Verifying Multi-Vendor IoT Deployments using
Conditional Tables

Mubashir Anwar![0000-0003-1328-1916] \[atthew Caesar![0000-0001-5955-9229]
and Anduo Wang?[0000—0002—1078—107X]

! University of Illinois Urbana-Champaign, Urbana IL, 61801, USA
{manwar,caesar}@illinois.edu
2 Temple University, Philadelphia PA, 19122, USA
anduo . wang@gmail.com

Abstract. In recent years, [oT devices have seen widespread deploy-
ments in critical environments such as healthcare, military, and home
security systems. These deployments often involve managing a hetero-
geneous collection of devices by non-expert users, increasing the risk of
errors that could lead to significant monetary and physical damage. Un-
fortunately, such deployments face unique challenges such as incomplete
visibility (e.g., need to interoperate with closed software systems), incom-
patibility (e.g., need to interact across different protocols and control
logic created by different vendors), and management complexity (e.g.,
need to express complex and diverse intentions in ways that can be un-
derstood by inexperienced users). While system verification has been
crucial in catching errors early in other domains, these challenges com-
plicate its application in IoT. To perform verification under these condi-
tions, we propose Pyotr, a system based on a mathematical framework
from the theory of database systems called incomplete databases. Pyotr
can integrate data from heterogeneous devices, perform data analysis
under failures and uncertain knowledge, verify intended behavior using
easy-to-use database-styled queries, and provide a generalized algebraic
framework for reasoning about IoT systems in a rigorous and intuitive
way. Our experiments on large IoT networks show that Pyotr can scalably
answer complex queries on thousands of connected IoT devices within a
few milliseconds.

Keywords: Formal verification - IoT - Conditional Tables.

1 Introduction

In recent years, Internet of things (IoT) has experienced a tremendous surge in
growth. Today, there are over 15 billion IoT devices in the world, and this figure
is expected to double by 2030 [38]. These devices find applications in vital sec-
tors such as healthcare, military, and residential security. These domains involve
extremely critical operations such as collection of sensitive data and automa-
tion of actuators capable of impacting the physical environment in dangerous
ways. Failures and bugs in devices in these domains can have devastating con-
sequences. For instance, a fault in a node in an IoT deployment for healthcare

2 Anwar et al.

could lead to the leakage of critical patient information to unintended nodes or
prevent it from reaching its intended destination (e.g., a doctor), posing risks to
privacy and potentially endangering patients’ lives. Similarly, incorrect control
logic implemented by a home owner for security could result in issues like doors
getting unlocked at unintended times or cameras failing to capture events when
they should, rendering the house susceptible to intruders. As IoT devices be-
come more integrated into critical domains, their capacity to inflict severe harm
in both the digital and physical realms grows.

The awareness of the risks of automation in these critical systems is not new.
When computers were first introduced in these domains, the dangers of errors
in software were acknowledged. New debugging and verification techniques were
introduced to make software more reliable. With the increasing influence of IoT
and its capacity to introduce substantial risks, ensuring the safety and relia-
bility of IoT systems has become a crucial imperative. However, IoT systems
present unique challenges since they involve system and protocol heterogeneity,
inexperienced users, and a lack of complete visibility into the devices:

System and protocol heterogeneity: IoT devices exhibit significant het-
erogeneity, making it hard to have a single framework that encompasses all
formats. Many deployments involve devices from various vendors, each utilizing
its own control language, protocols, management interface, and have differences
in the granularity, units, and representation of collected data. Moreover, with
high rate of innovation in IoT, the heterogeneity continue to grow, increasing the
complexity of deployments. This not only makes it difficult to control IoT devices
to work together, but also makes it difficult to manage them and ensure their
safety. In a multi-vendor IoT deployment, understanding and reasoning about
the collective behaviour of devices is difficult, making it hard to guarantee that
the devices function as intended.

Inexperienced users: IoT devices are typically configured and adminis-
tered by non-technical end users. They are used in places like enterprises, home
environments, and in field applications such as agriculture where operators may
have limited technical expertise. In these settings, users often lack the skills to
program and manage the devices correctly, which can lead to errors in device
programming and management. The absence of standardization aggravates this
issue, as even if a user-friendly interface exists in one device, it may differ or
be nonexistent in others. This lack of consistency complicates the user experi-
ence, adding another layer of difficulty when interacting with IoT systems. As
IoT devices increasingly permeate various domains, they are being utilized by
more and more individuals without formal training, making it challenging to
guarantee proper configuration and effective troubleshooting. This raises serious
concerns regarding safety and security of IoT deployments.

Lack of complete visibility: IoT deployments often include energy-constrained
wireless devices vulnerable to failures and faults. They suffer complex failure
modes such as Byzantine faults, communication faults, and timing failures. More-
over, the internal code of these devices is often hidden, making it harder to debug
them. Under such challenging conditions, pinpointing the root cause of issues and

Verifying Multi-Vendor IoT Deployments using Conditional Tables 3

fixing them is difficult. Unfortunately, we also lack comprehensive information
about the faults, which makes it difficult to understand the situation. For in-
stance, some devices in an [oT network may remain operational but are rendered
inaccessible due to a variety of reasons (e.g., wireless interference, resource con-
straints, conserving battery by avoiding information transmission). Assuming
the devices have failed would be premature, as they might still be functioning in
accordance with our intentions. However, they might be malfunctioning or in-
tentionally attempting to disrupt the system, potentially as a result of malicious
user activity. Thus, troubleshooting the problem or ensuring that the system
behaves as expected becomes challenging when we lack awareness of a portion
of it. Given the critical nature of many IoT domains and the unreliability of
methods to access all relevant information, it becomes crucial to model deploy-
ments even when certain details are inaccessible. The lack of complete visibility
in IoT deployments, compounded by the presence of energy-constrained devices
susceptible to various complex failure modes, poses a significant challenge to
data accessibility, which is vital for ensuring the safety and reliability of IoT
systems.

To tackle the challenges in heterogeneous IoT deployments, we introduce
Pyotr, a user-friendly system for reasoning and verification of IoT deployments.
Pyotr is based on the theory of incomplete databases [22] and uses database-
styled semantics to represent the behaviour of IoT devices, which allows users
to verify policies and ask “what-if” questions using intuitive queries. Database
theory has long grappled with the issue of data inconsistencies and offers mul-
tiple user-friendly interfaces for inexperienced users. Furthermore, incomplete
databases [22] have the capability to reason over missing information and inte-
grate data from heterogeneous sources. These inherent qualities position them
as excellent candidates to serve as a foundational basis for a reasoning system
for ToT devices. At its core, Pyotr uses conditional tables [22] to represent data
(e.g., collected from sensors) and rules (e.g., event condition-action (ECA) rules,
forwarding rules). These tables effectively store incomplete information through
conditions alongside regular data, making them well-suited for representing data
and rules in IoT devices. Conditional tables can be queried using traditional re-
lational algebra, allowing users to formulate questions and policies as database
queries. A variety of user-friendly visual methods [25, 33, 37] have been pro-
posed to query over databases, which makes Pyotr easy to use for non-expert
users. Moreover, conditional tables can represent missing information and can
be used for data integration in heterogeneous environments. Thus, they pro-
vide a generalized relational framework for reasoning about various properties
of TIoT devices, which can simplify development, analysis, and synthesis of other
advanced functions for IoT systems. Pyotr is designed to efficiently store, manip-
ulate, and reason over conditional tables. It extends concepts developed in [27]
to the domain of IoT. To handle conditional tables, we have developed a query
engine, a compiler to parse IoT rules and data, integrated different reasoning
engines (e.g., Binary Decision Diagrams (BDD), Satisfiability Modulo Theories
(SMT), Difference of Cube (DoC) [30]), and implemented query optimizations

4 Anwar et al.

such as semi-naive evaluation. We have also modeled diverse use cases for verifi-
cation in IoT deployments using conditional tables and conducted experiments
on three scenarios. The results indicate that Pyotr can verify IoT deployments
with minimal overheads. Pyotr also retains desirable scalability properties even
in scenarios where portions of devices are inaccessible. Additionally, our evalu-
ation emphasizes the significant impact of the chosen reasoning engine on the
performance of conditional tables, illustrated through a comparison of three im-
plemented engines.

The rest of the paper is structured as follows: Section 2 presents motivating
examples of errors in IoT deployments, outlining their distinct challenges. In
Section 3, a theoretical exploration of conditional tables is provided, accompa-
nied by examples illustrating their application in modeling and verifying IoT
deployments. Section 4 describes the architecture and implementation of Pyotr,
including the optimizations that we made. Section 5 presents an evaluation of
the performance and scalability of Pyotr for different IoT verification tasks. We
discuss related work in Section 6 and conclude in Section 7.

2 DMotivating Examples

In this section, we use examples to illustrate the necessity of verification in IoT
devices, highlighting the distinctive challenges associated with it. Our examples
are drawn from a Fire Suppression System in a factory and IoT networks in
health monitoring. The next section shows how conditional tables can model
and solve these problems.

2.1 Example 1: Configuration errors

Consider a Fire Suppression System installed in a factory, comprising a smoke
sensor equipped with a connected light, linked to both an alarm and water
sprinklers. The user configures the smoke sensor using event-condition-action
(ECA) rules, as shown in the first half of Fig. 1. The user intends for the light
to activate only during nighttime when smoke is detected, aiming to preserve
battery life by preventing light activation during daylight hours. An alarm is
designed to alert users upon the detection of any type of smoke, while water
sprinklers automatically engage when smoke levels are elevated (e.g, at high
level). However, there is a flaw in the control logic. The user desires the alarm
to activate whenever noticeable smoke is detected, irrespective of the time of
day. Although rules 3-5 seem to address this, rule 3 is limited to nighttime. This
limitation could result in delayed fire response during daylight hours, posing a
significant risk to factory employees. Even in this simple example, the bug is not
easy to spot manually. Ideally, we want the user to ask a simple query such as
“Does the alarm always sound whenever there is any noticeable smoke?”.

2.2 Example 2: Integrating inconsistent sensor data

Now, let’s extend the previous scenario by incorporating an additional smoke
sensor from a different vendor into the example. With two sensors now in play,
both contribute to the control of the alarm and sprinkler system. The second

Verifying Multi-Vendor IoT Deployments using Conditional Tables 5

/* Rules for the first device x

IF smoke=low THEN light=off, alarm=off, sprinkler=off

IF time<20:00 THEN light=off

IF smoke=mid,time>20:00 THEN light=on, alarm=on, sprinkler=off
IF smoke=high,time>20:00 THEN light=on, alarm=on, sprinkler=on
IF smoke=high,time<20:00 THEN light=off, alarm=on, sprinkler=on

+* Rules for the second device */
IF smoke=low THEN lights=off, alarm=off, sprinkler=off
IF time<20:00 THEN light=off
IF smoke=high,time>20:00 THEN light=on, alarm=on, sprinkler=on
IF smoke=high,time<20:00 THEN light=off, alarm=on, sprinkler=on

Fig. 1: Control rules for a Fire Suppression System

Fig.2: Healthcare IoT network to monitor patients in
critical conditions

smoke sensor is less accurate, and can only discern the presence or absence of
smoke without distinguishing between mid and high smoke levels. Fig. 1 shows
the rules for the second device. To verify the collective behavior of the two
devices, establishing a standardized and accurate method for queries becomes
important. However, addressing the inconsistency in the accuracy of the devices
poses a challenge. For instance, how do we handle queries concerning mid levels
of smoke when the second device lacks a conception of such a level? One straight-
forward solution involves encoding into our model that high levels of smoke for
the second device should encompass both mid and high levels. However, imple-
menting this requires a method that seamlessly incorporates such information
when integrating inconsistent data from multiple devices.

2.3 Example 3: Reachability analysis involving inaccessible nodes

While the previous two examples show the potential for bugs in control logic of
individual IoT devices, there are further issues that emerge in IoT deployments.
Consider a healthcare system that monitors the vitals of all patients in criti-
cal conditions, as shown in Fig. 2. Information about the patients is regularly
collected by monitoring devices (devices A,B, and C) and then sent to the main
server in the hospital, which uses the data to decide if a patient needs attention.
The monitoring devices are connected to each other via a reliable wireless con-
nection, forming a mesh network. Relevant doctors are alarmed automatically
via the main server if a patient needs urgent attention. Information about the
patient is also accessible from a computer inside the room where the patient re-

6 Anwar et al.

sides. For privacy, these computers (laptops P,Q, and R) only have access to the
local patient’s data, and do not have access to the data of other patients. Since
this is sensitive data, it should only be allowed to traverse designated nodes.
Moreover, since the data is critical to patient’s health, the network should be
resilient to failures. Thus, the state of the network is regularly verified by a
centralized verifier (not shown in the figure) by collecting the data plane state
of the network. Consider a scenario where a new bed is added to the hospital.
Alongside it, a new monitoring device, D, and a computer, S, are added to the
same room. With the new devices added, changes are made to the network. The
old path to reach the main server is shown as solid arrows in Fig. 2, while the
new path is shown with dotted arrows. The verifier now runs on the new state to
make sure that sensitive data never reaches unintended locations and there are
no loops or blackholes in the network. However, due to poor wireless signal, the
verifier is unable to get the dataplane state of device A. How can the verifier then
check for network invariants? If we assume the node has failed, we can proceed
to verify the remainder of the network. However, what if the node has not failed
but is merely inaccessible to us? This situation could result in sensitive traffic
being forwarded to unintended nodes or even cause certain paths to become un-
reachable from the central server. In the worst-case scenario, we have to assume
that the node may forward traffic to any of its connected nodes. Considering the
frequent inaccessibility of IoT devices due to issues such as wireless connectiv-
ity problems, resource constraints, and battery-saving mechanisms, we need a
reasoning method that remains effective even when there is missing information.

3 Pyotr: Modeling with conditional tables

In this section, we introduce conditional tables [22] and illustrate how they can
be employed to model various problems in IoT deployments. We use examples
from the preceding section to demonstrate their application.

3.1 Conditional Tables

Conditional tables [3,22] (c-tables for short) provide a strong representation sys-
tem for incomplete information in relational databases. They support standard
operations in relational algebra including projection, selection, union, join, and
renaming. They were proposed to process data when some of it is missing, im-
precise, or has inconsistencies. C-tables generalize relations by allowing values in
relations to be unknown. Each unknown value is represented by a variable, which
we call a conditional variable (c-variable for short). Valuation of c-variables (i.e.,
assigning each c-variable to a concrete constant) in a c-table results in a single
instance of a relation. Thus, each c-table represents a set of possible instances
that the relation can take. In addition to c-variables, each tuple t in the relation
is associated with a local condition® ¢(t), which is a mathematical formula that
defines the set of possible values that the c-variable in that tuple can take. For
a given valuation v of c-variables, a tuple appears in the result only if v(¢(t)) is
satisfiable.

3 C-tables also include global conditions @7 over c-variables, which are just local
conditions applied to every tuple in the relation T.

Verifying Multi-Vendor IoT Deployments using Conditional Tables 7

3.2 Querying over conditional tables:

Since c-tables support standard operations in relational algebra, they can be
queried using most relational database query languages. Numerous efforts in the
past have focused on enhancing the user-friendliness of database queries. Visual
Querying Systems [25, 33,37], for instance, have been suggested to enable the
construction of queries through visual interfaces, proving to be effective tools
for querying and analyzing databases. [7]. Techniques such as employing natural
language to form database queries [28,39,41], query completion [18], and auto-
matic query recommendation [12] have also been proposed to allow non-technical
users to easily use databases. These approaches could potentially be employed to
establish a user-friendly interface for conditional tables. As a preliminary step,
Pyotr uses Datalog, a rule-based conjunctive query language, as the reasoning
language for Pyotr. Datalog has found use in many applications such as declara-
tive networking [2,29], program analysis [20, 26, 35], network verification [15,30],
and big data analysis [34,40]. Its adoption is attributed to its clear and sim-
ple syntax, offering a declarative abstraction for querying relational structures.
Below, we provide a formal description [3,27] of using a rule-based conjunctive
query over incomplete databases:

Definition 1.1: Let R be a database schema. A rule-based conjunctive
query over R is an expression of the form

H(u):- Bi(uy),..., Bp(uy) (1)

where n >= 0, B;’s are relation (predicate) names in R, and H is a relation not
in R; and u and u;’s are free tuples that can either use constants in the attribute
domain of R (denoted by dom) or variables. Let dom® be the domain of c-
variables, which contains both the constants and the c-variables in the attribute
domain of R. We use var(q) to denote all variables that appear in the query q.
The subexpression Bj(uy), ..., By (uy) is the body of the rule, and H(u) is the
head. A rule generates new facts by valuation of variables — a function (denoted
by v) from var(q) to dom®, whereby constants map to themselves or other c-
variables. If one can find values that hold for the body, then one can derive the
head. For conjunctive queries, the head is generated by performing a table join of
all the tables in the body. Variable valuation finds assignments for the variables
in a rule, whereby variables can map to both constants and c-variables. The
meaning of a query over c-tables can be defined by partial variable valuations.
Let q be a conjunctive query given by the foregoing rules, and let I be a database

instance (i.e., c-table) of R, the query result of I under q is:
q(I) = {v(u)|v is a partial valuation and
v(u;) € I for each i € [1,n]}.

(2)

The partial valuation function for c-tables is governed by the following rules:

1. Variables are assigned to constants or c-variables.
2. A constant c is assigned to either itself, or to a c-variable Z if the constrain
% = ¢ does not contradict &’s local condition.

8 Anwar et al.

Time Smoke Light Alarm Sprink Condition
T s 0 0 0 T =Lov Time Smoke Light Alarm Sprink Condition
£ s 1 1 0 8 = MID&E > 20 : 00 T = 0 0 0 5= Lov
s 1 1 1 8 = HIGH&E > 20 : 00 £ s 1 1 1 § = HIGH&E > 20 : 00
[0 1 1 & = HIGH&E <= 20 : 00 £ s 0 1 1 § = HIGH&E <= 20 : 00
£ s 0 0 0 DEFAULT £ s 0 0 0 DEFAULT
(a) Smoke Sensor 1 (b) Smoke Sensor 2

Alarm Sound Condition Sprink Water Condition

0 0 0 0

1 1 1 1

(c) Alarm (d) Sprinkler

Table 1: C-tables representing the control logic of sensors in fire suppression system

The result of a partial valuation is another c-table in which the relevant local
conditions incorporate the restrictions imposed by the partial valuation function.
Specifically, in the context of a table join, the local condition for each tuple in the
resulting table is a conjunction of the joining conditions and the local conditions
of all the corresponding joined tuples.

3.3 Models

In this section, we show how problems listed in Section 2 can be modeled and
solved using conditional tables.

Example 1: Configuration errors Pyotr expresses rules of IoT devices
as conditional tables. Most IoT devices use event condition-action (ECA) rules
to configure the control logic. These rules consist of trigger-action pairs, often
composed as If-This-Then-That (IFTTT) [21,36] styled rules. Pyotr translates
these rules into conditional tables. The triggers and actions become columns in
a conditional table, and local conditions are used to represent sets of values for
each trigger-action pair. Table 1a and 1b show the translation of the program
for the smoke sensors in Fig. 1 as c-tables. The first two columns, Time and
Smoke represent the triggers of the device. These triggers are specified after “IF”
in IFTTT-styled rules. The next three columns, Light, Alarm, and Sprink(le)
represent the actions of the device. A value of 0 indicates off, while a value
of 1 indicates on. The condition column captures the local conditions of rules
for both the triggers and the actions. The DEFAULT condition in the last row
represents the negation of all previous conditions. This can be thought of as an
“else” part, which applies when none of the other triggers apply. In this example,
the light is linked to the smoke sensor and is directly governed by it. In contrast,
the water sprinklers and alarm function as distinct devices with their individual
control logic, stored as c-tables. Table 1c shows the logic of the alarm system:
the trigger “alarm” from the smoke sensors control the speakers. The c-table for
the sprinkler (Table 1d) is similar.

‘V(t,s,l,a,sp) :- Smoke(t,s,l,a,sp)[s >= mid], Alarm(a,0)

Listing 1: Datalog query to verify that alarm always sounds when the smoke levels
are at or above mid

To verify intentions over this system, the database can be queried. For exam-
ple, the query “Does the alarm always sound whenever there is any noticeable

Verifying Multi-Vendor IoT Deployments using Conditional Tables 9

Time Smoke Light Alarm Sprink Condition Time Smoke Light Alarm Sprink Condition
T s 0 0 0 5 =Lov T s 0 0 0 5= Lov
t s 1 1 0 § = MID&E > 20 : 00 t s 1 1 1 § = HIGH&E > 20 : 00
t s 1 1 1 § = HIGH&E > 20 : 00 t s 0 1 1 § = HIGH&E <= 20 : 00
t s 0 1 1 & = HIGH&E <= 20 : 00 t s 1 1 1 (8 = HIGH V s = MID)
t 8 o 0 0 s = LOW &t > 20 : 00
t s 1 1 1 & = HIGH&E > 20 : 00 t s 0 1 1 (8 = HIGH V s = MID)
t s 0 1 1 & = HIGH&E <= 20 : 00 &t <=20:00
i3 8 0 0 0 DEFAULT € 8 0 0 0 DEFAULT
(a) Incorrect Data Integration (b) Correct Data Integration

Table 2: C-tables after integrating the two smoke sensors in the fire suppression system

smoke?” can be translated into the query as shown in Listing 1. The head of
this query, V represents a violation of this intention. The query asks whether we
can find tuples such that even when the value of the column smoke in the table
Smoke is higher than mid (e.g. either mid or high) the alarm does not produce a
sound (has value = 0, as shown as the last attribute of the Alarm relation). Ad-
ditionally, we can extract the tuples that are responsible for this violation. The
table violation will contain the last tuple of the smoke sensor, with the DEFAULT
condition that (after simplification) translates to 8 = MID&E <= 20 : 00. This tells
the user exactly when (for what triggers) the sensor behaves unexpectedly: when
the smoke is at level mid during day time. In this way, conditional tables allow
users to verify expected device behaviors through simple SQL queries, making
it straightforward to identify rule violations and unexpected responses in the
system.

Example 2: Integrating inconsistent sensor data In this example, re-
member that there are two smoke sensors with differences in the granularity of
smoke levels. This is an example of inconsistency in data. C-tables were origi-
nally proposed to deal with interoperability in heterogeneous data sources with
inconsistencies by performing data integration. To analyze the behaviour of the
system with the two sensing devices, a naive method would be to represent the
combined behaviour as a single conditional table, as shown in Table 2a. However,
this is incorrect, as it does not capture the incompatibilities in the accuracy of
the two devices. Running the verification query from Listing 1 on this incorrect
table would lead to the same output as before: a violation of the alarm policy,
which is misleading. The correct way to integrate the data is to capture the fact
that a smoke value of high for sensor 2 represents a value of either high or mid
in terms of the accuracy of sensor 1. Such incompatibilities are easily fixed using
conditional tables, since they can naturally represent incomplete information. A
correct integration of control rules is given in Table 2b. The rules from second
device denoting & = HIGH are replaced with the condition § = HIGH V § = MID, cor-
rectly taking care of the incompatibility. The query in Listing 1 does not show
any violation, since sensor 2 is correctly programmed and it masks the bug in
sensor 1. Conditional tables thus enable accurate integration of inconsistent sen-
sor data, allowing users to capture device-specific variations and ensuring that
verification queries reflect correct system behavior

Example 3: Reachability analysis involving inaccessible nodes The
final example demonstrates the ease of modeling uncertainty with conditional
tables. Pyotr can reason about devices even when one or more of them are inac-

10 Anwar et al.

Node Destination Source Output condition

X main oY 5} Ga € [B,D,P] |Node Destination Source Path condition

B main A D A main iy opl op € [B,D,P,iy = A

B main B B o € [q,D] B main A o}, D] op € [B,D,P],ij = A,0p =B

D main ip c ip € [A,B] D main ip S, Cl oy € [B,D,P],ij = A,ij = ip, o =D

D main D oh o € [C, 8] C main i o}, C, main] ic € [A,B,D],0p =D,ig = A

c main ic main ig € [A,B,D] D main ip o, D, C] ip € [A,B], oy = B,ip = A,i} = ip

C main 9 ¢ o¢ € [main,R] |C main ic op, D, C,main] ig € [A,B,D], oy =B,ip = A,ic =4
(a) Forwarding rules F (b) Partial results of R

Table 3: C-tables for reachability analysis.
cessible. The forwarding table of the example from Section 2.3 can be encoded as
a c-table as shown in Table 3a. For instance, the third tuple conveys that when
Node B receives a packet with Destination main and source B, it sends the packet
to the Output node D and Q. It’s noteworthy that despite being unable to access
the forwarding state of node A, we can still incorporate any known information.
For example, we know that the only devices in the range of (connected to) A are
B,D,P. This is encoded in as conditions in the first tuple of the forwarding table.

R(n, "main", A, [o]) :- F(n, "main", A, o)
R(n, "main", A, p || [02]) :- R(n, "main", A, p)[o2 ¢ pl, F(pl-11,
"main", A, 02)

Listing 2: Datalog query to perform reachability analysis

A reachability analysis of the network can be done by using the query shown
in Listing 2%. The forwarding table is stored in relation F. The datalog program
calculates paths from all nodes to the destination main, and stores them in table
R. Partial results (Table 3b) reveal that for packets with source A and destina-
tion main, two possible paths exist: (i) A— > D— > C— > main (fourth tuple) and
(ii) A— >B— >D— > C— >main (sixth tuple). From this result, we can see that
these packets do not reach any other private computer. With c-tables, we were
able to perform this analysis even when node A was inaccessible, allowing early
verification of the network.

4 Pyotr: Architecture and Implementation

In this section, we outline the architecture and implementation of Pyotr, a system
developed for the storage, management, manipulation, and querying of condi-
tional tables, specifically tailored for the verification of IoT deployments. Pyotr
is engineered to efficiently handle queries over incomplete databases while main-
taining the semantics of database query languages that are grounded in relational
algebra.

4.1 Architecture and Workflow

Fig. 3 shows the architecture and workflow of Pyotr. By utilizing a Database
Management System (DBMS) for the storage and querying of tables, Pyotr cap-
italizes on the extensive advantages provided by these systems in the admin-
istration of databases, including storage on file systems, managing distributed
computing, ensuring security, and performing query planning and optimization.
Pyotr can profit from the efficiency and robustness of widely-used and highly

4 The operator || is used to concatenate two lists. The attribute p[—1] represents the
last value of the list p.

Verifying Multi-Vendor IoT Deployments using Conditional Tables 11

oo
o -
ppng Réas(_mmg
— Engines
Integration| [Database
Rules Schema

Formatied
Conditions | @|Simplified
Conditions

P
. Delete,
Condition] select)
o >
ue: Formatted > >
@ |Simplificd

Translator Formatted
c-tables SQL
Data J o P (Insert,
Update,

Formatted
SQL
Conditin, |/ Database

b7
soL@ Coordinator |

so1
@® updates

C-table .
Evaluator -
Results

1o D
. (] -] Query
Queries ™| Query Interface Suery > Engine
A | - Program

Pyotr \ [Y- — DEMS

Fig. 3: Pyotr architecture and workflow

optimized DBMSes that already offer support for a diverse range of systems.
Pyotr interacts with the DBMS through a Database Coordinator, which estab-
lishes and maintains a connection to the database. The Database Coordinator
facilitates communication with the DBMS by using SQL queries to manage and
retrieve data. Given that most popular DBMS systems support SQL queries,
Pyotr is designed to be agnostic to the underlying DBMS. This flexibility allows
Pyotr to seamlessly integrate with various DBMSes, providing versatility and
adaptability across different environments.

Fig. 3 shows the workflow for both storing and querying conditional tables®.
The blue squares mark the steps for storing rules and data obtained from IoT
devices. The black circles mark the steps for querying conditional tables.

Workflow for storing c-tables 1, The rules (e.g., ECA rules, forwarding
rules) or data (e.g., collected measurements from sensors) from each IoT de-
vice is sent to the Compiler, which converts them into c-tables. At this stage,
there is a single c-table per device. 2, The c-tables are sent to the Synthesizer.
The Synthesizer uses specified integration rules to integrate the c-tables. This is
where inconsistencies between the devices are resolved. Additionally, there is an
optional grouping of c-tables based on the provided database schema. This in-
volves storing same attributes from different devices in a single table to simplify
queries. For instance, data from two distinct temperature sensors can be grouped
into a single c-table. 3, The Synthesizer forwards the integrated c-tables to the
Translator. In this phase, the translator formats the tables according to the
representation of c-variables in use. This step is essential because DBMS lacks
the conception of c-variables. The details of various c-variable representations
are explored in Section 4.2. 4, The Database Coordinator stores the formatted
c-tables into the DBMS using SQL queries for data insertion.

Workflow for querying c-tables 1, User-specified queries and policies are
transmitted to the Query Interface, where they are processed to generate a pro-

5 For simplicity, we do not show the interaction between the Database Coordinator
and the DBMS in the workflow steps.

12 Anwar et al.

gram in the specific database query language in use (e.g., datalog). 2, The pro-
gram is sent to the Query Engine, where it is converted into SQL queries. These
SQL queries use the selection operation to derive new tables (e.g., facts) and of-
ten involve table joins. 3, The SQL queries are sent to the Translator, where they
are formatted based on the c-variable representation in use. 4, The Database Co-
ordinator uses the formatted SQL to run the queries on the database. 5, Database
Coordinator then sends the generated tables to the C-table Evaluator. The job
of the C-table Evaluator is to handle the conditions in the tables. It extracts the
conditions from the results and sends them to the Translator. 6, The Translator
formats conditions based on the employed reasoning engine (e.g., Satisfiability
Modulo Theories (SMT) solver) and the c-variable representation in use. This
flexibility enables Pyotr to employ various reasoning engines for condition evalu-
ation, with the integration of a new engine requiring modifications solely to the
Condition Translator. 7, The formatted conditions are then transmitted to the
active reasoning engine, which evaluates their satisfiability. In the case of satisfi-
able conditions, certain reasoning engines can simplify the conditions by identi-
fying parts that constitute a tautology or are unsatisfiable, thereby accelerating
future computations on that condition. 8, Simplified conditions undergo transla-
tion back into the format understandable by the DBMS through the Translator.
However, this step is bypassed for unsatisfiable conditions and reasoning engines
that do not perform simplification. In such cases, the determination of satisfia-
bility is directly forwarded to the C-table Evaluator (step 9). 9, In the case of
simplified conditions, the C-table Evaluator constructs SQL updates to modify
the conditions within the database. Conversely, for unsatisfiable conditions, the
C-table Evaluator generates SQL delete queries to remove the corresponding
tuples. To enhance performance, all updates to one table are consolidated into
a single batched SQL query. 10, The Database Coordinator executes the SQL
queries received from the C-table Evaluator on the DBMS, thereby updating the
tables generated in step 4. 11, The revised tables are then returned to the Query
Engine. If a fixed point is achieved (i.e., when no new tuples are generated)
the computation concludes, and the final results are dispatched to the user (not
illustrated in the diagram). Alternatively, if a fixed point is not reached, steps
3-11 are iteratively repeated until convergence.

4.2 Implementation

In this section, we describe the important implementation details of Pyotr. As
outlined in Section 3, we adopt datalog as the query language for Pyotr. The
practical implementation of conditional tables poses several challenges: (1) effec-
tively storing conditional tables in a database, (2) developing a custom datalog
engine capable of executing datalog programs on conditional tables, and (3) in-
corporating a reasoning engine with the ability to evaluate conditions. While
prototypes for conditional tables have been explored in academia [4,16,27], to
the best of our knowledge, there is currently no stable implementation for con-
ditional tables within any DBMS.

Storing Conditional Tables Pyotr uses PostgreSQL [17] as the underly-
ing DBMS, since it is an open-source system used by millions of users and is

Verifying Multi-Vendor IoT Deployments using Conditional Tables 13

amenable to modifications. To store conditions, we added a condition column to
every new table created. We implemented the column as a list, where each ele-
ment represents a condition, and the ultimate condition is a conjunction (logical
and) of all elements. Given that the conjunction of conditions is frequently com-
puted during c-table evaluation, the use of a list facilitates the rapid addition of
new conditions. Global conditions are stored as a shared local condition across
all tuples in the table. The type of the condition column is contingent upon the
reasoning engine in use. For SMT solvers, we stored conditions as a list of text.
For other reasoning engines, we used integer references to represent conditions.

A crucial factor influencing Pyotr’s performance and the structure of SQL
queries is the representation of c-variables in the database. Unlike constants,
which can only take on a single value, c-variables can be valuated (i.e., assigned)
to multiple constants. This poses a challenge because conventional database
management systems (DBMSes) are designed to support normal constants and
lack a built-in conception of c-variables. The manner in which c-variables are
implemented directly impacts query performance; inefficient representations can
lead to longer query execution times. Moreover, the representation of c-variables
affects query translation, as the semantics of c-variables must be encoded into the
query structure. This is further described in the next section. We experimented
with multiple implementations of c-variables:

Text: In this implementation, we made each table column of “text” type.
We defined some keywords (e.g., texts that begin with an underscore) to be
interpreted as c-variables to distinguish them from regular textual constants.
However, this approach meant that we had to use “text” datatype even when the
underlying datatype was numeric. We found that querying over numeric columns
was faster than “text” columns in PostgreSQL. This is likely to be true in other
DBMS too, since integers are generally easier to optimize in databases. It is im-
portant to note that, in this solution, the underlying DBMS remained unaware
of c-variables, and we managed the semantics of querying over c-variables exter-
nally by incorporating user-defined functions into queries for proper translation.

Modified datatypes: To fix the issues with the previous representation
scheme, we made modifications to multiple datatypes (e.g. integer, text, and
inet) in PostgreSQL to incorporate a built-in understanding of c-variables. We
introduced defined keywords as c-variables and implemented the logic to handle
them within the code for these datatypes in PostgreSQL. The advantage of
this approach was the elimination of the need for query translation to handle c-
variables, as the logic for their management was integrated into the DBMS itself.
Despite our expectation of improved performance, our custom implementation
turned out to be slower, especially for larger tables. The key limitation was
the inability to support indexing over tables. Indexing in databases organizes
information in columns using specialized data structures, leading to accelerated
query execution. However, most indexing schemes require defining a partial order
on the datatype. As we utilized custom keywords for c-variables, which lack a
natural order among them, we were unable to index the tables. Consequently,
this limitation resulted in slower query performance.

14 Anwar et al.

1
A B |[condition|| B C | condition
X

i |
! | . —
| I —
i y “ |y 32 |
| |
i |
i I 7 3
‘ 50 T
| I |
| Ti-T. - | BDD References
| A B C [condition I
i
! y z 56 1
| |
! i
L T I J w
Pyotr Representation BDD Reasoning in CUDD

Fig. 4: Pyotr stores references to BDDs that represent conditions

Value Partitioning: In this scheme, we designated specific values (not key-
words) within each datatype to represent c-variables. For instance, in the case
of integers, we represented c-variables as negative integers. The scheme assumes
that the designated values for c-variables never occur in the database as con-
stants. While this approach required the external translation of queries for han-
dling c-variables, it effectively addressed the performance issues associated with
indexing and the text datatype. The substantial performance benefits observed
led us to adopt this scheme as the default method for Pyotr.

Executing Queries The Datalog Engine is responsible for executing datalog
programs on c-tables. To the best of our knowledge, there is no available dat-
alog engine for c-tables. Our datalog engine expects two inputs: (i) a database
schema encompassing tables, columns, column types, c-variables used, and the
domain of columns, and (ii) a datalog program. A datalog program counsists of
a list of rules, each of which derives new facts for a particular table. The engine
transforms each datalog rule into a selection SQL query, typically incorporating
table joins. A join occurs for each atom in the body of the rule. For a table join
between two tables, we append the conditions of the joining tables along with the
corresponding local conditions to the condition column of the result. The SQL
query is modified so that it can append the relevant conditions to the result. The
query also needs to be translated to support c-variables. In the value partitioning
and text schemes, we explicitly add conditions to allow multiple constants to be
assigned to c-variables. For example, a simple query to select the tuples in the
sensor table (Table 2b) where Alarm has a value of 1 can be written in SQL as
SELECT * FROM table WHERE Alarm=1. For the value partitioning scheme
in which c-variables are represented as negative integers, this query is converted
into the query SELECT * FROM table WHERE (Alarm = 1 or Alarm < 0).
A key advantage of employing datalog as the query language is its support for
recursive queries. The method of executing these recursive queries significantly
influences system performance. A naive execution would continuously execute
datalog rules until a fixed point is achieved, leading to substantial redundant
generation of tuples. To address this, we implemented semi-naive evaluation [6],
which avoids recomputing old tuples by utilizing only the generated tuples from
the last iteration in each subsequent iteration. The transition to semi-naive eval-
uation resulted in a noteworthy improvement in performance.

Reasoning Engine The C-table Evaluator removes tuples that have unsatis-
fiable conditions in the generated table. It utilizes a reasoning engine to evaluate

Verifying Multi-Vendor IoT Deployments using Conditional Tables 15

conditions. As we will see in Section 5, reasoning engines can be the most time
consuming part of evaluating queries on conditional tables. Thus, the choice of
the reasoning engine can determine the performance of Pyotr. The choice should
be based on the problem. We tried three different reasoning engines:

Satisfiability Modulo Theories (SMT) solver: Utilizing an SMT solver
is a common approach to evaluate the satisfiability of conditions. SMT solvers
generalize the Boolean satisfiability problem for more complex conditions, in-
volving diverse datastructures such as integers, lists, bitvectors etc. We used
a well-known SMT solver, Z3 [31], for this purpose. In this scheme, we repre-
sent all conditions in a text format that can be understood by Z3 and store
these conditions in the condition column. The IP addresses were represented as
bitvectors.

Difference of Cubes (DoC): While Z3 worked well for general conditions,
it performed poorly when dealing with IP addresses. For this purpose, we tried
a specialized encoding called Difference of Cube (DoC) from [30]. DoC uses
ternary strings to represent IP addresses, and can efficiently represent dependen-
cies using negation. For example, 1 x x\10% concisely represents all packets that
start with “1” excluding those that begin with “10.” DoC supports optimizations
for simplifying conditions that involve a large number of dependencies, making
it efficient for data plane verification. For large verification tasks involving IP
addresses, DoC performed better than SMT.

Binary Decision Diagram® (BDD): BDDs [5] serve as representations
for boolean functions in the form of decision DAGs. To use BDDs, we translate
conditions from Z3 format into boolean functions by employing a binary en-
coding of integers and IP addresses [9]. The implementation utilizes the CUDD
library [23]. We opted for BDDs because of their efficient support for comput-
ing conjunctions, which is a frequent operation in the evaluation of conditional
tables. The compact representation of boolean functions in BDDs allow for an
optimized computation of logical and. Integrating BDDs into Pyotr posed a chal-
lenge, particularly in finding a suitable method to store them in a table. Since
we cannot easily store the actual DAGs representing BDDs in a database, we
opted to store only references to the constructed BDDs in the table. The BDDs
themselves were stored in an array using a wrapper written in C for the CUDD
library, as depicted in Fig. 4. This approach offered an additional advantage: the
conditions were now represented as integers rather than lengthy strings (as in
SMT implementation), resulting in faster database operations.

5 Evaluation

In this section, we evaluate Pyotr’s performance across a range of conditions.
First, we assess the benefits and overhead of Pyotr when handling missing infor-
mation within deployments of heterogeneous devices. Next, we examine Pyotr’s
efficiency in cases where some nodes are entirely inaccessible. Finally, we show-
case the potential of enhancing Pyotr’s performance by utilizing different rea-
soning engines for different problems. We compare three implemented engines,

5 Referring to Reduced Ordered Binary Decision Diagram [8] throughout paper.

16 Anwar et al.

16384
=
4096 | paidime o sy 2088

1024 4543

DB (join) C—=1
Reasoning (SMT) 23
Other £X

DB (join) C—=1
Reasoning (SMT) Z—1
Other X3

10 20 30 40 50 1o s 20 25 2 3 4 5

% Missing Data Data Points Tables in query

XX

X2

»
o &
TR

XX

KX
R

Error (ug/m?)
time (ms)

NS
R
XD

VAN

2

2.1
0.25 ‘

o

(a) Distance from ground truth (b) Varying size of data (c) Varying queries
Fig. 5: Error and time taken for data analysis with missing data points.

namely SMT, DoC, and BDD. All experiments were conducted using a laptop
with an Apple M1 Pro chip and 16GB of memory. For the representation of
conditional variables in all experiments, we used the value partitioning scheme.

5.1 Verification with partly incomplete information

Ans(t, temp, mg4) :- Semnsorl(t, temp, humidity, pressure) [temp > 35],
Sensor2(t, mq4, mq7) [mq4 > 4]

Listing 3: Datalog query to check for high temperature and high gas leakage

We use a dataset [24] for environmental monitoring through a sensor network,
encompassing eight different types of sensors. These sensors measure diverse
environmental properties such as temperature, humidity, rainfall, gas leakages,
and pollutants. The measurements are transmitted to a central hub at varying
frequencies, resulting in instances where specific data may be absent during
particular time periods. In our setup, the hub conducts user-defined checks on the
received data at regular intervals and notifies the user if any of these checks fail.
To address missing data, a basic method involves assuming that values remain
the same as the last observation, which we refer to as the baseline approach.
However, since environmental properties can change with time, a more refined
method would be to account for potential changes since the last observation.
Pyotr employs conditional tables to represent a range’ around the last observed
value for missing data. To assess the benefits of this approach, we compared
Pyotr’s method to the baseline by removing random data points from the dataset
and evaluating the difference from the actual values. Such missing data can arise
due to various factors, such as unreliable wireless connections and variations
in the transmission frequency among different sensors. Fig. ba illustrates the
Euclidean error for one of the sensors in the dataset that measures inhalable
particulate matter (expressed in pg/m?). The error is significantly higher in the
baseline approach, and grows with the rise in the percentage of missing points,
which is attributed to the increased duration since the last observed value. The
utilization of a range by Pyotr, as opposed to a single value, contributes to a
significantly reduced error. We noticed a similar trend in all sensed properties
in the dataset.

To measure the performance of Pyotr on the dataset, we run a query (List-
ing 3) that alarms when both the temperature and natural gas leakage levels are

" We used the standard deviation of the sensed property as the range.

Verifying Multi-Vendor IoT Deployments using Conditional Tables 17

high. We varied the number of data points analyzed in each iteration, adjusting
the frequency of data verification. When the verification frequency is lower, a
larger batch of data points is analyzed. Fig. 5b shows the time taken by different
components of Pyotr. Even for larger batches, Pyotr runs the query within ten
milliseconds. The DB (join) represents the time taken by the selection query
that performs the table joins. The reasoning time is the time taken by the SMT
solver (Z3) to detect unsatisfiable conditions. Finally, the time categorized as
other encompasses tasks related to managing conditional tables (e.g., deleting
contradictory tuples, parsing datalog queries, etc.). While the database time re-
mains nearly equal for tables of this size, the reasoning time increases due to the
growing number of conditions to evaluate. Finally, we assess the impact of vary-
ing queries on performance by experimenting with different queries that involve
varying numbers of tables. The evaluation time of databases is influenced by the
number of tables involved in a conjunctive query, as more tables necessitate ad-
ditional table joins. Counterintuitively, the reasoning time decreases when more
tables are present in a query. This is because the inclusion of tables in a conjunc-
tive query acts as a filter for results, resulting in fewer conditions to evaluate.
Fig. 5c shows the time taken when the queries are varied while the number of
data points to evaluate are fixed. Notably, while the database time increases,
the reasoning time decreases. In general, reasoning time is governed by both the
number of conditions to evaluate and the complexity of each condition.

5.2 Verification with inaccessible nodes

Name Pods Nodes/Pod Total Nodes

o
®

L1 28 12 496 £os £
L2 56 24 1664 g o4 £
L3 84 36 3504 ";

L4 112 48 6016

Time (ms) # of inaccessible nodes

(a) Details of different data center topologies (b) Without inaccessible (¢) ~With inaccessible
used® nodes nodes

Fig. 6: Details of datacenter topologies and time taken by Pyotr for reachability analysis
on those topologies

In this section, we evaluate the performance of Pyotr when some nodes in
a deployment are completely inaccessible. We consider a deployment of server
room monitoring sensors within a data center, utilizing the backhaul network
for communication. The network is centrally managed by a controller, and a
verifier is integrated with the nodes to verify the reachability policies within the
network and ensure that the sensed information is promptly collected and ana-
lyzed. Following each update, the devices transmit their forwarding state to the
verifier. However, delays in sending updates may occur due to various factors,
such as network congestion and crashes in the computation of forwarding infor-
mation bases. A delay in the verification process could potentially result in the

8 All topologies had 4 spines that connect all pods, which adds extra nodes.

18 Anwar et al.

DB (join) =1
Reasoning (BDD) C—=2

DB (join) ——1
Reasoning (DoC) 23

0.8 4 20
oy — —
3 06 =3 “ 5
3 g g
0 04 £ £
5 '
02 BDD ---- \ 5
! DoC
0) : 0 0
0 10 20 30 40 50 6000 10000 14000 17180 6000 10000 14000 17180
Time (s) # of Rules # of Rules
(a) Total running time (b) BDD (c) DoC

Fig. 7: Calculation time for all reachable paths from random nodes in a campus network.

disconnection of sensors due to an erroneous update and could lead to a delay
in reporting critical server room conditions on time. With conditional tables, we
can perform verification even if there are inaccessible nodes in the network. For
these nodes, we use any information we already have to model their forwarding
behaviour. For example, in our experiments we assume that they can forward
packets through any of their ports except the ingress port®.

For our experiments, we use datacenter topologies from [19] and vary the
number of nodes. The details of the considered topologies are given in Table 6a.
We used a datalog program similar to the one shown in Listing 2 to calculate
all paths'® from random source nodes. Fig. 6b shows the time taken to per-
form reachability analysis on the entire network given a random source node
over 100 runs. As the topology size increases, the time taken increases. However,
even for the largest topology with more than 6000 nodes, the 90th percentile
time is still less than 50ms, which is quick enough to be used in practice. We
also did an experiment of an extreme case where we made some nodes com-
pletely inaccessible, even though this vastly increases the search space. Fig. 6¢c
shows the average time taken for verification with different number of inacces-
sible nodes. As we increase the number of inaccessible nodes, the search space
increases exponentially. However, our results show that even in large networks
with 3 simultaneously inaccessible nodes, the reachability analysis still completes
within a few seconds. These results show that Pyotr effectively handles real-time
verification even with inaccessible nodes, supporting reliable network monitoring
and timely issue detection in large networks.

5.3 Reasoning Engine Performance

In this experiment, we evaluate the performance of different reasoning engines
implemented in Pyotr on large conditional tables. Just like the previous experi-
ment, we perform a reachability query to calculate all paths in a network from
a randomly selected node. However, instead of a datacenter network, we utilize
the backbone of a campus network as our testing setup, leveraging a publicly
available dataset [1]. Although this is a smaller network with 16 nodes, it is op-
erated using traditional forwarding where all rules are pre-emptively installed.
The network encompasses a total of 17,180 rules, which is much more than the

9 Most switches do not allow forwarding back to the ingress port to avoid loops.
10 Tn practice, we do not always need to compute all paths and can have different
queries to catch particular violations (e.g. loops, blackholes, waypointing, firewalls).

Verifying Multi-Vendor IoT Deployments using Conditional Tables 19

number of rules in the previous experiment. Notably, these rules for the network
also incorporate packet rewriting, adding an additional layer of complexity to
the operational setup. In this experiment, most queries with the SMT engine
could not complete. This can be attributed to two main factors: (i) the SMT
engine lacks optimization for handling TP addresses, and (ii) string conditions
become excessively large during intermediate computations, resulting in a sig-
nificant increase in database evaluation time. Consequently, we present results
solely for the DoC and BDD engines. Fig. 7a illustrates the overall time required
to execute reachability queries on the network using random source nodes over
100 runs. The BDD engine outperforms the DoC engine significantly, primarily
because BDD is faster than DoC at calculating conjunction of conditions — a
crucial operation in the evaluation of conditional tables. The running time is
dependent on the length and number of reachable paths. The path length dic-
tates the number of iterations of the query, which further dictates the number
of database operations and conditions to evaluate. This is why we observe a
staircase-like cumulative distribution function, where each step corresponds to
different path lengths.

Figures 7b and 7c provide a breakdown of the overhead caused by different
components of Pyotr for BDD and DoC, respectively. It is important to note the
difference in the y-axis scales between the two graphs. Total time for database
operations and conditional table management is similar for both engines, but
the BDD engine’s total running time is mainly affected by database join opera-
tions, while DoC’s is influenced by reasoning time. Varying the number of rules
results in an increased running time, as more rules affect the length and quantity
of reachable paths, impacting overall performance. These results underscore the
significant impact of the choice of reasoning engine on Pyotr’s performance.

6 Related Work

Prior efforts in debugging and verifying IoT devices have proposed the use of
model-checking [13, 14, 32|, program analysis [10], and dynamic testing [11] to
catch bugs in control programs for IoT devices. Many of these tools borrow tech-
niques directly from Software Engineering which have proven to work well for
software systems in the past. While reusing proved-out techniques for verifica-
tion seems like a natural way forward, IoT deployments pose some unique chal-
lenges that require further innovation. Prior verification efforts for IoT devices
overlook device heterogeneity, the user-centric nature of IoT, and the missing
information due to proneness to various faults in IoT devices. They target spe-
cific programming frameworks (e.g. Groove Programming Language) and do not
focus on applicability in a heterogeneous deployment with different vendors and
device types. Moreover, static-analysis and model checking tools do not provide
a user-friendly environment for inexperienced users to articulate and validate
their intentions. Lastly, prior tools assume that all relevant information about
the deployment is available to them, which is not the case in IoT devices. The
scarcity of comprehensive fault information complicates the understanding of IoT
deployments, requiring a more nuanced approach to device behavior modeling
and troubleshooting.

20 Anwar et al.

Pyotr also shares similarities with some of the tools designed for network
verification. Notably, Faure [27] employed conditional tables to verify failures
in ISP networks. In our case, we use conditional tables for a different purpose
(verification of IoT deployments) and have implemented and evaluated a full-
fledged system to facilitate querying over and support for conditional tables.
Datalog has also found application in some network verification tools [15, 30].
However, none of these tools address all the listed challenges associated with IoT
systems.

7 Conclusion

The growing prevalence of IoT devices in critical environments has underscored
the need for methods that guarantee their safety and reliability. In this paper, we
identified three challenges associated with the verification of multi-vendor IoT
deployments: system and protocol heterogeneity, usage by inexperienced users,
and the presence of incomplete information. Conditional tables offer methods for
data integration to resolve incompatibilities, provide an easy-to-use database-
styled interface for inexperienced users, and offer a natural approach to han-
dling incomplete information. Through various examples, we demonstrated how
problems in IoT deployments can be modeled and reasoned about using condi-
tional tables. Finally, we implemented and evaluated a comprehensive system,
Pyotr, designed to support verification in IoT deployments through conditional
tables. In the future, we intend to integrate conditional tables into a database
management system. This integration would minimize the overhead of external
system management and enable optimizations like query planning and incremen-
tal evaluation over conditional tables. We envision that conditional tables could
find application in reasoning and verification across other domains that face one
or more of the identified challenges.

Acknowledgments. This work was supported by National Science Foundation
Award CNS-1909450, CNS-2145242.

References

1. Stanford benchmark (2023), https://bitbucket.org/peymank/hassel-public/
src/master/hsa-python/examples/stanford/Stanford_backbone/

2. Abiteboul, S., Abrams, Z., Haar, S., Milo, T.: Diagnosis of asynchronous dis-
crete event systems: Datalog to the rescue! In: Proceedings of the Twenty-Fourth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems.
p- 358-367. PODS ’05, Association for Computing Machinery, New York, NY,
USA (2005). https://doi.org/10.1145/1065167.1065214, https://doi.org/10.
1145/1065167.1065214

3. Abiteboul, S., Hull, R., Vianu, V. (eds.): Foundations of Databases: The Logical
Level. Pearson, Boston, MA, USA (1995)

4. Abiteboul, S., Kanellakis, P., Grahne, G.: On the representation and querying
of sets of possible worlds. ACM SIGMOD Record 16(3), 34-48 (1987). https:
//doi.org/10.1145/38714.38724

5. Akers: Binary decision diagrams (1978). https://doi.org/10.1109/TC.1978.
1675141

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.
22.

Verifying Multi-Vendor IoT Deployments using Conditional Tables 21

Bancilhon, F.: Naive Evaluation of Recursively Defined Relations, pp. 165—
178. Springer New York, New York, NY (1986). https://doi.org/10.1007/
978-1-4612-4980-1_17, https://doi.org/10.1007/978-1-4612-4980-1_17
Bauleo, E., Carnevale, S., Catarci, T., Kimani, S., Leva, M., Mecella, M.: Design,
realization and user evaluation of the smartvortex visual query system for access-
ing data streams in industrial engineering applications. Journal of Visual Lan-
guages and Computing 25(5), 577-601 (2014). https://doi.org/https://doi.
org/10.1016/j.jv1c.2014.08.002, https://www.sciencedirect.com/science/
article/pii/S1045926X14000652

Bryant: Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers C-35(8), 677-691 (1986). https://doi.org/10.1109/TC.
1986.1676819

Bryant, R.E.: Binary Decision Diagrams, pp. 191-217. Springer International Pub-
lishing, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_7

Celik, Z.B., Fernandes, E., Pauley, E., Tan, G., McDaniel, P.: Program analysis
of commodity iot applications for security and privacy. ACM Computing Surveys
52(4), 1-30 (2019). https://doi.org/10.1145/3333501

Celik, Z.B., Tan, G., McDaniel, P.: Iotguard: Dynamic enforcement of security and
safety policy in commodity iot. Proceedings 2019 Network and Distributed System
Security Symposium (2019). https://doi.org/10.14722/ndss.2019.23326
Chatzopoulou, G., Eirinaki, M., Polyzotis, N.: Query recommendations for inter-
active database exploration (2009)

Ding, W., Hu, H., Cheng, L.: Iotsafe: Enforcing safety and security policy with real
iot physical interaction discovery. Proceedings 2021 Network and Distributed Sys-
tem Security Symposium (2021). https://doi.org/10.14722/ndss.2021.24368
Fang, Z., Fu, H., Gu, T., Qian, Z., Jaeger, T., Hu, P., Mohapatra, P.: A model
checking-based security analysis framework for iot systems. High-Confidence Com-
puting 1(1), 100004 (2021). https://doi.org/10.1016/j.hcc.2021.100004
Fogel, A., Fung, S., Pedrosa, L., Walraed-Sullivan, M., Govindan, R., Mahajan,
R., Millstein, T.: A general approach to network configuration analysis. In: 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
15). pp. 469-483. USENIX Association, Oakland, CA (May 2015), https://wuw.
usenix.org/conference/nsdil5/technical-sessions/presentation/fogel
Grahne, G., Onet, A., Tartal, N.: Conditional tables in practice. ArXiv
abs/1304.0959 (2013), https://api.semanticscholar.org/CorpusID: 8798537
Group, P.G.D.: (Oct 2023), https://wuw.postgresql.org/

Guilly, M.L., Petit, J.M., Scuturici, V.M.: Sql query completion for data explo-
ration (2018)

Guo, D., Chen, S., Gao, K., Xiang, Q., Zhang, Y., Yang, Y.R.: Flash: Fast, consis-
tent data plane verification for large-scale network settings. In: Proceedings of the
ACM SIGCOMM 2022 Conference. p. 314-335. SIGCOMM ’22, Association for
Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/
3544216.3544246, https://doi.org/10.1145/3544216.3544246

Hajiyev, E., Verbaere, M., de Moor, O.: codequest: Scalable source code queries
with datalog. In: Thomas, D. (ed.) ECOOP 2006 — Object-Oriented Programming.
pp. 2—27. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

Ifttt: Automate business and home (2023), https://ifttt.com/

Imielnski, T., Lipski, W.: Incomplete information in relational databases.
In: Mylopolous, J., Brodie, M. (eds.) Readings in Artificial Intelligence and
Databases, pp. 342-360. Morgan Kaufmann, San Francisco (CA) (1989). https:

22

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Anwar et al.

//doi.org/https://doi.org/10.1016/B978-0-934613-53-8.50027-3, https://
www.sciencedirect.com/science/article/pii/B9780934613538500273

Ivmai: The cudd package, https://github.com/ivmai/cudd

J J, J., Elumalai, P., S, O., N R, H., A M.R.: Lora based wireless sensor net-
work for environmental monitoring - dataset (2021). https://doi.org/10.21227/
2g7j-el111, https://dx.doi.org/10.21227/2g7j-el111

Jin, C., Bhowmick, S.S., Choi, B., Zhou, S.: Prague: Towards blending prac-
tical visual subgraph query formulation and query processing. In: 2012 IEEE
28th International Conference on Data Engineering. pp. 222-233 (2012). https:
//doi.org/10.1109/ICDE.2012.49

Lam, M.S., Whaley, J., Livshits, V.B., Martin, M.C., Avots, D., Carbin, M., Un-
kel, C.: Context-sensitive program analysis as database queries. In: Proceedings of
the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems. p. 1-12. PODS ’05, Association for Computing Machin-
ery, New York, NY, USA (2005). https://doi.org/10.1145/1065167.1065169,
https://doi.org/10.1145/1065167.1065169

Lan, F., Gui, B., Wang, A.: Fauré: A partial approach to network analysis. In:
Proceedings of the Twentieth ACM Workshop on Hot Topics in Networks. p.
123-131. HotNets ’21, Association for Computing Machinery, New York, NY,
USA (2021). https://doi.org/10.1145/3484266.3487391, https://doi.org/10.
1145/3484266.3487391

Li, J., Hui, B., Qu, G., Yang, J., Li, B., Li, B., Wang, B., Qin, B., Cao, R., Geng,
R., Huo, N., Zhou, X., Ma, C., Li, G., Chang, K.C.C., Huang, F., Cheng, R., Li, Y.:
Can llm already serve as a database interface? a big bench for large-scale database
grounded text-to-sqls (2023)

Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis, P.,
Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative networking. Commun. ACM
52(11), 87-95 (nov 2009). https://doi.org/10.1145/1592761.1592785, https:
//doi.org/10.1145/1592761.1592785

Lopes, N.P., Bjgrner, N., Godefroid, P., Jayaraman, K., Varghese, G.: Check-
ing beliefs in dynamic networks. In: 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15). pp. 499-512. USENIX Associ-
ation, Oakland, CA (May 2015), https://www.usenix.org/conference/nsdil5/
technical-sessions/presentation/lopes

Microsoft: (Oct 2023), https://microsoft.github.io/z3guide/docs/logic/
intro/

Nguyen, D.T., Song, C., Qian, Z., Krishnamurthy, S.V., Colbert, E.J., McDaniel,
P.: Totsan. Proceedings of the 14th International Conference on emerging Network-
ing EXperiments and Technologies (2018). https://doi.org/10.1145/3281411.
3281440

Obaido, G., Ade-Ibijola, A., Vadapalli, H.: Generating sql queries from visual spec-
ifications (2019)

Seo, J., Guo, S., Lam, M.S.: Socialite: Datalog extensions for efficient social net-
work analysis. In: 2013 IEEE 29th International Conference on Data Engineering
(ICDE). pp. 278-289 (2013). https://doi.org/10.1109/ICDE.2013. 6544832
Smaragdakis, Y., Bravenboer, M.: Using datalog for fast and easy program analysis.
In: de Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog Reloaded. pp.
245-251. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

Soares, D., Dias, J.P., Restivo, A., Ferreira, H.S.: Programming iot-spaces: A user-
survey on home automation rules. Computational Science — ICCS 2021 p. 512-525
(2021). https://doi.org/10.1007/978-3-030-77970-2_39

37.

38.

39.

40.

41.

Verifying Multi-Vendor IoT Deployments using Conditional Tables 23

Soylu, A., Giese, M., Jimenez-Ruiz, E., Vega-Gorgojo, G., Horrocks, I.: Experienc-
ing optiquevgs: A multi-paradigm and ontology-based visual query system for end
users. Univers. Access Inf. Soc. 15(1), 129-152 (mar 2016). https://doi.org/10.
1007/s10209-015-0404-5, https://doi.org/10.1007/s10209-015-0404-5
Vailshery, L.S.: Iot connected devices worldwide 2019-2030 (Jul 2023), https://
www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
Wang, B., Shin, R., Liu, X., Polozov, O., Richardson, M.: Rat-sql: Relation-aware
schema encoding and linking for text-to-sql parsers (2021)

Wang, J., Balazinska, M., Halperin, D.: Asynchronous and fault-tolerant recursive
datalog evaluation in shared-nothing engines. Proc. VLDB Endow. 8, 1542-1553
(2015), https://api.semanticscholar.org/CorpusID:7191222

Yu, T., Li, Z., Zhang, Z., Zhang, R., Radev, D.: Typesql: Knowledge-based type-
aware neural text-to-sql generation (2018)

