
Pathwise Explanation of ReLU Neural Networks

Seongwoo Lim1 Won Jo2 Joohyung Lee3,4 Jaesik Choi2,5

1Ulsan National Institute of Science and Technology (UNIST)
2Korea Advanced Institute of Science and Technology (KAIST)

3Arizona State University, 4Samsung Research, 5INEEJI

Abstract

Neural networks have demonstrated a wide range

of successes, but their “black box” nature raises

concerns about transparency and reliability. Pre-

vious research on ReLU networks has sought to

unwrap these networks into linear models based

on activation states of all hidden units. In this

paper, we introduce a novel approach that con-

siders subsets of the hidden units involved in the

decision making path. This pathwise explana-

tion provides a clearer and more consistent un-

derstanding of the relationship between the input

and the decision-making process. Our method

also offers flexibility in adjusting the range of ex-

planations within the input, i.e., from an overall

attribution input to particular components within

the input. Furthermore, it allows for the de-

composition of explanations for a given input for

more detailed explanations. Experiments demon-

strate that our method outperforms others both

quantitatively and qualitatively.

1 Introduction

Neural networks have demonstrated a wide range of suc-

cesses in various domains (Caruana et al., 2015; Litjens

et al., 2017; Yurtsever et al., 2020; Zhu et al., 2016).

However, many of these networks are perceived as “black

boxes” due to the opacity of their decision-making pro-

cesses. This has led to the rise of eXplainable Artificial

Intelligence (XAI), which seeks to clarify how these black

box models operate (Adadi and Berrada, 2018; Arrieta et

al., 2020; Das and Rad, 2020). XAI is vital in ensuring

the reliability of practical applications (Gunning and Aha,
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Figure 1: Comparison of the methods

2019; Gunning et al., 2019), diagnosing malfunctions in

neural networks (Lapuschkin et al., 2019), and promoting

consistent operation in our daily lives.

ReLU is widely employed as an activation function due to

its advantages, including mitigating the vanishing gradient

problem and enabling efficient computation (Goodfellow et

al., 2016). It is known that a Feed-Forward Neural Network

with ReLU can be represented as a piecewise linear model

(Sattelberg et al., 2020). Sudjianto et al. (2020) introduce

a process called unwrapping, which leverages this property

to describe a ReLU NN as a collection of local linear func-

tions based on activation patterns—that is, the activation

states of all hidden units within the network. Consequently,

a ReLU NN is represented by a distinct linear model for in-

puts that correspond to the same activation pattern.

Code: https://github.com/Jo-won/PathwiseExplanation
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In this paper, we also represent ReLU NN as a piece-

wise linear model. However, instead of focusing on acti-

vation patterns, we consider activation states for individual

paths—specific subsets of hidden units involved in a par-

ticular decision process. This approach facilitates a more

explicit explanation of the relationship between the input

and the corresponding paths they traverse for a decision, in

contrast to prior works.1

Additionally, the concept of a path offers flexibility in ad-

justing the range of explanations within the input. Specif-

ically, by controlling the maximum number of units in-

cluded in the path configuration process for each layer, as

shown in Figure 1, our method is capable of not only pro-

viding an overall attribution of the input to the prediction

but also facilitating the explanation of particular compo-

nents within the input. We reveal that this adjustment can

provide more detailed explanations for the decision by en-

abling the decomposition of explanations for a given input.

Furthermore, we demonstrate that our pathwise explana-

tion offers better consistency in relation to the input com-

pared to existing methodologies. This enhanced consis-

tency arises from the utilization of only a subset of hidden

units rather than the entire set. In our experiments on the

use of linear models for recognizing informative attribu-

tions, our linear model derived from various types of paths

outperforms others both quantitatively and qualitatively.

Our contributions are as follows:

• We introduce a pathwise explanation for ReLU NNs

along with its associated algorithms for computing

paths. The pathwise explanation describes a clearer

relationship between the input and the corresponding

decision-making by the use of paths (Section 3).

• The pathwise explanation facilitates the decomposi-

tion of explanations for a given input (e.g. Fox) into

its individual components (e.g., Fox’s eyes and ears).

Furthermore, it elucidates the underlying reasons for

incorrect predictions made by the model (Section 5.1

and 5.2).

• In experiments recognizing informative attributions

for explaining specific inputs, we demonstrate that our

method with various paths outperforms others both

quantitatively and qualitatively (Section 5.3).

2 Related Work

As mentioned, our work is related to Sudjianto et al.

(2020). However, in contrast to their approach that consid-

ers all activated hidden units, we focus on specific subsets

that form paths leading to the decision process. (Villani

and McBurney, 2023) extends unwrapping from Sudjianto

et al. (2020) to NNs with diverse structures, such as Graph

Neural networks and tensor convolutional networks.

1See Section 4 for more details.

Input attribution methods, designed to compute an input’s

contribution to the output—either through a heatmap or as

a linear model (Ribeiro et al., 2016)—are widely utilized

for interpreting NNs. Among them, gradient-based input

attribution techniques offer intuitive means to elucidate the

roles of hidden units.

The Saliency method employs the gradient of the input for

a specific target unit (Simonyan et al., 2013). This gra-

dient inherently signifies the input’s contributions to the

target unit. Moreover, it becomes possible to modify the

input to enhance target units using this gradient, as de-

scribed in (Mordvintsev et al., 2015). The goal is often

to identify input sections that amplify the target unit’s re-

sponse, as opposed to suppressing it. Techniques such as

Guided Backpropagation (Springenberg et al., 2014) and

Deconvnet (Zeiler and Fergus, 2014) leverage the ReLU

activation function to counteract the effects of negative

weights. The Integrated Gradient method (Sundararajan et

al., 2017), adhering to both sensitivity and implementation

invariance standards, computes the integral of the gradient

from a baseline to the input. Class Activation Mapping

(CAM) (Zhou et al., 2016) increases the model’s trans-

parency by using Global Average Pooling (GAP) rather

than fully-connected. GradCAM (Selvaraju et al., 2017)

is an extension of CAM that can generate explanations for

differentiable models without using GAP. Another class

of input attribution methods revolves around perturbation-

based approaches. For instance, Occlusion method (Zeiler

and Fergus, 2014) modifies a specific rectangular input re-

gion to a baseline and observes consequent output changes.

Some studies produce model explanations leveraging the

unique properties of the ReLU function. Notably, in a neu-

ral network’s Taylor series expansion with ReLU activa-

tion, explanations can be derived by solely considering the

first-order term; this is because higher-order terms become

zero with ReLU (Bach et al., 2015; Montavon et al., 2017).

3 Pathwise Explanation of ReLU NN

In this section, we introduce the concept of a path within

a NN with ReLU activation. First, we establish the idea

of a one-way complete path, representing a straightforward

linear model case. Subsequently, we expand the definition

to accomodate multi-way paths.

We consider a Feed-Forward NN with a ReLU activation

function in each layer, which is termed as a ReLU NN.

For an input X ∈ R
d0 , where d0 represents the vectorized

input dimension, a ReLU NN f : R
d0 −→ R

dN+1 com-

putes the prediction f(X) with the ouput dimension dN+1.

For the ith layer, layeri, a vector of hidden units h(i) =

[h
(i)
1 , ..., h

(i)
di
] is given before ReLU activation, where di is

the number of hidden units in layeri. A weight matrix be-

tween layeri−1 and layeri is denoted as W (i) ∈ R
di×di−1 ,
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(a) Original network (b) One-way complete path

(c) Multi-way incomplete path (d) Not a path

Figure 2: Examples of paths with three hidden layers

and a weight associating the jth hidden unit in layer(i−1)

and the kth hidden unit in layeri is denoted as W
(i)
k,j ∈ R.

The term ∗ is used as an index for all hidden units. For

example, W
(i)
∗,j ∈ R

di×1 represents weights connecting the

jth hidden unit in layeri−1 to all hidden units in layeri. A

bias vector for layeri is denoted as b(i) ∈ R
di .

A ReLU NN can be represented as an undirected graph,

with hidden units serving as nodes and weights as edges. In

this context, we say that a set of hidden units is connected

in a ReLU NN if the subgraph they induce is connected.

Definition 1. A path is defined as a set of hidden units

connected in a ReLU NN.

• A one-way path is defined as a set of hidden units with

no more than one unit per layer (in contrast to a multi-

way path).

• A complete path is defined as a set of hidden units

with at least one unit in every layer (in contrast to an

incomplete path).

• A path is activated when all units in the path have

positive values with regard to the input; otherwise, the

path is deactivated.

• The depth of a path is the number of layers that in-

clude hidden units in the path.

Example 1. For the ReLU NN with 3 hidden layers in Fig-

ure 2 (a), {h
(1)
1 , h

(2)
1 , h

(3)
1 } represents a one-way complete

path with a depth of 3, and {h
(1)
1 , h

(1)
2 , h

(2)
1 } is a multi-way

incomplete path with a depth of 2. Note that {h
(1)
1 , h

(3)
1 } is

not a path because h
(1)
1 and h

(3)
1 are not connected.

3.1 Formalization of One-way Complete Path

The ReLU function can be expressed as

ReLU(x) = x · ϕ(x),

where ϕ(x) = 1 for x > 0, ϕ(x) = 0 for x ≤ 0. ϕ can

be applied elementwise for a multi-dimensional input. A

Feed-Forward ReLU NN can be represented as follows:

h(1) = W (1)X + b(1)

h(2) = W (2)(h(1) · ϕ(h(1))) + b(2)

. . . (1)

h(N) = W (N)(h(N−1) · ϕ(h(N−1))) + b(N)

f(X) = W (N+1)(h(N) · ϕ(h(N))) + b(N+1).

For each hidden unit, Equation (1) can be decomposed:

h
(1)
i1

= W
(1)
i1,∗

X + b
(1)
i1

h
(n)
in

=

dn−1
∑

k=1

W
(n)
in,k

h
(n−1)
k ϕ(h

(n−1)
k ) + b

(n)
in

f(X) =

dN
∑

k=1

W
(N+1)
∗,k h

(N)
k ϕ(h

(N)
k ) + b(N+1),

where 0<i1∈N≤d1, 0<in∈N≤dn and 1<n∈N<N−1.

Furthermore, f(X) can be unfolded as

f(X) =

∑

i1,i2,..,iN

W
(N+1)
∗,iN

W
(N)
iN ,iN−1

. . .W
(2)
i2,i1

W
(1)
i1,∗

X

N
∏

j=1

ϕ(h
(j)
ij

)

+
∑

i1,i2,..,iN

W
(N+1)
∗,iN

W
(N)
iN ,iN−1

. . .W
(2)
i2,i1

b
(1)
i1

N
∏

j=1

ϕ(h
(j)
ij

)

+
∑

i2,..,iN

W
(N+1)
∗,iN

W
(N)
iN ,iN−1

. . .W
(3)
i3,i2

b
(2)
i2

N
∏

j=2

ϕ(h
(j)
ij

)

. . .

+
∑

iN

W
(N+1)
∗,iN

b
(N)
iN

N
∏

j=N

ϕ(h
(j)
ij

) + b(N+1),

(2)

where 0<in∈N≤dn.

One of the primary concepts in this paper is represent-

ing a ReLU NN as a piecewise linear model based on

a path derived from Equation (2). The ReLU function,

due to its piecewise linear nature, allows for the expres-

sion that is a sum of piecewise linear models comprised of

ϕ for each hidden unit. Given a one-way complete path

p = [h
(1)
i1

, ..., h
(N)
iN

], we define the terms Wp and bp as

follows:

Wp = W
(N+1)
∗,iN

W
(N)
iN ,i(N−1)

. . .W
(2)
i2,i1

W
(1)
i1,∗

bp = W
(N+1)
∗,iN

W
(N)
iN ,i(N−1)

. . .W
(2)
i2,i1

b
(1)
i1

, (3)

where 1≤ij∈N≤dj . Note that in Equation (2), these Wp

and bp are multiplied by
∏

h∈p
ϕ(h)—the product of ϕ for

all hidden units in p. As a result, we define the piecewise

linear model fp(X) for the path p as

fp(X) = (WpX + bp)
∏

h∈p

ϕ(h). (4)
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Figure 3: An illustration of Proposition 1

Figure 4: An illustration of Proposition 2

Proposition 1. For a one-way complete path p, the piece-

wise linear model fp(X) constitutes a term in Equation (2)

and is non-zero if and only if the path is activated (the proof

is in Appendix A.1).

3.2 Generalization of Linear Model for Multi-way

Complete Path

The preceding section discussed a one-way complete path.

Given the piecewise linear nature of a ReLU NN, the ex-

tension to multi-way complete paths is straightforward.

As previously, we define the piecewise linear model for a

multi-way complete path p in the following form:

fp(X) = (WpX + bp)
∏

h∈p

ϕ(h) (5)

where Wp ∈ R
dN+1×d0 , bp ∈ R

dN+1 .

For a multi-way complete path p for a ReLU NN, we define

Wp and bp for equation (4) by summing up the weights

and biases of all possible one-way complete paths that are

subsets of the multi-way complete path p.

Wp =
∑

p is a one-way complete path
that is a subset of p

W p (6)

bp =
∑

p is a one-way complete path
that is a subset of p

bp (7)

Proposition 2. For a multi-way complete path p, the piece-

wise linear model fp(X) represents a summation of terms

from Equation (2), and is non-zero if and only if the path is

activated.

The proof of Proposition 2 (Appendix A.2) uses the follow-

ing property of a ReLU function:

ϕ(x) + ϕ(−x) = 1 (8)

Algorithm 1 Multi-way Path Construction

1: Input: h: set of hidden units in N layer ReLU NN,

2: h(N+1): NN output, targetIndex: target index,

3: depth: depth of the generated path

4: width: width of the generated path

5: ³: threshold for importance

6: Initialize: path(N+1) =
[

1, 2, . . . , |h(N+1)|
]

7: W prev=I ▷ identity matrix

8: for n← N to (N−depth+1) do

9: path(n) = emptyList()
10: W = d

dh(n)h
(n+1) ▷ Rdn+1×dn

11: W = W prev(W [path(n+1), ∗]) ▷ RdN+1×dn

12: imp = matMul(W,diag(h(n)))T ▷ Rdn×dN+1

13: imp = softmax(imp)[∗, targetIndex] ▷ Rdn

14: setOfTopKIndex=topKIndex(imp,K=width)
15: for index in setOfTopKIndex do

16: if imp[index] > ³ then

17: path(n).add(h
(n)
index)

18: end if

19: end for

20: W prev = W [∗, path(n)] ▷ RdN+1×|path(n)|

21: end for

22: return ∪N
n=(N−depth+1)path

(n)

which means that the hidden unit can have two cases: acti-

vated (ϕ(x)=1) or deactivated (ϕ(−x)=1). Figure 4 illus-

trates Proposition 2.

Example 2. As in Figure 4, consider the multi-way com-

plete path p = [h
(1)
1 , h

(1)
2 , h

(2)
1 , h

(2)
2 ].

Wp =

(

df(x)

dh
(2)
1

dh
(2)
1

dh
(1)
1

+
df(x)

dh
(2)
2

dh
(2)
2

dh
(1)
1

)

dh
(1)
1

dx

+

(

df(x)

dh
(2)
1

dh
(2)
1

dh
(1)
2

+
df(x)

dh
(2)
2

dh
(2)
2

dh
(1)
2

)

dh
(1)
2

dx

=W [h
(1)
1 ,h

(2)
1 ]+W [h

(1)
1 ,h

(2)
2 ]+W [h

(1)
2 ,h

(2)
1 ]+W [h

(1)
2 ,h

(2)
2 ].

Example 3. Consider the ReLU NN, as in Fig-

ure 5. There exist three complete paths, p1={h
(1)
1 , h

(2)
1 },

p2={h
(1)
2 , h

(2)
1 } and p3={h

(1)
1 , h

(1)
2 , h

(2)
1 }. Then,

fp1(x1, x2) = (−x1 + x2)ϕ(h
(1)
1 )ϕ(h

(2)
1 ),

fp2(x1, x2) = (−x1 − x2 + 4)ϕ(h
(1)
2 )ϕ(h

(2)
1 ),

fp3(x1, x2) = (−2x1 + 4)ϕ(h
(1)
1 )ϕ(h

(1)
2 )ϕ(h

(2)
1 ).

The ReLU NN can be expressed as

f(x1, x2) = fp1(x1, x2) + fp2(x1, x2) + 2ϕ(h
(2)
1 )− 1

=











fp1(x1, x2) + 1, in the blue region

fp2(x1, x2) + 1, in the red region

fp3(x1, x2) + 1, in the purple region.

The explanation by fp1(x1, x2) means that x1 has a neg-

ative contribution towards the classification of the posi-
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(a) ReLU NN structure (b) Inconsistent explanation for the white sample
as positive class (y>0) by using fp3=fp1+fp2

(c) Consistent explanation for the white sample
as positive class by using fp1 only.

Figure 5: Comparison of the proposed pathwise explanation and unwrapping through a pedagogical example. For the white sample,
fp1 and fp2 predict different classes. A pathwise explanation can generate a more consistent explanation. In (b) and (c), a solid line
represents a decision boundary relevant to that example, while a dotted line is included for reference purposes but does not directly relate
to the example.

tive class (y>0), whereas x2 has a positive contribution.

Note that fp3(x1, x2)=fp1(x1, x2) + fp2(x1, x2) within

the purple region. Our proposed method enables explana-

tions from three distinct paths: p1, p2, and p3, individually

for inputs within this purple region.

3.3 Path construction

This section presents an algorithm to find paths that are

positively related to the target class prediction. Algo-

rithm 1 is a pseudocode for our path construction method.

We compute the weight between the (n+1)th layer and

the nth layer by gradient (line 10). The importance

of the hidden units in the nth layer is computed by

softmax(W (N+1)h(N)) (lines 12–13). The top-k impor-

tant units are those that increases the target class prediction

value over predictions for other classes (lines 14–19). The

depth, width, ³ are hyperparameters used to generate var-

ious paths. width indicates the maximum number of hid-

den units used at each layer when constructing a path. ³

controls how much the prediction value for the target class

is increased by the hidden units compared to other classes.

We consistently set ³ at 1
|classes| , where |classes| repre-

sents the total number of classes in the dataset. This ap-

proach is adopted to identify neurons that contribute sig-

nificantly more to the target class than the average contri-

bution across all classes, thereby highlighting neurons with

a substantial impact on the decision-making process.

The path generated by Algorithm 1 consists of hidden

units from the (N−depth+1)th layer to the N th layer.

Then we may consider that the ReLU NN is partitioned

into two subnetworks: f1 that spans from the first layer

to the (N−depth+1)th layer, and f2 that spans from the

(N−depth+1)th layer to the N th layer. The path that is

found by Algorithm 1 is incomplete for the original NN,

but is complete for f2. Thus, we can compute the linear

model for this path. For the first subnetwork, we can em-

ploy direct linearization:

W1 =
d

dX
f1(X),

b1 = f1(X)−W1X.

Here, f1(X) denotes the first subnetwork, which is ReLU

NN itself. We then obtain the linear model of the whole

ReLU NN for the incomplete path p as a composite func-

tion of these linear models, i.e., f
p

2 (W1X + b1).

Example 4. Let’s revisit the simple ReLU NN in Fig-

ure 5. We will show how the paths are constructed by the

algorithm 1 (with depth=2 and width=1) for the white

sample (x1, x2)=(1.0, 4.0) in Figure 5 (b) as the positive

class (y>0). For the white sample,

h
(1)
1 = 3, h

(1)
2 = 1, h

(2)
1 = 4, y = 3

For the second layer, W=
[

1
]

. Then, the importance of h
(2)
1 :

imp
h
(2)
1

=
e1×h

(2)
1

e1×h
(2)
1 + e−(1×h

(2)
1 )

= 0.982

We add the h
(2)
1 to path(2). Next, for the first layer,

W =
[

1
] [

1 −1
]

=
[

1 −1
]

.

Then, we compute the importance of h
(1)
1 and h

(1)
2 :

imp
h
(1)
1

=
e1×h

(1)
1

e1×h
(1)
1 + e−(1×h

(1)
1 )

= 0.953,

imp
h
(1)
2

=
e−1×h

(1)
2

e−1×h
(1)
2 + e−(−1×h

(1)
2 )

= 0.269.

We add h
(1)
1 to path(1). The constructed path for the white

sample is path(1)∪path(2)={h
(1)
1 ,h

(2)
1 } (Figure 5 (c)).

4 Comparison with Unwrapping by

Sudjianto et al.

Both our pathwise explanation and unwrapping (Sudjianto

et al., 2020; Villani and McBurney, 2023) use the activa-
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tion states in a ReLU NN to represent the ReLU NN as a

piecewise linear model. The fundamental distinction is that

the pathwise explanation leverages the activation states of

a subset of hidden units connected by paths, whereas un-

wrapping encompasses the activation states of all hidden

units. The local linear model produced by unwrapping for

an input aligns with the linear model of the path that in-

cludes all activated hidden units for that input along with

an additional bias.

Example 5. Consider again the simple ReLU network in

Figure 5 (a). According to Sudjianto et al. (2020), the input

space is divided by activation patterns. For example, any

input instance within the purple region in Figure 5 (b) acti-

vates h
(1)
1 & h

(1)
2 & h

(2)
1 . Figure 5 (b) show a local linear

model on each activation region. The weights of the linear

model are used to generate explanations for the input’s con-

tribution to the prediction. However, this method often cre-

ates inconsistent explanations. For instance, the white input

in Figure 5 (c) is classified as the positive class (y > 0) by

fp1(x1, x2) + 1. However, the same input is classified as

negative class (y < 0) by fp2(x1, x2) + 1. Consequently,

the explanation by fp1(x1, x2) describes how the ReLU

NN perceives the input as the positive class, while the ex-

planation by fp2(x1, x2) describes the opposite. Thus, the

explanation generated by fp3(x1, x2), which is the summa-

tion of fp1(x1, x2) and fp2(x1, x2), conveys mixed mes-

sages, representing both the positive and negative classifi-

cation. However, as explained in Example 4, our method

offers a consistent explanation for predicting the white in-

put as the positive class by using fp1(x1, x2) instead of

fp3(x1, x2) even for the purple region (Figure 5 (c)).

The Figure 1 shows the difference in explanations gener-

ated by unwrapping and pathwise explanation. From this

figure, we can see that our method better captures the fea-

tures of the input, such as the eyes and ears of the fox.

5 Experiments

This section evaluates the effectiveness of our pathwise

explanation method. First, we demonstrate that multiple

paths, or subsets of hidden units, can account for expla-

nations of individual components within a given input by

decomposing the model’s decision-making process. In ad-

dition, it specifies the reasons for the incorrect responses

generated by the model. Subsequently, we assess both the

quantitative and qualitative explanations for the input, as

calculated using our method.

We conducted experiments on a curated subset of the Im-

ageNet dataset (Russakovsky et al., 2015), which includes

10 distinct classes. For the purpose of explaining decisions,

regardless of the method employed, all experiments con-

sistently utilized the VGG-16 architecture (Simonyan and

Zisserman, 2015). This architecture was fine-tuned using

Figure 6: An example of explanation decomposition through the
paths. (left) Fox class input; (middle) an explanation by the path
using the Fox’s eyes for the Fox class prediction; and (right) using
the Fox’s ear.

Figure 7: An example of the explanation for the incorrect predic-
tion through the paths. (left) mantis class input; (middle) input
region supporting the ReLU prediction as mantis; (right) input re-
gion supporting the ReLU prediction as prison.

pretrained weights from ImageNet, with adjustments made

to its classifier to match the number of classes in the subset.

Notably, our method is applicable to CNNs, as both convo-

lution and pooling operations are linear for a given input.

Specifically, we can extend our method designed for MLPs

to CNNs by equating a combined convolutional and pool-

ing operation, f : RHi×Wi×Ci , to a linear layer in an MLP,

g : RHiWiCi → R
HoWoCo , which takes a flattened input

and produces a flattened output. This approach has been

utilized in all our experiments with CNNs, e.g., VGG-16

as detailed in Section 5 and ResNet-18 in Section F.

We compare our method with the following methods.

• Saliency (Simonyan et al., 2013),

• Input×Gradient (IxG) (Shrikumar et al., 2016),

• Integrated Gradients (IGs) (Sundararajan et al., 2017),

• Guided Backprop. (GBP) (Springenberg et al., 2014),

• Guided GradCAM (GGC) (Selvaraju et al., 2017),

• Blur Integrated Gradients (BlurIG) (Xu et al., 2020).

Note that the attributions provided by Saliency and IxG

are exactly the same with the weight (W ) and WX of the

piecewise linear model obtained by unwrapping, respec-

tively. The attribution map, generated by the pathwise ex-

planation of path p for input X , is constructed as WpX .

5.1 Explanation Decomposition by Paths

A significant advantage of our pathwise explanation is its

ability to identify multiple distinct paths that play a cru-

cial role in the model’s decision-making. Moreover, we ob-

served that individual paths can effectively capture salient

features within the input. Assuming that neurons in the
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Figure 8: Quantitative explanation via insertion and deletion depending on the maximum number of units per layer (width) and the
number of layers (depth) for path configuration. In our method, a depth of 15, which is the maximum, represents a complete path, while
any lesser value indicates an incomplete path.

higher layers have high-level features like the fox’s eye, we

generated multiple paths that include each hidden neuron

extracted in Algorithm 1 from the N th layer. For example,

if a path(N)={h1, h2} is generated at step n=N in Algo-

rithm 1, we assumed path(N)={h1} and proceeded to the

next step to create a path. We also assumed path(N)={h2}
and proceeded to the next step to create another path.

In Figure 6, we present an illustrative example that show-

cases the model making an accurate prediction. In this in-

stance, our proposed method identifies two distinct paths

that adeptly capture essential features, such as the Fox’s

eyes and ear, vital for correctly recognizing the input as

a Fox. Moreover, our pathwise explanation facilitates the

breakdown of each object within the input, allowing for

the identification and explanation of multiple objects (Ap-

pendix D).

5.2 Explanation for Incorrect Prediction

Our path construction algorithm (Algorithm 1) is capable

of generating explanations for any class. Particularly for

incorrect predictions in ReLU NNs, these explanations of-

fer valuable insights into the underlying reasons for the

model’s misclassifications. This is illustrated in Figure 7.

In this figure, the middle image represents our explanation

of the correct class (mantis), which the model predicted

with the second-highest confidence. In contrast, the right

image represents our explanation for the incorrect class

(prison), which the model predicted with the highest con-

fidence. These explanations suggest that the model’s inac-

curate predictions arise from similarities between the back-

ground of the input image and prison bars. Based on these

observations, we conclude that the proposed explanation

method can also be used to pinpoint the factors leading to

the model’s misclassifications.

5.3 Pixel Insertion and Deletion Game

To compare our attribution map with other explanation

methods, we employed two causal metrics: insertion and

deletion (Petsiuk et al., 2018). In this context, the attribute

Insertion(↑) Deletion(↓)
Saliency 0.822 0.255

IxG 0.883 0.215

IGs 0.926 0.176

GBP 0.920 0.275

GGC 0.928 0.438

BlurIG 0.924 0.168

Ours 0.936 0.179

Table 1: Area Under Curve (AUC) of Insertion and Deletion.
↑ indicates that the larger the value, the better the explanation,
whereas ↓ indicates the opposite.

map offers a quantified explanation of the impact that each

input region (or each pixel, in the case of images) has on

the decision. For our method, this influence is computed

using the linear model for the path.

These two causal metrics determine that the attribution map

provides a better explanation when there is a more signifi-

cant degree of change according to addition or removal as

described in the map. In particular, insertion perceives a

higher value as indicative of a better explanation, where

the value is the Area Under Curve (AUC) for performance

changes caused by increasing the proportion of inserting

important pixels. Conversely, deletion interprets a lower

value as a more proper explanation, obtained when increas-

ing the proportion of removal.

As evidenced in Table 1, our method outperforms the rest

in the insertion metric and offers competitive performance

in the deletion metric. Such results underscore that our ap-

proach, distinct from others, excels at explaining all com-

ponents within the input. Moreover, it facilitates elucidat-

ing each individual component, as described before.

5.4 Explanation by Various Types of Path

Various paths can be constructed by varying depth and

width using Algorithm 1. Figures 8 and 9 demonstrate that

the pathwise explanations for these various paths outper-

form other methods both quantitatively and qualitatively.
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Figure 9: Qualitative explanation depending on the maximum number of units per layer (width) and the number of layers (depth) for
path configuration. The expression enclosed in parentheses in the proposed method is as follows: (depth, width). Positive and negative
attributions are indicated in red and blue. vspace-2mm

More precisely, in case of a small depth, since the path in-

cludes only high-level layers containing hidden units with

relatively broad receptive fields, the path with a small width

can sufficiently consider the entire area within an image.

However, the quality of attribution produced by the path is

degraded when the width increases, since leads to the in-

clusion of less significant units.

Conversely, in case of a large depth, a large width can en-

hance the upper bound increment of explanation by consid-

ering the entire area within an image. Figure 9 graphically

presents our attribution maps as influenced by both width

and depth. Interestingly, even when both depth and width

are minimal, the pathwise explanation aptly pinpoints the

object’s location. For paths with the maximum depth, our

attribution maps not only stand out more than those of other

methods employing all units but also adeptly highlight key

features as the width is adjusted.

6 Conclusion

We proposed a method of explaining a ReLU network in

terms of piecewise linear model that corresponds to the

path—the subset of hidden units. We demonstrated that

the proposed method can generate various explanations for

a single input by employing different paths. Additionally,

we introduced a path construction algorithm that generates

consistent explanations for the model’s output. The ex-

periment indicates that the pathwise explanation provides

a clearer and more consistent understanding of the rela-

tionship between the input and the decision-making pro-

cess over the others.
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A Proofs

A.1 Proof of Proposition 1

Given a one-way complete path p = [h
(1)
i1

, ..., h
(N)
iN

], we define the terms Wp and bp as follows:

Wp = W
(N+1)
∗,iN

W
(N)
iN ,i(N−1)

. . .W
(2)
i2,i1

W
(1)
i1,∗

bp = W
(N+1)
∗,iN

W
(N)
iN ,i(N−1)

. . .W
(2)
i2,i1

b
(1)
i1

, (i)

where 1≤ij∈N≤dj . Thus, we define the piecewise linear model fp(X) for the path p as

fp(X) = (WpX + bp)
∏

h∈p

ϕ(h). (ii)

Proposition 1. For a one-way complete path p, the piecewise linear model fp(X) constitutes a term in Equation (2) and

is non-zero if and only if the path is activated and (WpX + bp) is non-zero.

Proof. From Equation (2), we take the terms including
∏

h∈p
ϕ(h) where p = [h

(1)
i1

, ..., h
(N)
iN

].

(

W
(N+1)
∗,iN

W
(N)
iN ,iN−1

. . .W
(2)
i2,i1

W
(1)
i1,∗

X +W
(N+1)
∗,iN

W
(N)
iN ,iN−1

. . .W
(2)
i2,i1

b
(1)
i1

)

N
∏

j=1

ϕ(h
(j)
ij

)

= (WpX + bp)
∏

h∈p

ϕ(h).

By Definition 1, “the path is activated” means that all hidden units in the path are activated given input X . Therefore,

fp(X) = (WpX + bp)
∏

h∈p

ϕ(h) is non-zero

⇒
∏

h∈p

ϕ(h) = 1

⇒ p is activated.

Furthermore, if the path p is activated,

for any h ∈ p, ϕ(h) = 1

⇒
∏

h∈p

ϕ(h) = 1

⇒ fp(X) = (WpX + bp)
∏

h∈p

ϕ(h) is non-zero if (WpX + bp) is non-zero.

A.2 Proof of Proposition 2

For a multi-way complete path p for a ReLU NN, we define Wp and bp by summing up the weights and biases of all

possible one-way complete paths that are subsets of the multi-way complete path p.

Wp =
∑

p is a one-way complete path
that is a subset of p

W p (iii)

bp =
∑

p is a one-way complete path
that is a subset of p

bp. (iv)

We define the piecewise linear model fp(X) for the path p as

fp(X) = (WpX + bp)
∏

h∈p

ϕ(h). (v)

Proposition 2

For a multi-way complete path p, the piecewise linear model fp(X) represents a summation of terms from Equation (2),

and is non-zero if and only if the path is activated and (WpX + bp) is non-zero.
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Figure A: Example of incomplete path with depth 2

(a) (b) (c) (d) (e)

Figure B: An example of capturing multiple features through the paths. (a) fox class input; (b) an explanation by the path using the fox’s
eyes for the fox class prediction; and (c) using the fox’s ear. (d, e) attribution maps for (b) and (c)

Proof. In a multi-way complete path, there exist hidden units from the same hidden layer. Without loss of generality, let hi

and hj be the hidden units in the multi-way complete path from same hidden layer. From Equation (1), we can substitute

ϕ(hi) as ϕ(hi)ϕ(hj)+ϕ(hi)ϕ(−hj) and ϕ(hj) as ϕ(hj)ϕ(hi)+ϕ(hj)ϕ(−hi) because ϕ(a)+ϕ(−a) = 1. In other words,

the decomposition from ϕ(hi) to ϕ(hi)ϕ(hj) and ϕ(hi)ϕ(−hj) means that the ϕ(hi)ϕ(hj) indicates both hi and hj are

activated, while ϕ(hi)ϕ(−hj) indicates only hi is activated. In both cases, hi is activated (ϕ(hi)).
Wiϕ(hi) +Wjϕ(hj)

= Wiϕ(hi) (ϕ(hj)+ϕ(−hj))+Wjϕ(hj) (ϕ(hi)+ϕ(−hi))

= (Wi +Wj)ϕ(hi)ϕ(hj) + ³(hi, hj),

where ³(hi, hj) is the rest of the term except (Wi +Wj)ϕ(hi)ϕ(hj).

B Experiment Environment

All experiments were conducted under uniform computing conditions, leveraging a single Quadro RTX 6000 GPU, running

on Ubuntu 18.04, with Cuda 10.2 and Pytorch 1.11.0.

C Baseline Codes Used

• We used the Captum2 package and PAIR Saliency3 package for Saliency, Input x Gradient, Integrated Gradients,

Guided Backpropagation, Guided GradCAM, and Blur Integrated Gradients.

• We used the RISE (Petsiuk et al., 2018)4 code for the insertion and deletion game (Section 5.3 in the main script).

• We used the training code5 for the model, as introduced in Section G, on CIFAR10.

2https://captum.ai
3https://pair-code.github.io/saliency
4https://github.com/eclique/RISE/tree/master
5https://github.com/kuangliu/pytorch-cifar
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(a) (b) (c) (d) (e)

Figure C: An example of capturing multiple objects through the paths. (a) husky class input (b) The path that explains the husky class
prediction using the left husky and (c) right husky. (d, e) attribution maps for (b) and (c)

Figure D: The frequency of hidden units for each layer included in paths per class when paths are respectively configured for all data on
the curated subset of the ImageNet dataset. The x-axis represents the index of hidden units in that layer, and the y-axis represents the
frequency ratio at which units of that index are selected. For better visualization, only the 37

th and 34
th layers are provided, and only

three classes (bell pepper, husky, and red fox) are provided.

D Supplementary Material for Section 5.1

As previously discussed in Section 5.1, our pathwise explanation is capable of generating diverse explanations for a single

input by considering multiple paths. In this supplementary section, we aim to further elucidate the content of Section 5.1

by presenting attribution maps for the decomposed explanations of both multiple features and multiple objects. Figure B il-

lustrates the generated explanations for an input characterized by multiple features, while Figure C depicts the explanations

for an input containing several objects.

The algorithm for multiple path construction assumes that neurons in the higher layers have high-level features like the

fox’s eye. We generated multiple paths that include each hidden neuron extracted in Algorithm 1 from the top layer. For

example, if a path(N)={h1, h2} is generated at step n=N in Algorithm 1, we assumed path(N)={h1} and proceeded to

the next step to create a path. We also assumed path(N)={h2} and proceeded to the next step to create another path.

E Common Path Per Class

This section describes the consistent explainability of the proposed method by revealing the presence of frequently selected

hidden units for each class, i.e., a common path for every class. As depicted in Figure D, the frequency with which hidden

units are selected for path configuration is notably polarized (either extremely low or high) across all data points for each

class in the dataset. This observation suggests that, for every layer and class, certain specific indices are chosen with

high frequency, while others are rarely selected or not at all. Moreover, regardless of whether the classes are visually

distinct (e.g., bell pepper and husky) or bear visual similarities (e.g., husky and red fox), the frequently selected hidden

units differ significantly. In other words, a common path is uniquely associated with a specific class. Consequently, these

findings underscore the capability of our pathwise explanation method to reveal the presence of a distinct path integral to

the decision-making process for each class. This further bolsters the argument that our proposed method, which leverages

only a subset of hidden units, offers a more consistent explanation compared to other methods that utilize all units.
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Figure E: Different Architecture (ResNet) Experiment: Quantitative explanation via insertion and deletion depending on the maximum
number of units per layer (width) and the number of layers (depth) for path configuration. In our method, a depth of 17, which is the
maximum, represents a complete path, while any lesser value indicates an incomplete path.

Saliency IxG IGs GBP GGC BlurIG Ours

Insertion (↑) 0.580 0.689 0.713 0.732 0.762 0.704 0.805

Deletion (↓) 0.210 0.180 0.172 0.225 0.246 0.181 0.179

Table A: Different Architecture (ResNet) Experiment: Area Under Curve (AUC) of Insertion and Deletion. ↑ indicates that the larger
the value, the better the explanation, whereas ↓ indicates the opposite.

Figure F: Different Architecture (ResNet) Experiment: Qualitative explanation depending on the maximum number of units per layer
(width) and the number of layers (depth) for path configuration. The expression enclosed in parentheses in the proposed method is as
follows: (depth, width). Positive and negative attributions are indicated in red and blue.

F Further Comparison via a Different Architecture: ResNet

Our pathwise method, in addition to the VGG architecture as discussed in the main script, can also be utilized to explain

the decision-making process within another well-known architecture, ResNet. Unlike VGG, ResNet contains the residual

connection, which operates based on the summation. However, when the path through all layers is modeled, it becomes

apparent that the piecewise linear model for the path in ResNet is identical to that in VGG. In fact, by unfolding the formula

as in Equation 2 and then extracting terms with ϕ for all hidden units as in Equation 3, this can be revealed.

Table A, Figure E, and Figure F show the results of experiments with ResNet-18 (He et al., 2016), using the same settings

as Table 1, Figure 8, and Figure 9 in the main script. Consequently, our method surpasses the others in the insertion metric

and provides competitive performance in the deletion metric, even within the ResNet architecture. Furthermore, our study

illustrates that the trends in path configuration, concerning changes in width and depth, align with those observed in VGG.
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Figure G: Low-Resolution Classification (CIFAR10) Experiment: Quantitative explanation via insertion and deletion depending on the
maximum number of units per layer (width) and the number of layers (depth) for path configuration. In our method, a depth of 4, which
is the maximum, represents a complete path, while any lesser value indicates an incomplete path

Saliency IxG IGs GBP GGC BlurIG Ours

Insertion (↑) 0.518 0.742 0.790 0.677 0.683 0.772 0.833

Deletion (↓) 0.198 0.142 0.148 0.386 0.396 0.163 0.239

Table B: Low-Resolution Classification (CIFAR10) Experiment: Area Under Curve (AUC) of Insertion and Deletion. ↑ indicates that
the larger the value, the better the explanation, whereas ↓ indicates the opposite.

Figure H: Low-Resolution Classification (CIFAR10) Experiment: Qualitative explanation depending on the maximum number of units
per layer (width) and the number of layers (depth) for path configuration. The expression enclosed in parentheses in the proposed method
is as follows: (depth, width). Positive and negative attributions are indicated in red and blue.

G Further Comparison in Low-Resolution Classification: CIFAR10

This section provides additional quantitative comparisons performed on the CIFAR10 dataset (Krizhevsky et al., 2009).

These comparisons were omitted from the main manuscript due to space constraints. CIFAR10 is a low-resolution dataset

comprising 10 distinct classes. For our experiments on this dataset, we employed a toy model with three convolutional

layers (each with a kernel size of 3) and two fully connected layers, offering an intuitive explanation suitable for its small

resolution.

Even on CIFAR10, our method surpasses other approaches in terms of the insertion metric, as evidenced in Table B.

Moreover, Figures G and H indicate that the proposed pathwise method delivers both quantitatively and qualitatively

appropriate explanations for the CIFAR10 dataset. Specifically, as depicted in Figure G, larger width and depth values can

improve the upper bound of the insertion metric, echoing the observations made in the main manuscript. However, our

explanations for the deletion metric show a slightly different trend when low-level layers are incorporated into the path due

to a high depth value. This deviation arises because the object-to-image size ratio in this dataset is substantial, given the

image’s very low resolution. Contrary to the insertion metric, where pixels are inserted into a blank image factoring in the

image’s local area via low-level layers, in the deletion metric, surrounding pixels can influence the model’s decision when
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pixels are removed from the original image, considering the image’s local area through low-level layers. Nonetheless,

it’s worth noting that our method still demonstrates competitive performance in the deletion metric when adjusting the

depth. Figure H visually showcases our attribution maps, influenced by both depth and width. Due to the image’s limited

resolution, attributions cover the entire area when the depth is minimal. Yet, it’s evident that essential features remain

prominently highlighted when the depth is maximized, especially with appropriate width adjustments.
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