict-timestamp tuples (i.e., Tψ = (v,τ) as discussed in Section 2.2),

but with the addition of the probability operator Pδ, descendants of the probability operator
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(i.e., probabilistic operators) will now store a probability-timestamp tuple Tψ=(p,τ) where

p∈ [0.0,1.0]. Additionally, the worst-case propagation delay for probabilistic operators follows

Definition 5, but the best-case propagation delay is equivalent to the worse-case as the entire

interval [lb,ub] is required for evaluation (i.e., cannot evaluate early based on partial information).

Theorem 1 (Correctness of MMPRV Algorithm). Given the current timestamp tR, dead-

line d, number of prediction modesK, trace π[0,tR], the AST representing the PMLTL formula

ϕ (ϕAST ), and a model predictor function (model predict), the MMPRV algorithm (Algorithm

1) utilizes maximum observed data and minimum predicted data to populate K finite traces

with prediction in order to evaluate π,i,d |=ϕ such that ∀i Tϕ.v=true iff π,i,d |=ϕ.
Proof. MMPRV makes evaluations utilizing all observed data values from π before prediction

is even considered (lines 1–2). After this initial evaluation on observed data, if Tϕ.τ≥tR−d,

then all deadlines have been met and MMPRV terminates guaranteeing to have determined the

verdict of π,i,d |=ϕ based on observed data only. But if Tϕ.τ <tR−d (line 3), then MMPRV

takes maximum observed data (line 6) augmented incrementally withK modes of minimum

prediction data until MMPRV produces the tuple such that Tϕ.τ=tR−d (lines 8–12); therefore,

MMPRV only terminates when the verdict of π,tR−d,d |=ϕ is determinable. ut

Algorithm 3: Probability Operator: Pδψ

1 At each new input Tψ:
2 return (Tψ.p>=δ, Tψ.τ)

Algorithm 4: Probabilistic

Negation Operator: Pr(π,i,d |=¬ψ)

1 At each new input Tψ:
2 return (1−Tψ.p, Tψ.τ)

Algorithm 5: Probabilistic And Operator:

Pr(π,i,d |=ψ ∧ ξ)

1 At each new input (Tψ, Tξ) s.t. Tψ.τ=Tξ.τ :
2 return (Tψ.p∗Tξ.p, Tψ.τ)

Algorithm 6: Probabilistic Until Operator: Pr(π,i,d |=ψ U[lb,ub] ξ)

1 At each new input (Tψ, Tξ) s.t. Tψ.τ=Tξ.τ :
2 if Tψ.τ−ub≥0 then // check if i≥0
3 ptemp=Tξ.p // initialize ptemp to Pr(π,i+ub,d|=ξ) s.t.Tξ.τ=i+ub
4 for t←1 to ub−lb do // iterate backwards through ψ and ξ’s SCQs

5 ptemp=ptemp∗read(ψ.Queue,ψ.rd ptr−t).p
6 ptemp=(1−[(1−read(ξ.Queue,ξ.rd ptr−t).p)∗(1−ptemp)]
7 return (ptemp, Tψ.τ−ub) // return probability-timestamp tuple

The correctness of Algorithms 2, 3, 4, and 5 follows directly from Definition 13.

Theorem 2 (Correctness of the Probabilistic Until Operator). Algorithm 6 correctly im-

plements ϕ=Pr(π,i,d |=ψ U[lb,ub] ξ) such that for all i≥ 0 Algorithm 6 returns the tuple

Tϕ=
(

Pr
(

∨i+ub
j=i+lb

(

(
∧j−1
k=i+lbπ,k,d |=ψ) ∧ π,j,d |=ξ

)

)

,i
)

.

Proof. To evaluate the probability of π,i,d |=ψ U[lb,ub] ξ, the probability values for the children

ψ and ξ for the entire interval [i+lb,i+ub] where lb≤ub are required (i.e., cannot evaluate

early based on partial information). When Tψ.τ−ub≥0 (line 2), the probability-timestamp

tuple of the Until operator can be calculated for i=Tψ.τ−ub such that i≥0 as the children

SCQs are guaranteed to have stored from [Tψ.τ−ub+lb,Tψ.τ ] or [i+lb,i+ub]. This guarantee

is the result of R2U2’s write operation [33] and the SCQ sizing discussed later in Section 3.3.

To calculate the probability, the equation Pr
(

∨i+ub
j=i+lb

(

(
∧j−1
k=i+lbπ,k,d |=ψ) ∧ π,j,d |=ξ

)

)

expands to the following:

Pr
(

π,i+lb,d |=ξ ∨ (π,i+lb,d |=ψ ∧ π,i+lb+1,d |=ξ) ∨

(π,lb,d |=ψ ∧ π,i+lb+1,d |=ψ ∧ π,i+lb+2,d |=ξ) ∨...

∨ (π,i+lb,d |=ψ ∧ π,i+lb+1,d |=ψ ∧ ... ∧ π,i+ub−1,d |=ψ ∧ π,i+ub,d |=ξ)
)
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which can be rewritten to the following form using the law of distribution:

Pr
(

π,i+lb,d |=ξ ∨ (π,i+lb,d |=ψ ∧ (π,i+lb+1,d |=ξ ∨

(π,i+lb+1,d |=ψ ∧ (π,i+lb+2,d |=ξ ∨...

(π,i+ub−2,d |=ψ ∧ (π,i+ub−1,d |=ξ ∨

(π,i+ub−1,d |=ψ ∧ π,i+ub,d |=ξ)))))))...
)

Utilizing this form, the probability of π,i,d |=ψ U[lb,ub] ξ is calculated starting from the deepest

nested parentheses (i.e., π,i+ub,d |=ξ) on line 3 and iterating outward on lines 4–6 by iterating

backward through the children SCQs from Tψ.τ −ub− 1 to Tψ.τ −ub+ lb (e.g., next is

π,i+ub−1,d |=ξ ∨ (π,i+ub−1,d |=ψ ∧ previous)). Lastly, the probability-timestamp tuple

is returned (line 7) such that Tϕ=
(

Pr
(

∨i+ub
j=i+lb

(

(
∧j−1
k=i+lbπ,k,d |=ψ) ∧ π,j,d |=ξ

)

)

,i
)

. ut

3.3 Memory Requirements for MMPRV

MMPRV determines verdicts based on maximum observed data. Additionally, R2U2 utilizes

Common Subexpression Elimination (CSE) to reduce memory requirements for sets of PMLTL

formulas, where common subexpressions share a singular SCQ node [29,33], but taking

advantage of this reduction requires that predicted data doesn’t overwrite observed data still

relevant to other subexpressions. Therefore, to prevent overwriting any relevant observed data

with predicted data, extra slots must be added to the SCQ size (as defined in Equation 1). In

[65], the SCQ size increased linearly withmax(Hp) as given by Equation 2, but this was an

overestimate that can be minimized. On the other hand, the addition of probabilistic operators

requires the children of probabilistic temporal operators (e.g., Until) to store results for the entire

interval from [i+lb,i+ub] for consumption by the parent (as discussed in Algorithm 6 and

Theorem 2). Therefore, the SCQ size is minimized and redefined in Equation 3.

Theorem 3 (MMPRV SCQ Size). Consider an AST representing PMLTL formula(s). Let Sg
be the set of all sibling nodes of g, TPg be the set of all probabilistic temporal parent nodes

of g, and max(Hp) be the maximum prediction horizon of g’s parent formula(s). Then, the

minimum size of g’s SCQ required for MMPRV is given by the following:

SCQsize(g)=max(max{s.wpd | s∈Sg}−g.bpd, 0)+max{p.ub−p.lb | p∈TPg}+

min
(

max
(

max{s.wpd | s∈Sg}−g.bpd, 0
)

+max{p.ub−p.lb | p∈TPg},

max
(

max(Hp)−1, 0
)

)

+1 (3)

Proof. Without prediction or probabilistic operators, SCQsize(g)=max(max{s.wpd | s∈
Sg}−g.bpd, 0)+1 (Equation 1) has already been proven in [65]. In Equation 1,max(max{
s.wpd | s ∈ Sg}−g.bpd, 0) represents the maximum timestamp mismatch between g and

its sibling nodes; node g may have to buffer this many tuples before they are consumed by

the parent node. +1 extra SCQ slot is added to the size to account for the implementation

requirement that a tuple must be buffered at least one cycle before it is consumed by a parent

node(s). With the addition of probabilistic operators, children of probabilistic temporal operators

must buffermax{p.ub−p.lb | p∈TPg}+1 extra SCQ slots (instead of just +1) as required

by Algorithm 6. Since observed data is always fully evaluated before predicted data enters

the SCQ, this +1 extra slot can be reused for predicted data without overwriting relevant

observed data (i.e., this slot will never be required after prediction starts). Therefore, to store

predicted data without overwriting relevant observed data, at mostmax(max(Hp)−1, 0) extra

slots need to be added to g’s SCQ as at most max(Hp) predicted verdict-timestamp tuples

ever enter the SCQ. On the other hand, at most max
(

max{s.wpd | s∈ Sg}−g.bpd, 0
)

+
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max{p.ub−p.lb | p∈TPg} extra slots are required to be added to g’s SCQ; any predicted data

that needs to be stored is limited by the timestamp mismatch between node g and its siblings

(following from the proof in [65]) and the temporal interval [i+lb,i+ub] of its parent node(s).

Therefore, only min
(

max(max{s.wpd | s ∈ Sg} − g.bpd, 0) +max{p.ub− p.lb | p ∈

TPg},max(max(Hp)−1, 0)
)

extra slots are required for proper storage of predicted data. ut

MMPRV Total Memory Size. PMLTL specifications that utilize the probability operator Pδ
have larger memory requirements than similarly structured formulas that do not utilize Pδ (as

shown in Table 1). The reason for the larger memory requirement is twofold: (i) children of

probabilistic temporal operators may be required to store additional tuples for consumption by

their parents as defined in Equation 3 and (ii) probabilistic operators have to store probability–

timestamp tuples. Let’s assume verdicts are single-byte boolean values, probabilities are stored

as 8-byte doubles, and the timestamp is stored as a 4-byte integer. Therefore, a verdict-timestamp

tuple requires 5 bytes and a probability-timestamp tuple requires 12 bytes, and the memory size

in bytes of a single node g’s SCQ is given by the following:

SCQmemory(g)=

{

12∗SCQsize(g), descendant of Pδ
5∗SCQsize(g), otherwise

(4)

Furthermore, the total memory size in bytes of the entire AST is given by the following3:

ASTmemory=
∑

g∈AST

SCQmemory(g) (5)

Following Equation 5, Table 1 provides the memory required in bytes for the AST of var-

ious PMLTL formulas. Based on the deadline d (which determines max(Hp)), there is

a minimum and maximum size for each node such that max(max{s.wpd | s ∈ Sg} −
g.bpd,0)+max{p.ub−p.lb | p∈TPg}+1≤ SCQsize(g) ≤ 2∗(max(max{s.wpd | s∈
Sg}−g.bpd,0)+max{p.ub−p.lb | p∈TPg})+1. While probabilistic operators increase the

size of the AST, the sizing equation has a fixed upper bound (compared to linearly increasing

with max(Hp) as in [65]) such that we can look as far into the future as desired without

increasing the SCQ size beyond this upper bound.

Table 1.ASTmemory (in bytes) of example PMLTL formulas where a0,a1,a2,a3∈AP

Example PMLTL formulas
Deadline d

-15 -5 0 5 15 30 45

�[0,30]a0 10 10 10 10 10 10 10
P0.80(�[0,30]a0) 749 749 737 677 557 389 389

�[0,10]a0∧3[0,20]a1 125 125 125 125 95 75 75
P0.95(�[0,10]a0∧3[0,20]a1) 1025 1025 1013 953 689 545 545

((�[0,5]a0)U[0,10]a1)∨((�[0,5]a2)U[0,10]a3) 445 445 435 385 245 245 245
P0.85((�[0,5]a0)U[0,10]a1)∨P0.98((�[0,5]a2)U[0,10]a3) 1551 1551 1527 1383 831 831 831

4 Autonomous Vehicle Case Study

Autonomous vehicles (AVs) are common targets of multimodal prediction research due to

the safety-critical and multimodal nature of vehicles and other road agents (e.g., pedestrians).

Conventionally, multimodal prediction has been produced by purely physics-based approaches

(e.g., Monte Carlo [11,60]). Physics-based approaches are known for having low computational

cost but are only valid for short prediction horizons (i.e., less than one second). For this reason,

deep learning methods have gained recent popularity as they can accurately predict longer

prediction horizons (i.e., several seconds); however, deep learning methods experience a higher

3 This only includes the memory requirement of the SCQs and doesn’t consider the node’s metadata.
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computational cost in terms of memory requirements and latency [27,44]. In this section, we

utilize a physics-based and deep learning-based multimodal model predictor.

4.1 F1Tenth Autonomous Racing

Fig. 4. F1Tenth autonomous vehicle.

System Description. The F1Tenth platform is a ROS-

based 1/10th scale autonomous racing vehicle equipped

with a NVIDIA® Jetson Xavier NX, LiDAR, and vehicle

electronic speed controller (VESC) as shown in Figure 4.

For our experiments, we utilize the OpenAI Gym simulator

provided by the creators of the F1Tenth platform [45]. The

simulator models up to two vehicles utilizing the single-

track model from [2] along with parameters derived from

the physical F1Tenth platform. The VESC and LiDAR for

each vehicle are directly simulated within the simulator,

and although the LiDAR can be utilized to provide vehicle

localization (e.g., the particle filter in [61]), the simulator broadcasts the ground truth odometry

for each vehicle.

Implementation. We simulate a multi-agent race on the NVIDIA® Jetson Xavier NX, where

an ego-vehicle (i.e., the vehicle operating MMPRV) races against an opponent vehicle. The

ego-vehicle monitors the following safety specification utilizing MMPRV:

ϕ=a0 U[0,15] P0.98(a1∨a2) (6)

where a0,a1,a2∈AP defined in Table 2 such that vego is the ego-vehicle’s velocity, and xego,
yego, xopp, and yopp are the x- and y-coordinates of the ego-vehicle and opponent vehicle,

respectively. The specification ϕ aims to ensure that “the ego-vehicle decelerates for the next

15 time steps until the probability that either the ego-vehicle comes to a complete stop or the

vehicles being greater than 0.58 meters apart is greater than or equal to 98%”, where 0.58
meters is the F1Tenth platform’s length. Note that ϕ is reevaluated for each time index, creating

an implicit global operator �[0,M]ϕ (i.e.,M is the end of mission-time).

Table 2. Atomic Propositions in Equation 6
Atomic Atomic Proposition English Translation

a0 vego[i]−vego[i−1]<0.0 Ego-vehicle is decelerating

a1 vego==0.0 Ego-vehicle is stopped

a2
√

(xego−xopp)2+(yego−yopp)2>0.58 Ego-vehicle and opponent do not collide

The ego-vehicle utilizes a Model Predictive Control (MPC) controller to minimize its deviation

from the reference trajectory (i.e., the track centerline). The overall goal of MPC is to minimize

a cost function while also following a series of given constraints (e.g., physical dynamics and

limitations of a system) [54]; therefore, the ego-vehicle’s objective cost function is as follows 4:

min
X,U

N−1
∑

k=0

(

(Xk−Xref,k)
TQ(Xk−Xref,k)+UTkRUk

)

+(XN−Xref,N)
TQ(XN−Xref,N)

(7)such that: X0=current state and Xk+1=AXk+BUk+C ∀k∈0,1,2,...,N

0.5
m

s
≤Vk≤5.0

m

s
and −25◦≤δk≤25◦ ∀k∈0,1,2,...,N

whereN is the prediction horizon, XTk =[xk,yk,ψk]
T , UTk =[Vk,δk]

T , Xref,k is the reference

trajectory, x and y are the x- and y-coordinates of the center of gravity of the vehicle in the

global frame, ψ is the angle of the vehicle relative to the x-axis, V is the velocity, δ is the

4 Additional details available at https://temporallogic.org/research/MMPRV/MPC.pdf
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steering angle, Q is a positive semi-definite weight matrix of size 3x3, and R is a positive

definite weight matrix of size 2x2. To define A, B, and C, the kinematic bicycle model derived

from [48] is discretized and linearized around a reference point to the following form:




xk+1

yk+1

ψk+1



=





1 0 −Vrefsin(ψref+βref)dt
0 1 Vrefcos(ψref+βref)dt
0 0 1









xk
yk
ψk



+





cos(ψref+βref)dt 0
sin(ψref+βref)dt 0
cos(βref)
`f+`r

tan(δref)dt
Vrefcos(βref)

(`f+`r)cos2(δref)
dt





[

Vk
δk

]

+





Vrefψrefsin(ψref+βref)dt
−Vrefψrefcos(ψref+βref)dt

−Vrefδrefcos(βref)
(`f+`r)cos2(δref)

dt





(8)

where β is the slip angle and `f and `r are the distances from the center of gravity to the front

and rear axles. The ego-vehicle utilizes the operator splitting quadratic program (OSQP) [56]

to solve the cost function (Equation 7), and the output is a sequence of states (Xk) and inputs

(Uk) for the nextN time steps that minimize the cost function. Only the first inputs are applied

to the ego-vehicle as MPC is recalculated for each timestamp (i.e., receding horizon control),

but these predicted inputs and states are utilized as the predicted velocity and trajectory for the

ego-vehicle (similar to [65]).

The opponent vehicle utilizes Rapidly exploring Random Trees (RRT∗) to select the path

that avoids obstacles and maximizes the progress along the centerline [32] and the pure pursuit

algorithm to follow this path [18]. The opponent vehicle’s current position is broadcast to the

ego-vehicle, but the ego-vehicle is unaware of the opponent vehicle’s control strategy. As a

result, the ego-vehicle utilizes a naı̈ve approach where kopp possible future trajectories of the

opponent’s vehicle are generated based on random behavior modes [11] produced by Monte

Carlo (MC) random sampling [25] over the model’s input space in Equation 8.

To determine the verdict of a2∈AP in Equation 6, the single predicted trajectory of the

ego-vehicle’s MPC controller and the kopp predicted opponent vehicle trajectories produce

1 ∗ kopp signal tuples (vego, xego, yego, xopp, yopp) for each predicted time step. R2U2’s

booleanizer [29] produces boolean atomics from these signal values to populateK=1∗kopp

Fig. 5. 90% tail latency for varying values of

K andN .

finite traces with prediction until the verdict of ϕ is

determinable. Note that equal likelihood is assumed

for this approach; therefore, the probability space

(Ωi,Fi,Pi) is defined according to Definition 12

such that ∀j∈ [0,K−1] Pi({a∈ π̂j(i)})=
1
K and

Pi({a /∈ π̂j(i)})=0.

Real-Time Feasibility. To evaluate the real-time

feasibility of our implementation, we record the 90%
tail latency over 10,000 time steps (i.e., 90% of re-

ported latencies are less than or equal to the given

latency) of the MPC controller, MC multimodal pre-

dictor, and R2U2 (i.e., the latency of MMPRV not

including the prediction time) for varying values of

K andN ; the latency increases linearly with increas-

ing values of K and N as one would intuitively

expect as shown in Figure 5. The F1Tenth vehicle

has an update rate of 20 Hz; therefore, we assume

the ego-vehicle’s control loop must also operate at
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20 Hz (i.e., every 50 milliseconds) as shown by the

dashed line in Figure 5. Even though we only con-

sider MMPRV and the associated predictors in our latency analysis, it’s important to note that the

control loop includes other processes such as sensor processing and localization. Furthermore,

although the latencies of the model predictors are specific to our implementation, MMPRV

allows for any user-defined model predictor to be utilized with any values ofK andN . While

the chosen model predictor(s) must be feasible in real-time, R2U2 must also be able to run in

real-time to produce verdicts without delay. Generally, with low values of K and N , R2U2

performs relatively quickly (e.g., if K=36 and N =max(Hp)=30, R2U2 has a 90% tail

latency of 0.759 milliseconds).

MMPRV Results. For simplicity, we will assume that when the ego-vehicle detects violations

ofϕ (Equation 6), the chosen mitigation action is to apply the brakes where a deadline d=−15 is

required. Figure 6a displays the evaluation of π,i,−15 |=ϕ for time index i reported by MMPRV

at timestamp tR. Note that for every timestamp tR, the verdict of π,i,−15 |=ϕ is reported

fifteen time steps before i such that i= tR−d= tR−(−15). For example, when tR=148,

the verdict was reported for i=163 such that 163=148−(−15). Figures 6b, 6c, 6d, and 6e

display trajectory predictions with aN=max(Hp)=ϕ.wpd−d=15−(−15)=30 that were

utilized to populateK=216 finite traces with prediction for evaluation of π,i,−15 |=ϕ. Note,

thatK=216 andN=30 meets the real-time requirement according to Figure 5.

(a) Results for π,i,−15 |=a0 U[0,15] P0.98(a1∨a2)

(b) tR=130 (c) tR=150 (d) tR=170 (e) tR=200

Fig. 6. MMPRV results. (a) displays the verdicts for time index i returned at timestamp tR. (b), (c), (d), and

(e) show the trajectory predictions for the ego-vehicle (blue) and opponent vehicle (orange) withN=30.

4.2 Argoverse Autonomous Driving

SOTA Multimodal Models. The Argoverse motion forecasting dataset [14] contains 323,557
traffic scenarios captured in Miami and Pittsburgh. Each scenario captures five seconds at 10 Hz

such that each model is expected to predict the future three seconds (i.e.,N=30) given the past

two seconds of observed trajectories. We examine six SOTA open-source deep neural network

(DNN) multimodal predictors trained and evaluated on the Argoverse dataset: LaneGCN [37],

LAformer [40], mmTransformer [41], Lane Transformer [62], HiVT-64 [67], and HiVT-128

[67]. Each of these DNNs produces k = 6 multimodal predictions for each vehicle in the
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traffic scene, and Table 3 displays the accuracy of these predictions based on standard metrics.

The minimum Average Displacement Error (minADE) and minimum Final Displacement

Error (minFDE) are the average and endpoint L2 distance errors, respectively, between the

best-predicted and ground truth trajectories, and the Miss Rate (MR) is the percentage where

none of the predicted trajectories have an endpoint L2 distance error within two meters from the

ground truth. Table 3. Accuracy on Argoverse test set [14] (k=6)

Model minADE minFDE MR

LaneGCN[37] 0.870 1.362 16.2%
LAformer[40] 0.772 1.163 12.5%

mmTransformer[41] 0.844 1.338 15.4%
Lane Transformer [62] 0.866 1.316 15.2%

HiVT-64[67] 0.807 1.243 14.0%
HiVT-128[67] 0.774 1.169 12.7%

Real-Time Feasibility. Deep learning mod-

els are known to have large variations in

latency based on several factors such as in-

put/output data, model architecture, hard-

ware platform, etc. [39]; therefore, we de-

ploy all six models on four different hard-

ware platforms: a laptop with a 2.8 GHz

Quad-Core Intel® Core i7 CPU (Laptop CPU), the NVIDIA® Jetson Xavier NX with its GPU

enabled (Jetson GPU), a desktop with a 3.00 GHz 8-core Intel® Xeon® Gold 6354 CPU (Desk-

top CPU), and that same desktop with the NVIDIA® A40 GPU enabled (Desktop GPU). To

simulate predicting the multimodal trajectories of 16 vehicles in a given city traffic scene, each

of these models (except HiVT-64 and HiVT-128) are run with a batch size of 16. HiVT-64

and HiVT-128 uniquely compute the multimodal predictions for all agents in a given traffic

scene within a single forward pass; therefore, they are run with a batch size of one to provide an

accurate comparison. The latencies of these models are captured utilizing the official open-source

implementations, and the standard 90% tail latency [49] is reported in Figure 7.

Fig. 7. 90% tail latency of SOTA models on the Argoverse validation set [14] (k=6)

Since the Argoverse dataset was captured at 10 Hz, we assume the control loop must also

operate at 10 Hz (i.e., every 100 milliseconds) as indicated by the dashed line in Figure 7. While

we only analyze the latency of the multimodal predictor, the control loop also includes tasks such

as localization, object detection, lane detection, planning, etc. [39]. Consequently, these SOTA

multimodal predictors must operate with a latency much less than 100 milliseconds to allow

these other tasks enough time to execute; therefore, according to Figure 7, there are only a few

cases that meet this real-time requirement. When these SOTA DNNs target the NVIDIA® Jetson

Xavier NX, they all fall short of this real-time requirement; instead, these models generally

require the computing capabilities of the Desktop GPU to be feasible in real-time.

To compare our physics-based predictor in Section 4.1 and the SOTA DNNs, we reran the

DNNs on the NVIDIA® Jetson Xavier NX to simulate predicting the multimodal trajectories of a

single opponent vehicle (i.e., batch size of one), and mmTransformer had the lowest latency with
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37.8 milliseconds. Therefore, in order to achieve SOTA accuracy, we must experience a 55x

slowdown from our Monte Carlo approach (i.e., Figure 5:K=6, N=30 7→0.69 milliseconds).

MMPRV Results. MMPRV determines the verdict of the following safety specification by

deadline d=0 (withmax(Hp)=30):

ϕ=P0.90(�[0,30]a), where a=
√

(x1−x2)2+(y1−y2)2>1.7

where a is an atomic proposition and x1, y1, x2, and y2 are the x- and y-coordinates of Vehicle

1 and Vehicle 2, respectively. The specification ϕ aims to ensure that “the probability of the

distance between two vehicles being greater than 1.7 meters for the next 30 time steps (i.e., next

3 seconds) is greater than or equal to 90%”, where 1.7 meters is the average width of a vehicle.

Fig. 8. Multimodal trajectory prediction for

Vehicle 1 and 2. sj is the trajectory produced

by the jth multimodal prediction.

The mmTransformer is utilized to predict kveh1=
6 and kveh2 = 6 multimodal trajectories for two

nearby vehicles labeled Vehicle 1 and Vehicle 2,

respectively. This produces kveh1∗kveh2=36 sig-

nal tuples (x1,y1,x2,y2) which are input as raw

float values into R2U2’s booleanizer [29] to populate

K = 36 finite traces with prediction. Each multi-

modal trajectory produced by mmTransformer also

has an associated probability; therefore, the probabil-

ity space (Ωi,Fi,Pi) is defined according to Defini-

tion 12 such that ∀j∈ [0,K−1] Pi({a∈ π̂j(i)})=
Pr(x1,y1) ∗Pr(x2,y2) and Pi({a /∈ π̂j(i)}) = 0
where Pr(x1,y1) and Pr(x2,y2) are the probabili-

ties of (x1,y1) and (x2,y2) being the ground truth.

Figure 8 illustrates an interaction between Vehicle

1 and 2 at an intersection that results in π,i,d 6|=ϕ.

According to the predictions of mmTransformer, Vehicle 1 might make a left turn (with

Pr(x1,y1)=0.9687) that will result in a collision with Vehicle 2 whose predicted trajectories

are straight. Note that the verdict is still a predicted result that is only as accurate as the prediction.

5 Conclusion and Future Work

MMPRV allows for any user-defined model predictor, including both unimodal and multimodal

model predictors, while guaranteeing a verdict for a given PMLTL specification by a given

deadline. The additional support of multimodal prediction allows for applicability to complex

systems where multiple future behavior modes are plausible. As shown through our case studies,

SOTA DNN multimodal predictors struggle to meet real-time requirements, especially when

targeting embedded computing platforms. This motivates future work to continue investigating

computationally lighter methods (e.g., Interacting Multiple Model Kalman Filters [31] or

maneuver-based recurrent neural networks [21]) and investigate potential avenues for acceler-

ation of these SOTA DNNs through techniques such as pruning or precision reduction [57].

Additionally, while we primarily focused on quantifying probabilistic multimodal predictions,

future work includes quantifying distributed signal values within PMLTL specifications through

techniques such as chance constraints [28,34,36] and conformal prediction [38].
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