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Abstract. Mission-time Linear Temporal Logic (MLTL) represents the most prac-

tical fragment of Metric Temporal Logic; MLTL resembles the popular logic Lin-

ear Temporal Logic (LTL) with finite closed-interval integer bounds on the tem-

poral operators. Increasingly, many tools reason over MLTL specifications, yet

these tools are useful only when system designers can validate the input specifi-

cations. We design an automated characterization of the structure of the compu-

tations that satisfy a given MLTL formula using regular expressions. We prove

soundness and completeness of our structure. We also give an algorithm for au-

tomated MLTL formula validation and analyze its complexity both theoretically

and experimentally. Additionally, we generate a test suite using control flow di-

agrams to robustly test our implementation and release an open-source tool with

a user-friendly graphical interface. The result of our contributions are improve-

ments to existing algorithms for MLTL analysis, and are applicable to many other

tools for automated, efficient MLTL formula validation. Our updated tool may be

found at https://temporallogic.org/research/WEST.

Keywords: Mission-time Linear Temporal Logic (MLTL) · MLTL Validation ·

Temporal Logic Validation.

1 Introduction

System specifications, such as aerospace operational concepts, often utilize timelines

to express critical requirements. We can cite examples of this from NASA’s Auto-

mated Airspace Concept [11], the U.S. Navy’s Aircraft Carrier Deck Scheduler [33], the

JAXA-NASA Global Precipitation Measurement (GPM) Observatory [10], and many

‹ Work supported in part by NSF grant DMS-1950583 and NSF CAREER Award CNS-1552934.
* These authors contributed equally to this work.
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others. Formal methods provide continuously advancing tools and techniques to rig-

orously analyze timelines expressed in the form of temporal logic requirements, from

early design-time model checking and theorem proving to on-board runtime verifica-

tion. The U. S. Federal Aviation Administration (FAA) even advocates the use of formal

methods for flight certification of these critical systems [28,29,27]. Yet, a significant

hurdle to the use of formal methods remains: how to convincingly demonstrate to the

humans in the loop, from system designers to certifiers, that the analyzed formulas truly

represent the system requirements [31]. We creatively address this validation question

using regular expressions.

NASA, for example, has developed several tools that operate over temporal logic

requirements, such as FRET [12], R2U2 [32], and a PVS library [7] for the logic

MLTL (Mission-time Linear Temporal Logic) [30,19]. MLTL was the specification

logic for NASA’s Robonaut2 verification project [16] and is currently the specification

logic for both design-time and runtime verification of the NASA Lunar Gateway Ve-

hicle System Manager [8]. Other recent verification efforts involving MLTL include a

JAXA autonomous satellite [24], a UAS Traffic Management (UTM) system involving

Collins and Mosaic Aerospace [13], a sounding rocket [14], and multiple small satel-

lites [21,20,2]. However, all of these successful verification efforts were carried out by

groups specializing in formal methods research. To enable broader application of for-

mal verification, and adoption across larger projects, we critically need better validation,

e.g., so that analysis over MLTL-specified requirements can transparently contribute to

flight certification.

Many specifications from case studies, in logics such as Metric Temporal Logic

(MTL) [1] and Signal Temporal Logic (STL) [22], fall within the MLTL fragments of

these logics. Variations on MTL such as MLTL have grown increasingly popular, in

part due to their comparatively tractable complexity-to-expressibility trade-offs [25].

The model checker nuXmv encodes a popular subset of MLTL for use in symbolic

model checking [17].

There exists a SAT solver for MLTL, MLTLSAT [19], but there are currently no

tools for MLTL formula validation. This paper introduces the WEST tool [GitHub]5

repository, which produces a description of the set of all finite timelines (of a fixed

length) that satisfy a given MLTL formula, similar to a truth table for propositional for-

mulas. MLTL validation can be done by verifying that the output of the WEST program

indeed matches the behaviour of the specification in question.

We show that our contributions not only fill a critical gap in temporal logic valida-

tion, but also directly connect to parallel developments to enable better temporal logic

formula analysis, benchmark generation, proof generation (e.g., in ACL2), and synthe-

sis of verified C++ code from temporal logic behavior descriptions.

We structure the paper as follows. Section 2 builds on the semantics of MLTL to de-

fine a computation and its bit string representation. Section 3 recursively defines regular

expressions encapsulating the satisfying computations of MLTL formulas. We provide a

calculation for the minimum computation length required to describe all the satisfying

computations of an MLTL formula that slightly improves upon existing calculations

in the literature. Finally, we show an application of the regular expressions by using

5 https://github.com/zwang271/WEST
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them to prove an MLTL rewriting theorem. We introduce the WEST tool that imple-

ments automated validation in Section 4 and calculate its space and time complexity,

both theoretically and experimentally. Section 5 proves the correctness of WEST and

provides a test suite to show correctness of implementation with high confidence. In-

telligent fuzzing techniques contribute to test suite construction from a state diagram

representing the control flow of WEST. We also verify the correctness of outputs of the

WEST program against a naïve brute force implementation. Section 6 provides a com-

binatorial theorem for simplifying certain outputs of the WEST program to the trivial

computation. Section 7 demonstrates a specific use case of the WEST tool and explores

the currently supported features. Section 8 discusses impacts and future work.

2 Preliminaries: Mission-time LTL and Bit String Computations

Mission-time Linear Temporal Logic (MLTL) [19] is a finite variation of LTL over

bounded, closed, discrete intervals of the form ra, bs where a, b P N and 0 ď a ď b.

The syntax of MLTL formulas, φ and ψ over a (finite) set of atomic propositions AP ,

where p P AP is a propositional variable, is given by the following BNF grammar:

φ, ψ :“ J | K | p | ␣φ | φ^ ψ | φ_ ψ | Fra,bsφ | Gra,bsφ | φUra,bsψ | φRra,bsψ.
6

The symbols F ,G,U ,R respectively denote the temporal operators Finally, Glob-

ally, Until, and Release. MLTL formulas can be interpreted using both finite and infinite

ªtimelinesº that are called computations, which represent a discrete sequence of time

instances and the truth values for the propositional variables on each one of these. For

the purpose of this paper, we are only going to deal with finite computations that repre-

sent only finitely many time steps.

Definition 1 (Finite computations). A computation π of length m is a sequence

tπrisum´1

i“0
of sets of propositional variables, πris Ď AP , where the ith set contains

the propositional variables that are true at the ith time step. That is, a propositional

variable p is true at time step i if and only if p P πris. We denote the suffix of π starting

at i (including i) by πi. Note that π0 “ π.

We provide the formal semantics for MLTL below. A computation π satisfies a

given MLTL formula α, written π ( α, in the following cases7:

π ( p iff p P πr0s

π ( α^ β iff π ( α and π ( β

π ( ␣α iff π * α

π ( α_ β iff π ( α or π ( β

π ( Fra,bsα iff |π| ą a and Di P ra, bs such that πi ( α

π ( Gra,bsα iff |π| ď a or @i P ra, bs πi ( α

6 For simplicity, we do not include parentheses in the grammar, but the WEST program requires

parentheses (see Section 4). We encode Release directly rather than as the dual of Until. Refer

to the WEST Appendix9 for a straightforward proof of equivalence using the semantics.
7 We do not include the Next operator, which is often denoted X , since it is equivalent to both

Gr1,1s and Fr1,1s.
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π ( α Ura,bsβ iff |π| ą a and Di P ra, bs such that πi ( β and @j P ra, i´ 1s πj ( α

π ( α Rra,bsβ iff |π| ď a or @i P ra, bs πi ( β or Dj P ra, b´ 1s such that πj ( α

and @a ď k ď j πk ( β

Definition 2 (Bit String Representation of a Computation). Let p0, p1, ..., pn´1 be

propositional variables for a fixed n P N. We represent a (finite) computation π of

length m P N using a bit string representation as follows:

± Each time step j P r0, 1, . . . ,m´ 1s corresponds to a bit string of length n, where

the kth bit represents the truth assignment of the proposition pk´1.

± Each time step is separated by a comma and orders the time steps chronologically.

Example 1. Suppose n “ 2. The bit string π “ 10, 01 represents a timeline on which

p0 is true and p1 is false in the zeroth time step, whereas p0 is false and p1 true in the

first time step.

3 MLTL Regular Expressions

We modify the standard definition of Regular Expressions (regex) to introduce notation

that describes the satisfying computations of an MLTL formula. We begin by quoting

the parts of the standard definition of a regex from [34] that we use to describe our

computations:

Definition 3 (Regular Expression). Let Σ denote an alphabet. We say that R is a

regular expression if one of the following holds:

± R “ a, for some a P Σ.

± R “ ϵ, where ϵ is the language containing the empty string.

± R “ H, the empty set.

± R “ pR1_R2q, whereR1, R2 are regexes and_ denotes alternation; the set union

of all the strings described by R1 and R2.

± R “ R1R2, which denotes concatenation, i.e., the set of strings obtained by con-

catenating any string generated by R1 with any string generated by R2, in that

order.

Now we introduce the additions to the definition of a regex that we utilize to describe

the computations. These additions allow us to write regexes of a known, finite, fixed

length, which is required when describing the computations in MLTL.

Definition 4 (Temporal Regular Expression). Let R and T denote regular expres-

sions, and let S be an abbreviation for p0 _ 1q. Let fixed n P N denote the number

of propositional variables in an MLTL formula. We use the following operations to

describe the form of satisfying computations of the formula in the bit string representa-

tion:

± Pad(R, T ) determines which regular expression is longer and concatenates p, Snq
repeatedly to the end of the shorter regular expression until the two regular expres-

sions are the same length. Note that in the bit string representation, p, Snq denotes

a time step in which the truth values of all n propositional variables do not matter.
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± R ^ T is the intersection of the sets of strings described by R and T . To perform

this operation, we first use Pad(R, T ), and then take the set intersection of the sets

of strings described by the two regular expressions.

± Ri denotes regular expression consisting of R repeated i times for i ě 0. R0 “ ϵ.

Note that our regular expressions do not use the Kleene star. This is because our

computations are of a fixed, finite length.

Example 2. Let n “ 2, and let R “ S1 and T “ p1S, 1Sq _ pS1, S1q. To compute

R^ T and R_ T , we perform Pad(R,T ). Since T is the longer regex by one time step,

we extend R by one time step. Thus T “ p1S, 1Sq _ pS1, S1q and R “ S1, SS. Now

we can perform set intersection and alternation on the two regular expressions of equal

length:

± R^ T “ p11, 1Sq _ pS1, S1q
± R_ T “ pS1, SSq _ p1S, 1Sq _ pS1, S1q “ pS1, SSq _ p1S, 1Sq

Definition 5 (MLTL Regular Expressions). Let Σ “ {ª0º , ª1º, ª,º} be the alpha-

bet and define S as an abbreviation for p0 _ 1q. Let φ and ψ be well-formed MLTL

formulas in negation normal form (NNF8) containing the n propositional variables

p0, p1, ..., pn´1. We recursively define the regular expression of all satisfying computa-

tions for an MLTL formula as follows:

regpJq “ Sn

regppkq “ Sk1Sn´k´1

regpφ_ ψq “ regpφq _ regpψq

regpGra,bsφq “
b

ľ

i“a

pSn, qiregpφq

regpKq “ H

regp␣pkq “ Sk0Sn´k´1

regpφ^ ψq “ regpφq ^ regpψq

regpFra,bsφq “
b

ł

i“a

pSn, qiregpφq

regpφ Ura,bsψq “
b

ł

i“a

reg
`

Gra,i´1sφ^ Gri,isψ
˘

regpφRra,bsψq “ reg
`

Gra,bsψ
˘

_
b´1
ł

i“a

reg
`

Gra,isψ ^ Gri,isφ
˘

Definition 6 (Computation Length). We recursively define the computation length

cplenpφq of an MLTL formula φ:

cplenppkq “ cplenp␣pkq “ 1,

cplenpφ^ ψq “ cplenpφ_ ψq “ maxpcplenpφq, cplenpψqq,

cplenpGra,bsφq “ cplenpFra,bsφq “ b` cplenpφq,

cplenpφUra,bsψq “ cplenpφRra,bsψq “ b`maxpcplenpφq ´ 1, cplenpψqq.

Here, cplenpφq is the minimum computation length required to ensure that none of

the intervals in φ are out of bounds. A computation that is of length cplenpφq or greater

8 Note that any MLTL formula can easily be converted into NNF.
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will reach the end of every interval in φ. Our minimum computation length for Until

and Release are slight optimizations of what was previously considered the minimum

computation length in the literature. The previous bound in [16] was

cplenpφUra,bsψq “ cplenpφRra,bsψq “ b`maxpcplenpφq, cplenpψqq
whereas Theorem 1 proves our minimum computation length for Until and Release is

cplenpφUra,bsψq “ cplenpφRra,bsψq “ b`maxpcplenpφq ´ 1, cplenpψqq.

Theorem 1 (Minimum Computation Length of Until and Release). Let 0 ď a ď
b P N and let φ, ψ be well-formed MLTL formulas in NNF. The minimum compu-

tation length of R and U is given by cplenpφUra,bsψq “ cplenpφRra,bsψq “ b `
maxpcplenpφq ´ 1, cplenpψqq.

The formulas for minimum computation length follow directly from the regular

expressions for the satisfying computations for Until and Release and the minimum

computation lengths for Finally, Globally, AND, and OR. See the WEST Appendix9

for details of the proof.

We can reduce the minimum computation length of Until for the formula φUra,bsψ

for the following reason: ψ must be assigned true at time step b if it has not been true at

a prior time step by the semantics of U , and thus the truth value of φ at time step b does

not matter. Likewise for the formula φRra,bsψ, if ψ is true from time step a to time step

b, the computation satisfies the formula regardless of the value of φ at time step b.

Let L pregpφqq denote the language of reg(φ), i.e., the set of computations repre-

sented by the regular expression regpφq.

Theorem 2 (Soundness and Completeness). For any well-formed MLTL formula φ in

negation normal form, a computation π with |π| “ cplenpφq satisfies φ if and only if

π P L pregpφqq.

We omit the proof for this theorem since it follows straightforward by induction on

the length of a formula. See the WEST Appendix 9 for details of the proof. As an ap-

plication of the regular expressions in the above theorem, we prove a previously known

MLTL rewriting theorem. This demonstrates the utility of our regular expressions for

theoretical analysis.

Theorem 3 (Nested Until and Release Rewriting Theorem). Any MLTL formula us-

ing the Until or Release operator can be rewritten with right-nested subformulas. Let

a, b, c P Zě0, a ď b, and φ, ψ be well-formed MLTL formulas in NNF. Then

φ Ura,b`csψ ” φ Ura,bspφ Ur0,csψq and φRra,b`csψ ” φRra,bspφRr0,csψq.

The proof is omitted here as it follows from the definition of regular expressions for

MLTL. See the WEST Appendix9 for details of the proof.

4 WEST Algorithm and Analysis

Algorithm 1 (Fig. 1) recursively computes all satisfying temporal regular expressions

to an input formula φ. We use sets to represent alternation of regular expressions; for

n regular expressions t0, ..., tn´1, we write tt0, ..., tn´1u “
Ťn´1

i“0
ti. Additionally, we

9 The Appendix for this paper can be found at https://temporallogic.org/research/WEST .
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provide details for performing set intersection of temporal regular expressions, and the

algorithms for the temporal operators G and U . Note how reg_U parallels the regular

expression defined for U , and the algorithms (see WEST Appendix9) for the other three

temporal operators follow an identical structure.

For regular expressions w0 and w1, a useful reduction is that tw01w1, w00w1u “
tw0sw1u. Each time we perform set intersection, we greedily apply this reduction to

all appropriate pairs of regular expressions in the set. This prevents repeated set in-

tersection operations from blowing up exponentially most of the time, and drastically

improves running time. We call this simple algorithm simplify and use it extensively

throughout the WEST code.

4.1 Proof of Correctness of WEST

Theorem 4 (Theoretical Correctness of WEST). Given a well-formed MLTL formula,

the WEST Algorithm outputs the regular expressions of the satisfying computations as

described in Section 3.

Proof. Correctness of the WEST algorithm is dependent on the correctness of sub-

routines reg_prop_cons, reg_prop_var, join, set_intersect, reg_F,

reg_G, reg_U, and reg_R. The routines reg_prop_cons and reg_prop_var

take as input an MLTL formula of the appropriate form and return the regular expression

defined in Section 3.

The function join concatenates two sets of regular expressions R and T , which

is equivalent to L pRq YL pT q. set_intersect takes as input two sets of regular

expressions R “ tr0, ..., ra´1u and T “ tt0, ..., tb´1u, such that each ri and tj are

regular expressions over Σ “ {ª0º , ª1º, ªSº, ª,º}. Without lost of generality, assume

that all strings of regular expressions are right-padded to equal length. We show that

L pset_intersectpR, T qq “ L pRq XL pT q:

L pRq XL pT q “

˜

a´1
ď

i“0

L priq

¸

X

˜

b´1
ď

j“0

L ptjq

¸

“
a´1
ď

i“0

b´1
ď

j“0

pL priq XL ptjqq .

The loop in set_intersect computes the union of bit_wise_andpri, tjq
over all such pairs, and so it suffices to show L pbit_wise_andpri, tjqq “ L priq X
L ptjq. Given a computation π, π P L priqXL ptjq if and only if π matches every char-

acter of both ri and tj . Bit_wise_andpri, tjq compares ri and tj character by char-

acter and computes their intersection, which is defined naturally: 0X 1 “ H, 0X S “
0, 1XS “ 1, 0X0 “ 0, 1X1 “ 1, and SXS “ S. Note that this operation is commu-

tative. This exhaustively captures all the cases for which π must match corresponding

characters from ri and tj . Thus L pbit_wise_andpri, tjqq “ L priq XL ptjq and

the claim holds.

The correctness for reg_F, reg_G, reg_U, reg_R, and reg is proven by in-

duction on depth of recursion to reg. The depth of recursion is exactly the depth of

the parse tree of the input formula. For the base case (depth 0), reg_prop_var and

reg_prop_cons are called to handle input formulas that consist of a propositional

variable, the negation of a propositional variable, or a propositional constant. Then as-

sume reg is correct on all formulas of depth at most d, for some integer d ě 0. Let

γ be an MLTL formula in negation normal form of depth d ` 1. Then γ must be of
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Algorithm 1 WEST Algorithm

Inputs: ϕ - MLTL formula in NNF

ϕ1 and ϕ2 below are subformulas of ϕ

n - number of propositional variables

Output: set of REGEX satisfying ϕ

1: procedure REG(string ϕ, int n)

2: if ϕ is J or K then

3: return reg_prop_const(ϕ, n)

4: if ϕ is pk or ␣pk then

5: return reg_prop_var(ϕ, n)

6: if ϕ “ ϕ1 ^ ϕ2 then

7: return set_intersect(reg(ϕ1), reg(ϕ2),

n)

8: if ϕ “ ϕ1 _ ϕ2 then

9: return join(reg(ϕ1), reg(ϕ2), n)

10: if ϕ “ Fra,bsϕ1 then

11: return reg_F(reg(ϕ1), a, b, n)

12: if ϕ “ Gra,bsϕ1 then

13: return reg_G(reg(ϕ1), a, b, n)

14: if ϕ “ ϕ1Ura,bsϕ2 then

15: return reg_U(reg(ϕ1), reg(ϕ2), a, b, n)

16: if ϕ “ ϕ1Rra,bsϕ2 then

17: return reg_R(reg(ϕ1), reg(ϕ2), a, b, n)

Algorithm 2 set_intersect

Inputs: R, T - two sets of REGEX

n - number of propositional variables

Output: set of REGEX equal to R^ T

1: procedure SET_INTERSECT(R, T , n)

2: Pad(R, T , n), retÐ tu
3: for pr, tq P Rˆ T do

4: add bit_wise_and(r, t) to ret

5: return simplify(ret)

Algorithm 3 reg_G

Inputs: rϕ - set of REGEX for MLTL formula

ϕ (after calling reg)

a, b - interval bounds

n - number of propositional variables

Output: set of REGEX for Gra,bsϕ

1: procedure REG_G(set rϕ, int a, int b, int

n)

2: preÐ ((‘S’)n + ‘,’)a

3: compÐ rϕ
4: if a ą b then return tSnu

5: for (1 ď i ď b´ a) do

6: tempϕÐ ((‘S’)n + ‘,’)i + rϕ
7: comp Ð set_intersect(comp,

tempϕ, n)

8: return pre + comp

Algorithm 4 reg_U

Inputs: rϕ, rψ - sets of REGEX for MLTL for-

mulas ϕ and ψ (after calling reg)

a, b - integers representing interval bound

n - number of propositional variables

Output: set of REGEX for ϕUra,bsψ

1: procedure REG_U(rϕ, rψ , a, b, n)

2: compÐ ((‘S’)n + ‘,’)a` rψ
3: if a ą b then return tu

4: for (a ď i ď b´ 1) do

5: G1Ð reg_G(rϕ, a, i, n)

6: G2Ð reg_G(rψ , i` 1, i` 1, n)

7: temp_comp Ð set_intersect(G1,

G2, n)
8: compÐ join( comp, temp_comp)

9: return comp

Fig. 1: Pseudocode for WEST, set_intersect, reg_G, and reg_U. The pseu-

docode for all other algorithms referenced can be found in the WEST Appendix9.

the form φ _ ψ, φ ^ ψ, Gra,bsφ, Fra,bsφ, φUra,bsψ, or φRra,bsψ, for some formulas φ

and ψ of depth at most d, and a pair of non-negative integers, a and b. Correctness of

the first two cases have been proven. The proof for the four temporal cases are of sim-

ilar structure, and it suffices to verify that the algorithms compute appropriate regular

expressions correctly using join and set_intersect.

We give the explicit proof for the case γ “ φUra,bsψ as an example. reg_U

takes as input rφ “ reg(φ) and rψ “ reg(ψ), which by the induction hypothesis are

correctly computed. The regular expression for the Until operator may be rewritten

as regpφ Ura,bsψq “ reg
`

Gra,asψ
˘

_
Žb´1

i“a reg
`

Gra,isφ^ Gri`1,i`1sψ
˘

. In line 2 of
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reg_U, the variable comp is initialized to p“S”n ` “, ”qa pre-concatenated to rψ , and

is the regular expression for Gra,asψ. Next, the _ from i “ a to b ´ 1 is computed by

the for loop in line 4. Lastly, lines 5 through 7 computes reg
`

Gra,isφ^ Gri`1,i`1sψ
˘

.

This shows correctness of reg_U; although, in a complete proof, correctness of reg_G

needs to be shown first since lines 5 and 6 calls reg_G. Continuing in the same fashion

to prove the other three cases, reg is correct on all depth d` 1 inputs, and thus reg is

correct on all inputs by induction.

4.2 Theoretical Complexity

In order to reason about the complexity of our algorithms, we first introduce several

assumptions about the input. Suppose that the lower and upper intervals of temporal

operators are bounded by some constant d P N, and that the difference between any

bound is less than some constant δ P N. These are reasonable assumptions since MLTL

turns into a finite temporal logic when a known mission end is given. We provide a

summary of the complexity of each of the operators that contribute to the worst-case

behavior of the final output.

For any function fpφq taking a string argument φ, we use |φ| to denote the number

of characters in φ and Spfpφqq to denote the space complexity of f in terms of the

number of characters in the output.

If φ is a propositional constant or variable, it is easy to see that SpregpKqq “ 0

since only the empty set is returned. By definition, regpJq “ Sn, so we have that

SpregpJqq “ n. Similarly, regppkq and regp␣pkq both return strings of length n,

whence Spregppkqq “ Spregp␣pkqq “ SpregpJqq “ n.

If φ is ªφ1 _ φ2º, we return joinpregpφ1q,regpφ2qq, which simply computes

the union of the two sets. Thus Spregpφ1 _ φ2qq “ Spregpφ1qq ` Spregpφ2qq.

If φ is ªφ1 ^ φ2º, set_intersectpregpφ1q,regpφ2q, nq returns a set of size

Spregpφ1qq¨Spregpφ2qq in the worst case when no simplification can be made. Thus,

our space complexity is Spregpφ1 ^ φ2qq “ Spregpφ1qq ¨ Spregpφ2qq.

For the next cases, we use these two bounds and define the constants CG and CF :
śb
i“apn` 1qi “ pn` 1qb´a ¨ b!

pa´1q! ď pn` 1qδb! ď pn` 1qδd! “ CG
řb
i“apn` 1qi ď pn` 1qbδ ď pn` 1qdδ “ CF

If φ is “Gra,bsφ1", recall that regpGra,bsφ1q “
Źb
i“apS

n, qiregpφ1q. From the

analysis of set_intersect, worst-case space complexity is multiplicative. Thus

Spregpφqq “
śb
i“apn ` 1qi ¨ Spregpφ1qq ă CG ¨ Spregpφ1qq

δ . In this calculation,

pn` 1qi counts the concatenation of the padded components in the computation.

If φ is “Fra,bsφ1", recall that regpFra,bsφ1q “
Žb
i“apS

n, qiregpφ1q.
From the analysis of join, worst-case space complexity is additive, which implies that

Spregpφqq “
řb
i“apn` 1qi ¨ Spregpφ1qq ă CF ¨ Spregpφ1qq.

If φ = “φ1Ura,bsφ2”, then regpφ1 Ura,bsφ2q “
Žb
i“a reg

`

Gra,i´1sφ1 ^ Gri,isφ2

˘

.

We can bound SpregpGri,isφ2qq by pn ` 1q ¨ i ¨ Spregpφ2qq because the operation is

equivalent to simply prepending pSn, qi. Thus, using our previous results for the G, ^,
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and _ operators, we have that:

Spregpφqq ď
b

ÿ

i“a

rCGSpregpφ1qq
δ ¨ pn` 1qiSpregpφ2qqs

ď δrCG ¨ δpn` 1qd ¨ Spregpφ1qq
δSpregpφ2qqs

“ CU ¨ Spregpφ1qq
δSpregpφ2qq

where CU “ CGδpn` 1qd.

If φ = “φ1Rra,bsφ2”, recall that

regpφ1Rra,bsφ2q “ reg
`

Gra,bsφ2

˘

_
Žb´1

i“a reg
`

Gra,isφ2 ^ Gri,isφ1

˘

.

A similar argument to the U case shows Spregpφqq ă CR ¨Spregpφ1qq¨Spregpφ2qq
δ ,

where CR “ CG ¨ p1` δpn` 1qdq.

Theorem 5 (Space Complexity). Given a well-formed MLTL formula φ, regpφq has

worst-case space complexity that isOpCδ
ℓ

R ¨pℓ`1qδ
ℓ`1

q, where ℓ is the number of logical

connectives in t^,_,F ,G,R,Uu that occurr in φ.

Proof. To analyze worst-case complexity, it is clear from the analysis above that U and

R give the worst complexity. In the previous analysis, we defined CU “ CGδpn ` 1qd
and CR “ CG ¨ p1`δpn`1qdq. Observe that CR ą CU , and so we analyze only repeated

nesting of the operator R.

However, notice that the structure of the parse tree is important. Formulas similar

to pp3Rp1qRpp1Rp0q generate a balanced binary parse tree where the maximum depth

of recursion is Oplog ℓq. However if the nesting is only from one side, such as formulas

similar to p3Rpp2Rpp1Rp0qq, then the maximum depth of recursion is Opℓq. Thus we

focus on the formula

φ “ pℓRraℓ,bℓsppℓ´1Rraℓ´1,bℓ´1s...Rra3,b3spp2Rra2,b2spp1Rra1,b1sp0qq...q

where there are ℓ logical connectives R and n “ ℓ` 1 propositional variables.

We derive the complexity of Spregpφqq by defining the sequence tsku
ℓ
k“1

recur-

sively as follows, s1 :“ Spregpp1Rra1,b1sp0qq and sk`1 :“ CRSpregppk`1qqpskq
δ ,

for each 1 ď k ă ℓ. The recurrence relation captures an extra nesting of the R operator,

based on the complexity of R defined above. We calculate Sppmq “ n “ ℓ ` 1 for all

m such that 0 ď m ď ℓ, thus s1 “ CRpℓ` 1qδ`1 and sk`1 “ CRpℓ` 1qpskq
δ .

The explicit formula is given by sk “ C

ř

k´1

i“0
δi

R ¨ pℓ ` 1q
ř

k

i“0
δi . It is easy to check

that the base case k “ 1 holds, and we prove the claim by induction:

Sk`1 “ CR

´

C

ř

k´1

i“0
δi

R ¨ pℓ` 1q
ř

k

i“0
δi

¯δ

¨ pℓ` 1q

“ C
1`

ř

k´1

i“0
δi`1

R ¨ pℓ` 1q1`
ř

k

i“0
δi`1

“ C

ř

k

i“0
δi

R ¨ pℓ` 1q
ř

k`1

i“0
δi .

Thus we have that Spregpφqq “ C

ř

ℓ´1

i“0
δi

R ¨ pℓ` 1q
ř

ℓ

i“0
δi “ OpCδ

ℓ

R ¨ pℓ` 1qδ
ℓ`1

q.

Through a similar analysis, we have found that the time complexities of all of the

above functions is unsurprisingly the same as their space complexities.
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Theorem 6 (Time Complexity). Given a well-formed MLTL formula φ, regpφq has

worst-case time complexity that is OpCδ
ℓ

R ¨ pℓ`1qδ
ℓ`1

q, where ℓ is the number of logical

connectives in t^,_,F ,G,R,Uu that occurr in φ.

If in the worst case no simplification occurs in any call of set_intersect, space

complexity remains unchanged, but simplifying a set of regular expressions is cubic

in input size. In practice, however, both time and space complexities are much more

optimistic than worst-case estimates.

4.3 Experimental Benchmarking

We accompany theoretical space and time complexity with experimental evaluation of

these complexities using randomly-generated MLTL formulas. What we observed from

the simulations is that the worst-case complexity, both for space and time, is relatively

rare, and that otherwise the program has good complexity. WEST ran in under 10 sec-

onds for nearly all the inputted random formulas. The number of characters outputted

was typically under 5000, and often less. This is approximately the length of a single

paragraph. We also observe that these worst cases are extreme outliers and that in nearly

every case, are examples of nested binary temporal operators. As seen in [14], [16], [2],

and [13], nested binary temporal operators do not appear in any specifications, and thus

are unlikely to appear both in the literature and in practical applications.

We ran these experiments on an Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz with

376 GB RAM. For each simulation, 1000 MLTL formulas were randomly generated

using the parameters delta, interval_max, number of propositional variables, and

number of iterations. Here, delta is the maximum length we allow for any interval,

interval_max is the largest allowed upper bound for any interval, and Number of

iterations is the level of nesting in the generated formulas. For example, Gr0,2sp0 is

a formula generated with one iteration, while Gr0,2spp0 ^ p1q is a formula generated

with two iterations. We measure the number of characters in the output versus time in

seconds taken to run the program. For the pseudocode of the program that generated

the random formulas, we refer the reader to check the WEST Appendix9.

Simulation 1 For the first simulation, we consider 2 iterations, 5 propositional vari-

ables, delta “ 10, and interval_max “ 10. We obtain plots 2a and 2b.

(a) (b)

Fig. 2: pp0 “ p1qUr2,9spp1Ur7,9sp3q is an outlier in both. pp4 Ñ p2qRr1,8spp3Ur3,4sp0q
and pp3Rr2,7sp4qRr1,9spp4Rr4,9sp3q are outliers only in b.
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Simulation 2 For the second simulation, we consider 1 iteration, 10 propositional vari-

ables, delta “ 20, interval_max “ 20. We obtain plots 3a and 3b.

(a) (b)

Fig. 3: We observe no outliers. The zero second runtimes are observed for MLTL for-

mulas that consist of a single propositional variable or its negation.

Simulation 3 For the third simulation, we consider 2 iterations, 10 propositional vari-

ables, delta “ 5, and interval_max “ 10. We obtain plots 4a and 4b.

(a) (b)

Fig. 4: pp7Ur5,7sp9qUr3,7spFr1,4sp4q and Gr3,7spp9Ur0,4sp0q are outliers in both.

Gr3,7spp9Ur0,4sp0q is an outlier in 4a only.

Simulation 4 For the fourth simulation, we consider 1 iteration, 5 propositional vari-

ables, delta “ 10, interval_max “ 10. We obtain plots 5a and 5b.

(a) (b)

Fig. 5: We observe no outliers. The zero second runtimes are observed for MLTL for-

mulas that consist of a single propositional variable or its negation.
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We conclude from the simulations that for most practical purposes where nesting of

binary temporal operators rarely occur, the WEST algorithm demonstrates good space

and time complexity.

5 Correctness of WEST Tool Implementation

We accompany our proof of algorithmic correctness with a rigorous evaluation of imple-

mentation correctness, showing that our WEST tool correctly implements our WEST

algorithm. Since our proof of algorithmic correctness is manual and our focus is on

usability for validation by humans, we utilize more traditional techniques for robust

software engineering with testing-based evaluation. The naïve approach is to test all

inputs up to a certain size and verify the outputs, but this strategy would generate an

unnecessarily large and redundant test suite. For instance, there is little sense in testing

all MLTL formulas of the form p0Ur0,tsp1 for all t such that 0 ď t ď 99; verification

of a few should give sufficient confidence of correctness of the program. Instead, we

test our implementation with a test suite that explores all possible sequences of lines of

code that are executed (up to a certain depth).

5.1 Intelligent Fuzzing

Traditional black-box fuzzing is defined by Miller [23]: ªIf we consider a program to be

a complex finite state machine, then our testing strategy can be thought of as a random

walk through the state space, searching for undefined states.º

Instead we utilize intelligent fuzzing, an alternate approach that leverages knowl-

edge about program structure to generate valid inputs and increase coverage. Borrowing

the words of Miller, our approach to testing the WEST program can be thought of as

walking all possible paths up to a certain depth of the state space of our algorithm. We

first outline our overall approach to intelligent fuzzing:

1. Construct a directed graph representation of our algorithm. The edges capture con-

trol flow of our algorithm, and vertices represent non-branching blocks of code.

2. Construct a test suite that explores all possible paths in the directed graph up to a

certain depth. Run the WEST program on the test suite to produce a set of output

files.

3. Run a naïve brute force generator of satisfying computations on the test suite and

verify that both outputs match for all test cases.

State Diagram Construction We can represent the state space of the WEST algorithm

as a directed graph with the edges representing the control flow and vertices represent-

ing blocks of contiguous code without branching statements. The core of the WEST

program lies in the recursive routine, reg, which calls the 8 different subroutines as

shown in Fig. 6.

In order to construct the intelligent fuzzing test suite, we make the design choice

to abstract away the eight subroutines in the overall state space diagram, despite the

fact that they may have different possible execution paths within them. Without this

abstraction, attempting to explore all execution paths in this finer graph is infeasible due

to the explosion in the number of paths [26], some of which are provably impossible to

construct a test input to explore.
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Reg Join

Set_Intersect

Prop_Var

Prop_Cons

Reg_FReg_G Reg_U Reg_R

Fig. 6: Abstracted graph of the reg main routine. Red nodes signal recursive calls to

reg on subformulas of the input formula.

Creating the Test Suite To generate our intelligent fuzzing test suite, we first count the

number of formulas φpdq to be generated as a function of the exact depth d of recursion

desired. For d “ 0, only the paths leading to prop_var and prop_cons can be

explored, so φp0q “ 2. For d ě 1, we recursively calculate φpd`1q “ 2φpdq`4φpdq2;

paths to reg_G and reg_F is counted by the linear term, and paths to reg_U, reg_R,

set_intersect, and join is counted by the quadratic term. This gives φp1q “ 20,

φp2q “ 1640, and φp3q “ 10761680, which tells us that d “ 3 is computationally

infeasible and d “ 1 does not give us assurance about operators interacting with each

other through nesting. Whence we select d “ 2 as a happy medium. We generate the

full test suite in a similar recursive manner. Firstly, the d “ 0 test suite consists of

two formulas: a propositional variable or its negation, and a propositional constant.

Then for any d ě 1, we iterate through all formulas in the depth d ´ 1 test suite

for reg_G and reg_F, and all pairs of formulas from the d ´ 1 test suite for the

remaining four recursive paths. To ensure wider coverage, we randomly generate each

of the propositional variables or their negation and propositional constants.

Verifying against Naïve Brute Force A relatively straightforward approach to gen-

erating the set of all satisfying computations of an MLTL formula φ over n variables,

such thatm “ cplenpφq, is to iterate over all 2m¨n possible computations, which counts

all possible length m ¨ n bit strings. An interpreter function takes computation π and

MLTL formula φ and determines if π ( φ based purely on MLTL semantics. Our test

program translates every first-order quantifier into a loop; then checking for satisfying

conditions of the suffix of a computation naturally lends itself to recursion. The full

implementation details are available in the WEST [Github]5. On an Intel(R) Core(TM)

i7-4770S CPU at 3.10GHz with 32gb RAM, the brute force program took nearly nine

hours to execute the depth two test suite of 1640 formulas. For this test suite, we fixed

the number of propositional variables at n “ 4 and the largest computation length was

m “ 5, from formulas with doubly-nested temporal operators.

In comparison, the WEST program executed the same test suite in under thirty min-

utes on the same machine. Note that the brute force program outputs only computations

of zeros and ones, and thus comparing the outputs of the WEST program requires ex-

panding out the ªSº characters in the regular expressions. It is important to state that

although the full test suite matches between both implementations, absolute correctness

on all inputs is not guaranteed for either program. However, the successful execution
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of the test suite gives us a much higher confidence in correctness of both the WEST

program and the brute force program.

6 Regular Expression Simplification Theorem (REST)

As a final result, we provide a regular expression simplification theorem. This theorem

describes the form of a set of MLTL regular expressions that simplify to all ªSº char-

acters. This theorem may help users identify tautologies, as the WEST program does

not always output a string of all ªSº characters when a formula holds true for every

computation. We first define some vocabulary. We call an arbitrary computation any

regular expression composed entirely of ªSº characters and commas. For the purposes

of the following theorem, we remove all commas from computations. We say a ª0º or a

ª1º in a regular expression is a fixed truth value. We overload the definition of a matrix

and say that a matrix is a representation of a union of regular expressions, where each

row is a regular expression. This aids significantly in the description and proof of the

theorem. Note that usual matrix algebra is not relevant to this definition.

Theorem 7 (Regular Expression Simplification Theorem). Let M be an pn` 1q ˆ n
matrix, where each of the n ` 1 rows represents a regular expression of length n with

commas stripped. If each column has one ª1º, one ª0º, and n ´ 1 ªSº characters,

then the union of this set of regular expressions can be simplified to Sn, the arbitrary

computation of length n.

The proof of REST follows from induction on the size of M and the pigeon hole

principle. See the WEST Appendix9 for details of the proof.

This theorem gives us a sufficient but not a necessary condition for simplification to

the arbitrary computation. One such example is the regular expression p101q_pS1Sq_
p1S0q _ p0SSq, which fails the hypothesis of the simplification theorem but is still

equivalent to SSS.

6.1 Theoretical Analysis of REST

We present an algorithm based on Theorem 7 for simplifying disjunctions of regular

expressions and provide theoretical analysis, as well as experimental benchmarking.

We determine that REST runs exponentially with respect to the length of the inputted

regular expressions, both in the worst-case and average case. However, REST does not

apply for many MLTL formulas, and WEST already demonstrates good time and space

complexity in the average case without REST (see section 4.3). Thus, the algorithmic

complexity of REST is not of practical concern.

Theorem 8. On input vector of regular expressions v of m strings each of length n,

REST has a worst-case runtime of Opn22mq.

Proof. We first analyze the statements in the innermost loop. In line 4, the construction

of diff_cols can be done in Opnrq time, by iteratively scanning the columns of w. In

line 7, checking if w1 satisfies the conditions of Theorem 7 is done in Opr2q time, by

keeping a count of the number of 0, 1, S in each column. Thus, the innermost portion
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Algorithm 5 Regular Expression Simplification Algorithm (REST)

Inputs: vector v of m regular expressions each of length n

Output: simplified set of equivalent regular expressions using Theorem 7

1: procedure REST(set v)

2: for r P r3,minpm,n` 1qs do

3: for all vectors of regular expression w Ď v s.t. |v| “ r do

4: diff_colsÐ indices of all columns of w that are not uniformly the same character

5: if |diff_cols| “ r ´ 1 then

6: w1 Ð w containing only columns P diff_cols

7: if w1 satisfies Theorem 7 then

8: In w, replace all columns P diff_cols with s

9: v Ð remove_duplicates(v)

10: return v

of the loop has runtime Opnr` r2q “ Opn2q. The total runtime is bounded as follows:

runtimepRESTpvqq “

minpm,n`1q
ÿ

r“3

ˆ

m

r

˙

Opn2q “ Opn22mq.

6.2 Experimental Benchmarking of REST

We provide an experimental evaluation of the runtime of REST using randomly-generated

sets of regular expressions satisfying the conditions of REST. Unfortunately, results

suggest that the average case time complexity is of the worst case.

We generated 100 sets of regular expressions satisfying the REST conditions, with

n between 10 and 25. We measured the amount of time in seconds taken to run the pro-

gram. We ran these experiments on an Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz

with 376 GB RAM, taking over one hour. We conclude that REST is not advisable to

use as a part of the WEST program because it is often too computationally expensive.

Fig. 7: For most inputs, REST’s runtime is exponential with respect to the input length.
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7 Using WEST: An Example

For this section, we include a Video tutorial10 that demonstrates the use the WEST GUI

program to explore specifications. The video uses the formula pp0 ^ Gr0,3sp1q Ñ p2
from [16] as an example. The WEST program interface can aid a user in the process of

MLTL formula validation by allowing them to explore the behavior of the formula and

its subformulas.

The user can toggle the value of propositional variables at individual time steps to

explore if the resulting computation satisfies the given formula. Additionally, the tool

can randomly generate a satisfying computation that matches a specific regular expres-

sion, randomly generate an unsatisfying computation, and perform backbone analysis.

All of these functionalities are immensely useful for allowing a user to validate that the

formula they have written means what they think it means.

8 Closing Remarks

The primary goal of this work is to visually represent MLTL formulas to aid in debug-

ging of MLTL specifications in industrial domains. We have accomplished this with our

regular expressions framework, which captures many structural patterns of satisfying

computations for a given MLTL formula. The tool itself has demonstratively reason-

able runtime for most inputs, and the correctness of outputs has been verified to a high

degree of confidence through intelligent fuzzing.

8.1 Future Work

The WEST algorithm and the release of our open-source tool open a multitude of dif-

ferent research directions.

Similar Analysis of LTL ω-regular expressions match only infinite words and can be

used to describe satisfying computations of LTL formulas. Our work on validation for

MLTL formulas lays the groundwork for future work on validation of the finite-trace

logic LTLf [9] as well as LTL formulas. For the infinite-trace semantics of LTL, the

particular difficulties revolve around the Kleene star operation, which behaves poorly

due to computing infinite unions and intersections of regular expressions.

Regular Expression Simplification Theorem 7 addresses a non-trivial situation in

which a set of regular expressions may be simplified. A natural question to ask is

what is the minimum number of regular expressions needed to represent a language

of computations. However, such a minimal representation is not unique. For instance,

tS1, 1Su “ tS1, 10u “ t01, 10, 11u. Other schemes may be needed to simplify any

arbitrary union of regular expressions to a minimal representation.

Fuzzing General Recursive Algorithms A tool to systematically convert a recursive

algorithm into a directed graph representation of the state space would be a helpful

aid for generating test suites. Additional care should be put into allowing for varying

levels of abstractions of execution due to concerns of the path explosion problem. We

note that such avenues for code-level verification will still be necessary even upon the

completion of potential future work avenues like synthesizing the core implementation

of the WEST algorithm from an interactive theorem prover. This is because the goal

10 https://youtu.be/HoBJwdCq42c
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of explainability to humans will require at least some manual code authorship for the

foreseeable future.

Code Synthesis from MLTL Specification The truth tables generated by the WEST

tool can now serve as input to a recently-published toolchain [3]. This newly-enabled

workflow would produce encodings of the represented MLTL behavior for the inter-

active theorem prover ACL2, including automatically generating related properties of

general interest such as unambiguousness [4,15,6]. Next, a synthesis pipeline consisting

of a verified program transformation suite [18] along with a proof-generating C code

generator [5] (both built on ACL2) generates verified software implementing the behav-

iors originally described in MLTL. By providing a new front-end for this tool chain, we

have now enabled a path to generating provably correct software from validated MLTL

formulas describing the desired behaviors of a system. Considering the rising popular-

ity of MLTL for describing such behaviors, we expect this to be a rewarding avenue for

future exploration.
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Appendix

I Minimum Computation Length

Theorem 1 (Minimum Computation Length of Until and Release). Let 0 ď a ď
b P N and let φ, ψ be well-formed MLTL formulas in NNF. The minimum computation

length of Until and Release is given by cplenpφUra,bsψq “ cplenpφRra,bsψq “ b `
maxpcplenpφq ´ 1, cplenpψqq.

Proof. Recall that regpφ Ura,bsψq “
Žb
i“a reg

`

Gra,i´1sφ^ Gri,isψ
˘

. Thus

cplenpφUra,bsψq “ max
aďiďb

`

cplenpGra,i´1sφ^ Gri,isψq
˘

“ max
aďiďb

pmaxpi´ 1` cplenpφq, i` cplenpψqqq

“ max
aďiďb

pi`maxpcplenpφq ´ 1, cplenpψqqq

“ b`maxpcplenpφq ´ 1, cplenpψqq.

Now recall that regpφRra,bsψq “ reg
`

Gra,bsψ
˘

_
Žb´1

i“a reg
`

Gra,isψ ^ Gri,isφ
˘

. Thus

cplenpφRra,bsψq “ max

˜

cplenpGra,bsψq, cplen

˜

b´1
ł

i“a

reg
`

Gra,isψ ^ Gri,isφ
˘

¸¸

“ max

ˆ

b` cplenpψq, max
aďiďb´1

`

Gra,isψ ^ Gri,isφ
˘

˙

“ max

ˆ

b` cplenpψq, max
aďiďb´1

pmaxpi` cplenpψq, i` cplenpφqqq

˙

“ max pb` cplenpψq,maxpb´ 1` cplenpφq, b´ 1` cplenpψqqq

“ maxpb` cplenpψq, b´ 1` cplenpφq, b´ 1` cplenpψqq

“ b`maxpcplenpφq ´ 1, cplenpψqq.

II Soundness and Completeness

Theorem 2 (Soundness and Completeness). For any well formed MLTL formula φ in

negation normal form, a computation π with |π| “ cplenpφq satisfies φ and if and only

if π P L pregpφqq.

Proof. We proceed by induction on the length of the formula.

Base Cases.

reg(J)

Any computation π satisfies J, and L pregpJqq is the set of all computations of one

time step. Padding conventions extends this to the set of all computations of any positive

number of time steps, so we are done.

reg(K)

There are no computations that satisfy K and L pregpKqq is the empty string, so we are

done.

reg(pk)
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For 0 ď k ď n ´ 1, consider the propositional variable pk. If π satisfies pk, then pk
evaluates to true at πr0s. This is equivalent to writing that πr0s is of the form

Sk1Sn´k´1

, which is precisely reg(pk).

reg(␣pk)

If π satisfies ␣pk, then ␣pk evaluates to true at πr0s. This is equivalent to writing that

πr0s is of the form

Sk0Sn´k´1

, which is precisely reg(␣pk).

Inductive Step.

Suppose the theorem holds for MLTL formulas φ and ψ. We now show that it holds for

φ^ ψ, φ_ ψ, Fra,bsφ, Gra,bsφ, φ Ura,bsψ, and φRra,bsψ.

reg(φ^ ψ)

We know that π ( φ^ ψ iff π ( φ and π ( ψ.

By the inductive hypothesis, π ( φ iff π P L pregpφqq and

π ( ψ iff π P L pregpψqq, so

π ( φ^ ψ iff π P pL pregpφqq ^L pregpψqqq “ L pregpφ^ ψqq.

reg(φ_ ψ)

We know that π ( φ_ ψ iff π ( φ or π ( ψ.

By the inductive hypothesis, π ( φ iff π P L pregpφqq and

π ( ψ iff π P L pregpψqq, so

π ( φ_ ψ iff π P pL pregpφqq _L pregpψqqq “ L pregpφ_ ψqq.

reg(Fra,bsφ)

We know that π ( Fra,bsφ iff |π| ą a and Di P ra, bs such that πi ( φ.

If |π| “ cplenpFra,bsφq, |π| ą a. Likewise, π P L
`

reg
`

Fra,bsφ
˘˘

implies |π| “
cplenpFra,bsφq, so the length condition is satisfied.

By the inductive hypothesis, πi ( φ iff πi P L pregpφqq, so π P L ppSn, qiregpφqq for

some i P ra, bs. Equivalently,

π P L

˜

b
ł

i“a

pSn, qiregpφqp, Snqb´i

¸

“ L pregpFra,bsφqq.

reg(Gra,bsφ)

We know that π ( Gra,bsφ iff |π| ď a or @i P ra, bs πi ( φ.

Since |π| “ cplenpGra,bsφq and cplenpGra,bsφq ą a, the first option for satisfying the

formula never occurs.

By the inductive hypothesis, πi ( φ iff πi P L pregpφqq, so π P L ppSn, qiregpφqq for

all i P ra, bs. Equivalently,

π P L

˜

b
ľ

i“a

pSn, qiregpφqp, Snqb´i

¸

“ L pregpFra,bsφqq.
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reg(φ Ura,bsψ)

We have that

π ( φ Ura,bsψ iff |π| ą a and Di P ra, bs such that pπi ( ψ and @a ď j ă i, πj ( φq.

As argued in the Finally case, the length condition is satisfied.

By the inductive hypothesis, πi ( ψ iff πi P L pregpψqq, or equivalently,

π P L pregpGri,isψqq. Also, πj ( φ if and only if πj P L pregpφqq.
By the argument used in the Global case, we see that @a ď j ă i, πj ( φ is equivalent

to π P L pregpGra,i´1sφqq.
Thus π ( φ Ura,bsψ iff π P L ppregpGri,isψq ^ regpGra,i´1sφqqq for some i P ra, bs, or

equivalently,

π P L

˜

b
ł

i“a

reg
`

Gra,i´1sφ^ Gri,isψ
˘

¸

“ L
`

regpφ Ura,bsψq
˘

.

reg(φRra,bsψ)

We have that

π ( φRra,bsψ iff |π| ď a or @i P ra, bs πi ( ψ or

Dj P ra, bs such that pπj ( φ and @a ď k ď j, πk ( ψq.

As argued in the Global case, the first option for satisfying the formula never occurs.

By the Global case, the statement @i P ra, bs πi ( ψ is equivalent to π P L pregpGra,bsψqq
and, by the Finally case. the statement Dj P ra, bs such that (πj ( φ and @a ď k ď j,

πk ( ψ) is equivalent to π P L

´

Žb
i“a reg

`

Gra,isψ ^ Gri,isφ
˘

¯

. Hence

π ( φRra,bsψ iff π P L

˜

regpGra,bsψq _
b

ł

i“a

reg
`

Gra,isψ ^ Gri,isφ
˘

¸

“ L

˜

regpGra,bsψq _
b´1
ł

i“a

reg
`

Gra,isψ ^ Gri,isφ
˘

¸

“ L
`

regpφRra,bsψq
˘

.

This completes the inductive step, and thus the proof. Since this proof addresses all

possible MLTL formulas in negation normal form, it shows completeness along with

soundness.

III Nested Until and Release Rewriting Theorem

Theorem 3 (Nested Until and Release Rewriting Theorem). Any MLTL formula using

the Until or Release operator can be rewritten with right-nested subformulas. Let B “
R or U . Let a, b, c P Zě0, a ď b, andφ, ψ be well-formed MLTL formulas in NNF. Then,

φ Bra,b`csψ ” φ Bra,bspφ Br0,csψq. That is, φ Ura,b`csψ ” φ Ura,bspφ Ur0,csψq and

φRra,b`csψ ” φRra,bspφRr0,csψq.

The proof of Theorem 3 appears below.
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Proof. Case 1: B “ U

Let γ “ φ Ur0,csψ. Then, φ Ura,bspφ Ur0,csψq “ φ Ura,bsγ and

reg pγq “
Žc
j“0

reg
`

Gr0,j´1sφ^ Grj,jsψ
˘

. Thus

reg
`

φ Ura,bsγ
˘

“
b

ł

i“a

reg
`

Gra,i´1sφ^ Gri,isreg pγq
˘

“
b

ł

i“a

reg

˜

Gra,i´1sφ^ Gri,is

˜

c
ł

j“0

reg
`

Gr0,j´1sφ
˘

^ reg
`

Grj,jsψ
˘

¸¸

.

Gri,is distributes over ^ and _, so

reg
`

φ Ura,bsγ
˘

“
b

ł

i“a

reg

˜

Gra,i´1sφ^
c

ł

j“0

Gri,is

`

reg
`

Gr0,j´1sφ
˘

^ reg
`

Grj,jsψ
˘˘

¸

“
b

ł

i“a

reg

˜

Gra,i´1sφ^

˜

c
ł

j“0

Gri,isreg
`

Gr0,j´1sφ
˘

^ Gri,isreg
`

Grj,jsψ
˘

¸¸

.

Since Grt1,t1sGrt2,t3sφ ” Grt1`t2,t1`t3sφ, we have

reg
`

φ Ura,bsγ
˘

“
b

ł

i“a

reg

˜

Gra,i´1sφ^

˜

c
ł

j“0

reg
`

Gri,i`j´1sφ
˘

^ reg
`

Gri`j,i`jsψ
˘

¸¸

“
b

ł

i“a

c
ł

j“0

reg
`

Gra,i´1sφ
˘

^ reg
`

Gri,i`j´1sφ
˘

^ reg
`

Gri`j,i`jsψ
˘

.

Since Grt1,t2´1sφ^ Grt2,t3sφ ” Grt1,t3sφ, we have

reg
`

φ Ura,bsγ
˘

“
b

ł

i“a

c
ł

j“0

reg
`

Gra,i`j´1sφ
˘

^ reg
`

Gri`j,i`jsψ
˘

“
b`c
ł

i`j“a

reg
`

Gra,i`j´1sφ
˘

^ reg
`

Gri`j,i`jsψ
˘

.

Finally, let k “ i` j. Thus

reg
`

φ Ura,bsγ
˘

“
b`c
ł

k“a

reg
`

Gra,k´1sφ
˘

^ reg
`

Grk,ksψ
˘

“ reg
`

φ Ura,b`csψ
˘

.

This shows that φ Ura,bspφ Ur0,csψq ” φ Ura,b`csψ.

Case 2: B “ R

We begin by rewriting the regex for Release in an equivalent form to better mirror the
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structure of the Until case. The Release operator is the dual of the Until operator. Thus,

reg
`

φRra,bsψ
˘

“ reg
`

␣
`

␣φ Ura,bs␣ψ
˘˘

“ ␣

˜

b
ł

i“a

reg
`

Gra,i´1s␣φ^ Gri,is␣ψ
˘

¸

.

Global is the dual of Finally, so

reg
`

φRra,bsψ
˘

“ ␣

˜

b
ł

i“a

reg
`

␣Fra,i´1sφ^␣Fri,isψ
˘

¸

“ ␣

˜

b
ł

i“a

reg
`

␣
`

Fra,i´1sφ_ Fri,isψ
˘˘

¸

“ ␣␣

˜

b
ľ

i“a

reg
`

Fra,i´1sφ_ Fri,isψ
˘

¸

“
b

ľ

i“a

reg
`

Fra,i´1sφ_ Fri,isψ
˘

.

This completes the rewriting of the regex for Release. Now let γ “ φ Rr0,csψ. Then

φ Rra,bspφ Rr0,csψq “ φ Rra,bsγ and reg pγq “
Źc
j“0

reg
`

Fr0,j´1sφ_ Frj,jsψ
˘

.

Thus

reg
`

φRra,bsγ
˘

“
b

ľ

i“a

reg
`

Fra,i´1sφ_ Fri,isreg pγq
˘

“
b

ľ

i“a

reg

˜

Fra,i´1sφ_ Fri,is

˜

c
ľ

j“0

reg
`

Fr0,j´1sφ
˘

_ reg
`

Frj,jsψ
˘

¸¸

.

Fri,is ” Gri,is, so this operation distributes over ^ and _. Thus

reg
`

φRra,bsγ
˘

“
b

ľ

i“a

reg

˜

Fra,i´1sφ_
c

ľ

j“0

Fri,is

`

reg
`

Fr0,j´1sφ
˘

_ reg
`

Frj,jsψ
˘˘

¸

“
b

ľ

i“a

reg

˜

Fra,i´1sφ_

˜

c
ľ

j“0

Fri,isreg
`

Fr0,j´1sφ
˘

_ Fri,isreg
`

Frj,jsψ
˘

¸¸

.

Since Frt1,t1sFrt2,t3sφ ” Frt1`t2,t1`t3sφ, we have

reg
`

φRra,bsγ
˘

“
b

ľ

i“a

reg

˜

Fra,i´1sφ_

˜

c
ľ

j“0

reg
`

Fri,i`j´1sφ
˘

_ reg
`

Fri`j,i`jsψ
˘

¸¸

“
b

ľ

i“a

c
ľ

j“0

reg
`

Fra,i´1sφ
˘

_ reg
`

Fri,i`j´1sφ
˘

_ reg
`

Fri`j,i`jsψ
˘

.
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Since Frt1,t2´1sφ^ Frt2,t3sφ ” Frt1,t3sφ, we have

reg
`

φRra,bsγ
˘

“
b

ľ

i“a

c
ľ

j“0

reg
`

Fra,i`j´1sφ
˘

_ reg
`

Fri`j,i`jsψ
˘

“
b`c
ľ

i`j“a

reg
`

Fra,i`j´1sφ
˘

_ reg
`

Fri`j,i`jsψ
˘

.

Let k “ i` j. Thus

reg
`

φRra,bsγ
˘

“
b`c
ľ

k“a

reg
`

Fra,k´1sφ
˘

_ reg
`

Frk,ksψ
˘

“ reg
`

φRra,b`csψ
˘

.

Thus φRra,bspφRr0,csψq ” φRra,b`csψ, so φ Bra,b`csψ ” φ Bra,bspφ Br0,csψq. This

completes the proof.

IV Until and Release Duality Lemma

Lemma 1 (Until and Release Duality). The definition of Release is equivalent to the

dual of Until: φRψ ” ␣p␣φU␣ψq. That is to say, φRra,bsψ if and only if |π| ď
a or @s P ra, bs, pπs ( ψ or Dt P ra, s´ 1s, πt ( φq.

Proof.

(ñ):

Suppose π ( φRra,bsψ, so:

|π| ď a or @i P ra, bs, (πi ( ψ) or Dj P ra, b´ 1s, (πj ( φ and @k P ra, jsπk ( ψ)

We proceed by cases to show that:

|π| ď a or @s P ra, bs, (πs ( ψ or Dt P ra, s´ 1s, πt ( φ) (A1)

Case 0: If |π| ď a, then we are immediately done. Case 1: Suppose @i P
ra, bs, πi ( ψ.

Through re-labeling, we have @s P ra, bs, πs ( ψ. Then we clearly have:

|π| ď a or @s P ra, bs, (πs ( ψ or Dt P ra, s´ 1s, πt ( φ) (A1)

Case 2: Suppose Di P ra, bs, πi�(ψ.

Then we must have that:

Dj P ra, b´ 1s, (πj ( φ and @k P ra, js πk ( ψ) (1)

We want to show that @s P ra, bs, (Dt P ra, s´ 1s, πt ( φ).

Suppose by contradiction that:

Ds P ra, bs, (@t P ra, s´ 1s, πt�(φ) (2)



28 J. Elwing et al.

Since s P ra, bs and t P ra, s´ 1s, we have that t P ra, b´ 1s.
Since j P ra, b´ 1s (from Line 1), we have that πj�(φ from Line 2.

However from Line 1 we have that πj ( φ and have thus derived a contradic-

tion.

Thus, we now have that @s P ra, bs, (Dt P ra, s´ 1s, πt ( φ).

From this, we clearly have that:

|π| ď a or @s P ra, bs, (πs ( ψ or Dt P ra, s´ 1s, πt ( φ) (A1)

Since these 3 cases exhaustively capture all cases fo the assumption, the (ñ) direc-

tion is proved.

(ð):

Suppose that π ( ␣p␣φU␣ψq:

|π| ď a or @s P ra, bs, (πs ( ψ or Dt P ra, s´ 1s, πt ( φ) (1)

We want to show π ( φRra,bsψ, that is:

|π| ď a or @i P ra, bs, (πi ( ψ) or Dj P ra, b´ 1s, (πj ( φ and @k P ra, js πk ( ψ)

(B1)

Case 0: If |π| ď a, again we are immediately done.

Case 1: Suppose @s P ra, bs, (πs ( ψ).

Relabeling s to i, we now have that @i P ra, bs, (πs ( ψ), which implies line

B1.

Case 2: Suppose Ds P ra, bs, πs�(ψ.

By re-labeling s to i, we have that Di P ra, bs, πi�(ψ.

Since ra, bs is a finite-discrete interval, there must exist a first i1 s.t. πi1�(ψ, that

is:

Di1 P ra, bs, (πi1�(ψ and @k P ra, i1 ´ 1s, πk ( ψ) (2)

Since (line 2) Di1 P ra, bs, πi1�(ψ, by Line 1 we have that: πi1 ( ψ or Dt P
ra, i1 ´ 1s, πt ( φ.

Thus, we have that:

Dt P ra, i1 ´ 1s, πt ( φ (3)

Since ra, ts Ď ra, i1 ´ 1s and @k P ra, i1 ´ 1s, πk ( ψ, we have that:

@k P ra, ts, πk ( ψ (4)

Since ra, ts Ď ra, i1 ´ 1s Ď ra, b´ 1s, we have that t P ra, b´ 1s, so let j :“ t.

Then from lines 3 and 4, we have that:

Dj P ra, b´ 1s, (πj ( φ and @k P ra, js πk ( ψ) (5)

From line 5, we now get:

|π| ď a or @i P ra, bs, (πi ( ψ) or Dj P ra, b´ 1s, (πj ( φ and @k P ra, js πk ( ψ)

(B1)
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Again the 3 cases are exhaustive of all cases in the assumption, this we have the

(ð) direction.

This finishes the proof.

V Regular Expression Simplification Theorem

Theorem 7 (Regular Expression Simplification Theorem). Let M be a n ` 1 by n

matrix, where each of the n ` 1 rows represents a regular expression of length n with

commas stripped. If each column has one ª1,º one ª0,º and n ´ 1 ªSº characters,

then the union of this set of regular expressions can be simplified to Sn, the arbitrary

computation of length n.

Proof. Assume no row is the arbitrary computation, because then the union of the set

of regular expressions would trivially simplify to the arbitrary computation.

We begin by showing that there must be at least one row in the matrix M that is com-

posed of one fixed truth value and n ´ 1 ‘S’s. This will be of use later in the proof.

Because there are n columns and 2 fixed truth values in each column, there are 2n fixed

truth values. There are n` 1 rows, so the average number of fixed truth values per row

is strictly less than 2 since 2n
n`1

ă 2. Thus, there must exist at least one row composed

of one fixed truth value and n´ 1 ‘S’s.

We now proceed by induction on the length of computations, n.

Base Cases: n “ 1 and n “ 2.

The n “ 1 case holds by definition:

„

1

0

ȷ

” S.

For n “ 2, we can manually verify that each possible matrix indeed satisfies the theo-

rem. Note that because the union of regular expressions is commutative, any permuta-

tion of rows is equivalent:

»

–

1 S

S 1

0 0

fi

fl ”

»

–

0 S

S 0

1 1

fi

fl ”

»

–

1 S

S 0

0 1

fi

fl ”

»

–

0 S

S 1

1 0

fi

fl ” SS.

Inductive Hypothesis:

Let n ě 2. Assume that a matrix of regular expressions, H , with the following char-

acteristics is equivalent to the arbitrary computation of length n ´ 1: n rows, n ´ 1

columns, one ‘1’ per column, one ‘0’ per column, and n´ 2 ‘S’s per column.

Inductive Step:

Consider a matrix of regular expressions, J , with the following characteristics: n ` 1

rows, n columns, one ‘1’ per column, one ‘0’ per column, and n ´ 1 ‘S’s per column.

We show J is equivalent to the arbitrary computation of length n.

As aforementioned, there must exist at least one row composed of one fixed truth value

and n´ 1 ‘S’s, and the union of regular expressions is commutative. Thus, WLOG, let

the first row of J , r1, be a row with one known truth value. Suppose this known truth

value is in column k, ck, where 1 ď k ď n. Assume WLOG that this value is a 0.
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Matrix J can be represented as follows:

J “

c1 ck´1 ck ck`1 cn
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

S . . . S 0 S . . . S r1

S r2

...

S
... 1

...

S
...

S rn`1

The first row of J represents half of the regular expressions contained in the arbitrary

computation. The other half would be represented by a regular expression of all ‘S’s,

except for a ‘1’ at the kth position. Thus, if rows r2 through rn`1 of J represents the

other half of the arbitrary computation, then the matrix (the union of the set of the

regular expressions) represents the arbitrary computation of length n. We show that this

is indeed the case: Because the first row represents all the computations with ‘0’ at

the kth position, every ‘S’ in ck can be replaced with a ‘1’, to avoid redundancy; the

case for which each ‘Sk’ is ‘0’ is a subset of r1. Thus, matrix J can be represented as

follows:

J “

c1 ck´1 ck ck`1 cn
¨

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‚

S . . . S 0 S . . . S r1

1 r2

...
...

...

1 rn`1

The problem reduces to showing that J ´ r1, that is, J with the row r1 removed, repre-

sents the other half of the arbitrary computation. Thus, let J 1 “ J ´ r1:

J 1 “

c1 ck cn
¨

˚

˚

˝

˛

‹

‹

‚

1 r2

...
...

...

1 rn`1

Again, we want to show that J 1 represents the other half of the arbitrary computation.

Recall that we specify this to be the union of regular expressions of all ‘S1s except for

a ‘11 at the kth position. Because each row indeed contains a ‘11 at the kth position, the

problem reduces to showing that r2 ´ ck through rn`1 ´ ck represents the arbitrary

computation, where rj ´ ck is the row rj with the kth entry removed. Thus, we remove
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ck from J 1 and call this new matrix J2:

J2 “

¨

˚

˚

˚

˚

˝

r2 ´ ck
.

.

.

rn`1 ´ ck

˛

‹

‹

‹

‹

‚

Because J2 is the result removing one row and one column from J , J2 has n rows and

n ´ 1 columns. In each column of J2, there remains one ‘1’ and one ‘0’. Also, there

are now n´ 2 ‘S’s in each column because r1 was removed. Thus, J2 is equivalent to

H , and is therefore equivalent to the arbitrary computation by the inductive hypothesis.

Because r1 is equivalent to half of the arbitrary computation and J 1 is equivalent to the

other half of the arbitrary computation, J is equivalent to the arbitrary computation, as

the union of r1 and J 1 is equivalent to J . Therefore, by induction, the theorem holds.

VI Pseudocode for the WEST Algorithm Functions

To compute the satisfying computations of an MLTL formula, many of the functions

in the WEST program require the regular expressions of the satisfying computations of

the subformulas as inputs. We denote these regexes by R and T . Additionally, n will

always refer to the number of propositional variables, and nnf refers to an input formula

in negation normal form.

Algorithm 6 WEST Algorithm

Inputs: ϕ - MLTL formula in NNF

ϕ1 and ϕ2 below are subformulas of ϕ

n - number of propositional variables

Output: set of REGEX satisfying ϕ

procedure REG(string ϕ, int n)

if ϕ is J or K then

return reg_prop_const(ϕ, n)

if ϕ is pk or ␣pk then

return reg_prop_var(ϕ, n)

if ϕ “ ϕ1 ^ ϕ2 then

return set_intersect(reg(ϕ1), reg(ϕ2), n)

if ϕ “ ϕ1 _ ϕ2 then

return join(reg(ϕ1), reg(ϕ2), n)

if ϕ “ Fra,bsϕ1 then

return reg_F(reg(ϕ1), a, b, n)

if ϕ “ Gra,bsϕ1 then

return reg_G(reg(ϕ1), a, b, n)

if ϕ “ ϕ1Ura,bsϕ2 then

return reg_U(reg(ϕ1), reg(ϕ2), a, b, n)

if ϕ “ ϕ1Rra,bsϕ2 then

return reg_R(reg(ϕ1), reg(ϕ2), a, b, n)
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Algorithm 7 Pad a set to elements of all equal length

Input: set of strings that represents a regex, number of propositional variables

Output: set of strings padded to equal length

procedure PAD(set R, int n)

max_LengthÐmaxtrPRu(r.length())

for (r P R) do

diffÐ (max_length´r.length()) / pn` 1q
r Ð r ` p, Snqdiff

return R

Algorithm 8 Computes regex for propositional constant

Input: String that is either ªtrue" or ªfalse", number of propositional variables

Output: set of strings that represents the appropriate satisfying computations

procedure REG_PROP_CONS(string nnf, int n)

if (nnf “ ªtrue" and n ‰ 0) then return tSnu
else return tu

Algorithm 9 Output the set of computation satisfying a propositional variable

Input: String that represents a propositional variable or the negation of one, number of proposi-

tional variables

Output: set of strings that represents the appropriate satisfying computations

procedure REG_PROP_VAR(string nnf, int n)

if (nnf “ ªpk", where k is a nonnegative integer) then return tSk1Sn´k´1u

if (nnf “ ª„pk", where k is a nonnegative integer) then return tSk0Sn´k´1u

Algorithm 10 Takes the intersection of two computations

Input: Two strings representing regexes

Output: Bitwise AND of the inputted strings

procedure BIT_WISE_AND(string r, string t)

retÐ ª"

for (i P r0, r.length()s) do

if (rris^ tris “ “”) then return ª"

else retÐ ret ` rris ^ tris

return ret

Algorithm 11 set_intersect

Inputs: R, T - two sets of REGEX

n - number of propositional variables

Output: set of REGEX equal to R^ T

procedure SET_INTERSECT(R, T , n)

Pad(R, T , n), returnÐ tu
for pr, tq P Rˆ T do

add bit_wise_and(r, t) to ret

return simplify(ret)
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Algorithm 12 Takes union of two regexes (combines two sets into one)

Input: sets of strings that represent regexes, simplify boolean

Output: set of strings that represents union of inputted regexes

procedure JOIN(set R, set T , bool simp)

retÐ tu
for (r P R) do add r to ret

for (t P T ) do add t to ret

if (simp is true) then return simplify(ret)

else return ret

Algorithm 13 Computes the regex for an MLTL formula F[a,b]φ

Inputs: set of strings representing the regex for ϕ, interval bounds, number of propositional vari-

ables, simplify boolean

Output: set of strings that represents the appropriate satisfying computations

procedure REG_F(set rϕ, int a, int b, int n, bool simp)

preÐ ((‘S’)n + ‘,’)a

compÐ rϕ
if a ą b then return tu

for (1 ď i ď b´ a) do

tempϕÐ ((‘S’)n + ‘,’)i + rϕ
compÐ join(comp, tempϕ, simp)

return pre + comp

Algorithm 14 Computes the regex for an MLTL formula φU[a,b]ψ

Inputs: rϕ, rψ - sets of REGEX for MLTL formulas ϕ and ψ (after calling reg)

a, b - integers representing interval bound

n - number of propositional variables

Output: set of REGEX for ϕUra,bsψ

procedure REG_U(rϕ, rψ , a, b, n)

compÐ ((‘S’)n + ‘,’)a` r_ψ

if a ą b then return tu

for (a ď i ď b´ 1) do

G1Ð reg_G(rϕ, a, i, n)

G2Ð reg_G(rψ , i` 1, i` 1, n)

temp_compÐ set_intersect(G1, G2, n)

compÐ join( comp, temp_comp)

return comp
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Algorithm 15 Computes the regex for an MLTL formula φR[a,b]ψ

Inputs: sets of strings representing the regexes for ϕ and ψ, interval bounds, number of proposi-

tional variables, simplify boolean

Output: set of strings that represents the appropriate satisfying computations

procedure REG_R(set rϕ, set rψ , int a, int b, int n, bool simp)

compÐ reg_G(rψ , a, b, n, simp)

if a ą b then return tSnu

for (a ď i ď b´ 1) do

temp_compÐ set_intersect(reg_G(rψ , a, i, n), reg_G(rϕ, i, i, n), n, simp)

compÐ join(comp, temp_comp, simp)

return comp

Algorithm 16 Combines two strings that differ only by one character into one

Input: Two strings that represent regexes

Output: Single string that represents computations represented by both input strings or FAIL

procedure SIMPLIFY_STRING(string r, string t)

if (r.length() ‰ t.length()) then exit

for (0 ď i ă r.length()) do

pre_rÐ rr0, i´ 1s
char_rÐ rris
post_rÐ rri` 1, r.length()´ 1s
pre_tÐ tr0, i´ 1s
char_tÐ tris
post_tÐ tri` 1, t.length()´ 1s
if (pre_r “ pre_t and post_r “ post_t) then

if (char_r ‰ char_t) then

return pre_r +ªS" + post_r

else

return r

return FAIL
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Algorithm 17 Simplifies a set of strings using simplify_string

Input: set of strings representing a regex

Output: set of strings representing a regex simplified using simplify_string

procedure SIMPLIFY(set R)

Pad all strings in R to the same length

if (R.length() ď 1) then return R

i “ R.length´ 1

j “ i´ 1

START

while (i ě 1) do

while (j ě 0) do

simplified = simplify_string(Rris, Rrjs)
if (simplified ‰ FAIL) then

replace string at index j with simplified

remove string at index i from R

i “ R.length()´ 1

j “ i´ 1

goto START

--j

--i

j “ i´ 1

return R

Algorithm 18 Generates test suite template without propositional constants, proposi-

tional variables, or negations of propositional variables filled in

Inputs: Depth to generate, interval bounds a and b

Output: set of MLTL formulas (without propositional constants, propositional variables, or nega-

tions of propositional variables)

procedure GENERATE_TEST_TEMPLATE(int depth, int a, int b)

if (depth = 0) then return tp, qu

templateÐ tu
V Ð generate_test_template(depth´1, a, b)

for (string ϕ P V ) do

add ªG[a:b]" + ϕ to template

add ªF[a:b]" + ϕ to template

for string ψ P V do

add ϕ + ªU[a:b]" + ψ to template

add ϕ + ªR[a:b]" + ψ to template

add ϕ + ª_" + ψ to template

add ϕ + ª&" + ψ to template

return template
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Algorithm 19 Generates a complete test suite of MLTL formulas in negation normal

form up to a certain depth

Inputs: Depth of desired test suite template to generate, interval bounds, number of propositional

variables

Output: set of MLTL formulas

procedure GENERATE_TEST(int depth, int a, int b, int n)

testsÐ generate_test_template(depth, a, b)

for string t P tests do

for char ch P t do

if ch “ p then

k Ð rand()%n

if rand() %2 “ 0 then replace ch with pk

else replace ch with „pk

else if ch “ q then

if rand() %2 “ 0 then replace ch with T

else replace ch with !

return tests

VII State Diagram Graphs

Below we provide the state diagram graphs of the functions examined in our intelligent

fuzzing. Nodes in the graph represent portions of the code without control flow state-

ments, so a single node can represent large chunks of code. Directed edges represent

branching of control flow, such as IF statements and loops. Each graph directly cor-

responds with the pseudocode of their corresponding function, with nodes and edges

being labeled accordingly. Note that the option to run simplify has been omitted for

clarity.

set R, # of propositional variables n

Run max_length on R

pad r, update R

R
“
tu

for r in R

return R

Fig. 8: Pad Function

strings r, t

Initialize string Ret

Loop Entry

return Retreturn ª" Take bitwise AND, store in Ret

rri
s^

tri
s “

“” else

for 0 ď i ď r.length

Fig. 9: Bitwise_And Function



MLTL Formula Validation Via Regular Expressions 37

sets R, T

Initialize set Ret

Add r to Ret

Add t to Ret

return Ret

for string rPR

for string tPT

Fig. 10: Join Function

sets R,T

Pad R and T, Initialize set Ret={}

Outer Loop Entry

Update Ret

Outer Loop Exit

return Ret

for tPTfor rPR

Fig. 11: Set_Intersect Function

set rϕ, integers a, b, n

Initialize string pre, set Comp

Update Compreturn {}

return pre + Comp

for i P r1, b´ as

If
aą

b

Fig. 12: Reg_F Function

set rϕ, integers a, b, n

Initialize string pre, set Comp

Update Compreturn {Sn}

return pre + Comp

for i P r1, b´ as

If
aą

b

Fig. 13: Reg_G Function
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set rϕ, rψ and integers a, b, n

Initialize set Comp

Update Compreturn {}

return Comp

for i P ra, b´ 1s

If
aą

b

Fig. 14: Reg_U Function

set rϕ, rψ and integers a, b, n

Initialize set Comp

Update Compreturn {Sn}

return Comp

for i P ra, b´ 1s

If
aą

b

Fig. 15: Reg_R Function
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string nnf, integer n

Start Reg

return reg_prop_var

return reg_prop_cons

Parse for unary

temp conn, a, b, ϕ

and call reg(ϕ, n)

return reg_F(ϕ)return reg_G(ϕ)

Parse for binary

prop conn, ϕ, ψ

rϕ Ð reg(ϕ,n)

rψ Ð reg(ψ,n)

Rewrite as

equiv_formula, return

reg(equiv_formula,n)

return set_intersectreturn join

Rewrite as

equiv_formula, return

reg(equiv_formula,n)

Parse for binary temp

conn, a, b, ϕ, ψ

rϕ Ð reg(ϕ,n)

rψ Ð reg(ψ,n)

return reg_U return reg_R

Parse for assoc

prop conn, initialize

string equiv_formula

Update equiv_formula

return

reg(equiv_formula,n)

nnf is true or false

nnf
is

p
or

„p

nn
f

is
X

[a
,b

]
ϕ

X is G X is F

nnf is ϕ X[a,b] ψ

X is RX is U
nn

f
is

X
[n

nf
_a

rr
ay

]

for ϕ in nnf_array

nnf is ϕ X ψ

X is | X is &

X is -ą

X is =

Fig. 16: Control Flow of Reg. Red nodes indicate a recursive call to Reg.
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