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Abstract. Mission-time Linear Temporal Logic (MLTL) represents the most prac-
tical fragment of Metric Temporal Logic; MLTL resembles the popular logic Lin-
ear Temporal Logic (LTL) with finite closed-interval integer bounds on the tem-
poral operators. Increasingly, many tools reason over MLTL specifications, yet
these tools are useful only when system designers can validate the input specifi-
cations. We design an automated characterization of the structure of the compu-
tations that satisfy a given MLTL formula using regular expressions. We prove
soundness and completeness of our structure. We also give an algorithm for au-
tomated MLTL formula validation and analyze its complexity both theoretically
and experimentally. Additionally, we generate a test suite using control flow di-
agrams to robustly test our implementation and release an open-source tool with
a user-friendly graphical interface. The result of our contributions are improve-
ments to existing algorithms for MLTL analysis, and are applicable to many other
tools for automated, efficient MLTL formula validation. Our updated tool may be
found at https://temporallogic.org/research/ WEST.

Keywords: Mission-time Linear Temporal Logic (MLTL) - MLTL Validation -
Temporal Logic Validation.

1 Introduction

System specifications, such as aerospace operational concepts, often utilize timelines
to express critical requirements. We can cite examples of this from NASA’s Auto-
mated Airspace Concept [11], the U.S. Navy’s Aircraft Carrier Deck Scheduler [33], the
JAXA-NASA Global Precipitation Measurement (GPM) Observatory [10], and many
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* These authors contributed equally to this work.
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others. Formal methods provide continuously advancing tools and techniques to rig-
orously analyze timelines expressed in the form of temporal logic requirements, from
early design-time model checking and theorem proving to on-board runtime verifica-
tion. The U. S. Federal Aviation Administration (FAA) even advocates the use of formal
methods for flight certification of these critical systems [28,29,27]. Yet, a significant
hurdle to the use of formal methods remains: how to convincingly demonstrate to the
humans in the loop, from system designers to certifiers, that the analyzed formulas truly
represent the system requirements [31]. We creatively address this validation question
using regular expressions.

NASA, for example, has developed several tools that operate over temporal logic
requirements, such as FRET [12], R2U2 [32], and a PVS library [7] for the logic
MLTL (Mission-time Linear Temporal Logic) [30,19]. MLTL was the specification
logic for NASA’s Robonaut?2 verification project [16] and is currently the specification
logic for both design-time and runtime verification of the NASA Lunar Gateway Ve-
hicle System Manager [8]. Other recent verification efforts involving MLTL include a
JAXA autonomous satellite [24], a UAS Traffic Management (UTM) system involving
Collins and Mosaic Aerospace [13], a sounding rocket [14], and multiple small satel-
lites [21,20,2]. However, all of these successful verification efforts were carried out by
groups specializing in formal methods research. To enable broader application of for-
mal verification, and adoption across larger projects, we critically need better validation,
e.g., so that analysis over MLTL-specified requirements can transparently contribute to
flight certification.

Many specifications from case studies, in logics such as Metric Temporal Logic
(MTL) [1] and Signal Temporal Logic (STL) [22], fall within the MLTL fragments of
these logics. Variations on MTL such as MLTL have grown increasingly popular, in
part due to their comparatively tractable complexity-to-expressibility trade-offs [25].
The model checker nuXmv encodes a popular subset of MLTL for use in symbolic
model checking [17].

There exists a SAT solver for MLTL, MLTLSAT [19], but there are currently no
tools for MLTL formula validation. This paper introduces the WEST tool [GitHub]?
repository, which produces a description of the set of all finite timelines (of a fixed
length) that satisfy a given MLTL formula, similar to a truth table for propositional for-
mulas. MLTL validation can be done by verifying that the output of the WEST program
indeed matches the behaviour of the specification in question.

We show that our contributions not only fill a critical gap in temporal logic valida-
tion, but also directly connect to parallel developments to enable better temporal logic
formula analysis, benchmark generation, proof generation (e.g., in ACL2), and synthe-
sis of verified C++ code from temporal logic behavior descriptions.

We structure the paper as follows. Section 2 builds on the semantics of MLTL to de-
fine a computation and its bit string representation. Section 3 recursively defines regular
expressions encapsulating the satisfying computations of MLTL formulas. We provide a
calculation for the minimum computation length required to describe all the satisfying
computations of an MLTL formula that slightly improves upon existing calculations
in the literature. Finally, we show an application of the regular expressions by using

3 https://github.com/zwang271/WEST
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them to prove an MLTL rewriting theorem. We introduce the WEST tool that imple-
ments automated validation in Section 4 and calculate its space and time complexity,
both theoretically and experimentally. Section 5 proves the correctness of WEST and
provides a test suite to show correctness of implementation with high confidence. In-
telligent fuzzing techniques contribute to test suite construction from a state diagram
representing the control flow of WEST. We also verify the correctness of outputs of the
WEST program against a naive brute force implementation. Section 6 provides a com-
binatorial theorem for simplifying certain outputs of the WEST program to the trivial
computation. Section 7 demonstrates a specific use case of the WEST tool and explores
the currently supported features. Section 8 discusses impacts and future work.

2 Preliminaries: Mission-time LTL and Bit String Computations
Mission-time Linear Temporal Logic (MLTL) [19] is a finite variation of LTL over
bounded, closed, discrete intervals of the form [a, b] where a,b € Nand 0 < a < b.
The syntax of MLTL formulas, ¢ and 1) over a (finite) set of atomic propositions AP,
where p € AP is a propositional variable, is given by the following BNF grammar:

o =T|L|pl—~¢lerv|oVv | Flane|Gune | @Uapn? | ©Rian?-

The symbols F,G,U, R respectively denote the temporal operators Finally, Glob-
ally, Until, and Release. MLTL formulas can be interpreted using both finite and infinite
“timelines” that are called computations, which represent a discrete sequence of time
instances and the truth values for the propositional variables on each one of these. For
the purpose of this paper, we are only going to deal with finite computations that repre-
sent only finitely many time steps.

Definition 1 (Finite computations). A computation 7 of length m is a sequence
{r[i]}75" of sets of propositional variables, w[i] < AP, where the i*" set contains
the propositional variables that are true at the i'" time step. That is, a propositional
variable p is true at time step i if and only if p € [i]. We denote the suffix of T starting
at 1 (including i) by m;. Note that my = .

We provide the formal semantics for MLTL below. A computation 7 satisfies a

given MLTL formula «, written 7 = «, in the following cases’:

7 k= piff p € 7[0] TE —aiff T ¥ o
TEaAfiffrEaandn = TEavpiffrEaorntEfS
T = Flapje iff || > a and 3i € [a, b] such that 7; = «

T & Grapiff || < aorVie [a,b] 7 F a

® For simplicity, we do not include parentheses in the grammar, but the WEST program requires
parentheses (see Section 4). We encode Release directly rather than as the dual of Until. Refer
to the WEST Appendix’ for a straightforward proof of equivalence using the semantics.

7 We do not include the Next operator, which is often denoted X, since it is equivalent to both
g[m] and ]:[1’1].
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T = Uy 5B iff || > a and Ji € [a, b] such that 7; = Band Vj € [a,i — 1] 7; = «
T aRiqp B iff |7| < aorVie[a,b] ;= Bor3je [a,b— 1] such that 7 = o
andVa<k<jmpEp

Definition 2 (Bit String Representation of a Computation). Let py,p1,...,Pn_1 be
propositional variables for a fixed n € N. We represent a (finite) computation © of
length m € N using a bit string representation as follows:
— Each time step j € [0,1,...,m — 1] corresponds to a bit string of length n, where
the k" bit represents the truth assignment of the proposition py,_1.
— Each time step is separated by a comma and orders the time steps chronologically.

Example 1. Suppose n = 2. The bit string 7 = 10, 01 represents a timeline on which
po is true and p; is false in the zeroth time step, whereas py is false and p; true in the
first time step.

3 MLTL Regular Expressions

We modify the standard definition of Regular Expressions (regex) to introduce notation
that describes the satisfying computations of an MLTL formula. We begin by quoting
the parts of the standard definition of a regex from [34] that we use to describe our
computations:

Definition 3 (Regular Expression). Let X denote an alphabet. We say that R is a
regular expression if one of the following holds:

- R = a, for some a € X.

— R = ¢, where € is the language containing the empty string.

- R = (&, the empty set.

- R = (Ry v R2), where Ry, Ry are regexes and v denotes alternation; the set union
of all the strings described by R1 and R».
R = RiRs, which denotes concatenation, i.e., the set of strings obtained by con-
catenating any string generated by R, with any string generated by Rs, in that
order.

Now we introduce the additions to the definition of a regex that we utilize to describe
the computations. These additions allow us to write regexes of a known, finite, fixed
length, which is required when describing the computations in MLTL.

Definition 4 (Temporal Regular Expression). Let R and T denote regular expres-
sions, and let S be an abbreviation for (0 v 1). Let fixed n € N denote the number
of propositional variables in an MLTL formula. We use the following operations to
describe the form of satisfying computations of the formula in the bit string representa-
tion:

— Pad(R, T) determines which regular expression is longer and concatenates (, S™)
repeatedly to the end of the shorter regular expression until the two regular expres-
sions are the same length. Note that in the bit string representation, (, S™) denotes
a time step in which the truth values of all n propositional variables do not matter.
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— R A T is the intersection of the sets of strings described by R and T. To perform
this operation, we first use Pad(R, T'), and then take the set intersection of the sets
of strings described by the two regular expressions.

— R’ denotes regular expression consisting of R repeated i times fori > 0. R = .

Note that our regular expressions do not use the Kleene star. This is because our
computations are of a fixed, finite length.

Example 2. Letn = 2,and let R = S1and T = (15,15) v (51, 51). To compute
R AT and R v T, we perform Pad(R,T"). Since T’ is the longer regex by one time step,
we extend R by one time step. Thus 7' = (15,15) v (S1,S51) and R = S1,5S. Now
we can perform set intersection and alternation on the two regular expressions of equal
length:

- RAT=(11,15) v (51, 51)

- RvT=(51,89) v (15,15) v (51,51) = (51,55) v (15, 15)

Definition 5 (MLTL Regular Expressions). Let X = {“0”, “1”, “.”} be the alpha-
bet and define S as an abbreviation for (0 v 1). Let @ and 1 be well-formed MLTL
formulas in negation normal form (NNF®) containing the n propositional variables
POy P1s -5 Pn_1. We recursively define the regular expression of all satisfying computa-
tions for an MLTL formula as follows:

reg(T) = S™ reg(l) = &

reg(py) = SF15m k1 reg(—py) = SP0S"R!

reg(p v ) = reg(p) v reg(¢) reg(p A ) = reg(p) A reg(y)
b b

reg(Ganye) = /\(S",)"reg() reg(Fapye) = \/ (57,) reg(¢)

b
reg(p Uany¥) = \/ reg (Gla.i—11% A Gpi.i¥)

reg(oRia,n¥) = reg (Gran¥ \/ reg (Gra,n¥ A G1ii)¥)

Definition 6 (Computation Length). We recursively define the computation length
eplen(p) of an MLTL formula p:

(pr) = cplen(—py) =1,

(¢ A ) = cplen(p v ¢) = max(cplen(p), cplen(v))),

(Glap1%) = cplen(Fq 1) = b+ cplen(yp),

Cplen(gou[a 5|¥) = cplen(@R, 51¥) = b + max(cplen(p) — 1,cplen())).

cplen

Here, cplen(y) is the minimum computation length required to ensure that none of
the intervals in ¢ are out of bounds. A computation that is of length cplen((p) or greater

8 Note that any MLTL formula can easily be converted into NNF.
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will reach the end of every interval in ¢. Our minimum computation length for Until
and Release are slight optimizations of what was previously considered the minimum
computation length in the literature. The previous bound in [16] was

eplen(ialfq 4y1) — cplen(#Ryq 1)) = b+ max(cplen(), cplen(t5))
whereas Theorem 1 proves our minimum computation length for Until and Release is

eplen(elUy, 1)) = cplen(9Ryq,¢)) = b+ max(cplen(p) — 1, cplen(1p)).

Theorem 1 (Minimum Computation Length of Until and Release). Let 0 < a <
b € N and let v, be well-formed MLTL formulas in NNF. The minimum compu-
tation length of R and U is given by cplen(oUiq p¥) = cplen(¢Rap) = b +
maz(cplen(p) — 1, cplen(v)).

The formulas for minimum computation length follow directly from the regular
expressions for the satisfying computations for Until and Release and the minimum
computation lengths for Finally, Globally, AND, and OR. See the WEST Appendix’
for details of the proof.

We can reduce the minimum computation length of Until for the formula ¢l 4%
for the following reason: ¥ must be assigned true at time step b if it has not been true at
a prior time step by the semantics of I/, and thus the truth value of  at time step b does
not matter. Likewise for the formula ¢R[4 4%, if 4 is true from time step a to time step
b, the computation satisfies the formula regardless of the value of ¢ at time step b.

Let £ (reg(y)) denote the language of reg(ip), i.e., the set of computations repre-
sented by the regular expression reg().

Theorem 2 (Soundness and Completeness). For any well-formed MLTL formula ¢ in
negation normal form, a computation T with || = cplen(y) satisfies ¢ if and only if

™ e Z(reg(p)).

We omit the proof for this theorem since it follows straightforward by induction on
the length of a formula. See the WEST Appendix ° for details of the proof. As an ap-
plication of the regular expressions in the above theorem, we prove a previously known
MLTL rewriting theorem. This demonstrates the utility of our regular expressions for
theoretical analysis.

Theorem 3 (Nested Until and Release Rewriting Theorem). Any MLTL formula us-
ing the Until or Release operator can be rewritten with right-nested subformulas. Let
a,b,ce€ Z=g,a < b, and @, ) be well-formed MLTL formulas in NNF. Then

@ Ulapr-a¥ = ¢ Upap) (0 Upo,q¥) and ¢ Ria p1)¥ = ¢ Riap) (0 Rio,e¥)-
The proof is omitted here as it follows from the definition of regular expressions for

MLTL. See the WEST Appendix’ for details of the proof.

4 WEST Algorithm and Analysis

Algorithm 1 (Fig. 1) recursively computes all satisfying temporal regular expressions
to an input formula . We use sets to represent alternation of regular expressions; for
n regular expressions t, ..., t,—1, we write {tg, ..., tn—1} = U?:_()l t;. Additionally, we

° The Appendix for this paper can be found at https://temporallogic.org/research/WEST .
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provide details for performing set intersection of temporal regular expressions, and the
algorithms for the temporal operators G and /. Note how reg_U parallels the regular
expression defined for 2/, and the algorithms (see WEST Appendix®) for the other three
temporal operators follow an identical structure.

For regular expressions wg and wy, a useful reduction is that {wolw,weOw;} =
{wpswy }. Each time we perform set intersection, we greedily apply this reduction to
all appropriate pairs of regular expressions in the set. This prevents repeated set in-
tersection operations from blowing up exponentially most of the time, and drastically
improves running time. We call this simple algorithm simpli fy and use it extensively
throughout the WEST code.

4.1 Proof of Correctness of WEST

Theorem 4 (Theoretical Correctness of WEST). Given a well-formed MLTL formula,
the WEST Algorithm outputs the regular expressions of the satisfying computations as
described in Section 3.

Proof. Correctness of the WEST algorithm is dependent on the correctness of sub-
routines reg_prop_cons, reg_prop_var, join, set_intersect, reg_F,
reg_G, reg_U, and reg_R. The routines reg_prop_cons and reg_prop_var
take as input an MLTL formula of the appropriate form and return the regular expression
defined in Section 3.

The function join concatenates two sets of regular expressions R and 7', which
is equivalent to £ (R) u Z(T). set_intersect takes as input two sets of regular
expressions R = {rq,...,7q_1} and T' = {to,...,ts—1}, such that each r; and ¢; are
regular expressions over X' = {“0”, 17, “S”, “’}. Without lost of generality, assume
that all strings of regular expressions are right-padded to equal length. We show that
Z(set_intersect(R,T)) = Z(R)n.ZL(T):

a—1 b—1 a—1b—1
Z(R) 0 L(T) = (U $<m> " (U zu») - J U@ nze)
i=0 =0 i=0 j=0

The loop in set_intersect computes the union of bit_wise_and(r;,t;)
over all such pairs, and so it suffices to show .Z (bit_wise_and(r;,t;)) = Z(r;) N
Z(t;). Given a computation 7, € Z(r;) n.Z(t;) if and only if = matches every char-
acter of both r; and ¢;. Bit_wi se_and(r;, tj) compares 7; and t; character by char-
acter and computes their intersection, which is defined naturally: 0 n 1 = ¢, 0 n S =
0,1nS=1,0n0=0,1n1 =1, and Sn.S = S. Note that this operation is commu-
tative. This exhaustively captures all the cases for which m must match corresponding
characters from r; and ¢;. Thus £ (bit_wise_and(r,t;)) = ZL(r;) n Z(t;) and
the claim holds.

The correctness for reg_F, reg_G, reg_U, reg_R, and reg is proven by in-
duction on depth of recursion to reg. The depth of recursion is exactly the depth of
the parse tree of the input formula. For the base case (depth 0), reg_prop_var and
reg_prop_cons are called to handle input formulas that consist of a propositional
variable, the negation of a propositional variable, or a propositional constant. Then as-
sume req is correct on all formulas of depth at most d, for some integer d > 0. Let
~ be an MLTL formula in negation normal form of depth d + 1. Then v must be of
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Algorithm 1 WEST Algorithm Algorithm 3 reg_G
Inputs: ¢ - MLTL formula in NNF Inputs: 7, - set of REGEX for MLTL formula
(1 and 2 below are subformulas of ¢  (after calling reg)
n - number of propositional variables a, b - interval bounds
Output: set of REGEX satisfying ¢ n - number of propositional variables
1: procedure REG(string ¢, int n) Output: set of REGEX for G[q,b1¢
2: if o is T or L then 1: procedure REG_G(set 7, int a, int b, int
3: return reg_prop_const(y, n) n)
4. if ¢ is py or —p; then 2: pre < (("\S)™ + )"
5: return reg_prop_var(y, n) 3: comp <= Ty
6: if © = o1 A o then 4: if a > b then return {S™}
7: return set_intersect(reg(ip1), reg(pz), S for(l1<i<b—a)do
n) 6: tempy, «— ((“S)™ + ) + 1y
3: if o = 1 v o then 7: comp <« set_intersect(comp,
9: return join(reg(y1), reg(y2), n) temp, n)
10: if o = Fla.1 then 8: return pre + comp
11: return reg_F(reg(¢1), a, b, n)
12: if o = Gq,4)1 then -
13: retung re]g_G(reg(gol), a, b, n) Algorithm 4 reg U

14: if o = 1l 02 then Inputs: 7, 7y - sets of R]?ZGEX for MLTL for-
15: return reg_U(reg(¢1), reg(¢2), a, b, n) mulas ¢ and 1 (after calling reg)

a, b - integers representing interval bound

n - number of propositional variables

Output: set of REGEX for U4 1%

16: ifgo = SolR[a,b] Y2 then
17: return reg_R(reg(¢1), reg(p2), a, b, n)

procedure REG_U(r, 74, a, b, )
comp «— ((“S")" + )+ 1y
if a > b then return {}
for(a<i<b—1) do
Gl «<reg_G(ry, a, i, n)

Algorithm 2 set_intersect

1:
2
Inputs: R, T - two sets of REGEX 3
n - number of propositional variables 4:
5
6
7

Output: set of REGEX equalto R A T’

1: procedure SET_INTERSECT(R, T', n) G2 —reg_G(ry, i+ 1,0+ 1,n)
2 Pad(R, T', n), ret < {} : temp_comp <« set_intersect(Gl,
3: for (r,t) e R x T do G2, n)

4 add bit_wise_and(r, t) to ret 8: comp «— join( comp, temp_comp)
5: return simplify(ret) 9: return comp

Fig. 1: Pseudocode for WEST, set_intersect, reg_G, and reg_U. The pseu-
docode for all other algorithms referenced can be found in the WEST Appendix®.

the form ¢ v ¥, © A Y, Gia119> Fla,1Ps PU[a,1P> OF PR [q,p1¥, for some formulas ¢
and v of depth at most d, and a pair of non-negative integers, a and b. Correctness of
the first two cases have been proven. The proof for the four temporal cases are of sim-
ilar structure, and it suffices to verify that the algorithms compute appropriate regular
expressions correctly using join and set_intersect.

We give the explicit proof for the case v = ¢lU[, % as an example. reg_U

takes as input 7, = reg(y) and r,, = reg(¢), which by the induction hypothesis are
correctly computed. The regular expression for the Until operator may be rewritten

as reg(p Upa,p)tb) = reg (Gla,a)¥) v \/f;i reg (Ga,i1¢ A Gi+1,i+1%). In line 2 of
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reg_U, the variable comp is initialized to (“S”™ + “,”)® pre-concatenated to r,;, and
is the regular expression for Gy, 4)%. Next, the v from i = a to b — 1 is computed by
the for loop in line 4. Lastly, lines 5 through 7 computes reg (Ga,q¢ A Gi+1,i41%)-
This shows correctness of reg_U; although, in a complete proof, correctness of reg_G
needs to be shown first since lines 5 and 6 calls reg_G. Continuing in the same fashion
to prove the other three cases, reg is correct on all depth d + 1 inputs, and thus reg is
correct on all inputs by induction.

4.2 Theoretical Complexity

In order to reason about the complexity of our algorithms, we first introduce several
assumptions about the input. Suppose that the lower and upper intervals of temporal
operators are bounded by some constant d € N, and that the difference between any
bound is less than some constant § € N. These are reasonable assumptions since MLTL
turns into a finite temporal logic when a known mission end is given. We provide a
summary of the complexity of each of the operators that contribute to the worst-case
behavior of the final output.

For any function f(y) taking a string argument ¢, we use || to denote the number
of characters in ¢ and S(f(p)) to denote the space complexity of f in terms of the
number of characters in the output.

If ¢ is a propositional constant or variable, it is easy to see that S(reg(Ll)) = 0
since only the empty set is returned. By definition, reg(T) = S™, so we have that
S(reg(T)) = n. Similarly, reg(py) and reg(—py) both return strings of length n,
whence S(reg(pr)) = S(reg(—pk)) = S(reg(T)) = n.

If ¢ is “@1 v @37, we return join(reg(yi), reg(ys2)), which simply computes
the union of the two sets. Thus S(reg(p1 v ¢2)) = S(reg(p1)) + S(reg(ps)).

If p is “p1 A po”, set_intersect(reg(y1), reg(ps), n) returns a set of size
S(reg(p1))-S(reg(p2)) in the worst case when no simplification can be made. Thus,
our space complexity is S(reg(p1 A p2)) = S(reg(p1)) - S(reg(ps2)).

For the next cases, we use these two bounds and define the constants C and Cp:

[Ti—a(n+1)i = (n+1)"=" s < (n+1)%! < (n+1)°d! = Cq
SP (n+1)i < (n+1)bd < (n+1)ds = Cr

If @is “Gpqp1" recall that reg(Gp, 1) = /\?za(S",)ireg(gol). From the
analysis of set__intersect, worst-case space complexity is multiplicative. Thus
S(reg(y)) = Hi;a(n +1)i- S(reg(p1)) < Cq - S(reg(p1))’. In this calculation,
(n + 1) counts the concatenation of the padded components in the computation.

If p is “Fq 591", recall that reg(Fq p101) = \/?ZG(S”, Yireg(epr).

From the analysis of join, worst-case space complexity is additive, which implies that

S(reg(p)) = Xi_,(n +1)i- S(reg(e1)) < Cr - S(reg(pr)).

If o = “O1l[q 52", then reg(p1 Upa by p2) = VY, reg (Grai—1101 A Gliije2)-
We can bound S(reg(Gp; ij02)) by (n + 1) - i - S(reg(p2)) because the operation is
equivalent to simply prepending (5™, ). Thus, using our previous results for the G, A,
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and v operators, we have that:
b

S(reg(y)) < Z[CGS(reg(¢1))5 - (n+1)iS(reg(p2))]

<O[Cq - d(n+1)d- S(reg(p1))’S(reg(ps:))]

=Cy - S(reg(y1))’S(reg(p2))
where Cyy = Cgd(n + 1)d.
If p= “gle[a’b] 302”, recall that

reg(p1Rp¢2) = £e9 (Gane2) v Vice req (Gra.qez A Gpinei)-
A similar argument to the I case shows S(reg(y)) < Cr-S(reg(p1))-S(reg(p2))’,
where Cp = Cq - (1 + 6(n + 1)d).

Theorem 5 (Space Complexity). Given a well-formed MLTL formula ¢, reg(p) has

£+1
)

worst-case space complexity that is O(C?; <(0+1) , where { is the number of logical

connectives in { A, v, F,G, R,U} that occurr in .

Proof. To analyze worst-case complexity, it is clear from the analysis above that ¢/ and
R give the worst complexity. In the previous analysis, we defined Cyy = Cad(n + 1)d
andCr = Cg-(1+0(n+1)d). Observe that Cg > Cy, and so we analyze only repeated
nesting of the operator R.

However, notice that the structure of the parse tree is important. Formulas similar
to (p3Rp1)R(p1Rpo) generate a balanced binary parse tree where the maximum depth
of recursion is O(log £). However if the nesting is only from one side, such as formulas
similar to psR(p2R(p1Rpy)), then the maximum depth of recursion is O(£). Thus we
focus on the formula

© = DeRay be] (Pe-1Ras_1 b0 1] Rlas,bs] P2 Ras,b:] P1R[ar,6:1P0))---)

where there are £ logical connectives R and n = ¢ + 1 propositional variables.

We derive the complexity of S(reg(y)) by defining the sequence {s;}%_, recur-
sively as follows, s1 := S(reg(p1R(a, p,1p0)) and sp41 1= CrS(reg(pr+1))(sk)’,
foreach 1 < k < £. The recurrence relation captures an extra nesting of the R operator,
based on the complexity of R defined above. We calculate S(p,,) = n = £ + 1 for all
m such that 0 < m < 4, thus s; = Cr(£ + 1)°*1 and 53,41 = Cr(£ + 1)(s3,)°.

k—1 ¢i i
The explicit formula is given by s, = C%":" o ¢+ 1)21-20 % Tt is easy to check
that the base case & = 1 holds, and we prove the claim by induction:
Sy ot Sk gt 0
Sis1 = Cr (CR}:“ S+ 1) ) S(+1)
e L VS0 Y

k+1 57,

— ezt (4 1)S

—1 ¢i : 1
Thus we have that S(reg(y)) = C%i=0 o (0 +1)Xim0?" = O(C}S; (1),

Through a similar analysis, we have found that the time complexities of all of the
above functions is unsurprisingly the same as their space complexities.
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Theorem 6 (Time Complexity). Given a well-formed MLTL formula ¢, reg(p) has

worst-case time complexity that is O(C?; S0+ 1)51}‘+1 ), where { is the number of logical
connectives in { A, v, F,G, R, U} that occurr in p.

If in the worst case no simplification occurs in any call of set_intersect, space
complexity remains unchanged, but simplifying a set of regular expressions is cubic
in input size. In practice, however, both time and space complexities are much more
optimistic than worst-case estimates.

4.3 Experimental Benchmarking

We accompany theoretical space and time complexity with experimental evaluation of
these complexities using randomly-generated MLTL formulas. What we observed from
the simulations is that the worst-case complexity, both for space and time, is relatively
rare, and that otherwise the program has good complexity. WEST ran in under 10 sec-
onds for nearly all the inputted random formulas. The number of characters outputted
was typically under 5000, and often less. This is approximately the length of a single
paragraph. We also observe that these worst cases are extreme outliers and that in nearly
every case, are examples of nested binary temporal operators. As seen in [14], [16], [2],
and [13], nested binary temporal operators do not appear in any specifications, and thus
are unlikely to appear both in the literature and in practical applications.

We ran these experiments on an Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz with
376 GB RAM. For each simulation, 1000 MLTL formulas were randomly generated
using the parameters delta, interval_max, number of propositional variables, and
number of iterations. Here, delta is the maximum length we allow for any interval,
interval_max is the largest allowed upper bound for any interval, and Number of
iterations is the level of nesting in the generated formulas. For example, Gjo 21po is
a formula generated with one iteration, while Gy 2)(po A p1) is a formula generated
with two iterations. We measure the number of characters in the output versus time in
seconds taken to run the program. For the pseudocode of the program that generated
the random formulas, we refer the reader to check the WEST Appendix’.

Simulation 1 For the first simulation, we consider 2 iterations, 5 propositional vari-
ables, delta = 10, and interval_max = 10. We obtain plots 2a and 2b.

WEST Space Simulation 1 WEST Time Simulation 1
— x x
g 80000 40 4
E x
‘S 60000 - 30 1
# = x
= T
5 40000 £ 20
o =
§ ¥ i}
5 20000 4 x 10
= x
© o{x  xx Bk xi! ili T o x x% an wle Sha &l x
T T T T T T T T T T T T
B 10 15 20 25 30 5 10 15 20 25 30
Input Length(# of chars) Input Length(# of chars)
(@ (b)

Fig.2: (po = p1)U2,01(P1U[7,01p3) is an outlier in both. (ps — p2)Rp1 81 (p3l[3,41P0)
and (p3R2,71P4)R(1,9](PaR[4,01p3) are outliers only in b.
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Simulation 2 For the second simulation, we consider 1 iteration, 10 propositional vari-
ables, delta = 20, interval_max = 20. We obtain plots 3a and 3b.

WEST Space Simulation 2 WEST Time Simulation 2
_ » 0.1z -
£ 4000 1 " ¥ 0.10
S " H
S 3000 - i 0.08 1
#* &
£ ! x T 0.06 x ]
= 2000 - E "] %
& E x =
g E 0.04 4 .
- o X %
2 1900 ! ! l I 0.02 4 ! ¥
3
©  ox ® 0.00{ % x M i ] §
T T T T T T T T T T T T
4 6 8 10 12 14 4 6 8 10 12 14
Input Length(# of chars) Input Length(# of chars)
(@) (b)

Fig. 3: We observe no outliers. The zero second runtimes are observed for MLTL for-
mulas that consist of a single propositional variable or its negation.

Simulation 3 For the third simulation, we consider 2 iterations, 10 propositional vari-
ables, delta = 5, and interval_max = 10. We obtain plots 4a and 4b.

WEST Space Simulation 3 WEST Time Simulation 3

. x x
E 20000 + 0
<
O]
6 15000 %

301
# x =
g 10000 g
=2 i £ 204
g x Xy = x
= x
‘g 5000 Xx  x z 10
: TELN

x
9 0% Ll l. xli N i I 01 % (2] X XEX XM xN L
T T T T T T T T T T T T
B 10 15 20 25 30 5 10 15 20 25 30
Input Length(# of chars) Input Length(# of chars)
(@) (b)

Fig.4: (prUis,po)Urs,7(Fr1,41p4) and  Gis 71(poldjo,.41po) are outliers in both.
G13,71(Poljo,4)p0) is an outlier in 4a only.

Simulation 4 For the fourth simulation, we consider 1 iteration, 5 propositional vari-
ables, delta = 10, interval_max = 10. We obtain plots 5a and 5b.

WEST Space Simulation 4 WEST Time Simulation 4
. 600 A x x
< x
] 4
£ 500 X x 0.006 »
'S 400 | % ¥
# g o) x
= 3004 T 0.004 B
2 ¥ £ "
9 2004
z 0.002 | L]
& 100 - x
=
O o{= L 0.000{ % % I
T T T T T T T T T T
4 6 8 10 12 4 6 8 10 12
Input Length(# of chars) Input Length(# of chars)
(@ (b)

Fig.5: We observe no outliers. The zero second runtimes are observed for MLTL for-
mulas that consist of a single propositional variable or its negation.
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We conclude from the simulations that for most practical purposes where nesting of
binary temporal operators rarely occur, the WEST algorithm demonstrates good space
and time complexity.

5 Correctness of WEST Tool Implementation

We accompany our proof of algorithmic correctness with a rigorous evaluation of imple-
mentation correctness, showing that our WEST tool correctly implements our WEST
algorithm. Since our proof of algorithmic correctness is manual and our focus is on
usability for validation by humans, we utilize more traditional techniques for robust
software engineering with testing-based evaluation. The naive approach is to test all
inputs up to a certain size and verify the outputs, but this strategy would generate an
unnecessarily large and redundant test suite. For instance, there is little sense in testing
all MLTL formulas of the form pold[o,p1 for all ¢ such that 0 < ¢ < 99; verification
of a few should give sufficient confidence of correctness of the program. Instead, we
test our implementation with a test suite that explores all possible sequences of lines of
code that are executed (up to a certain depth).

5.1 Intelligent Fuzzing

Traditional black-box fuzzing is defined by Miller [23]: “If we consider a program to be
a complex finite state machine, then our testing strategy can be thought of as a random
walk through the state space, searching for undefined states.”

Instead we utilize intelligent fuzzing, an alternate approach that leverages knowl-
edge about program structure to generate valid inputs and increase coverage. Borrowing
the words of Miller, our approach to testing the WEST program can be thought of as
walking all possible paths up to a certain depth of the state space of our algorithm. We
first outline our overall approach to intelligent fuzzing:

1. Construct a directed graph representation of our algorithm. The edges capture con-
trol flow of our algorithm, and vertices represent non-branching blocks of code.

2. Construct a test suite that explores all possible paths in the directed graph up to a
certain depth. Run the WEST program on the test suite to produce a set of output
files.

3. Run a naive brute force generator of satisfying computations on the test suite and
verify that both outputs match for all test cases.

State Diagram Construction We can represent the state space of the WEST algorithm
as a directed graph with the edges representing the control flow and vertices represent-
ing blocks of contiguous code without branching statements. The core of the WEST
program lies in the recursive routine, reg, which calls the 8 different subroutines as
shown in Fig. 6.

In order to construct the intelligent fuzzing test suite, we make the design choice
to abstract away the eight subroutines in the overall state space diagram, despite the
fact that they may have different possible execution paths within them. Without this
abstraction, attempting to explore all execution paths in this finer graph is infeasible due
to the explosion in the number of paths [26], some of which are provably impossible to
construct a test input to explore.
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<—

Fig. 6: Abstracted graph of the reg main routine. Red nodes signal recursive calls to
reg on subformulas of the input formula.

Creating the Test Suite To generate our intelligent fuzzing test suite, we first count the
number of formulas ¢(d) to be generated as a function of the exact depth d of recursion
desired. For d = 0, only the paths leading to prop_var and prop_cons can be
explored, so ¢(0) = 2. For d > 1, we recursively calculate p(d+1) = 2p(d) +4p(d)?;
paths to reg_G and reg_F is counted by the linear term, and paths to reg_U, reg_R,
set_intersect, and join is counted by the quadratic term. This gives (1) = 20,
©(2) = 1640, and ¢(3) = 10761680, which tells us that d = 3 is computationally
infeasible and d = 1 does not give us assurance about operators interacting with each
other through nesting. Whence we select d = 2 as a happy medium. We generate the
full test suite in a similar recursive manner. Firstly, the d = 0 test suite consists of
two formulas: a propositional variable or its negation, and a propositional constant.
Then for any d > 1, we iterate through all formulas in the depth d — 1 test suite
for reg_G and reg_F, and all pairs of formulas from the d — 1 test suite for the
remaining four recursive paths. To ensure wider coverage, we randomly generate each
of the propositional variables or their negation and propositional constants.

Verifying against Naive Brute Force A relatively straightforward approach to gen-
erating the set of all satisfying computations of an MLTL formula ¢ over n variables,
such that m = cplen(y), is to iterate over all 2™ possible computations, which counts
all possible length m - n bit strings. An interpreter function takes computation 7 and
MLTL formula ¢ and determines if 7 = ¢ based purely on MLTL semantics. Our test
program translates every first-order quantifier into a loop; then checking for satisfying
conditions of the suffix of a computation naturally lends itself to recursion. The full
implementation details are available in the WEST [Github]®. On an Intel(R) Core(TM)
i7-4770S CPU at 3.10GHz with 32gb RAM, the brute force program took nearly nine
hours to execute the depth two test suite of 1640 formulas. For this test suite, we fixed
the number of propositional variables at n = 4 and the largest computation length was
m = 5, from formulas with doubly-nested temporal operators.

In comparison, the WEST program executed the same test suite in under thirty min-
utes on the same machine. Note that the brute force program outputs only computations
of zeros and ones, and thus comparing the outputs of the WEST program requires ex-
panding out the “S” characters in the regular expressions. It is important to state that
although the full test suite matches between both implementations, absolute correctness
on all inputs is not guaranteed for either program. However, the successful execution
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of the test suite gives us a much higher confidence in correctness of both the WEST
program and the brute force program.

6 Regular Expression Simplification Theorem (REST)

As a final result, we provide a regular expression simplification theorem. This theorem
describes the form of a set of MLTL regular expressions that simplify to all “S” char-
acters. This theorem may help users identify tautologies, as the WEST program does
not always output a string of all “S” characters when a formula holds true for every
computation. We first define some vocabulary. We call an arbitrary computation any
regular expression composed entirely of “S” characters and commas. For the purposes
of the following theorem, we remove all commas from computations. We say a “0” or a
“1” in a regular expression is a fixed truth value. We overload the definition of a matrix
and say that a matrix is a representation of a union of regular expressions, where each
row is a regular expression. This aids significantly in the description and proof of the
theorem. Note that usual matrix algebra is not relevant to this definition.

Theorem 7 (Regular Expression Simplification Theorem). Let M be an (n + 1) x n
matrix, where each of the n + 1 rows represents a regular expression of length n with
commas stripped. If each column has one “1”, one “0”, and n — 1 “S” characters,
then the union of this set of regular expressions can be simplified to S™, the arbitrary
computation of length n.

The proof of REST follows from induction on the size of M and the pigeon hole
principle. See the WEST Appendix® for details of the proof.

This theorem gives us a sufficient but not a necessary condition for simplification to
the arbitrary computation. One such example is the regular expression (101) v (S15) v
(150) v (0SS), which fails the hypothesis of the simplification theorem but is still
equivalent to S'S'S.

6.1 Theoretical Analysis of REST

We present an algorithm based on Theorem 7 for simplifying disjunctions of regular
expressions and provide theoretical analysis, as well as experimental benchmarking.
We determine that REST runs exponentially with respect to the length of the inputted
regular expressions, both in the worst-case and average case. However, REST does not
apply for many MLTL formulas, and WEST already demonstrates good time and space
complexity in the average case without REST (see section 4.3). Thus, the algorithmic
complexity of REST is not of practical concern.

Theorem 8. On input vector of regular expressions v of m strings each of length n,
REST has a worst-case runtime of O(n?2™).

Proof. We first analyze the statements in the innermost loop. In line 4, the construction
of diff_cols can be done in O(nr) time, by iteratively scanning the columns of w. In
line 7, checking if w’ satisfies the conditions of Theorem 7 is done in O(r?) time, by
keeping a count of the number of 0, 1, .S in each column. Thus, the innermost portion
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Algorithm 5 Regular Expression Simplification Algorithm (REST)
Inputs: vector v of m regular expressions each of length n
Output: simplified set of equivalent regular expressions using Theorem 7
procedure REST(set v)
for r € [3, min(m,n + 1)] do
for all vectors of regular expression w € v s.t. [v| = r do

1:
2
3
4: diff_cols < indices of all columns of w that are not uniformly the same character
5: if |diff_cols| = r — 1 then
6.
7
8
9

w’ <« w containing only columns € diff_cols
if w’ satisfies Theorem 7 then
In w, replace all columns € diff_cols with s
v « remove_duplicates(v)
10: return v

of the loop has runtime O(nr + 72) = O(n?). The total runtime is bounded as follows:

runtime(REST(v)) = ).

min(m,n+1) <
r=3

m)om?) = O(n%2™).

6.2 Experimental Benchmarking of REST

We provide an experimental evaluation of the runtime of REST using randomly-generated
sets of regular expressions satisfying the conditions of REST. Unfortunately, results
suggest that the average case time complexity is of the worst case.

We generated 100 sets of regular expressions satisfying the REST conditions, with
n between 10 and 25. We measured the amount of time in seconds taken to run the pro-
gram. We ran these experiments on an Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz
with 376 GB RAM, taking over one hour. We conclude that REST is not advisable to
use as a part of the WEST program because it is often too computationally expensive.

REST Time Simulation

250 A ]
200 A
150 A

100 A

Time(s)
=

50 - W, 1

x
®
O—uu:ux:xulii" x
T

T T T T
100 200 300 400 500 600
Input Length(# of chars)

Fig. 7: For most inputs, REST’s runtime is exponential with respect to the input length.
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7 Using WEST: An Example

For this section, we include a Video tutorial'® that demonstrates the use the WEST GUI
program to explore specifications. The video uses the formula (po A Gjo 31p1) — P2
from [16] as an example. The WEST program interface can aid a user in the process of
MLTL formula validation by allowing them to explore the behavior of the formula and
its subformulas.

The user can toggle the value of propositional variables at individual time steps to
explore if the resulting computation satisfies the given formula. Additionally, the tool
can randomly generate a satisfying computation that matches a specific regular expres-
sion, randomly generate an unsatisfying computation, and perform backbone analysis.
All of these functionalities are immensely useful for allowing a user to validate that the
formula they have written means what they think it means.

8 Closing Remarks

The primary goal of this work is to visually represent MLTL formulas to aid in debug-
ging of MLTL specifications in industrial domains. We have accomplished this with our
regular expressions framework, which captures many structural patterns of satisfying
computations for a given MLTL formula. The tool itself has demonstratively reason-
able runtime for most inputs, and the correctness of outputs has been verified to a high
degree of confidence through intelligent fuzzing.

8.1 Future Work

The WEST algorithm and the release of our open-source tool open a multitude of dif-
ferent research directions.

Similar Analysis of LTL w-regular expressions match only infinite words and can be
used to describe satisfying computations of LTL formulas. Our work on validation for
MLTL formulas lays the groundwork for future work on validation of the finite-trace
logic LTLf [9] as well as LTL formulas. For the infinite-trace semantics of LTL, the
particular difficulties revolve around the Kleene star operation, which behaves poorly
due to computing infinite unions and intersections of regular expressions.

Regular Expression Simplification Theorem 7 addresses a non-trivial situation in
which a set of regular expressions may be simplified. A natural question to ask is
what is the minimum number of regular expressions needed to represent a language
of computations. However, such a minimal representation is not unique. For instance,
{51,185} = {51,10} = {01,10, 11}. Other schemes may be needed to simplify any
arbitrary union of regular expressions to a minimal representation.

Fuzzing General Recursive Algorithms A tool to systematically convert a recursive
algorithm into a directed graph representation of the state space would be a helpful
aid for generating test suites. Additional care should be put into allowing for varying
levels of abstractions of execution due to concerns of the path explosion problem. We
note that such avenues for code-level verification will still be necessary even upon the
completion of potential future work avenues like synthesizing the core implementation
of the WEST algorithm from an interactive theorem prover. This is because the goal

10 https://youtu.be/HoBJwdCq42c
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of explainability to humans will require at least some manual code authorship for the
foreseeable future.

Code Synthesis from MLTL Specification The truth tables generated by the WEST
tool can now serve as input to a recently-published toolchain [3]. This newly-enabled
workflow would produce encodings of the represented MLTL behavior for the inter-
active theorem prover ACL2, including automatically generating related properties of
general interest such as unambiguousness [4,15,6]. Next, a synthesis pipeline consisting
of a verified program transformation suite [18] along with a proof-generating C code
generator [5] (both built on ACL2) generates verified software implementing the behav-
iors originally described in MLTL. By providing a new front-end for this tool chain, we
have now enabled a path to generating provably correct software from validated MLTL
formulas describing the desired behaviors of a system. Considering the rising popular-
ity of MLTL for describing such behaviors, we expect this to be a rewarding avenue for
future exploration.
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Appendix
I Minimum Computation Length

Theorem 1 (Minimum Computation Length of Until and Release). Let 0 < a <
b € N and let p, be well-formed MLTL formulas in NNF. The minimum computation
length of Until and Release is given by cplen(¢Uq %) = cplen(pRiq5%) = b +
max(cplen(p) — 1, cplen(t))).

Proof. Recall that reg (¢ Uy, p1¥) = \/b_, reg (Glai—1)% A Gi.ip¥). Thus

cplen(¢l, y)1) = max (cplen(Gpq,i—11¢ A Gpii?))

a<i<b

max (max(i — 1 + cplen(yp), 7 + cplen(v))))

a<i<b

max (i + max(cplen(p) — 1, cplen(v))))

a<i<b

= b + max(cplen(p) — 1, cplen(v))).

Now recall that reg(¢R 4 p1¢) = reg (Gpap¥) v Vo reg (Ga.i1¥ A Gpiiyp)- Thus

b—1
cplen(pR[q,41%) = max (Cplen(g[a,b]lb)vcpleﬂ <\/ reg (G, A g[i,i]@)))

i=a

= max (b +cplen(y), max (Gpa,q¥ A QW]@))

a<i<b—1

= max (b + cplen(v), max (max(i + cplen(w),i + cplen(cp))))

a<i<b—1
= max (b + cplen(¢), max(b — 1 + cplen(y), b — 1 + cplen())))
= max(b + cplen(¢)), b — 1 + cplen(yp), b — 1 + cplen(z)))
= b + max(cplen(p) — 1, cplen(v))).

II Soundness and Completeness

Theorem 2 (Soundness and Completeness). For any well formed MLTL formula ¢ in
negation normal form, a computation 7 with |rt| = cplen() satisfies ¢ and if and only

if m e Z(reg(p)).

Proof. We proceed by induction on the length of the formula.

Base Cases.

reg(T)

Any computation 7 satisfies T, and .Z(reg(T)) is the set of all computations of one
time step. Padding conventions extends this to the set of all computations of any positive
number of time steps, so we are done.

reg(L)

There are no computations that satisfy | and .#(reg(L)) is the empty string, so we are
done.

reg(py)
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For 0 < k < n — 1, consider the propositional variable py. If 7 satisfies py, then pg
evaluates to true at 7w[0]. This is equivalent to writing that 7[0] is of the form

Sklsnfkfl

, which is precisely reg(pg)-
reg(—pr)
If 7 satisfies —py, then —py, evaluates to true at 7r[0]. This is equivalent to writing that
7[0] is of the form
SkOSnfkfl

, which is precisely reg(—py).

Inductive Step.

Suppose the theorem holds for MLTL formulas ¢ and ). We now show that it holds for
o N, 0V, Flap)Ps Gla,p) P> ¢ Ua,p) ¥, and @R[ p1 1.

reg(p A 1)

We know that 7 = o A Y iff 7 = p and 7 = 2.

By the inductive hypothesis, 7 = ¢ iff 7 € £ (reg(y)) and

7= iff e L (reg(v)), so

T APiffme (L(reg(p)) A L(reg(y))) = Z(reg(p A 1))

reg(p v ¢)

Weknow that m = ¢ v Y iff m = g or 7 = 1.

By the inductive hypothesis, 7 = ¢ iff 7 € £ (reg(y)) and
= iff m € Z(reg(v)), so

TEevpiffwe (L(reg(p)) v ZL(reg(y))) = Z(reg(p v ).

reg(Fia. %)

We know that 7 = F, 3¢ iff 7| > a and 3i € [a, b] such that 7; = .

If 7| = cplen(Fiqp¢9), |7| > a. Likewise, m € & (reg (Fap)¢)) implies |w| =
cplen(Fpq,50), so the length condition is satisfied.

By the inductive hypothesis, 7; = ¢ iff m; € L (reg(p)), so m € Z((S™,)'reg(y)) for
some i € [a, b]. Equivalently,

i=a

b
Te? (\/(5"7 )'reg()(, Sn)b_i> = 2 (reg(Fiap)9))-

reg(Ga,019)

We know that 7 = G, )¢ iff [7] < aor Vi € [a,b] 7; & ¢.

Since |7| = cplen(Gjq,51) and cplen(Gy, 51%) > a, the first option for satisfying the
formula never occurs.

By the inductive hypothesis, 7; = ¢ iff 7; € £ (reg()), so m € L((S", )ireg(p)) for
all i € [a, b]. Equivalently,

b
TeZ </\(5”, )'reg() S")“) = Z(reg(Flap19))-

1=a
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reg(p Uq p19)
We have that

T @ Upqp? iff || > a and 3i € [a, b] such that (7; = ¢ and Va < j <4, 75 F ).

As argued in the Finally case, the length condition is satisfied.

By the inductive hypothesis, m; = ¢ iff m; € £ (reg(1)), or equivalently,

7€ L (reg(Gpii%))- Also, 7; = ¢ if and only if m; € £ (reg(¢)).

By the argument used in the Global case, we see that Va < j < ¢, 7; @ is equivalent
tom € Z(reg(Gla,i-11¥))-

Thus 7 = @ Upg ¢ iff m € L ((reg(Gpi,i¥) A reg(Gra,i—11¢))) for some i € [a, b], or
equivalently,

b
el (\/ reg (g[a,ifl]w A g[271]¢)> =Y (reg(gp u[a,b]w)) .

i=a

reg(©Ra,b)¥)
We have that
T b= ORan¥ iff || < aorVie [a,b] m; = 4 or
3j € [a,b] such that (7; = ¢ and Va < k < j, 7 = ¥).

As argued in the Global case, the first option for satisfying the formula never occurs.
By the Global case, the statement Vi € [a, b] 7; = ¢ is equivalent to m € £ (reg(Gjq,51%))
and, by the Finally case. the statement 35 € [a, b] such that (7, & ¢ and Va < k < j,

Tk = 1) is equivalent to m € & (\/l . Teg (g[a Q% A Gl )) Hence
b
ﬂ#@Rabwlffﬂeof(regg[ab v\/reg Gla,i1¥ A G ))
i=a

b—1
=.$<reg [a,5]%) V \/reg Ola,i1¥ A Gl ))

% (reg(goR[a,b]U’)) .

This completes the inductive step, and thus the proof. Since this proof addresses all
possible MLTL formulas in negation normal form, it shows completeness along with
soundness.

IIT Nested Until and Release Rewriting Theorem

Theorem 3 (Nested Until and Release Rewriting Theorem). Any MLTL formula using
the Until or Release operator can be rewritten with right-nested subformulas. Let B =
RorlU. Leta,b,ce Z=y,a < b,and @, 1) be well-formed MLTL formulas in NNF. Then,

@ Blapret = ¢ Blay) (0 Bio,¥)- That is, © Upa byt = © Upa ) (0 Upo,e?) and
2 R[a,b+c]¢ =@ R[a,b](@ R[o,c]i/))'

The proof of Theorem 3 appears below.
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Proof. Casel: B=U
Let v = ¢ Uo,%. Then, ¢ Uy, 51 (¢ Upo,e1%) = ¢ Upq 7y and
reg (7) = Vj_oreg (Go,j—11% A G(j,1%) - Thus

I
< -

N
Il
Q

reg (o Upa,017) reg (Ga,i—11% A Gpiireg (7))

Il
.<°~

reg <g[a,i1]<ﬂ A Gl (\/feg (Gro,j-119) A reg (%‘JW))) :

Jj=0

~
Il
Q

J1i,q distributes over A and v, so

[
<=

reg (10 Upa,017) reg (g[a,i—l]w A\ G (reg (Gpoj—110) A reg (%J]W))

j=0
reg ( [a,i—1]1% <\/ g[z i reg 0j71]<,0) A g[i,i]reg (g[j,j]¢))> .

Since Gity ,19(t2,t31P = Glt1+ta,t:1 +15]%> We have

.
Il

a

[
<@

~.
Il
Q

b c
reg (¢ Upa,p7) = \/feg (g[aﬂqw A <\/ reg (Gpii+j—1]%) A reg (g[i+j7i+j]w)>>

i=a j=0

= \/ \/reg g[a i— 1]%0 A Teg (g[z i+j—1]%¥ ) A T8 (g[i+j,i+j]w) .

i=a j=

Since G, 15119 A Glta,t519 = Y[t1 151> WE have

reg (o Upap)y) = \/ \/ 1eg (Gra,itj—11%) A reg (Gpitjiv¥)

i=a j=
b+c

=V reg (Gairj—119) A 1eg (Gvgiri¥)

i+j=a

Finally, let £ = ¢ + j. Thus

b+c
reg (¢ Upa,n) = \/ reg (Gla,k—119) A reg (G k1)
k=a
= reg (410 u[a,bJrc]w) .
This shows that o Uq 41 (0 Uo,c)¥) = 0 Uja,b+c] -

Case2: 5=R
We begin by rewriting the regex for Release in an equivalent form to better mirror the
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structure of the Until case. The Release operator is the dual of the Until operator. Thus,

reg (9 Rpa,n¥) = reg (= (—o Upa)~¥))
b
=7 (\/ reg (Gra,i—1) ¢ A gpﬂﬁlﬁ)) .

Global is the dual of Finally, so

reg (90 R[a,b]¢) = reg (_‘]:[a,i—l](P A *-7:[1‘,1']1/}))

<-f<-

I
]

(
[

b
/\reg (-F[a,i—l]@ Vv J:[i,i]w) .
i=a

reg (= (Flai—1)@ v f[i,i]¢))>

a

Il

]

]
7~
>-

reg (]:[a,i—l]<P Vv f[i,i]¢)>

I

This completes the rewriting of the regex for Release. Now let v = ¢ Rpg ¢. Then

¢ Riap)(p Rio,q¥) = ¢ Riapy and reg (v) = Aj_greg (Floj-119 v Fi¢)-
Thus

?@

reg (¢ Rap7) = eg (Flai—11¢ v Friqreg (7))

-
Il

a

Il
.>c~

reg <f[a,i1]%0 v Flisi] </\ reg (Flo,j-11%) Vv reg (f[j,jW))) :

Jj=0

~
Il
e

Fli,i] = G[i,a7» s0 this operation distributes over A and v. Thus

b
/\ <f[a,i—1]90 v (/\ Friareg (Foj-1®) v Friareg (f[j,ﬂi/’))) :
ima =0

Since Fg, 411  [to,t5]P = Ft1+to,t1+t5]P> WE have

b c
reg (¢ Riap7) = /\feg (Jr[a,z‘uw v (/\ reg (Fii+j—1]9) V reg (]:[i+j,i+j]¢)>>

i=a =0

= /\ /\feg [a,i—11%) V 1€ (Fliiej—119) V 18 (Fijivs¥) -

i1=a j=0
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Since Fg; 15 —11% A Flt,t3]P = Ft1,14]9> WE have

b c
reg (¢ Riap7) = /\ /\reg (Flaivj—119) v reg (Fliviit¥)

i=a j=0
b+c
= /\ 1eg (Fla,ivj—11®) v 168 (Flitji+i¥) -
i+j=a
Letk = ¢+ j. Thus
b+c
reg (¢ Rias17) = /\ reg (Fiak-119) v reg (Fiei¢)
k=a

= reg (SD R[a,b-kc]w) .

27

Thus ¢ Ria.p)(¢ Ri0,q%) = ¢ Riabrc¥s 80 0 Blapre)¥ = ¢ Blap) (¢ Blo,q¢)- This

completes the proof.

IV  Until and Release Duality Lemma

Lemma 1 (Until and Release Duality). The definition of Release is equivalent to the
dual of Until: pRY = —(—pU—). That is to say, ¢Ria 5 if and only if x| <

aorVse€ |a,b],(rs =Y ordtela,s—1],m E @)

Proof.
(=):
Suppose 7 = PR (4,51, 0:

|7 < aorVie|a,b], (m; = Y)ordjefa,b—1],(r; E pand Vk € [a, j]mi E ¢)

We proceed by cases to show that:

|| < aorVse[a,b], (s EorItela,s—1],m = ) (AD)
Case 0: If |[r| < a, then we are immediately done. Case 1: Suppose Vi €
[aa b]v T = 1/)
Through re-labeling, we have Vs € [a, b], 75 = 1. Then we clearly have:
|| < aorVse[a,b], (s EorItela,s—1],m = ) (AD)
Case 2: Suppose Ji € [a, b], ).
Then we must have that:
djela,b—1],(r; E pand Vk € [a, j] 7 = ¢) (D
We want to show that Vs € [a, ], (3t € [a, s — 1], 7 = ).
Suppose by contradiction that:
3s € [a,b], (Vt € [a,s — 1], m£p) (2)
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Since s € [a,b] and t € [a, s — 1], we have that t € [a,b — 1].

Since j € [a,b — 1] (from Line 1), we have that ;£ from Line 2.

However from Line 1 we have that 7; = ¢ and have thus derived a contradic-
tion.

Thus, we now have that Vs € [a,b], 3t € [a,s — 1], T &= ¢).

From this, we clearly have that:

|| < aorVse[a,b], (s EorItela,s—1],m = ) (AD)

Since these 3 cases exhaustively capture all cases fo the assumption, the (=) direc-
tion is proved.
(<):

Suppose that 7 = —(—pU—1):

|| <aorVsea,b], (ms Eporitela,s—1],m = @) (D)

We want to show m = @R[, 5%, that is:

|r| <aorVie[a,b], (m; = )ordje [a,b—1], (nj = ¢ and Vk € [a, j] 7 = 1)
(B1)
Case 0: If || < a, again we are immediately done.
Case 1: Suppose Vs € [a, b], (75 E ).
Relabeling s to i, we now have that Vi € [a, b], (75 = 1), which implies line
Bl.
Case 2: Suppose 3s € [a, b], msp£1.
By re-labeling s to 4, we have that 3i € [a, b], m; 3.
Since [a, b] is a finite-discrete interval, there must exist a first 41 s.t. m;, 1), that
is:
iy € [a, b], (m; £ and Yk € [a,i1 — 1], 7 = ¥) 2)
Since (line 2) 3i; € [a,b], m;, 1, by Line 1 we have that: m;, &= ¢ or3t €
[a,i1 — 1], m &= .
Thus, we have that:

Jtela, iy —1],m =@ 3)
Since [a,t] < [a,i1 — 1] and Vk € [a,i1 — 1], m = 1), we have that:
Vk € [a,t], 7, = 9 4)

Since [a,t] € [a,i1 — 1] € [a,b— 1], we have that t € [a,b — 1], s0 let j := ¢.
Then from lines 3 and 4, we have that:

djela,b—1],(r; E pand Vk € [a, j] 7 = ¢) (5)
From line 5, we now get:

|T| <aorVie[a,b], (m; = )ordjela,b—1],(rj = ¢ and Vk € [a, j] T = 1)
B1)
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Again the 3 cases are exhaustive of all cases in the assumption, this we have the
(<) direction.
This finishes the proof.

V Regular Expression Simplification Theorem

Theorem 7 (Regular Expression Simplification Theorem). Let M be an + 1 by n
matrix, where each of the n + 1 rows represents a regular expression of length n with
commas stripped. If each column has one “1,” one “0,” and n — 1 “S” characters,
then the union of this set of regular expressions can be simplified to S™, the arbitrary
computation of length n.

Proof. Assume no row is the arbitrary computation, because then the union of the set
of regular expressions would trivially simplify to the arbitrary computation.

We begin by showing that there must be at least one row in the matrix M that is com-
posed of one fixed truth value and n — 1 “S’s. This will be of use later in the proof.
Because there are n columns and 2 fixed truth values in each column, there are 2n fixed
truth values. There are n + 1 rows, so the average number of fixed truth values per row
is strictly less than 2 since f—fl < 2. Thus, there must exist at least one row composed
of one fixed truth value and n — 1 “S’s.

We now proceed by induction on the length of computations, n.

Base Cases: n = 1and n = 2.
1l _
[0] =S

The n = 1 case holds by definition:

For n = 2, we can manually verify that each possible matrix indeed satisfies the theo-
rem. Note that because the union of regular expressions is commutative, any permuta-
tion of rows is equivalent:

18 0S8 18 0S8
S1|=|S0|=([S0]=|S1|=S85.
00 11 01 10

Inductive Hypothesis:

Let n > 2. Assume that a matrix of regular expressions, H, with the following char-
acteristics is equivalent to the arbitrary computation of length n — 1: n rows, n — 1
columns, one ‘1’ per column, one ‘0’ per column, and n — 2 *S’s per column.
Inductive Step:

Consider a matrix of regular expressions, J, with the following characteristics: n + 1
rows, n columns, one ‘1’ per column, one ‘0’ per column, and n — 1 *S’s per column.
We show J is equivalent to the arbitrary computation of length n.

As aforementioned, there must exist at least one row composed of one fixed truth value
and n — 1 “S’s, and the union of regular expressions is commutative. Thus, WLOG, let
the first row of J, r1, be a row with one known truth value. Suppose this known truth
value is in column k, ¢, where 1 < k£ < n. Assume WLOG that this value is a 0.
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Matrix J can be represented as follows:

S o

s .

The first row of J represents half of the regular expressions contained in the arbitrary
computation. The other half would be represented by a regular expression of all ‘S’s,
except for a ‘1° at the k" position. Thus, if rows ry through 7,4, of .J represents the
other half of the arbitrary computation, then the matrix (the union of the set of the
regular expressions) represents the arbitrary computation of length n. We show that this
is indeed the case: Because the first row represents all the computations with ‘0’ at
the k" position, every ‘S’ in ¢ can be replaced with a ‘1°, to avoid redundancy; the
case for which each ‘S’ is ‘0’ is a subset of r1. Thus, matrix .J can be represented as
follows:

C1 Ck-1 Ck Ck+1 Cn

S... § 0 S ...5n

1 Iro

1 n+1

The problem reduces to showing that J — ry, that is, J with the row r; removed, repre-
sents the other half of the arbitrary computation. Thus, let J' = J — ry:

C1 Ck Cn
1 ro
JI
1 n+1

Again, we want to show that J’ represents the other half of the arbitrary computation.
Recall that we specify this to be the union of regular expressions of all ‘S’s except for
a ‘1’ at the k*" position. Because each row indeed contains a ‘1’ at the k" position, the
problem reduces to showing that ro — ¢ through r,, 1 — cj represents the arbitrary
computation, where r; — ¢y, is the row r; with the k' entry removed. Thus, we remove
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¢y, from J’ and call this new matrix J”:

T2 — Ck

T'n+1 — Ck

Because J” is the result removing one row and one column from .J, J” has n rows and
n — 1 columns. In each column of J”, there remains one ‘1’ and one ‘0’. Also, there
are now n — 2 ‘S’s in each column because r; was removed. Thus, J” is equivalent to
H, and is therefore equivalent to the arbitrary computation by the inductive hypothesis.
Because 1 is equivalent to half of the arbitrary computation and J’ is equivalent to the
other half of the arbitrary computation, .J is equivalent to the arbitrary computation, as
the union of r; and J’ is equivalent to .J. Therefore, by induction, the theorem holds.

VI Pseudocode for the WEST Algorithm Functions

To compute the satisfying computations of an MLTL formula, many of the functions
in the WEST program require the regular expressions of the satisfying computations of
the subformulas as inputs. We denote these regexes by R and 7'. Additionally, n will
always refer to the number of propositional variables, and nnf refers to an input formula
in negation normal form.

Algorithm 6 WEST Algorithm
Inputs: ¢ - MLTL formula in NNF
(1 and 2 below are subformulas of ¢
n - number of propositional variables
Output: set of REGEX satisfying ¢
procedure REG(string ¢, int n)
if pis T or L then
return reg_prop_const(y, n)

if ¢ is py or —p; then
return reg_prop_var(y, n)
if o = o1 A 2 then
return set_intersect(reg(¢1), reg(¢2), n)
if o = 1 v 2 then
return join(reg(y1), reg(y2), n)
ifgo = ]:[a,b]ﬂol then
return reg_F(reg(y1), a, b, n)
ipr = g[a,b]gol then
return reg_G(reg(v1), a, b, n)
if o = p1U[q, b2 then
return reg_U(reg(¢1), reg(v2), a, b, n)
if o = SDIR[a,b](P2 then
return reg_R(reg(1), reg(p2), a, b, n)
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Algorithm 7 Pad a set to elements of all equal length

Input: set of strings that represents a regex, number of propositional variables
Output: set of strings padded to equal length

procedure PAD(set R, int n)
max_Length < max,¢rj(r.length())
for (r € R) do
diff « (max_length—r.length()) / (n + 1)
re—r+ (, Sn)diff

return R

Algorithm 8 Computes regex for propositional constant
Input: String that is either “true" or “false", number of propositional variables
Output: set of strings that represents the appropriate satisfying computations
procedure REG_PROP_CONS(string nnf, int n)
if (nnf = “true" and n # 0) then return {S™}
else return {}

Algorithm 9 Output the set of computation satisfying a propositional variable
Input: String that represents a propositional variable or the negation of one, number of proposi-
tional variables
Output: set of strings that represents the appropriate satisfying computations
procedure REG_PROP_VAR(string nnf, int n)
if (nnf = “pk", where k is a nonnegative integer) then return {S*15™ %~}

if (nnf = “~pk", where k is a nonnegative integer) then return {S*0S™ %1}

Algorithm 10 Takes the intersection of two computations
Input: Two strings representing regexes
Output: Bitwise AND of the inputted strings
procedure BIT_WISE_AND(string r, string t)
ret «— "
for (i € [0, r.length()]) do
if (r[i] A t[7] = *”) then return “"
else ret < ret + r[i] A t[i]

return ret

Algorithm 11 set_intersect
Inputs: R, T - two sets of REGEX
n - number of propositional variables
Output: set of REGEX equalto R A T’
procedure SET_INTERSECT(R, T, n)
Pad(R, T', n), return < {}
for (r,t) € R x T do
add bit_wise_and(r, t) to ret
return simplify(ret)
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Algorithm 12 Takes union of two regexes (combines two sets into one)

Input: sets of strings that represent regexes, simplify boolean
Output: set of strings that represents union of inputted regexes

procedure JOIN(set R, set T, bool simp)
ret — {}
for (r € R) do add r to ret
for (t € T') do add ¢ to ret
if (simp is true) then return simplify(ret)
else return ret

Algorithm 13 Computes the regex for an MLTL formula F[a,b]y

Inputs: set of strings representing the regex for ¢, interval bounds, number of propositional vari-
ables, simplify boolean

Output: set of strings that represents the appropriate satisfying computations

procedure REG_F(set r,, int a, int b, int n, bool simp)
pre < ((‘\S)™ +4))*
comp <« 7,
if a > b then return {}
for(1<i<b—a) do
tempy, < ((*S7)" + ) + 7,
comp <« join(comp, temp,,, simp)

return pre + comp

Algorithm 14 Computes the regex for an MLTL formula ¢U[a,b]t)
Inputs: r,, ry - sets of REGEX for MLTL formulas ¢ and %) (after calling reg)
a, b - integers representing interval bound
n - number of propositional variables
Output: set of REGEX for old[q4,5)%
procedure REG_U(ry, 7y, a, b, n)
comp «— ((“S)" + )"+ 1_1
if a > b then return {}
for(a <i<b—1) do
Gl «—reg G(ry, a, i, n)
G2 «—reg G(ry,t+ 1,74+ 1, n)
temp_comp <« set_intersect(Gl1, G2, n)
comp «— join( comp, temp_comp)

return comp
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Algorithm 15 Computes the regex for an MLTL formula ¢R[a,b]y

Inputs: sets of strings representing the regexes for ¢ and v, interval bounds, number of proposi-
tional variables, simplify boolean

Output: set of strings that represents the appropriate satisfying computations

procedure REG_R(set r, set ry, int a, int b, int n, bool simp)
comp « reg_G(ry, a, b, n, simp)
if a > b then return {S™}
for(a <i<b—1) do
temp_comp «— set_intersect(reg_G(ry, a, ¢, n), reg_G(ry, %, 1, n), n, simp)
comp <« join(comp, temp_comp, simp)

return comp

Algorithm 16 Combines two strings that differ only by one character into one

Input: Two strings that represent regexes
Output: Single string that represents computations represented by both input strings or FAIL

procedure SIMPLIFY_STRING(string 7, string t)
if (r.length() # t.length()) then exit

for (0 < i < r.length()) do
pre_r « r[0,i — 1]
char_r « r[¢]
post_r « r[i + 1, rlength() — 1]
pre_t « ¢[0,7 — 1]
char_t « ¢[¢]
post_t « t[i + 1, ¢.length() — 1]
if (pre_r = pre_t and post_r = post_t) then
if (char_r # char_t) then
return pre_r +“S" + post_r
else
return r
return FAIL




MLTL Formula Validation Via Regular Expressions 35

Algorithm 17 Simplifies a set of strings using simplify_string
Input: set of strings representing a regex
Output: set of strings representing a regex simplified using simplify_string
procedure SIMPLIFY(set R)
Pad all strings in R to the same length
if (R.length() < 1) then return R
¢ = R.length — 1
j=i—-1
START
while (z > 1) do
while (7 > 0) do
simplified = simplify_string(R[7], R[7])
if (simplified # FAIL) then
replace string at index j with simplified
remove string at index ¢ from R
¢+ = R.length() — 1
j=1i—1
goto START
~j
-1
j=1i—1

return R

Algorithm 18 Generates test suite template without propositional constants, proposi-
tional variables, or negations of propositional variables filled in

Inputs: Depth to generate, interval bounds a and b
Output: set of MLTL formulas (without propositional constants, propositional variables, or nega-
tions of propositional variables)
procedure GENERATE_TEST_TEMPLATE(int depth, int a, int b)
if (depth = 0) then return {p, ¢}
template «— {}
V'« generate_test_template(depth—1, a, b)
for (string p € V') do
add “Gla:b]" + ¢ to template
add “F[a:b]" + ¢ to template
for string ¢ € V do
add ¢ + “Ula:b]" + 1 to template
add ¢ + “Rla:b]" + ¢ to template
add ¢ + “v" + 9 to template
add ¢ + “&" + 9 to template
return template
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Algorithm 19 Generates a complete test suite of MLTL formulas in negation normal
form up to a certain depth

Inputs: Depth of desired test suite template to generate, interval bounds, number of propositional
variables
Output: set of MLTL formulas
procedure GENERATE_TEST(int depth, int a, int b, int n)
tests < generate_test_template(depth, a, b)
for string ¢ € tests do
for char ch € t do
if ch = p then
k < rand()%n
if rand() %2 = 0 then replace ch with pk
else replace ch with ~pk
else if ch = ¢ then
if rand() %2 = 0 then replace ch with T
else replace ch with !

return tests

VII State Diagram Graphs

Below we provide the state diagram graphs of the functions examined in our intelligent
fuzzing. Nodes in the graph represent portions of the code without control flow state-
ments, so a single node can represent large chunks of code. Directed edges represent
branching of control flow, such as IF statements and loops. Each graph directly cor-
responds with the pseudocode of their corresponding function, with nodes and edges
being labeled accordingly. Note that the option to run simplify has been omitted for
clarity.

set R, # of propositional variables n

l strings r, t
Initialize string Ret

Run max_length on R

for 0 < i < rlength

pad r, update R forrin R

Take bitwise AND, store in Ret

Fig. 9: Bitwise_And Function

Fig. 8: Pad Function
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sets R, T

Addr to Ret

for string teT) Add t to Ret

return Ret

Fig. 10: Join Function

set 1, integers a, b, n

Initialize string pre, set Comp

Update Comp

return pre + Comp

Fig. 12: Reg_F Function

fori e [1,b— a]

sets R,T

l

Outer Loop Entry

for reR Update Ret

Outer Loop Exit

Fig. 11: Set_Intersect Function

set 7, integers a, b, n

Initialize string pre, set Comp

Update Comp

return pre + Comp

Fig. 13: Reg_G Function

Pad R and T, Initialize set Ret={}

for teT

fori e [1,b— a]
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set 7, 7y and integers a, b, n set r,, 7y and integers a, b, n

Initialize set Comp Initialize set Comp

Update Comp fori € [a,b — 1] Update Comp fori € [a,b— 1]

return Comp

Fig. 14: Reg_U Function Fig. 15: Reg_R Function



return reg_G(y)

Parse for assoc
prop conn, initialize
string equiv_formula

return reg_prop_var string nnf, integer n

for ¢ in nnf_array

Parse for binary temp
conn, a, b, @, ¥

return reg_prop_cons Update equiv_formula

nnf is ¢ X ¢

Parse for binary
prop conn, ¢, ¥

Parse for unary
temp conn, a, b, ¢
and call reg(p, n)

return

reg(equiv_formula,n)

A

4

return reg_F(yp)

4

Rewrite as
equiv_formula, return
reg(equiv_formula,n)

return reg_R

Rewrite as
equiv_formula, return
reg(equiv_formula,n)

return join return set_intersect

Fig. 16: Control Flow of Reg. Red nodes indicate a recursive call to Reg.
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