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Abstract

Large Language Models (LLMs) have made significant
strides in various intelligent tasks but still struggle with com-
plex action reasoning tasks that require systematic search. To
address this limitation, we introduce a method that bridges the
natural language understanding capability of LLMs with the
symbolic reasoning capability of action languages—formal
languages for reasoning about actions. Our approach, termed
LLM+AL, leverages the LLM’s strengths in semantic parsing
and commonsense knowledge generation alongside the ac-
tion language’s expertise in automated reasoning based on en-
coded knowledge. We compare LLM+AL against state-of-the-
art LLMs, including CHATGPT-4, CLAUDE 3 OPUS, GEM-
INI ULTRA 1.0, and O1-PREVIEW, using benchmarks for
complex reasoning about actions. Our findings indicate that
while all methods exhibit various errors, LLM+AL, with rela-
tively simple human corrections, consistently leads to correct
answers, whereas using LLMs alone does not yield improve-
ments even after human intervention. LLM+AL also con-
tributes to automated generation of action languages.

1 Introduction

Large Language Models (LLMs) have made significant
strides in various intelligent tasks (Ahn et al. 2022; Kojima
et al. 2022; Huang et al. 2023; Zeng et al. 2022; Yao et al.
2023a; Besta et al. 2023), yet they often struggle with com-
plex reasoning about actions, particularly in problems that
demand systematic search. An emerging alternative is to use
an LLM as a semantic parser to convert natural language into
symbolic representations, such as Python programs (Gao
et al. 2023; Nye et al. 2021; Olausson et al. 2023), Plan-
ning Domain Definition Language (PDDL) (Liu et al. 2023;
Guan et al. 2023; Xie et al. 2023), and logic programs (Ishay,
Yang, and Lee 2023). These symbolic representations are
then processed by dedicated symbolic reasoners.

However, these methods have limitations. As demon-
strated in this paper, for complex reasoning tasks, LLMs al-
most always fail to generate Python programs for searching
for solutions, except in cases where the problem is a typi-
cal search task that the LLM may have memorized from the
training corpus. Even in such instances, when small varia-
tions are introduced, LLMs struggle to adapt to the changes.
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Using LLMs to generate PDDL instead could address a
wider range of action reasoning problems. However, PDDL
is designed as a standard language for task planners, thus
many forms of knowledge about actions beyond task plan-
ning cannot be effectively handled by this method.

This paper introduces a new method that bridges the nat-
ural language understanding capability of LLMs with the
symbolic reasoning capability of action languages (Gel-
fond and Lifschitz 1998; Giunchiglia et al. 2004). Our ap-
proach, termed “LLM+AL,” leverages the LLM’s strengths
in semantic parsing and commonsense knowledge gener-
ation alongside the action language’s proficiency in auto-
mated reasoning about actions based on encoded knowledge.

Action languages have an intuitive, natural language like
syntax, feature formal semantics, and are supported by effi-
cient computational tools. Action languages are designed for
more knowledge-intensive reasoning than PDDL, encom-
passing not only task planning problems but also temporal
prediction problems, which involve predicting what would
happen if a sequence of actions is executed, and postdiction
problems, where one infers the initial state given the cur-
rent state and a past sequence of actions. Even when focus-
ing solely on task planning problems, action languages of-
fer greater expressivity, such as representing indirect effects
to address the ramification problem (e.g., the banana’s loca-
tion is determined by the monkey’s location if the monkey is
holding it; thus, any action that moves the monkey will indi-
rectly affect the banana’s location), defaults (e.g., by default,
a pendulum swings back and forth unless it is being held),
and additive fluents (e.g., the final balance is calculated by
adding (or subtracting) the contributions of concurrent trans-
actions). In particular, this paper leverages one of the latest
members in this family, the action language BC+ (Babb and
Lee 2015, 2020) due to its simplicity and expressivity, as
well as the availability of the efficient BC+ reasoner called
CPLUS2ASP (Babb and Lee 2013).

The LLM+AL pipeline leverages an LLM effectively
across multiple stages, each serving a different purpose.
First, given a reasoning problem in natural language, we use
an LLM to generate a program signature and extract com-
monsense and domain-specific knowledge. Next, the LLM
is tasked with converting this knowledge into BC+ rules,
guided by a prompt that details BC+ syntax and semantics
and is supplemented with several translation examples. Af-



ter generating a complete BC+ program, the LLM is tasked
with doing a series of revisions if necessary, based on the
output of the BC+ reasoner. This pipeline facilitates the gen-
eration of correct BC+ programs (with plans) or mostly cor-
rect BC+ programs to users. Our code, data, and appendix
are available on GitHub https://github.com/azreasoners/llm-
al.

Our findings indicate that LLM+AL, even with basic de-
scriptions of BC+ and a few translation examples, is sur-
prisingly adept at translating English into BC+ rules and
extracting relevant knowledge, thanks to the rich seman-
tic understanding that LLMs acquired during pre-training.
Despite occasional errors in knowledge extraction and rule
generation–a challenge even for human experts—-our ap-
proach demonstrates proficiency comparable to that of hu-
man experts, requirig only a few manual corrections to mod-
ify the erroneous BC+ programs and produce correct solu-
tions.

Our focus is on problems that require deep rather than
shallow reasoning, often involving systematic search, which
LLMs typically struggle with. We tested our method against
the benchmark proposed by McCarthy (1998), which Mc-
Carthy described as the “Drosophila” for testing the elabora-
tion tolerance of human-level AI—emphasizing the need for
AI to represent and reason about new phenomena or changed
circumstances. The problem set includes several elabora-
tions of the well-known Missionaries and Cannibals puzzle,
such as “what if only one missionary and one cannibal can
row?” We found that the most capable LLMs today, such
as CHATGPT-4 (OpenAI 2024a), CLAUDE 3 OPUS (An-
thropic 2024), GEMINI 1.0 ULTRA (Gemini Team 2023),
broadly fail to generate correct solutions for this benchmark,
even after multiple iterations with human corrections that
indicate the errors in their answers. We also experimented
with O1-PREVIEW (OpenAI 2024b), a new type of LLM
that leverages test-time compute for more scalable reason-
ing and is claimed to solve harder, more complex problems.
While it outperformed other LLMs on the benchmarks, it
still demonstrated certain limitations.

In contrast, our approach, with relatively few human cor-
rections, consistently leads to correct answers. This suggests
that while current LLMs possess strong natural language
understanding, they lack the systematic reasoning capabil-
ity required to adapt effectively to new or altered scenar-
ios. By integrating LLMs with action languages, our method
demonstrates the potential for achieving a more robust and
adaptable AI system.

2 Preliminaries

2.1 LLMs for Planning

Several works have proposed applying LLMs to planning
tasks (Huang et al. 2022; Ahn et al. 2022; Huang et al.
2023; Singh et al. 2023; Yao et al. 2022). For instance,
SayCan (Ahn et al. 2022) combines high-level actions with
value functions, grounding LLMs in an environment. In-
ner Monologue (Huang et al. 2023) integrates environmen-
tal feedback, including human feedback, into its pipeline,
thereby enhancing robustness against agent errors. However,

as noted in (Valmeekam et al. 2022, 2023), these methods
struggle with more complex planning tasks.

One approach to address these limitations ifs using an
LLM as an interface for symbolic reasoning engines. This
includes generating executable Python code, as explored in
recent work where natural language and Python program
pairs are used to produce code for reasoning tasks (Olaus-
son et al. 2023; Gao et al. 2023; Chen et al. 2023; Lyu et al.
2023; Singh et al. 2023). While this approach offloads much
of the computation to the Python interpreter, it is not well-
suited for planning tasks that involve constraints that are not
easily expressible in a procedural language.

Another alternative is the use of Planning Domain Defini-
tion Language (PDDL) with LLMs. Some studies (Liu et al.
2023; Xie et al. 2023) have focused on translating English
instructions into PDDL goals, assuming pre-existing PDDL
action descriptions. Since only an instance file or goal needs
to be generated, this setting is considerably simpler. Some
recent works embrace a human-in-the-loop approach with
LLMs, using human feedback when constructing domain
models and executing plans (Guan et al. 2023; Huang et al.
2023; Yao et al. 2023b). These works, like ours, acknowl-
edge LLM limitations and incorporate additional mecha-
nisms to compensate. Closest to our approach, Guan et al.
(2023) employed an LLM for generating PDDL descriptions
but noted that many manual corrections by PDDL experts
were necessary due to errors in GPT-4’s translations, which
impacted their execution by a PDDL solver.

A number of recent works show some success using
LLMs to iteratively revise their own output, surpassing base-
line LLM performance while bypassing expensive human
feedback (Madaan et al. 2024; Kim, Baldi, and McAleer
2024). In particular, LLMs are well-suited for self-revision
when they have access to external forms of feedback, such as
external knowledge or tools (e.g., a code interpreter) (Kamoi
et al. 2024; Stechly, Valmeekam, and Kambhampati 2024;
Guan et al. 2023).

2.2 Action Languages

Action languages, such as A (Gelfond and Lifschitz 1993),
B (Gelfond and Lifschitz 1998), C (Giunchiglia and Lif-
schitz 1998), C+ (Giunchiglia et al. 2004), BC (Lee and
Meng 2013), and BC+ (Babb and Lee 2020), represent sub-
sets of natural language specifically designed for describing
actions and their effects. These languages are often viewed
as high-level notations of answer set programs (Lifschitz
2008; Brewka, Eiter, and Truszczyński 2011), structured to
effectively represent transition systems. Key research top-
ics in this field include the exploration of their expressive
possibilities, such as indirect effects, triggered actions, de-
faults, and additive fluents (Giunchiglia et al. 2004; Gelfond
and Lifschitz 1998; Lee and Lifschitz 2003; Inclezan and
Gelfond 2016). Such languages offer greater expressiveness
than PDDL, which has been well-studied in the literature
(Eyerich et al. 2006; Jiang et al. 2019). Despite the rich body
of research surrounding action languages, a significant chal-
lenge remains: automation of action language generation,
which we address in this paper.



Constants in BC+ are categorized into ‘fluent’ and ‘ac-
tion’ constants. For instance, in the blocks world domain,
move(B,L) represents an action constant with Boolean val-
ues (indicating whether the action is executed), while loc(B)
is a fluent constant with location values, where B is a vari-
able spanning over blocks.

The rules in BC+ are called causal laws. An example is

move(B,L) causes loc(B) = L (1)

which represents that moving a block B to a location L re-
sults in the block’s location being L. Another rule

nonexecutable move(B,L) if loc(B1) = B (2)

states that moving a block B is not executable if another
block B1 is on top of it. Additionally,

impossible loc(B1) = B ' loc(B2) = B (3)

(B1 ̸= B2) illustrates a state constraint where two distinct
blocks cannot occupy the same block. The entire blocks
world domain can be described by these rules and a few extra
ones. This succinctness is thanks to the separation between
the representation language and the efficient constraint satis-
faction algorithm for it. For a comprehensive review of BC+,
we refer the reader to (Lee, Lifschitz, and Yang 2013; Babb
and Lee 2020).

The BC+ reasoner provides a convenient way of ex-
pressing BC+ descriptions. It allows for declaring sorts,
objects that belong to some sort, and constants,
such as fluents and actions. For example, the signature for
the blocks world is shown in Listing 1 Additionally, the
causal laws (1)–(3) above can be expressed in the language
of the BC+ as in Listing 2.

Listing 1: BC+ signature for Blocks World.

:- sorts

loc >> block.

:- objects

b1, b2, b3, b4 :: block;

table :: loc.

:- constants

loc(block) :: inertialFluent(loc);

move(block, loc) :: exogenousAction.

Listing 2: BC+ rules for Blocks World (% is for comments).

% Moving a block changes its location.

move(B,L) causes loc(B)=L.

% Can't move block with something on it.

nonexecutable move(B,L) if loc(B1)=B.

% Two blocks cannot be on the same block.

impossible loc(B1)=B & loc(B2)=B & B1\=B2.

3 Our Method

Our framework, as depicted in Figure 1, comprises four
principal components: BC+ Signature Generation, English
Knowledge Generation, BC+ Rule and Query Generation,

and Self-Revision. The BC+ Signature Generation is re-
sponsible for defining the necessary symbols and their re-
lations. English Knowledge Generation involves extracting
and structuring relevant information from the natural lan-
guage problem description, while BC+ Rule Generation fo-
cuses on translating this structured knowledge into formal
BC+ rules, thereby bridging the gap between natural lan-
guage understanding and symbolic reasoning. Finally, Self-
Revision iteratively refines the BC+ signature, rules, and
query, with feedback from the BC+ reasoner when run on a
set of queries generated by the LLM. The result is a correct
program (and output plan), or one which requires a typically
small number of corrections to work properly.

3.1 Input

The input is a natural language description of the problem,
including descriptions of types, objects, and actions involv-
ing them, along with a query in natural language. For ex-
ample, the input for the Missionaries and Cannibals puzzle
(MCP) is given in Appendix A.1.

3.2 BC+ Signature Generation

Given the problem description in English, this step gener-
ates a signature in BC+ syntax. Writing such a BC+ program
typically starts with understanding the problem and consid-
ering the dynamics (knowledge) required, thinking about
what fluent and action constants are useful, and then writ-
ing rules about them. We present the LLM with the problem
and prompt it to generate important parts of the problem in
natural language before signature generation. The Signature
Generation prompt (See Appendix B.1) contains an intro-
duction to BC+, brief instructions, and a few example trans-
lations of the English description to important knowledge,
an analysis of constants and their natural language reading,
and finally, a BC+ signature. Only the natural language read-
ing of constants and signature are passed to the rest of the
pipeline. For the MCP puzzle, the generated signature can
be found in Appendix A.2.

3.3 Knowledge Generation

We leverage an LLM to extract relevant knowledge from a
problem description to be used by the BC+ reasoner. This
is achieved by using a prompt which includes instructions
and few-shot example problem inputs, natural language
readings of constants, and signatures, paired with knowl-
edge about some action domains. The knowledge generated
broadly falls into two categories, commonsense knowledge
and domain-specific knowledge. Commonsense knowledge
is about information not explicitly stated in the problem de-
scription and usually is in the form of cause and effect. For
example, for the MCP domain, this step correctly generates
the commonsense knowledge “crossing a vessel causes the
location of the vessel to change” and “crossing a vessel
causes the number of a group at a location to decrease by
the amount of members on the vessel.” Enumerating such
commonsense knowledge can be tedious and easy to miss.
Thus, we find it useful to use an LLM for this task. Domain-
specific knowledge is directly tied to the given information



Figure 1: LLM+AL pipeline

about the problem, for instance, “Missionaries should not
be outnumbered by cannibals, or they will be eaten.” Our
prompt examples are designed so that each knowledge sen-
tence is translated into a causal law in BC+. The full prompt
for extracting knowledge is shown in Appendix B.2. The
complete knowledge generated for MCP is shown in Ap-
pendix A.3.

3.4 Rule and Query Generation

Further leveraging the capabilities of LLMs, we use them
to convert natural language into a symbolic representation.
This is done with a prompt that contains a brief introduction
of action language BC+ and few-shot examples of natural
language knowledge translated into BC+ rules. This prompt,
together with the natural language reading of constants, sig-
nature, and English knowledge generated in the previous
steps, is given as input to the LLM, which then generates
BC+ causal laws. The full prompt is given in Appendix B.3.

For example, the knowledge, crossing a vessel causes its
location to change is turned into:

cross(V) causes loc(V)=Loc if going(V)=Loc.

3.5 Self-Revision

The programs generated so far may have errors, either syn-
tactically or semantically. This step leverages an LLM to
revise the generated BC+ program based on the reasoner’s
output.

Satisfiability Check. First, without considering any ini-
tial or goal state, the pipeline performs a satisfiability check,
which runs the BC+ reasoner to ensure if the generated BC+
signature and rules (without a query) are satisfiable. Typical
mistakes detected in this step are syntax errors and reported
by BC+ reasoner. Based on the message (e.g., syntactic re-
strictions on some causal laws are not observed), the LLM
is prompted to update the signature and/or rules accordingly.
This step repeats until either they are satisfiable, in which
case the pipeline proceeds to Sample Query Generation, or
the maximum number of allowed revisions is reached, in

which case the pipeline ends on this step, settling on the cur-
rent signature, rules, and main query.

Sample Query Generation. Next, the pipeline prompts the
LLM to generate a small set of simple sample queries. These
queries will later serve to check that the program correctly
implements domain-specific rules and constraints (e.g., ac-
tions lead to expected changes in the state, preconditions for
actions are respected, etc.). The LLM is instructed to ap-
pend either “(satisfiable)” or “(unsatisfiable)”, depending on
whether the query is expected to be satisfiable or unsatisfi-
able based on the LLM’s discretion. For example, a sample
query for the Missionaries and Cannibals puzzle could in-
volve an action which is is expected to be disallowed, such
as crossing on the boat with more than the allowed capacity,
which would be appended with “(unsatisfiable)”.

Sample and Main Query Feedback. The pipeline then au-
tomatically runs each sample query and the main query with
the BC+ reasoner, and the outputs are provided to the LLM.
The LLM is tasked with checking that the outputs align with
domain, and revising the BC+ signature and causal laws,
main query, and/or sample queries. If none are changed or a
maximum number of revisions is reached, then the resulting
BC+ program and the BC+ reasoner’s output on this pro-
gram are the final output. Otherwise this step repeats. See
Appendix A.6 for an example of the Self-Revision step.

4 Experiments
Benchmarks. We consider benchmarks focusing on com-
plex reasoning. The first set is from (McCarthy 1998), where
McCarthy proposed several variations of the well-known
Missionaries and Cannibals puzzle. The second set consists
of several well-known puzzles along with our own varia-
tions.

Baselines. For the baseline LLMs, we use CHATGPT-4,
CLAUDE 3 OPUS, GEMINI 1.0 ULTRA, and O1-PREVIEW.1

These baseline models are provided with problem descrip-
tions in natural language, as outlined in Section 3.1, and

1All baseline experiments were conducted in May 2024, except
for O1-PREVIEW, which was conducted in September 2024.



tasked with finding a solution. Additionally, we evaluate
CHATGPT-4 using its code interpreter feature to generate
Python programs for solving the problems. This method is
referred to as CHATGPT-4+CODE. Similar to our pipeline,
we prompt CHATGPT-4+CODE to iteratively revise its gen-
erated programs as many times as needed until they are cor-
rect.

4.1 Experiment Results

Benchmark Performance. As shown in Table 1, the base-
line LLMs perform poorly on the MCP elaboration prob-
lems. Neither CLAUDE 3 OPUS nor GEMINI ULTRA 1.0
solves any MCP problems correctly, while CHATGPT-4
manages to solve only 3. O1-PREVIEW does better, solving
7 problems correctly. CHATGPT-4+CODE produces correct
plans for 5 elaborations and occasionally generates solu-
tions that are mostly correct but include minor issues that
can be easily fixed manually. These cases are denoted with
∆ in Table 1. LLM+AL2 automatically solves 7 MCP prob-
lems. For the remaining problems, an average of 3.1 manual
corrections to the generated BC+ program are required to
produce the correct plan. We discuss the issues encountered
with LLM+AL in a subsequent section.

We further include superficial variations of standard puz-
zles and observe that, even for these simple elaborations, the
results are similar, as shown in Table 2. These variations in-
volve minor changes to the initial states (e.g., in Tower of
Hanoi variations, disks are distributed among pegs in no par-
ticular order). The baseline LLMs perform poorly on these
variations, with CHATGPT-4 and O1-PREVIEW solving 1
and 2 variations correctly, respectively. While CHATGPT-
4+CODE performs better than the baseline LLMs, it still
struggles with these variations. In contrast, LLM+AL out-
performs the baseline LLMs, and for the problems it fails
to solve correctly, an average of only 2.2 corrections are re-
quired to produce the correct output.

Effectiveness of Self-Revision. Self-Revision provides a
notable improvement over the initially generated BC+ pro-
grams.

In terms of issues requiring correction, there are 70 issues
manually identified before the Self-Revision step, but this
number decreases to 42 after the Self-Revision step.

Program Issues. We aggregate the results of both exper-
iments in Table 3 and enumerate the types of issues en-
countered in the final LLM+AL programs produced by our
pipeline. Overall, we classify the 42 total issues into three
categories: signature issues, rule issues, and query issues.
Detailed descriptions of all issue cases are provided in Ap-
pendix D. Signature Issues. There are 12 signature issues in

total that can be categorized into three subcategories. The
first and most common subcategory involves missing dec-
larations for sorts, objects, variables, or constants, account-
ing for 7 cases. The second subcategory, comprising a sin-
gle case, pertains to syntactically incorrect declarations. The

2For LLM+AL , we use O1-PREVIEW (“o1-preview” in the API)
as the underlying LLM.

third subcategory includes 4 cases and involve semantic is-
sues in declarations, such as an incorrect supersort state-
ment, which erroneously specify that certain objects are de-
fault members of another type.

Rule Issues. There are 25 rule issues in total that can be cate-
gorized into three subcategories. The first subcategory, com-
prising 48.0% (12/25) of the issues, involves missing neces-
sary rules required to solve the problems.

The second subcategory accounts for 20.0% (5/25) of the
rule issues and involves harmful rules that represent con-
straints or conditions not specified in the problem. For ex-
ample, in MCP #6 (where only one missionary and one can-
nibal can row), the pipeline generates an unnecessary rule
that disallows both the missionary rower and the cannibal
rower from being on the boat simultaneously.

The final subcategory accounts for 32.0% (8/25) of rule
issues and involves harmful rules that attempt to represent
an aspect of the problem but do so incorrectly. For exam-
ple, in MCP #17 (where cannibals can become hungry), the
pipeline generates an incorrect rule: ”On either bank, if there
are missionaries present, the number of cannibals cannot ex-
ceed the number of missionaries.” This rule fails to accu-
rately reflect the elaboration, which specifies that the canni-
bals won’t become hungry as long as the strong missionary
is rowing.

Query Issues. There are 5 query issues in total that can be
categorized into two subcategories: Syntactic issues, which
account for 2 cases, involve errors such as using invalid key-
words like ”initially” or ”goal.” Semantic issues, which ac-
count for 3 cases, pertain to incorrect initial and/or goal state
conditions.

4.2 Analysis

LLMs do not respect the state constraints well. Of the
17 problems in Table 1, 14 are solvable, meaning they have
valid plans to reach the goals. CLAUDE 3 OPUS and GEM-
INI 1.0 ULTRA fail to solve any of them correctly, while
CHATGPT-4 produces 11 incorrect solutions. Among these
incorrect plans, the state constraint—mandating that mis-
sionaries must not be outnumbered by cannibals—is fre-
quently violated, despite clear instructions to adhere to it.
Notably, 89.7% (35 out of 39) of these violations occur
within the first three steps of the plan.3 Even when these
LLMs output intermediate states during plan generation,
they fail to address apparent state constraint violations and
continue generating flawed plans. In contrast, O1-PREVIEW

demonstrates a better adherence to constraints, producing
fewer plans that violate state constraints and exhibiting more
thoughtful consideration of the effects of actions and valida-
tion of states. However, it occasionally refrains from gener-
ating plans for the problems known to be solvable, as dis-
cussed in the next paragraph.

LLMs do not reliably distinguish between solvable/un-
solvable problems. Some MCP elaborations are inherently

3All plans produced by baseline LLMs are available in the code
repository.



Problem Opt. Chat Claude Gemini ChatGPT4 o1 LLM
Length GPT4 3 Opus 1 Ultra Code (preview) +AL

MCP (basic) 11 × × × ✓(1) ✓ ✓

1 (the boat is a rowboat) 11 × × × ✓(1) ✓ ✓

2 (missionaries and cannibals can exchange hats) 11 ✓ × × ✓(2) × △(1)
3 (there are 4 missionaries and 4 cannibals) (unsolvable) × × × ∆(6) ✓ △(2)
4 (the boat can carry three) (unsolvable) × × × ×(2) ✓ ✓

5 (an oar on each bank) 13 × × × ×(1) × △(2)
6 (only one missionary and one cannibal can row) 13 × × × ×(1) × △(4)
7 (missionaries cannot row) (unsolvable) × × × ∆(6) ✓ ✓

8 (a very big cannibal must cross alone) 15 × × × ×(2) × △(2)
9 (big cannibal and small missionary) 11 × × × ×(1) × △(6)

10 (a missionary can walk on water) 7 × × × ✓
†(1) × △(7)

11 (missionaries can convert cannibals) 9 × × × ✓
†(2) × ✓

†

13 (there is bridge that can cross two) 4 × × × ×(6) ✓
†

✓
†

14 (the boat leaks with two people on it) 11 ✓ × × ×(1) × △(3)
16 (there is an island) 19 × × × ×(4) × ✓

17 (cannibals can become hungry) 13 × × × ×(4) × △(3)
19 (there are two sets of groups) 22 ✓ × × ×(1) ✓ △(1)
Total 3 0 0 5 7 7

Table 1: Performance on MCP and its elaborations. (We exclude a few elaborations because they require probabilistic reasoning or the
descriptions are vague.) ∆ indicates human intervention was used to produce a correct result. (n) indicates the number of attempts CHATGPT-
4+CODE makes at writing a program, and the number of manual corrections required for LLM+AL. † indicates that the solution found was
not optimal. All elaborations are listed in Appendix E.

Problem Opt. Chat Claude Gem. 1.0 CHATGPT-4 o1 LLM+
Length GPT4 3 Opus Ultra +Code preview AL

River Cross (basic) 7 ✓ ✓ ✓ ✓(5) ✓ ✓

River Cross (var1) 6 × × × ×(3) ✓ ✓

Tower of Hanoi (3-disk, basic) 7 × × × ✓(1) ✓ ✓

Tower of Hanoi (3-disk, var1) 6 × × × ×(1) ✓ △(1)
Tower of Hanoi (5-disk, basic) 31 ✓

∗

× × ✓(1) ✓ ✓

Tower of Hanoi (5-disk, var1) 27 × × × ×(4) × ✓

Tower of Hanoi (7-disk, basic) 127 × × × ✓(1) × ✓

Tower of Hanoi (7-disk, var1) 11 × × × ×(2) × △(1)
Sudoku1 0 ✓

∗

× × ✓(1) × △(2)
Sudoku2 0 ✓

∗

× × ✓(1) × ✓

Sudoku3 0 ×
∗

× × ✓(3) × ✓

Sudoku (var1) (unsolvable) ✓
∗

× × ∆(3) × △(1)
Sudoku (var2) (unsolvable) ×

∗

× × ✓(0) × △(6)
Total 5 1 1 8 5 8

Table 2: Performance on puzzles and their variations.∗ indicates that the LLM generated a Python code even though it was not instructed so.

unsolvable (MCP elaborations #3, #4, #7). Even for these in-
stances, CHATGPT-4, CLAUDE 3 OPUS, and GEMINI 1.0
ULTRA generate (incorrect) plans, which can be considered
hallucinations. Interestingly, these plans share some similar-
ities. For example, in Elaborations #3 and #4, all plans in-
clude a state where cannibals outnumber missionaries. For
Elaboration #7, where no missionaries are allowed to row,
all plans generated by these LLMs include a missionary
rowing despite this being a clear violation of the elabora-
tion. O1-PREVIEW performs better in recognizing unsolv-
able problems, correctly identifying that no plans are possi-
ble for the three unsolvable elaborations. However, it is un-
clear how O1-PREVIEW arrives at these conclusions, as its
(partial) output does not explicitly rule out all possibilities.
Moreover, it incorrectly concludes that no solution exists in
five solvable instances (#5, #6, #8, #10, and #17). Notably,
O1-PREVIEW is the only baseline model to explicitly claim
that a solution is impossible, but it suffers from a high rate
of false positives. In contrast, LLM+AL reliably ensures that

there are no possible plans for Elaborations #4 and #7 au-
tomatically, and for Elaboration #3 with minimal modifica-
tions, leveraging the formal semantics of BC+ to validate its
conclusions.

LLM code generation struggles to adapt to problem
elaborations. We observe that CHATGPT-4+CODE strug-
gles to correctly incorporate new information into the
Python programs it generates. In particular, it frequently
fails to model actions accurately. As shown in Table 1, 5
of the 12 failures by CHATGPT-4+CODE on the elabora-
tions(#4, #5, #6, #14, #17) occur because the actions in the
generated plans are underspecified. For example, some plans
omit critical information, such as identifying who is rowing,
which renders the plans unusable. The remaining 7 failures
stem from a mix of issues: 2 precondition violations, 2 in-
stances where no plans were generated, and 3 cases where
unsolvable problems were not identified as such. This be-
havior is further corroborated by the results in Table 2, where
CHATGPT-4+CODE fails all problem variations except for



Program
Issues

Signature Rules Query Total
MD SY SE MN HU HN SY SE

Init. Prog. 18 11 3 16 5 10 1 6 70

S.R. Prog. 7 1 4 12 5 8 2 3 42

Table 3: Comparison between programs before (Init. Prog.) and
after Self-Revision (S.R. Prog.). Reported are the number of pro-
grams which are executable without syntax errors, the number of
correct programs, and a breakdown of the issues encountered. The
signature issues are missing sorts, object, variables, or constants
in the declaration (MD), syntactic issues (SY), or semantic issues
(SE). The rule issues are missing necessary rules (MN), harmful
rules attempting to represent something not specified in the prob-
lem (HU), and harmful rules attempting to represent an aspect of
the problem (HN). The query issues are either syntactic (SY) or
semantic (SE).

one Sudoku example, despite correctly solving all the corre-
sponding basic problems.

CHATGPT-4+CODE coincidentally succeeds in cases
where it reuses the solution for the standard problem (MCP
#1, #2, #10, and #11), producing identical plans for all.
While the original solution happens to be valid for these
elaborations, it may be suboptimal, as seen in #10 and #11.
Notably, although these programs generate valid—and oc-
casionally optimal—plans, they fail to accurately model the
specific details introduced in the elaborations. Additionally,
CHATGPT-4+CODE exhibits an over-reliance on the stan-
dard problem’s code, misapplying it to 5 MCP elaborations
(#5, #6, #7, #13, and #14). As in the coincidentally cor-
rect cases, CHATGPT-4+CODE ignores the relevant details
specific to the elaborations and demonstrates a bias toward
reproducing code for the basic MCP problem. For MCP
problems, all programs generated by CHATGPT-4+CODE
use naive search algorithms: either breadth-first search (11
cases) or depth-first search (5 cases), often taking too long
to find plans. In 9 instances, CHATGPT 4+CODE revises
the code at least once.

Declarative semantics of BC+ works well with LLMs.
Unlike the LLM+Code approach, LLM+AL does not require
specifying which algorithms to use, thanks to the declar-
ative semantics of action languages. The search algorithm
implemented in the BC+ reasoner is highly optimized for
constraint satisfaction problems and can generate plans in-
stantly.

Self-Revision with external feedback significantly im-
proves BC+ programs. Much like how a human might de-
bug a program by testing its behavior and refining it based on
feedback, Self-Revision enhances program quality through
iterative refinement. It executes the program to verify satis-
fiability and employs simple queries generated by the LLM
to ensure that the BC+ program accurately models the prob-
lem. Additionally, it addresses both syntax and semantic er-
rors by directly incorporating feedback from the BC+ rea-
soner, progressively improving the program’s correctness.
This approach significantly reduces the burden on the user,
as many issues are resolved automatically. Even when some
issues remain, they are relatively straightforward to address,

further streamlining the process of creating accurate and ro-
bust BC+ programs.

LLM+AL benefits from human corrections, unlike LLM
or LLM+Code. Occasionally requiring human corrections
is a limitation of LLM+AL, stemming from the fact that
LLMs still make mistakes when generating action language
representations. However, it will be interesting to see how
future improvements in LLMs might mitigate this issue. De-
spite this, these mistakes are relatively easy to correct due
to the declarative semantics of BC+. Unlike the LLM+Code
approach, LLM+AL does not require specifying which al-
gorithms to use; it only needs the necessary knowledge. The
search algorithm implemented in the BC+ reasoner is highly
optimized for constraint satisfaction problems, enabling it to
generate plans instantly.

On the other hand, using only LLMs to solve these bench-
marks fails to benefit from human corrections. We attempted
50 iterations of human corrections with CHATGPT-4 by in-
dicating which parts of its answer were incorrect, but this
did not help. For instance, in MCP elaboration #13 (The
Bridge), it repeatedly violated the constraint that cannibals
should not outnumber missionaries.

Regarding CHATGPT-4+CODE with a human in the loop,
Python code is much less constrained and harder to inter-
pret for action domains compared to BC+, making it con-
siderably more difficult for a human to debug. For example,
CHATGPT-4+CODE frequently uses breadth-first search,
but debugging such an approach is complex, as issues may
arise from loops, dictionaries, conditional statements, arith-
metic, or unclear dependencies among them.

5 Conclusion

We introduce LLM+AL, a framework that bridges LLMs
with action languages, enabling them to complement each
other. Compared to the direct use of LLMs, LLM+AL
achieves more robust and accurate reasoning about actions
by leveraging the expressiveness and formal reasoning ca-
pabilities of action languages. While the generation of AL
descriptions traditionally requires human expert knowledge,
LLM+AL simplifies this process through an automated pro-
cess. Additionally, we employ a Self-Revision mechanism,
an iterative approach in which an LLM generates sample
queries to test the correctness of its previously generated
BC+ program. Based on feedback from the BC+ reasoner,
the LLM revises its program, significantly improving the
quality of the final output. While some mistakes may persist
in the final programs, the generative capabilities of LLMs
make creating action descriptions significantly easier com-
pared to crafting them from scratch. It is likely that future
advancements in LLM technology will further reduce such
errors. Moreover, fine-tuning LLMs could enhance their per-
formance even further, provided it is feasible.
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Appendix
The appendix is organized as follows. Section A shows an example run for the basic Missionaries and Cannibals prob-

lem. Section B includes all prompts used in LLM+AL. Section C shows the prompts used for the baseline LLM along with
CHATGPT-4+CODE. Section D shows example error cases. Section E lists all the Missionaries and Cannibals elaborations that
we use. All outputs by the baseline LLMs can be found in the code repository.

All experiments with LLM+AL access model o1-preview through OpenAI’s API (“o1-preview”). All experiments are done
on a machine with a I9-9900k processor, Nvidia Geforce RTX 2080 Ti, and 32 GB of RAM. Running LLM+AL is mostly
bottlenecked by calling the LLM, though the BC+ reasoner occasionally requires significant time.

A The Pipeline Detailed with Missionaries and Cannibals Example

A.1 Input

Example Problem Input

Three missionaries and three cannibals shall cross a river in a boat which carries at most two people at once. The boat cannot cross
the river with nothing on it. On either side, the cannibals may never outnumber the missionaries or the missionaries will be eaten.
Also, the cannibals may never outnumber the missionaries on the boat or the missionaries will be eaten.

There are four types of things: ”vessel”, ”location”, ”group”, and ”integer”.
boat is a vessel.
bank1 and bank2 are locations.
missionaries and cannibals are groups.
0..10 are integers.

Actions
Crossing a vessel is an action.

Query
Three missionaries and three cannibals are at location bank1. The boat is at location bank1. Find a plan so that all missionaries and
all cannibals are at location bank2.

A.2 BC+ Signature Generation

Actions :

− cross ( Vessel ) − Cross the r iver in the Vessel .

Constants :

− loc ( Vessel ) − The location of the Vessel , remains the same unless expl ic i t ly changed , so i t i s an i n e r t i a l f luent .

− numOnBank( Location , Group) − The number of people of Group at a Location (bank) , remains the same unless expl ic i t ly changed , so i t i s an

i n e r t i a l f luent .

− numCrossing( Vessel , Group) − The number of people of Group crossing in the Vessel during the crossing action , an a t t r ibu te of `cross ( Vessel ) `.

BC+ Signature :

:− sor ts

vessel ;

location ;

group ;

integer .

:− objects

boat : : vessel ;

bank1 , bank2 : : location ;

missionaries , cannibals : : group ;

0..10 : : integer .

:− variables

V, V1, V2, V3, V4 : : vessel ;

L, L1, L2, L3, L4 : : location ;

G, G1, G2, G3, G4 : : group ;

N, N1, N2, N3, N4 : : integer ;

Bool , Bool1 , Bool2 , Bool3 , Bool4 : : boolean .



:− constants

cross ( vessel ) : : exogenousAction ;

numCrossing( vessel , group) : : a t t r ibu te ( integer ) of cross ( vessel ) ;

loc ( vessel ) : : iner t ia lF luent ( location ) ;

numOnBank( location , group) : : iner t ia lFluent ( integer ) .

A.3 Knowledge Generation

% Crossing the river in the vessel causes the location of the vessel to change to the opposite bank.

% Crossing the river in the vessel causes the number of people of each group on the departure bank to decrease

by the number of people of that group crossing in the vessel.

% Crossing the river in the vessel causes the number of people of each group on the arrival bank to increase by

the number of people of that group crossing in the vessel.

% The vessel cannot cross the river with zero people on it.

% The vessel cannot carry more than two people at once.

% The number of people of each group crossing in the vessel cannot exceed the number of people of that group on

the bank where the vessel is located.

% The number of people of each group crossing in the vessel cannot be negative.

% After crossing, on either bank, the number of cannibals cannot exceed the number of missionaries unless the

number of missionaries on that bank is zero.

% During crossing, the number of cannibals crossing in the vessel cannot exceed the number of missionaries

crossing in the vessel unless the number of missionaries crossing is zero.

% The number of people of each group on either bank cannot be negative or exceed three.

A.4 Rule and Query Generation

At this point, BC+ rules are generated based on the previously generated and revised knowledge:

% constraints/rules

% 1. Crossing the river in the vessel causes the location of the vessel to change to the opposite bank.

cross(V) causes loc(V) = bank2 if loc(V) = bank1.

cross(V) causes loc(V) = bank1 if loc(V) = bank2.

% 2. Crossing the river in the vessel causes the number of people of each group on the departure bank to

decrease by the number of people of that group crossing in the vessel.

cross(V) decrements numOnBank(L, G) by N if numCrossing(V, G) = N & loc(V) = L.

% 3. Crossing the river in the vessel causes the number of people of each group on the arrival bank to increase

by the number of people of that group crossing in the vessel.

% 3.a If the vessel is at bank1, crossing increments numOnBank(bank2, G) by N.

cross(V) increments numOnBank(bank2, G) by N if numCrossing(V, G) = N & loc(V) = bank1.

% 3.b If the vessel is at bank2, crossing increments numOnBank(bank1, G) by N.

cross(V) increments numOnBank(bank1, G) by N if numCrossing(V, G) = N & loc(V) = bank2.

% 4. The vessel cannot cross the river with zero people on it.

nonexecutable cross(V) if N1 + N2 = 0 & N1 = numCrossing(V, missionaries) & N2 = numCrossing(V, cannibals).

% 5. The vessel cannot carry more than two people at once.

nonexecutable cross(V) if N1 + N2 > 2 & N1 = numCrossing(V, missionaries) & N2 = numCrossing(V, cannibals).

% 6. The number of people of each group crossing in the vessel cannot exceed the number of people of that group

on the bank where the vessel is located.

nonexecutable cross(V) if N1 > N2 & N1 = numCrossing(V, G) & N2 = numOnBank(L, G) & loc(V) = L.

% 7. The number of people of each group crossing in the vessel cannot be negative.

nonexecutable cross(V) if N < 0 & N = numCrossing(V, G).

% 8. After crossing, on either bank, the number of cannibals cannot exceed the number of missionaries unless the

number of missionaries on that bank is zero.

impossible numOnBank(L, cannibals) > numOnBank(L, missionaries) & numOnBank(L, missionaries) > 0.

% 9. During crossing, the number of cannibals crossing in the vessel cannot exceed the number of missionaries

crossing in the vessel unless the number of missionaries crossing is zero.



nonexecutable cross(V) if N2 > N1 & N1 > 0 & N1 = numCrossing(V, missionaries) & N2 = numCrossing(V, cannibals).

% 10. The number of people of each group on either bank cannot be negative or exceed three.

impossible numOnBank(L, G) < 0.

impossible numOnBank(L, G) > 3.

% query

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & numOnBank(bank2, missionaries) = 0

& numOnBank(bank2, cannibals) = 0 & loc(boat) = bank1;

maxstep: numOnBank(bank2, missionaries) = 3 & numOnBank(bank2, cannibals) = 3.

A.5 Initial BC+ Program

After the rule and query generation phase, an initial BC+ program is generated as follows:

:- sorts

vessel;

location;

group;

integer.

:- objects

boat :: vessel;

bank1, bank2 :: location;

missionaries, cannibals :: group;

0..10 :: integer.

:- variables

V, V1, V2, V3, V4 :: vessel;

L, L1, L2, L3, L4 :: location;

G, G1, G2, G3, G4 :: group;

N, N1, N2, N3, N4 :: integer;

Bool, Bool1, Bool2, Bool3, Bool4 :: boolean.

:- constants

cross(vessel) :: exogenousAction;

numCrossing(vessel, group) :: attribute(integer) of cross(vessel);

loc(vessel) :: inertialFluent(location);

numOnBank(location, group) :: inertialFluent(integer).

% constraints/rules

% 1. Crossing the river in the vessel causes the location of the vessel to change to the opposite bank.

cross(V) causes loc(V) = bank2 if loc(V) = bank1.

cross(V) causes loc(V) = bank1 if loc(V) = bank2.

% 2. Crossing the river in the vessel causes the number of people of each group on the departure bank to

decrease by the number of people of that group crossing in the vessel.

cross(V) decrements numOnBank(L, G) by N if numCrossing(V, G) = N & loc(V) = L.

% 3. Crossing the river in the vessel causes the number of people of each group on the arrival bank to increase

by the number of people of that group crossing in the vessel.

% 3.a If the vessel is at bank1, crossing increments numOnBank(bank2, G) by N.

cross(V) increments numOnBank(bank2, G) by N if numCrossing(V, G) = N & loc(V) = bank1.

% 3.b If the vessel is at bank2, crossing increments numOnBank(bank1, G) by N.

cross(V) increments numOnBank(bank1, G) by N if numCrossing(V, G) = N & loc(V) = bank2.

% 4. The vessel cannot cross the river with zero people on it.

nonexecutable cross(V) if N1 + N2 = 0 & N1 = numCrossing(V, missionaries) & N2 = numCrossing(V, cannibals).



% 5. The vessel cannot carry more than two people at once.

nonexecutable cross(V) if N1 + N2 > 2 & N1 = numCrossing(V, missionaries) & N2 = numCrossing(V, cannibals).

% 6. The number of people of each group crossing in the vessel cannot exceed the number of people of that group

on the bank where the vessel is located.

nonexecutable cross(V) if N1 > N2 & N1 = numCrossing(V, G) & N2 = numOnBank(L, G) & loc(V) = L.

% 7. The number of people of each group crossing in the vessel cannot be negative.

nonexecutable cross(V) if N < 0 & N = numCrossing(V, G).

% 8. After crossing, on either bank, the number of cannibals cannot exceed the number of missionaries unless the

number of missionaries on that bank is zero.

impossible numOnBank(L, cannibals) > numOnBank(L, missionaries) & numOnBank(L, missionaries) > 0.

% 9. During crossing, the number of cannibals crossing in the vessel cannot exceed the number of missionaries

crossing in the vessel unless the number of missionaries crossing is zero.

nonexecutable cross(V) if N2 > N1 & N1 > 0 & N1 = numCrossing(V, missionaries) & N2 = numCrossing(V, cannibals).

% 10. The number of people of each group on either bank cannot be negative or exceed three.

impossible numOnBank(L, G) < 0.

impossible numOnBank(L, G) > 3.

% query

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & numOnBank(bank2, missionaries) = 0

& numOnBank(bank2, cannibals) = 0 & loc(boat) = bank1;

maxstep: numOnBank(bank2, missionaries) = 3 & numOnBank(bank2, cannibals) = 3.

A.6 Self-Revision: Final BC+ Program

Satisfiability Check After running the initial program, the BC+ reasoner does not compile the program due to a syntax error.
The following feedback is provided:

% Query 0: Check satisfiability of program signature and rules (ignores other queries). (satisfiable)

:- query = sat.

Cplus2ASP Output:

ERROR: temp.bc:39:21]: The head of an additive law (G in "F decrements G") must be an additive constant (

additiveFluent or additiveAction).

Since this fails, check the error message(s).

The LLM corrects this issue, re-writing the program as follows. The constant numOnBank is now correctly declared as an
additive fluent.

% BC+ signature

:- sorts

vessel;

location;

group;

integer.

:- objects

boat :: vessel;

bank1, bank2 :: location;

missionaries, cannibals :: group;

0..10 :: integer.

:- variables

V, V1, V2, V3, V4 :: vessel;

L, L1, L2, L3, L4 :: location;

G, G1, G2, G3, G4 :: group;

N, N1, N2, N3, N4 :: integer;



Bool, Bool1, Bool2, Bool3, Bool4 :: boolean.

:- constants

cross(vessel) :: exogenousAction;

numCrossing(vessel, group) :: attribute(integer) of cross(vessel);

loc(vessel) :: inertialFluent(location);

numOnBank(location, group) :: additiveFluent(integer);

% Constraints/rules

% 1. Crossing the river in the vessel causes the location of the vessel to change to the opposite bank.

cross(V) causes loc(V) = bank2 if loc(V) = bank1.

cross(V) causes loc(V) = bank1 if loc(V) = bank2.

% 2. Crossing the river in the vessel causes the number of people of each group on the departure bank to

decrease by the number of people of that group crossing in the vessel.

cross(V) decrements numOnBank(L, G) by N if numCrossing(V, G) = N & loc(V) = L.

% 3. Crossing the river in the vessel causes the number of people of each group on the arrival bank to increase

by the number of people of that group crossing in the vessel.

% 3.a If the vessel is at bank1, crossing increments numOnBank(bank2, G) by N if numCrossing(V, G) = N & loc(V)

= bank1.

cross(V) increments numOnBank(bank2, G) by N if numCrossing(V, G) = N & loc(V) = bank1.

% 3.b If the vessel is at bank2, crossing increments numOnBank(bank1, G) by N if numCrossing(V, G) = N & loc(V)

= bank2.

cross(V) increments numOnBank(bank1, G) by N if numCrossing(V, G) = N & loc(V) = bank2.

% 4. The vessel cannot cross the river with zero people on it.

nonexecutable cross(V) if N1 + N2 = 0 & N1 = numCrossing(V, missionaries) & N2 = numCrossing(V, cannibals).

% 5. The vessel cannot carry more than two people at once.

nonexecutable cross(V) if N1 + N2 > 2 & N1 = numCrossing(V, missionaries) & N2 = numCrossing(V, cannibals).

% 6. The number of people of each group crossing in the vessel cannot exceed the number of people of that group

on the bank where the vessel is located.

nonexecutable cross(V) if N1 > N2 & N1 = numCrossing(V, G) & N2 = numOnBank(L, G) & loc(V) = L.

% 7. The number of people of each group crossing in the vessel cannot be negative.

nonexecutable cross(V) if N < 0 & N = numCrossing(V, G).

% 8. After crossing, on either bank, the number of cannibals cannot exceed the number of missionaries unless the

number of missionaries on that bank is zero.

impossible N1 > N2 & N2 > 0 & N1 = numOnBank(L, cannibals) & N2 = numOnBank(L, missionaries).

% 9. During crossing, the number of cannibals crossing in the vessel cannot exceed the number of missionaries

crossing in the vessel unless the number of missionaries crossing is zero.

nonexecutable cross(V) if N2 > N1 & N1 > 0 & N1 = numCrossing(V, missionaries) & N2 = numCrossing(V, cannibals).

% 10. The number of people of each group on either bank cannot be negative or exceed three.

impossible N < 0 & N = numOnBank(L, G).

impossible N > 3 & N = numOnBank(L, G).

% Main query

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & numOnBank(bank2, missionaries) = 0

& numOnBank(bank2, cannibals) = 0 & loc(boat) = bank1;

maxstep: numOnBank(bank2, missionaries) = 3 & numOnBank(bank2, cannibals) = 3.

Sample Query Generation After the satisfiability check, the LLM generates the following sample queries.

% Query 1: Have one missionary and one cannibal cross from bank1 to bank2 in the boat (satisfiable)

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & loc(boat) = bank1 & numOnBank(

bank2, missionaries) = 0 & numOnBank(bank2, cannibals) = 0;



0: cross(boat) & numCrossing(boat, missionaries) = 1 & numCrossing(boat, cannibals) = 1.

% Query 2: Try to have two missionaries and one cannibal cross from bank1 to bank2 in the boat (unsatisfiable)

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & loc(boat) = bank1 & numOnBank(

bank2, missionaries) = 0 & numOnBank(bank2, cannibals) = 0;

0: cross(boat) & numCrossing(boat, missionaries) = 2 & numCrossing(boat, cannibals) = 1.

% Query 3: Have one cannibal cross from bank1 to bank2 alone in the boat (satisfiable)

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & loc(boat) = bank1 & numOnBank(

bank2, missionaries) = 0 & numOnBank(bank2, cannibals) = 0;

0: cross(boat) & numCrossing(boat, missionaries) = 0 & numCrossing(boat, cannibals) = 1.

% Query 4: Try to have one missionary cross from bank1 to bank2 alone in the boat (unsatisfiable)

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & loc(boat) = bank1 & numOnBank(

bank2, missionaries) = 0 & numOnBank(bank2, cannibals) = 0;

0: cross(boat) & numCrossing(boat, missionaries) = 1 & numCrossing(boat, cannibals) = 0.

% Query 5: Try to have the boat cross from bank1 to bank2 with no people in it (unsatisfiable)

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & loc(boat) = bank1 & numOnBank(

bank2, missionaries) = 0 & numOnBank(bank2, cannibals) = 0;

0: cross(boat) & numCrossing(boat, missionaries) = 0 & numCrossing(boat, cannibals) = 0.

Sample and Main Query Feedback And the feedback from running these queries, along with the main query is shown to the
LLM as follows.

% Query 1: Have one missionary and one cannibal cross from bank1 to bank2 in the boat (satisfiable)

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & loc(boat) = bank1 & numOnBank(

bank2, missionaries) = 0 & numOnBank(bank2, cannibals) = 0;

0: cross(boat) & numCrossing(boat, missionaries) = 1 & numCrossing(boat, cannibals) = 1.

Cplus2ASP Output:

Solving...

Solution: 1

0: loc(boat)=bank1 numOnBank(bank1, cannibals)=3 numOnBank(bank1, missionaries)=3 numOnBank(bank2,

cannibals)=0 numOnBank(bank2, missionaries)=0

ACTIONS: cross(boat) numCrossing(boat, cannibals)=1 numCrossing(boat, missionaries)=1

1: loc(boat)=bank2 numOnBank(bank1, cannibals)=2 numOnBank(bank1, missionaries)=2 numOnBank(bank2,

cannibals)=1 numOnBank(bank2, missionaries)=1

SATISFIABLE

Models : 1

% Query 2: Try to have two missionaries and one cannibal cross from bank1 to bank2 in the boat (unsatisfiable)

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & loc(boat) = bank1 & numOnBank(

bank2, missionaries) = 0 & numOnBank(bank2, cannibals) = 0;

0: cross(boat) & numCrossing(boat, missionaries) = 2 & numCrossing(boat, cannibals) = 1.

Cplus2ASP Output:

Solving...

UNSATISFIABLE

Models : 0

No solution.



% Query 3: Have one cannibal cross from bank1 to bank2 alone in the boat (satisfiable)

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & loc(boat) = bank1 & numOnBank(

bank2, missionaries) = 0 & numOnBank(bank2, cannibals) = 0;

0: cross(boat) & numCrossing(boat, missionaries) = 0 & numCrossing(boat, cannibals) = 1.

Cplus2ASP Output:

Solving...

Solution: 1

0: loc(boat)=bank1 numOnBank(bank1, cannibals)=3 numOnBank(bank1, missionaries)=3 numOnBank(bank2,

cannibals)=0 numOnBank(bank2, missionaries)=0

ACTIONS: cross(boat) numCrossing(boat, cannibals)=1 numCrossing(boat, missionaries)=0

1: loc(boat)=bank2 numOnBank(bank1, cannibals)=2 numOnBank(bank1, missionaries)=3 numOnBank(bank2,

cannibals)=1 numOnBank(bank2, missionaries)=0

SATISFIABLE

Models : 1

% Query 4: Try to have one missionary cross from bank1 to bank2 alone in the boat (unsatisfiable)

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & loc(boat) = bank1 & numOnBank(

bank2, missionaries) = 0 & numOnBank(bank2, cannibals) = 0;

0: cross(boat) & numCrossing(boat, missionaries) = 1 & numCrossing(boat, cannibals) = 0.

Cplus2ASP Output:

Solving...

UNSATISFIABLE

Models : 0

No solution.

% Query 5: Try to have the boat cross from bank1 to bank2 with no people in it (unsatisfiable)

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & loc(boat) = bank1 & numOnBank(

bank2, missionaries) = 0 & numOnBank(bank2, cannibals) = 0;

0: cross(boat) & numCrossing(boat, missionaries) = 0 & numCrossing(boat, cannibals) = 0.

Cplus2ASP Output:

Solving...

UNSATISFIABLE

Models : 0

No solution.

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & numOnBank(bank2, missionaries) = 0

& numOnBank(bank2, cannibals) = 0 & loc(boat) = bank1;

maxstep: numOnBank(bank2, missionaries) = 3 & numOnBank(bank2, cannibals) = 3.



Cplus2ASP Output:

Solving...

Solution: 1

0: loc(boat)=bank1 numOnBank(bank1, cannibals)=3 numOnBank(bank1, missionaries)=3 numOnBank(bank2,

cannibals)=0 numOnBank(bank2, missionaries)=0

ACTIONS: cross(boat) numCrossing(boat, cannibals)=2 numCrossing(boat, missionaries)=0

1: loc(boat)=bank2 numOnBank(bank1, cannibals)=1 numOnBank(bank1, missionaries)=3 numOnBank(bank2,

cannibals)=2 numOnBank(bank2, missionaries)=0

ACTIONS: cross(boat) numCrossing(boat, cannibals)=1 numCrossing(boat, missionaries)=0

2: loc(boat)=bank1 numOnBank(bank1, cannibals)=2 numOnBank(bank1, missionaries)=3 numOnBank(bank2,

cannibals)=1 numOnBank(bank2, missionaries)=0

ACTIONS: cross(boat) numCrossing(boat, cannibals)=2 numCrossing(boat, missionaries)=0

3: loc(boat)=bank2 numOnBank(bank1, cannibals)=0 numOnBank(bank1, missionaries)=3 numOnBank(bank2,

cannibals)=3 numOnBank(bank2, missionaries)=0

ACTIONS: cross(boat) numCrossing(boat, cannibals)=1 numCrossing(boat, missionaries)=0

4: loc(boat)=bank1 numOnBank(bank1, cannibals)=1 numOnBank(bank1, missionaries)=3 numOnBank(bank2,

cannibals)=2 numOnBank(bank2, missionaries)=0

ACTIONS: cross(boat) numCrossing(boat, cannibals)=0 numCrossing(boat, missionaries)=2

5: loc(boat)=bank2 numOnBank(bank1, cannibals)=1 numOnBank(bank1, missionaries)=1 numOnBank(bank2,

cannibals)=2 numOnBank(bank2, missionaries)=2

ACTIONS: cross(boat) numCrossing(boat, cannibals)=1 numCrossing(boat, missionaries)=1

6: loc(boat)=bank1 numOnBank(bank1, cannibals)=2 numOnBank(bank1, missionaries)=2 numOnBank(bank2,

cannibals)=1 numOnBank(bank2, missionaries)=1

ACTIONS: cross(boat) numCrossing(boat, cannibals)=0 numCrossing(boat, missionaries)=2

7: loc(boat)=bank2 numOnBank(bank1, cannibals)=2 numOnBank(bank1, missionaries)=0 numOnBank(bank2,

cannibals)=1 numOnBank(bank2, missionaries)=3

ACTIONS: cross(boat) numCrossing(boat, cannibals)=1 numCrossing(boat, missionaries)=0

8: loc(boat)=bank1 numOnBank(bank1, cannibals)=3 numOnBank(bank1, missionaries)=0 numOnBank(bank2,

cannibals)=0 numOnBank(bank2, missionaries)=3

ACTIONS: cross(boat) numCrossing(boat, cannibals)=2 numCrossing(boat, missionaries)=0

9: loc(boat)=bank2 numOnBank(bank1, cannibals)=1 numOnBank(bank1, missionaries)=0 numOnBank(bank2,

cannibals)=2 numOnBank(bank2, missionaries)=3

ACTIONS: cross(boat) numCrossing(boat, cannibals)=0 numCrossing(boat, missionaries)=1

10: loc(boat)=bank1 numOnBank(bank1, cannibals)=1 numOnBank(bank1, missionaries)=1 numOnBank(bank2,

cannibals)=2 numOnBank(bank2, missionaries)=2

ACTIONS: cross(boat) numCrossing(boat, cannibals)=1 numCrossing(boat, missionaries)=1

11: loc(boat)=bank2 numOnBank(bank1, cannibals)=0 numOnBank(bank1, missionaries)=0 numOnBank(bank2,

cannibals)=3 numOnBank(bank2, missionaries)=3

SATISFIABLE



Models : 1+

The LLM chooses not revise anything, as it marks “[UNCHANGED]” for the BC+ signature and rules, main query, and
sample queries.

% PROGRAM CHANGED? [UNCHANGED]

% BC+ signature

:- sorts

vessel;

location;

group;

integer.

:- objects

boat :: vessel;

bank1, bank2 :: location;

missionaries, cannibals :: group;

0..10 :: integer.

:- variables

V, V1, V2, V3, V4 :: vessel;

L, L1, L2, L3, L4 :: location;

G, G1, G2, G3, G4 :: group;

N, N1, N2, N3, N4 :: integer;

Bool, Bool1, Bool2, Bool3, Bool4 :: boolean.

:- constants

cross(vessel) :: exogenousAction;

numCrossing(vessel, group) :: attribute(integer) of cross(vessel);

loc(vessel) :: inertialFluent(location);

numOnBank(location, group) :: additiveFluent(integer).

% Constraints/rules

% 1. Crossing the river in the vessel causes the location of the vessel to change to the opposite bank.

cross(V) causes loc(V) = bank2 if loc(V) = bank1.

cross(V) causes loc(V) = bank1 if loc(V) = bank2.

% 2. Crossing the river in the vessel causes the number of people of each group on the departure bank to

decrease by the number of people of that group crossing in the vessel.

cross(V) decrements numOnBank(L, G) by N if numCrossing(V, G) = N & loc(V) = L.

% 3. Crossing the river in the vessel causes the number of people of each group on the arrival bank to increase

by the number of people of that group crossing in the vessel.

% 3.a If the vessel is at bank1, crossing increments numOnBank(bank2, G) by N if numCrossing(V, G) = N & loc(V)

= bank1.

cross(V) increments numOnBank(bank2, G) by N if numCrossing(V, G) = N & loc(V) = bank1.

% 3.b If the vessel is at bank2, crossing increments numOnBank(bank1, G) by N if numCrossing(V, G) = N & loc(V)

= bank2.

cross(V) increments numOnBank(bank1, G) by N if numCrossing(V, G) = N & loc(V) = bank2.

% 4. The vessel cannot cross the river with zero people on it.

nonexecutable cross(V) if N1 + N2 = 0 & N1 = numCrossing(V, missionaries) & N2 = numCrossing(V, cannibals).

% 5. The vessel cannot carry more than two people at once.

nonexecutable cross(V) if N1 + N2 > 2 & N1 = numCrossing(V, missionaries) & N2 = numCrossing(V, cannibals).

% 6. The number of people of each group crossing in the vessel cannot exceed the number of people of that group

on the bank where the vessel is located.

nonexecutable cross(V) if N1 > N2 & N1 = numCrossing(V, G) & N2 = numOnBank(L, G) & loc(V) = L.



% 7. The number of people of each group crossing in the vessel cannot be negative.

nonexecutable cross(V) if N < 0 & N = numCrossing(V, G).

% 8. After crossing, on either bank, the number of cannibals cannot exceed the number of missionaries unless the

number of missionaries on that bank is zero.

impossible N1 > N2 & N2 > 0 & N1 = numOnBank(L, cannibals) & N2 = numOnBank(L, missionaries).

% 9. During crossing, the number of cannibals crossing in the vessel cannot exceed the number of missionaries

crossing in the vessel unless the number of missionaries crossing is zero.

nonexecutable cross(V) if N2 > N1 & N1 > 0 & N1 = numCrossing(V, missionaries) & N2 = numCrossing(V, cannibals).

% 10. The number of people of each group on either bank cannot be negative or exceed three.

impossible N < 0 & N = numOnBank(L, G).

impossible N > 3 & N = numOnBank(L, G).

% MAIN QUERY CHANGED? [UNCHANGED]

% Three missionaries and three cannibals are at location bank1. The boat is at location bank1. Find a plan so

that all missionaries and all cannibals are at location bank2.

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & numOnBank(bank2, missionaries) = 0

& numOnBank(bank2, cannibals) = 0 & loc(boat) = bank1;

maxstep: numOnBank(bank2, missionaries) = 3 & numOnBank(bank2, cannibals) = 3.

% SAMPLE QUERIES CHANGED? [UNCHANGED]

% Query 1: Have one missionary and one cannibal cross from bank1 to bank2 in the boat (satisfiable)

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & loc(boat) = bank1 & numOnBank(

bank2, missionaries) = 0 & numOnBank(bank2, cannibals) = 0;

0: cross(boat) & numCrossing(boat, missionaries) = 1 & numCrossing(boat, cannibals) = 1.

% Query 2: Try to have two missionaries and one cannibal cross from bank1 to bank2 in the boat (unsatisfiable)

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & loc(boat) = bank1 & numOnBank(

bank2, missionaries) = 0 & numOnBank(bank2, cannibals) = 0;

0: cross(boat) & numCrossing(boat, missionaries) = 2 & numCrossing(boat, cannibals) = 1.

% Query 3: Have one cannibal cross from bank1 to bank2 alone in the boat (satisfiable)

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & loc(boat) = bank1 & numOnBank(

bank2, missionaries) = 0 & numOnBank(bank2, cannibals) = 0;

0: cross(boat) & numCrossing(boat, missionaries) = 0 & numCrossing(boat, cannibals) = 1.

% Query 4: Try to have one missionary cross from bank1 to bank2 alone in the boat (unsatisfiable)

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & loc(boat) = bank1 & numOnBank(

bank2, missionaries) = 0 & numOnBank(bank2, cannibals) = 0;

0: cross(boat) & numCrossing(boat, missionaries) = 1 & numCrossing(boat, cannibals) = 0.

% Query 5: Try to have the boat cross from bank1 to bank2 with no people in it (unsatisfiable)

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & loc(boat) = bank1 & numOnBank(

bank2, missionaries) = 0 & numOnBank(bank2, cannibals) = 0;

0: cross(boat) & numCrossing(boat, missionaries) = 0 & numCrossing(boat, cannibals) = 0.

The final correct program is generated as follows.

:- sorts

vessel;

location;

group;

integer.



:- objects

boat :: vessel;

bank1, bank2 :: location;

missionaries, cannibals :: group;

0..10 :: integer.

:- variables

V, V1, V2, V3, V4 :: vessel;

L, L1, L2, L3, L4 :: location;

G, G1, G2, G3, G4 :: group;

N, N1, N2, N3, N4 :: integer;

Bool, Bool1, Bool2, Bool3, Bool4 :: boolean.

:- constants

cross(vessel) :: exogenousAction;

numCrossing(vessel, group) :: attribute(integer) of cross(vessel);

loc(vessel) :: inertialFluent(location);

numOnBank(location, group) :: additiveFluent(integer).

% Constraints/rules

% 1. Crossing the river in the vessel causes the location of the vessel to change to the opposite bank.

cross(V) causes loc(V) = bank2 if loc(V) = bank1.

cross(V) causes loc(V) = bank1 if loc(V) = bank2.

% 2. Crossing the river in the vessel causes the number of people of each group on the departure bank to

decrease by the number of people of that group crossing in the vessel.

cross(V) decrements numOnBank(L, G) by N if numCrossing(V, G) = N & loc(V) = L.

% 3. Crossing the river in the vessel causes the number of people of each group on the arrival bank to increase

by the number of people of that group crossing in the vessel.

% 3.a If the vessel is at bank1, crossing increments numOnBank(bank2, G) by N if numCrossing(V, G) = N & loc(V)

= bank1.

cross(V) increments numOnBank(bank2, G) by N if numCrossing(V, G) = N & loc(V) = bank1.

% 3.b If the vessel is at bank2, crossing increments numOnBank(bank1, G) by N if numCrossing(V, G) = N & loc(V)

= bank2.

cross(V) increments numOnBank(bank1, G) by N if numCrossing(V, G) = N & loc(V) = bank2.

% 4. The vessel cannot cross the river with zero people on it.

nonexecutable cross(V) if N1 + N2 = 0 & N1 = numCrossing(V, missionaries) & N2 = numCrossing(V, cannibals).

% 5. The vessel cannot carry more than two people at once.

nonexecutable cross(V) if N1 + N2 > 2 & N1 = numCrossing(V, missionaries) & N2 = numCrossing(V, cannibals).

% 6. The number of people of each group crossing in the vessel cannot exceed the number of people of that group

on the bank where the vessel is located.

nonexecutable cross(V) if N1 > N2 & N1 = numCrossing(V, G) & N2 = numOnBank(L, G) & loc(V) = L.

% 7. The number of people of each group crossing in the vessel cannot be negative.

nonexecutable cross(V) if N < 0 & N = numCrossing(V, G).

% 8. After crossing, on either bank, the number of cannibals cannot exceed the number of missionaries unless the

number of missionaries on that bank is zero.

impossible N1 > N2 & N2 > 0 & N1 = numOnBank(L, cannibals) & N2 = numOnBank(L, missionaries).

% 9. During crossing, the number of cannibals crossing in the vessel cannot exceed the number of missionaries

crossing in the vessel unless the number of missionaries crossing is zero.

nonexecutable cross(V) if N2 > N1 & N1 > 0 & N1 = numCrossing(V, missionaries) & N2 = numCrossing(V, cannibals).



% 10. The number of people of each group on either bank cannot be negative or exceed three.

impossible N < 0 & N = numOnBank(L, G).

impossible N > 3 & N = numOnBank(L, G).

% Three missionaries and three cannibals are at location bank1. The boat is at location bank1. Find a plan so

that all missionaries and all cannibals are at location bank2.

:- query

0: numOnBank(bank1, missionaries) = 3 & numOnBank(bank1, cannibals) = 3 & numOnBank(bank2, missionaries) = 0

& numOnBank(bank2, cannibals) = 0 & loc(boat) = bank1;

maxstep: numOnBank(bank2, missionaries) = 3 & numOnBank(bank2, cannibals) = 3.

A correct plan is generated as output.

Solving...

Solution: 1

0: loc(boat)=bank1 numOnBank(bank1, cannibals)=3 numOnBank(bank1, missionaries)=3 numOnBank(bank2, cannibals)=0

numOnBank(bank2, missionaries)=0

ACTIONS: cross(boat) numCrossing(boat, cannibals)=2 numCrossing(boat, missionaries)=0

1: loc(boat)=bank2 numOnBank(bank1, cannibals)=1 numOnBank(bank1, missionaries)=3 numOnBank(bank2, cannibals)=2

numOnBank(bank2, missionaries)=0

ACTIONS: cross(boat) numCrossing(boat, cannibals)=1 numCrossing(boat, missionaries)=0

2: loc(boat)=bank1 numOnBank(bank1, cannibals)=2 numOnBank(bank1, missionaries)=3 numOnBank(bank2, cannibals)=1

numOnBank(bank2, missionaries)=0

ACTIONS: cross(boat) numCrossing(boat, cannibals)=2 numCrossing(boat, missionaries)=0

3: loc(boat)=bank2 numOnBank(bank1, cannibals)=0 numOnBank(bank1, missionaries)=3 numOnBank(bank2, cannibals)=3

numOnBank(bank2, missionaries)=0

ACTIONS: cross(boat) numCrossing(boat, cannibals)=1 numCrossing(boat, missionaries)=0

4: loc(boat)=bank1 numOnBank(bank1, cannibals)=1 numOnBank(bank1, missionaries)=3 numOnBank(bank2, cannibals)=2

numOnBank(bank2, missionaries)=0

ACTIONS: cross(boat) numCrossing(boat, cannibals)=0 numCrossing(boat, missionaries)=2

5: loc(boat)=bank2 numOnBank(bank1, cannibals)=1 numOnBank(bank1, missionaries)=1 numOnBank(bank2, cannibals)=2

numOnBank(bank2, missionaries)=2

ACTIONS: cross(boat) numCrossing(boat, cannibals)=1 numCrossing(boat, missionaries)=1

6: loc(boat)=bank1 numOnBank(bank1, cannibals)=2 numOnBank(bank1, missionaries)=2 numOnBank(bank2, cannibals)=1

numOnBank(bank2, missionaries)=1

ACTIONS: cross(boat) numCrossing(boat, cannibals)=0 numCrossing(boat, missionaries)=2

7: loc(boat)=bank2 numOnBank(bank1, cannibals)=2 numOnBank(bank1, missionaries)=0 numOnBank(bank2, cannibals)=1

numOnBank(bank2, missionaries)=3

ACTIONS: cross(boat) numCrossing(boat, cannibals)=1 numCrossing(boat, missionaries)=0

8: loc(boat)=bank1 numOnBank(bank1, cannibals)=3 numOnBank(bank1, missionaries)=0 numOnBank(bank2, cannibals)=0

numOnBank(bank2, missionaries)=3

ACTIONS: cross(boat) numCrossing(boat, cannibals)=2 numCrossing(boat, missionaries)=0

9: loc(boat)=bank2 numOnBank(bank1, cannibals)=1 numOnBank(bank1, missionaries)=0 numOnBank(bank2, cannibals)=2



numOnBank(bank2, missionaries)=3

ACTIONS: cross(boat) numCrossing(boat, cannibals)=0 numCrossing(boat, missionaries)=1

10: loc(boat)=bank1 numOnBank(bank1, cannibals)=1 numOnBank(bank1, missionaries)=1 numOnBank(bank2, cannibals)

=2 numOnBank(bank2, missionaries)=2

ACTIONS: cross(boat) numCrossing(boat, cannibals)=1 numCrossing(boat, missionaries)=1

11: loc(boat)=bank2 numOnBank(bank1, cannibals)=0 numOnBank(bank1, missionaries)=0 numOnBank(bank2, cannibals)

=3 numOnBank(bank2, missionaries)=3

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.129s (Solving: 0.18s 1st Model: 0.18s Unsat: 0.00s)

CPU Time : 1.129s

B Complete Prompts

Capital words encapsulated like “<WORDS>” represent problem specific text, such as problem inputs, or outputs from previ-
ously generated steps. Lowercase words encapsulated like “<words>” are not problem specific and are used to reduce verbosity.
The prompt templates and exact inputs to the LLM are found in the code repository.

A BC+ description is put in all prompts, except the prompt for knowledge generation, since the knowledge generated is in
natural language instead of any formal representation.

Action language BC+ consists of (1) a signature, which is a finite set of propositional atoms, and (2) causal

laws. An atom is true, false, or of the form c=v, where c is a constant, and v is an element in its domain.

Constants c are divided into two groups: fluent constants and action constants. A formula is a

propositional combination of atoms. A fluent formula is a formula such that all constants occurring in it

are fluent constants. An action formula is a formula that contains at least one action constant and no

fluent constants.

For example, a fluent constant "loc" which represents the location of some object, may have a value from {l1, l2

, l3}. To express the location is l2, one would write:

loc = l2.

Similarly, an action constant "drive" representing driving a car, may have a value from {true, false} (though in

general actions can be non-boolean). To represent this, one could write:

drive = true.

For boolean constants c, c is shorthand for c=true, and ∼c is shorthand for c=false. Thus "drive = true" can be

represented simply as "drive". The standard logical operators are: "-" for negation, "&" for conjunction,

"|" for disjunction, and "->" for implication.

Numeric values may combine with unary operators "-" (negative), "abs" (absolute value, e.g., abs(n)), and binary

operators "+" (addition), "-" (subtraction), "*" (multiplication), "//" (floor division), and "mod" (

modulus, e.g., n mod m). Comparison is done with "=" (equality), "\=" (inequality), "<" (less than), ">" (

greater than), "<=" (less than or equal), and ">=" (greater than or equal).

An action description D is a set of causal laws that define a transition system, which can be represented as a

directed graph. In this graph, the vertices correspond to states of the world, while the edges signify

transitions between these states.

[CAUSAL LAWS: BASIC FORM]

In BC+, there are three types of basic laws: (1) static law, (2) action dynamic law, and (3) fluent dynamic law:

STATIC LAW:

F if G,

where F and G are fluent formulas. This expresses that F is true if the formula G is true.



ACTION DYNAMIC LAW:

F if G,

where F is an action formula and G is a formula. This expresses that action formula F is true if G is true.

FLUENT DYNAMIC LAW:

F if G after H,

where F and G are fluent formulas, and H is a formula. This expresses that F is true if G is true after H is

true.

[CAUSAL LAWS: SOME SHORTHAND ABBREVIATIONS]

BC+ allows several kinds of shorthand notation for the basic causal laws. These make it convenient to directly

express commonsense knowledge.

CAUSES:

a causes F if H,

where a is an action, F is a fluent formula, H is a formula, is shorthand for the fluent dynamic law:

F after a & H.

This rule intuitively expresses that an action a causes some effect F if condition H is true.

IMPOSSIBLE:

impossible F,

where F is a fluent formula, is shorthand for the static law:

false if F.

This rule intuitively expresses that formula F should be false in every state.

NONEXECUTABLE:

nonexecutable a_1 & ... & a_k if G,

where a_1 & ... & a_k are action constants and G is a formula, is shorthand for the fluent dynamic law:

false if true after a_1 & ... & a_k & G.

This rule intuitively expresses that actions a_1 & ... & a_k all being true is not possible if G is true.

DEFAULT:

default c=v if F,

where F is a fluent formula, stands for a static causal law.

This intuitively expresses that by default c=v holds when F is true in the state. If there is evidence to the

contrary, then c=v may not hold.

default c=v if F after G,

where F is a fluent formula, and G is a formula, and stands for a fluent dynamic law which intuitively expresses

that by default c=v holds when F is true in the state and F was true in the previous state. If there is

evidence to the contrary, then c=v may not hold.

ALWAYS:



always F,

where F is a formula which can contain both fluent and action constants, is shorthand for the fluent dynamic law

:

false if true after ∼F.

This rule intuitively expresses that every transition must satisfy F.

[SORT/OBJECT/VARIABLE/CONSTANT DECLARATION IMPLEMENTATION]

Action language BC+ is implemented in a program as follows. A BC+ program consists of a sort declaration, object

declaration, variable declaration, constant declaration, along with a set of causal laws.

SORT DECLARATION:

A sort is a named set of elements which is used to specify the domain of each constant and variable. First the

sort is declared

using a sort declaration statement and, later, is defined by adding objects to it in an object declaration

statement.

Example:

:- sorts

int;

box.

This declares the sorts: int, and box.

A sort can also be a supersort, that is, a sort s can automatically include the objects within another sort s2,

denoted s >> s2.

:- sorts

package >> box.

This declares the sort package and box, where package is a supersort and includes the sort box.

OBJECT DECLARATION:

An object is a value in a sort which a constant can take. It is also used

in parameter lists to construct nested objects and sets of constants.

Example:

:- objects

1..3 :: int;

o(int, int) :: box.

This declares 1,2, and 3 as objects within int, and the objects:

o(1, 1), o(1, 2), o(1, 3),

o(2, 1), o(2, 2), o(2, 3),

o(3, 1), o(3, 2), and o(3, 3),

as values within box.

Consider the following sort and object declaration:

:- sorts

package >> box.

:- objects

p1, p2 :: package;

b1, b2, b3 :: box.

Since package is a supersort of box, there are 5 objects that are of sort package: p1, p2, b1, b2, and b3. There

are only 3 objects of sort box: b1, b2 and b3.

VARIABLE DECLARATION:

A variable is a placeholder symbol which will be replaced with each object in its domain during grounding.



Example:

:- variables

I, I1, I2 :: int;

B, B1, B2 :: box.

This declares the variables I, I1, and I2 over the objects within int, and variables B, B1, and B2 range over

the objects within box.

Variables are denoted as capital letters which are replaced with all possible values in the domain of their

associated sort in a process called grounding.

CONSTANT DECLARATION:

Similar to object symbols, constants are defined within a constant declaration statement and have a base

identifier, an optional list of parameter sort, and a sort which makes up the constant's domain. In

addition, they have a constant declaration type, such as "exogenousAction" or "inertialFluent". Inertial

fluents are common, and used for constants whose value persists through time unless affected otherwise.

Example:

:- constants

p(int) :: inertialFluent(boolean);

move(box) :: exogenousAction.

This declares the inertial fluent p which takes an int argument and is a boolean value, and the action move,

which takes a box argument.

[CAUSAL LAWS BASIC FORM IMPLEMENTATION]

STATIC LAW EXAMPLE:

F if G,

where F and G are fluent formulas, is written for example:

% The location of a person is the same as the car if the person is in the car.

loc(person)=L if inCar & loc(car)=L.

ACTION DYNAMIC LAW EXAMPLE:

F if G,

where F is an action formula and G is a formula, is written for example:

% If A is assigned to location Loc, and it is ready, then moveTo(A) is true.

moveTo(A) if assigned(A) = Loc & ready(A),

where moveTo(A) is an action, and assigned(A) and ready(A) are fluent constants. Here moveTo is a boolean action

constant.

FLUENT DYNAMIC LAW EXAMPLE:

F if G after H,

where F and G are fluent formulas, and H is a formula, is written for example:

% If you enter the car after the car is unlocked, then you are in the car.

in(car) if unlocked(car) after enter(car).

[CAUSAL LAW SHORTHAND ABBREVIATIONS IMPLEMENTATION]

CAUSES EXAMPLE:

An expression of the form

a causes F if H,

where a is an action, F is a fluent formula, H is a formula, is written for example:

% Driving the car to a location causes the car to be at that location of the car has gas.

drive(car, loc) causes location(car) = loc if hasGas(car)

IMPOSSIBLE EXAMPLE:



An expression of the form

impossible F,

where F is a fluent formula, is written for example:

% The cat and mouse cannot be at the same location

impossible loc(cat)=Loc1 & loc(mouse) = Loc2 & Loc1=Loc2.

Recall that F in "impossible F" must be a fluent formula, meaning that F cannot contain action constants,

including attributes.

The following two examples are incorrect, where drive(car) is an action, and numPassengers(car) and numDrivers(

car) are attributes:

% The car cannot be driven if it has no fuel.

impossible drive(car) & fuel(car) = 0.

% The combined number of passengers and drivers cannot exceed 5.

impossible N1 + N2 > 5 & N1 = numPassengers(car) & N2 = numDrivers(car).

These are wrong because drive(car) is an action constant, and the attributes numPassengers and numDrivers are

action constants, and they are in an impossible constraint.

NONEXECUTABLE EXAMPLE:

An expression of the form:

nonexecutable a1 & a2 & ... & an if G,

where a_1 & ... & a_k are action constants and G is a formula, is written for example:

% It is not permissible to drive a bus and a car if they are driving to the same location.

nonexecutable driveCar(Loc1) & driveBus(Loc2) if Loc1=Loc2.

% It is not permissible to lift an object if it is heavy.

nonexecutable lift(object) if heavy(object).

On the other hand, the following:

nonexecutable lifted(object) if heavy(object),

is not allowed when lifted(object) is a fluent and not an action.

DEFAULT EXAMPLES:

An expression of the form

default c=v if F,

where F is a fluent formula, is written for example as:

% By default, the power is on if the switch is turned.

default powerOn if switchTurned.

An expression of the form

default c=v if F after G,

where F is a fluent formula, and G is a formula, is written for example as:

% The ferry will be on the right bank if it has gas after it was on the left bank, and no evidence suggests

otherwise.

default ferry(right) if hasGas after ferry(left)



ALWAYS EXAMPLE:

always F,

where F is a formula which can contain both fluent and action constants, is written for example:

% the number departing from a location is always less than or equal to the number at the location

always departing(Loc) <= numAt(Loc).

where departing/1 is an action constant and numAt/1 is a fluent.

Note: There should not be an "if" in a "always" rule, instead use "&".

Keep in mind that "always F" should be used for conditions which should be true for every transition.

[EXTENDED CONSTANT DECLARATION]

We can expand constant declaration to allow for attributes, additive fluents and additive actions.

ATTRIBUTES:

Attributes are types of action constants which are tied to actions, and given additional information about an

action. For instance:

:- constants

move(block) :: exogenousAction;

destination(block) :: attribute(location) of move(block).

This declaration tells us that destination(block) is an attribute of the action of moving a block, which has

value of location, representing the block's destination.

Important: Attributes should have as their first arguments, the same arguments (and in the same order) as the

action which they are an attribute of.

For example, any attribute of the action "fly(airplane,location)" should have the form "attributeName(airplane,

location,...)", after which the action arguments "airplane" and "location", can other arguments be listed.

An attribute which represents the number of passengers on board of a nationality can be written as:

onBoard(airplane,location,nationality) :: attribute(integer) of fly(airplane,location).

Where the following would be incorrect:

Incorrect: passengers(nationality) :: attribute(integer) of fly(airplane,location),

since passengers should instead have the arguments "airplane" and "location" before "nationality".

Important: If an attribute is ever declared, then the action it is an attribute of must have at least one

argument.

For example, the above declaration would be incorrect if it was the following:

:- constants

move :: exogenousAction;

destination :: attribute(location) of move.

Here, since destination is an attribute of move, but move has no argument, this is wrong.

ADDITIVE FLUENTS AND ADDITIVE ACTIONS:

There are special constants additive fluents and additive actions, which are useful for modeling the effects of

concurrent actions.

An additive fluent is a fluent (tied to states) with numerical values such that the effect of several

concurrently executed actions on it can be computed by adding the effects of the individual actions.

An additive action constant (tied to a transition) is similar except that it can handle numeric values of

concurrent actions during transitions.

With a buy and sell action, and numExchanged attribute of exchange, additive fluents and additive actions can be

declared as follows:

:- constants

buy(item) :: exogenousAction;

sell(item) :: exogenousAction;

exchange(item) :: exogenousAction;



numExchanged(item) :: attribute(integer) of exchange(item);

inStock(item) :: additiveFluent(integer);

netChange(item) :: additiveAction(integer).

inStock(item) represents the the number of an item in stock, which can be affected by both buy(item) and sell(

item). netChange(item) represents the net number of an item which is exchanged or bought/sold during a

given transition or event.

[EXTENDED CAUSAL LAW SHORTHAND ABBREVIATIONS: INCREMENT/DECREMENT LAWS IMPLEMENTATION]

INCREMENT/DECREMENT LAWS:

Additive fluents can only be updated in increment/decrement laws, which are expressed as:

a increments c by v if G,

where a is an action, c is an additive fluent, v is an integer, and G is a fluent, is used to express that some

additive fluent (c), should increase by some value v if G is true and action a happens.

Similarly:

a decrements c by v if G,

is used to decrease the additive constant c by value v if G is true and action a happens.

Examples:

% buy(coin) increments has(coin) by N if howMany(coin,N).

% buy(coin) decrements has(money) by N*M if howMany(coin,N) & price(coin)=M.

Additive actions similarly are only updated in increment/decrement statements:

a increments c by v if G.

a decrements c by v if G.

where c is an additive action.

While additive fluents are used to describe state information, additive actions are about events/transitions.

For example, suppose multiple actions can occur at once for a domain involving buying and selling, and the

additive action netExchanged is declared:

% buy(coin) increments netExchanged(coin) by N if howMany(coin,N).

% sell(coin) decrements netExchanged(coin) by N if howMany(coin,N).

This is useful for tracking numerical values during a transition, which may be used, e.g., if there should never

be a negative amount of net coins exchanged at a given time, then netExchanged(coin) can be used to

construct such a law.

In general, if something causes something to increase/decrease, then we use increment/decrement. Updating the

value of an additive fluent or action can only be done in an increment or decrement law (e.g., "a causes c

=2" is not allowed if "c" represents an additive fluent/action).

[ARITHMETIC WITH ATTRIBUTES AND ADDITIVE CONSTANTS]

Attributes and additive actions should not occur in the operands of arithmetics such as addition, subtraction,

multiplication, floor division, or modulus operators. They must be set to variables, and the variables must

be used as the operands.

The following two rules are incorrect, where weight(truck,...) is an attribute:

% A truck cannot be driven if the combined weight of the cargo (C), passengers (P), and fuel (F), is greater

than the truck's capacity.

nonexecutable drive(truck, P, C) if weight(truck, C) + weight(truck, P) + weight(truck, F) > capacity(truck).

% Driving the truck causes the weight of the truck's fuel to decrease by 15.

drive(truck, P, C) causes weight(truck, fuel) = weight(truck, fuel) - 15.

These are incorrect because the attributes weight(truck,...) are directly used in arithmetic.

Instead, these rules should be written as follows:

% A truck cannot be driven if the combined weight of the cargo (C), passengers (P), and fuel (F), is greater

than the truck's capacity.



nonexecutable drive(truck, P, C) if N1 + N2 + N3 > capacity(truck) & weight(truck, C) = N1 & weight(truck, P) =

N2 & weight(truck, F) = N3.

% Driving the truck causes the weight of the truck's fuel to decrease by 15.

drive(truck, P, C) causes weight(truck, fuel) = N1 - 15 if N1 = weight(truck, fuel) & N2.

[RESTRICTION OF NESTED CONSTANTS]

A constant cannot appear as an argument of another constant. Instead, one can introduce a variable in place of a

nested constant.

For example, the following is wrong since the (boolean) constant roadBlock(...), contains the nested constant

loc(C):

nonexecutable move(C) if roadBlock(loc(C)).

Instead, loc(C) should be set to a variable, like the following:

nonexecutable move(C) if roadBlock(L) & L = loc(C).

[VARIABLE QUANTIFICATION]

When using "always F", make sure to quantify over variables if needed.

For example, say we want to express that the combined weight of passengers and the truck is less than the

capacity of the truck. The following would be incorrect:

always weight(passengers) = N1 & weight(truck) = N2 & capacity(truck) = N3 & N1 + N2 < N3.

This is because of a quantification issue. This rule informally reads as "For all values N1, N2, and N3, the

weight of the passengers is N1, the weight of the truck is N2, the capacity of the truck is N3, and N1 + N2

< N3." Since this will be grounded for every possible value that N1 can take it, there will be

contradiction. Furthermore, the condition "N1 + N2 < N3" will obviously not hold over all possible values

of the variables N1, N2, and N3.

To correctly write this, first set the variables in the antecedent of an implication:

always (weight(passengers) = N1 & weight(truck) = N2 & capacity(truck) = N3) -> N1 + N2 < N3.

This informally reads as "If the weight of the passengers is N1, the weight of the truck is N2, and the capacity

of the truck is N3, then N1 + N2 < N3", and aligns with what we want to express.

Figure 2: LLM+AL

B.1 BC+ Signature Generation

This prompt is used in the Signature Generation portion of Initial Program Generation, as shown in Figure 2.

<conceptual description of bc+>



[INSTRUCTIONS]

Given a hint, problem description, and knowledge about a domain, produce the relevant fluent and action

constants and the BC+ signature. Do not use the same names for constants, even if they are of a different

type or have different arguments. For example, on(block) and on(block,table) cannot both be declared.

<few-shot examples>

[Problem]

<DOMAIN>

As shown in the examples, write the actions, constants, and BC+ signature. Make sure to include enough variables

for each sort, which will be needed later to write rules (5 variables each should be enough, for example,

N, N1, N2, N3, N4 for integer, etc.).

Encapsulate your answer in 3 backticks like the following:

```

Actions:

<ACTIONS>

Constants:

<CONSTANTS AND THEIR READING>

BC+ Signature:

<SIGNATURE>

```

B.2 Knowledge Generation

This prompt is used in the Knowledge Generation portion of Initial Program Generation, as shown in Figure 2.

Given a description of a problem, write knowledge about the domain that we would expect to represent in an

action language BC+ program. These should represent logical constraints and cause and effect in the problem

.

For example, a task about moving objects would involve some knowledge about what is required to move, what the

effect of moving an object does, such as the location of the object changing or its previous location now

being empty. These restrictions and effects are dependent on the context of the problem. Here we list some

example problems and extract knowledge.

<few-shot examples>

[Problem]

Description:

<PROBLEM DESCRIPTION> Provide the relevant knowledge. Only use the terminology in the hint/description to write

the knowledge.

Hint:

<signature description>

BC+ description

<ACTIONS AND CONSTANTS>

<BC+ Signature>

Generate the the knowledge relevant to this problem, ONLY using natural langauge. Do not mention any of the

program within this knowledge, though the signature should be considered when writing the knowledge.

Encapsulate it in three backticks like so:

```

% generated knowledge

% <knowledge #1>

% <knowledge #2>

...



B.3 Rule Generation

This prompt is used in the Rule and Query Generation portion of Initial Program Generation, as shown in Figure 2.

<conceptual description of bc+>

QUERIES:

Queries have three components: an optional label, an optional maximum step which list formulas which should be

true in the last step of the plan, and a set of constraint formulas to apply, each parametrized with the

step at which they should be applied.

For example the following query represents an initial state and an action at step 0, and a set of constraints

which should be met at the end of the plan.

:- query

label :: test_query;

0: loc(b1)=b2 & loc(b2)=b3 & loc(b3)=a & loc(b4)=b & loc(b5)=c;

0: move(b1, b5);

maxstep: loc(b5,c) & loc(b4,b5) & loc(b3,b4) & loc(b2,b3) & loc(b1,b2).

<few-show examples>

[INSTRUCTIONS]

Based on the problem description, previously generated BC+ signature and natural language rules/constraints to

represent in BC+, generate the rules/constraints in BC+ along with the query.

[PROBLEM]

Description:

<PROBLEM DESCRIPTION>

Hint:

<HINT>

BC+ description:

<ACTIONS AND CONSTANTS>

<DOMAIN>

Rules/constraints to represent in BC+:

<CONSTRAINTS>

Query (in natural language):

<QUERY>

Do not alter or change the BC+ signature in any way, only present the constraints/rules (numbered), and query

together in the following format, encapsulated in three backticks:

```

% constraints/rules

% 1. <comment for rule 1>

<BC+ rule 1>

% 2. <comment for rule 2>

<BC+ rule 1>

...

% query

< BC+ query>

```

B.4 Satisfiability Check

This prompt is used by the LLM in the Satisfiability Check portion of Self-Revision, as shown in Figure 2.



<conceptual description of bc+>

[INSTRUCTIONS]

Consider the problem and BC+ program, which when run with a basic query to check satisfiability (independent of

the main query), fails.

[Problem]

<PROBLEM DESCRIPTION>

BC+ Program:

<BC+ PROGRAM>

Main query:

<QUERY>

<BC+ QUERY>

Feedback:

<FEEDBACK>

Based on the feedback, revise the program (signature and/or rules), and possibly the main query if needed to

match a new signature. The format should be like the following, with everything together, encapsulated in 3

backticks:

```% BC+ signature

<Enter BC+ signature>

% Generated constraints

<Enter BC+ rules/constraints>

% Main query

<Enter the main query>```

B.5 Sample Query Generation

This prompt is used by the LLM in the Sample Query Generation portion of Self-Revision, as shown in Figure 2.

<conceptual description of bc+>

QUERIES:

Queries have three components: an optional label, an optional maximum step which list formulas which should be

true in the last step of the plan, and a set of constraint formulas to apply, each parametrized with the

step at which they should be applied.

For example the following query represents an initial state and an action at step 0, and a set of constraints

which should be met at the end of the plan.

:- query

label :: test_query;

0: loc(b1)=b2 & loc(b2)=b3 & loc(b3)=a & loc(b4)=b & loc(b5)=c;

0: move(b1, b5);

maxstep: loc(b5,c) & loc(b4,b5) & loc(b3,b4) & loc(b2,b3) & loc(b1,b2).

[INSTRUCTIONS]

Based on the problem description, and generated BC+ program. Generate some simple queries which can be used to

make sure the program is working properly. For example, consider the following example.

<few-shot examples>

[PROBLEM]

Description:

<PROBLEM DESCRIPTION>

BC+ description:



<ACTIONS AND CONSTANTS>

<DOMAIN>

Rules/constraints to represent in BC+:

<CONSTRAINTS>

Main Query:

<QUERY>

<BC+ QUERY>

Based on the problem description, and generated BC+ program. Generate some simple queries which can be used to

make sure the program is working properly. Only generate a few, no more than 5. Append either (satisfiable)

or (unsatisfiable) to the end of the query in natural language, depending on whether the query should work

or not. Keep in mind, the starting states of the sample queries should be allowable based on the already

written constraints in the program (e.g., if a query comes back unsatisfiable, it shouldn't be because the

start state was unsatisfiable). Do so in the following format, encapsulated in 3 backticks:

```

% Query 1: <natural language query> (satisfiable/unsatisfiable)

<BC+ Query>

% Query 2: <natural language query> (satisfiable/unsatisfiable)

<BC+ Query>

...

```

B.6 Sample and Main Query Feedback

This prompt is used by the LLM in the Sample and Main Query Feedback portion of Self-Revision, as shown in Figure 2.

<conceptual description of bc+>

QUERIES:

Queries have three components: an optional label, an optional maximum step which list formulas which should be

true in the last step of the plan, and a set of constraint formulas to apply, each parametrized with the

step at which they should be applied.

For example the following query represents an initial state and an action at step 0, and a set of constraints

which should be met at the end of the plan.

:- query

label :: test_query;

0: loc(b1)=b2 & loc(b2)=b3 & loc(b3)=a & loc(b4)=b & loc(b5)=c;

0: move(b1, b5);

maxstep: loc(b5,c) & loc(b4,b5) & loc(b3,b4) & loc(b2,b3) & loc(b1,b2).

<few-shot examples>

[CHECKLIST]

The following is a checklist which should be considered when writing and revising a BC+ program.

1. In general, if some conjunction of fluents cannot be true, then we use "impossible" when writing the rules,

but if instead we want to assert some constant is caused to be false, then we use the negation (∼). For

example, if it is impossible for an object to be on the table and under it, we might write "impossible

onTable(object) & underTable(object).", but express that no rain causes the ground to not be wet, we can

write "∼groundWet if noRain".

2. "impossible F" can only be used with fluents and "&". Do not use attributes or action constants in laws of

the form "impossible F". "nonexecutable" is about actions not being permissible if certain fluents hold and

/or certain actions are performed.

3. Additive constants can only be updated in increment/decrement laws.

4. In "a causes G if H", "G", recall G should be a fluent formula. Therefore, it should not directly contain

action constants (including attributes). If one wants to set some constant to the value of an attribute,

then the fluent formula G should contain a variable represnting the attribute, rather than the attribute

itself.



For example, if the attribute nextDestination(Loc) is not set to a variable first, then this will be a malformed

law error, since there is an action constant in G:

drive(car) causes loc(car) = nextDestination(Loc) if loc(boat) = Loc.

Instead, this should be written as:

drive(car) causes loc(car) = Loc2 if Loc2 = nextDestination(Loc) & loc(boat) = Loc.

This works because nextDestination(Loc) is first set to a variable.

5. Only use variables which are declared, if new variables are introduced, they must be declared.

6. In shorthand laws "default c=v if F" and "default c=v if F after G", "c" cannot be an additive constant,

since this is can update the value of them, but they should only be updated in increment/decrement laws.

7. "always" shorthand abbreviations should not contain "if", but only conjunctions ("&").

8. In the case that a disjunction is used in the body of a rule, encapsulate it in parentheses, e.g., (loc(city1

) | loc(city2)).

9. Do not nest constants in arguments of other constants. For example, do not use the following: nonexecutable

move(C) if roadBlock(loc(C)). Instead, loc(C) should be set to a variable: nonexecutable move(C) if

roadBlock(L) & L = loc(C).

10. Make sure that the query is exhaustive. For example, if the initial condition is that bus stop A has 10

people, and the goal condition is that the bus stop B has 10 people, it may need to be specified that bus

stop B has 0 people in the initial condition, or the BC+ solver can just set the initial state to be the

goal state.

11. Make sure to only use constants which are declared in the constant declaration. If new constans are used,

then they must be added in the declaration.

12. Make sure when writing rules, that variables representing constants are of the correct sort, i.e., the sort

of the variable is the same as the sort of the value of the constant it is representing.

For example, if there is a constant "capacity(vehicle)" which is of type "inertialFluent(integer)", then only

variables of sort "integer" should be used to represent the constant in rules.

13. Don't use simple, or rigid fluents in the constant declaration. Use "inertialFluent" instead.

14. Don't use non-specified fluents. For example, there should not be constant declarations like "country(

location) :: country", since this will be recognized as a rigid fluent.

15. Keep in mind that "always F" should be used for conditions which should be true for every transition and

shout not be used to express conditions for a state.

For example, consider a domain about trading coins that has the action constant numExchanged(coin), which is an

attribute of some trading action, and the fluent constant amount(coin). numExchanged(coin) represents the

net number of coins exchanged in a transition, from possibly multiple trade actions. amount(coin)

represents the number of coins in a state (before and after trades).

If one wants to express that the net number of exchanged coins during an action is smaller than some limit for

every trade, this can be expressed with:

always netExchanged(coin) < limit(coin).

However, if one wants to express that the amount of coins does not exceed some limit, this cannot be expressed

with "always F". The following is incorrect:

always amount(coin) <= limit(coin).

This wrong because if a state does not have a transition to another state, then the condition "amount(coin) <=

limit(coin)" can be false. For example, in a transition system with a single state, or the last state in a

transition system.

Instead, it can be expressed as:

impossible amount(coint) > limit(coin).

This enforces the following is true for every state.

16. Attributes and additive actions should not occur in the operands of arithmetics such as addition,

subtraction, multiplication, floor division, or modulus operators. They must be set to variables, and the

variables must be used as the operands.

[INSTRUCTIONS]

Consider the problem and BC+ program, and simple sample queries which were ran to check the basic functionality

of the program. The output of each sample query and the main query is presented. Check that the Cplus2ASP

output makes sense.

[Problem]

<PROBLEM DESCRIPTION>



BC+ Program:

<BC+ PROGRAM>

Sample queries and outputs:

<FEEDBACK>

Main query and output:

% Original natural language query: <QUERY>

<FEEDBACK MAIN QUERY>

[INSTRUCTIONS (continued)]

1) [FEEDBACK OUTLINE]

Based on the feedback, if any of the following segments are incorrect, then mark them with "[CHANGED]", and

revise them:

- PROGRAM

- MAIN QUERY

- SAMPLE QUERIES

Otherwise, if a segment is correct, mark it with "[UNCHANGED]", and simply copy their contents.

2) [SAMPLE QUERY GUIDANCE]

Keep in mind, the outputs from running the sample queries is to help check that the program is working properly.

In some cases, the sample queries themselves may be wrong (e.g., a syntax error), and can be re-written.

The sample queries marked (satisfiable) should be correctly be satisfiable and the queries marked (

unsatisfiable) should be unsatisfiable. There should not be apparent violations in the constraints, and the

action preconditions/effects should enforced properly. If there are, then revise the main program. Overall

, changes should be succint, e.g., only change relevant parts while leaving the remainder alone.

3) [MAIN QUERY OUTPUT]

IMPORTANT: Check that each action in the final plan of the main query makes sense given the state before it, and

that the resulting state correctly follows.

If something doesn't align with the common sense relative to the problem description, then update the program.

Though less likely, if you suspect there is an issue with the main BC+ query, it may be changed, but it

should have the original meaning of the main query as shown under "Main query and output", after "Original

natural language query: ". The query itself should not contain actions, but have only the initial state and

the final state (indicated with "maxstep").

4) [FORMAT]

The format should be like the following, encapsulated in 3 backticks:

```% PROGRAM CHANGED? [CHANGED/UNCHANGED]

% BC+ signature

<Enter BC+ signature>

% Generated constraints

<Enter BC+ rules/constraints>

% MAIN QUERY CHANGED? [CHANGED/UNCHANGED]

<Enter the main query>

% SAMPLE QUERIES CHANGED? [CHANGED/UNCHANGED]

<Enter the sample queries (do NOT include the Cplus2ASP outputs)>

```

C Baseline Prompts

C.1 Baseline LLM (CHATGPT-4, CLAUDE 3 OPUS, GEMINI 1.0 ULTRA, O1-PREVIEW)

The format of the prompt used is:

<PROBLEM DESCRIPTION>

<QUERY>



For example, for the River Cross domain:

There are four types of things: vessel, location, group, and integer.

Problem Description:

Three missionaries and three cannibals shall cross a river in a boat which carries at most two people at once.

The boat cannot cross the river with nothing on it. On either side, the cannibals may never outnumber the

missionaries or the missionaries will be eaten. Also, the cannibals may never outnumber the missionaries on

the boat or the missionaries will be eaten. The boat's capacity is 2.

boat is a vessel. bank1 and bank2 are locations. missionaries and cannibals are groups. 0, 1, 2, 3, 4, 5, 6, 7,

8, 9, and 10 are integers.

Three missionaries and three cannibals are at location bank1. The boat is at location bank1. Find a plan so that

all missionaries and all cannibals are at location bank2.

C.2 LLM + Code (CHATGPT-4+CODE)

Use the code interpreter to generate a Python program to solve the following problem. Revise the program as many

times as needed until the program is correct.

<PROBLEM DESCRIPTION>

<QUERY>

D LLM + AL Error Cases

The following constains all issues from LLM+AL after Self-Revision. Unless otherwise stated, all issues shown contribute 1
issue to the total number of issues.

D.1 Signature

Missing sort, object, variable, or constant in the declaration.
Sudoku1 - the sort “int” needs objects instantiated from 0 to 8 (written “0..8”). This is required because arithmetic is done

with variables of the sort “int”, so there must exist objects (representing integers) of “int”.

:− objects

0. .9 : : value0 ;

1. .9 : : value ;

0. .8 : : row;

0. .8 : : column .

% Missing: 0..8 :: int.

Sudoku (var2) - There are missing object declarations for the row, column and integer.

:- objects % Missing

1..9 :: row; % Missing

1..9 :: column; % Missing

0..9 :: integer. % Missing

Sudoku (var2) - There is a missing sort declaration for integer.

:− sor ts

row;

column;

value ;

integer. % Missing

MCP #6 (not everyone can row) - There is a missing constant which tracks the location of rowers,
rowersAt(basicGroup).

:− constants

cross ( vessel ) : : exogenousAction ;

numCrossing( vessel , basicGroup) : : a t t r ibu te ( integer ) of cross ( vessel ) ;

rower( vessel , basicGroup) : : a t t r ibu te ( boolean ) of cross ( vessel ) ;



rowerAt(basicGroup) :: inertialFluent(location); % Missing

capacity ( vessel ) : : iner t ia lFluent ( integer ) ;

boatLoc : : iner t ia lFluent ( location ) ;

numAt(basicGroup , place ) : : additiveFluent ( integer ) .

MCP #9 (big cannibal and small missionary) - Variables L1, L2, N1, and N2 were used in rules, but never declared.
Thus they are missing from the signature.

:− variables

M, M1, M2, M3 : : missionary ;

C, C1, C2, C3 : : cannibal ;

P, P1, P2 : : person ;

Loc, Loc1, Loc2, NewLoc : : place ;

N m, N c , N : : integer ;

L1, L2, N1, N2 :: integer. % Missing

MCP #14 (the boat leaks with two people on it) - The action bail is missing from the constant declaration.

:− constants

cross ( vessel ) : : exogenousAction ;

from( vessel ) : : a t t r ibu te ( location ) of cross ( vessel ) ;

to ( vessel ) : : a t t r ibu te ( location ) of cross ( vessel ) ;

numOnBoard( vessel , group) : : a t t r ibu te ( integer ) of cross ( vessel ) ;

loc ( vessel ) : : iner t ia lF luent ( location ) ;

numOnBank(group , location ) : : iner t ia lFluent ( integer ) ;

numOnBoat(group) : : iner t ia lFluent ( integer ) ;

capacity ( vessel ) : : iner t ia lFluent ( integer ) ;

bail(vessel) :: exogenousAction. % Missing

MCP #17 (cannibals can become hungry) - A fluent constant which represents whether the cannibals are hungry is missing.

:− constants

loc ( vessel ) : : iner t ia lF luent ( location ) ; % The location of the vessel .

capacity ( vessel ) : : iner t ia lFluent ( integer ) ; % The capacity of the vessel .

cross ( vessel ) : : exogenousAction ; % Crossing action .

numCrossing( vessel , group) : : a t t r ibu te ( integer ) of cross ( vessel ) ; % Number from a group crossing in the vessel .

toLocation ( vessel ) : : a t t r ibu te ( location ) of cross ( vessel ) ; % Destination location .

numAt(group , location ) : : additiveFluent ( integer ) ; % Number of people of a group at a location .

hungry :: inertialFluent(boolean). % Missing

Syntax Issues. MCP # 19 (there are two sets of groups) - Variables are incorrectly used in the constant declaration. This
is syntactically wrong, only sorts should be used as arguments. S, G, and L should be changed to set, group, and
location.

:− constant

cross (S) : : exogenousAction ;

dest (S) : : a t t r ibu te ( location ) of cross (S) ;

numCrossing(S , G) : : a t t r ibu te ( integer ) of cross (S) ;

boatLoc(S) : : iner t ia lFluent ( location ) ;

numAt(S , G , L) : : additiveFluent ( integer ) .

Semantic Issues. MCP # 8 (a very big cannibal must cross alone) - The following sort declaration incorrectly states that mission-
aries and cannibals are supersorts of each other. Rather, there should be semicolons after the first occurrence of missionary
and cannibal.

:− sor ts

integer ;

missionary,

cannibal,

person >> missionary , cannibal ;

vessel ;

location .

MCP #9 (big cannibal and small missionary) - (1) The supersort statement is incorrect. person should be a supersort
of missionary and cannibal, not the opposite. (2) vessel should not be a place, thus the supersort statement place >>

location, vessel is wrong.



:− sor ts

missionary >> person; % should be person >> missionary

cannibal >> person; % should be person >> cannibal

vessel ;

location ;

place >> location, vessel; % should be just place >> location

thing >> person , vessel ;

integer .

MCP #5 (an oar on each bank) - The constants numMissionariesOn, numCannibalsOn, and numOarsOn, should be
attributes rather than inertial fluents.

:− constants

cross ( vessel ) : : exogenousAction ;

loc ( vessel ) : : iner t ia lF luent ( location ) ;

capacity ( vessel ) : : iner t ia lFluent ( integer ) ;

numMissionariesAt ( location ) : : iner t ia lFluent ( integer ) ;

numCannibalsAt( location ) : : iner t ia lFluent ( integer ) ;

numOarsAt( location ) : : iner t ia lF luent ( integer ) ;

numMissionariesOn( vessel ) : : inertialFluent(integer); % should be an attribute

numCannibalsOn( vessel ) : : inertialFluent(integer); % should be an attribute

numOarsOn( vessel ) : : inertialFluent(integer). % should be an attribute

D.2 Rule

Missing necessary rules. Tower of Hanoi (3, var1) - The constraint which says that two disks cannot be at the same location is
missing:

impossible loc (D) = L & loc (D1) = L & D\=D1.

Sudoku (var2) - The following state constraints are required. This is counted as 3 separate issues.

% No two cel l s in the same row have the same value

false i f val (R, C) = V & val (R, C1) = V & C \= C1.

% No two cel l s in the same column have the same value

false i f val (R, C) = V & val (R1, C) = V & R \= R1.

% No two cel l s in the same 3x3 block have the same value

false i f val (R, C) = V & val (R1, C1) = V & (R \= R1 | C \= C1) &

(R / / 3 = R1 / / 3) & (C / / 3 = C1 / / 3) .

MCP #6 (only one missionary and one cannibal can row) - There is a missing rule required to update the rower locations.

cross ( boat ) causes rowerAt(BG) = L i f boatLoc = L1 & rower( boat , BG) & L\=L1.

MCP #6 (only one missionary and one cannibal can row) - There is a missing rule required which disallows the rower to
cross if it is not where the boat is.

nonexecutable cross ( boat ) i f rower( boat , BG) & rowerAt(BG) \= L & boatLoc = L.

MCP #8 (a very big cannibal must cross alone) - The are missing rules to represent that the cannibals cannot outnubmer the
missionaries.

% disallow 3 cannibals and 2 missionaries

impossible loc (M) = Loc & loc (M1) = Loc & loc (M2) = Loc1 & M\=M1 &

loc (C) = Loc & loc (C1) = Loc & loc (C2) = Loc & C\=C1 & C\=C2 & C1\=C2 &

Loc \= Loc1 .

% disallow 3 cannibals and 1 missionary

impossible loc (M) = Loc & loc (M1) = Loc1 & loc (M2) = Loc1 & M1\=M2 &

loc (C) = Loc & loc (C1) = Loc & loc (C2) = Loc & C\=C1 & C\=C2 & C1\=C2 &

Loc \= Loc1 .

% disallow 2 cannibals and 1 missionary



impossible loc (M) = Loc & loc (M1) = Loc1 & loc (M2) = Loc1 & M1\=M2 &

loc (C) = Loc & loc (C1) = Loc & loc (C2) = Loc1 & C\=C1 & C\=C2 & C1\=C2 &

Loc \= Loc1 .

MCP # 14 (the boat leaks with two people on it) - The constraint which disallows crossing to your current location is missing.

nonexecutable cross (V) i f to (V) = loc (V) .

MCP # 14 (the boat leaks with two people on it) - The rule which ensures bailing is done when two people are on board is
missing is missing.

bai l (V) i f numOnBoard(V, missionaries ) = N1 & numOnBoard(V, cannibals ) = N2 & N1 + N2 = 2.

MCP #17 (cannibals can become hungry) - A rule which causes hungry to be true is required.

cross (V) causes hungry i f numCrossing(V, strongMissionary ) = 0.

MCP #17 (cannibals can become hungry) - A rule which causes hungry to be true is required.

cross (V) causes hungry i f numCrossing(V, strongMissionary ) = 0.

MCP #10 (a missionary can walk on water) - Rules missing which represent “It cannot be that Jesus is on the boat, but the
number of Jesus’s on the boat is not 1, or that Jesus is not on the boat and the number of Jesus’s is not 0.”

nonexecutable cross ( Vessel ) i f jesusOnBoat ( Vessel ) & loading ( Vessel , jesus ) \= 1.

nonexecutable cross ( Vessel ) i f ∼jesusOnBoat ( Vessel ) & loading ( Vessel , jesus ) \=0.

MCP #10 (a missionary can walk on water) - Updating Jesus’s location and count on each side is missing.

cross ( Vessel ) causes jesusLocation = Loc i f jesusOnBoat ( Vessel ) & jesusLocation = Loc1 & Loc\=Loc1 .

walk increments numOnBank( jesus , Loc) by 1 i f jesusLocation = Loc1 & Loc\=Loc1 .

walk decrements numOnBank( jesus , Loc) by 1 i f jesusLocation = Loc .

Harmful rules which represent something not specified in the problem. MCP # 6 (only one missionary and one cannibal
can row) - The following rule disallows both the missionary rower and the cannibal rower to be on the boat at the same time.
This condition makes it impossible to cross all missionaries and cannibals. Thus it should simply be removed.

nonexecutable cross ( boat ) i f rower( boat , missionaries ) & rower( boat , cannibals ) .

MCP # 6 (only one missionary and one cannibal can row) - There is no reasno to disallow botht he missionary and cannibal
rower to be on board. The following should be removed.

% 13. The crossing action is not executable i f both missionaries and cannibals are rowing .

nonexecutable cross ( boat ) i f rower( boat , missionaries ) & rower( boat , cannibals ) .

Sudoku (var1) - the following default rule is incorrect. It allows the initial values to be changed in a later step, and changing
of the board from unsatisfiable to satisfiable.

% Default value of val i s none

default val (R, C) = none .

MCP #5 (an oar on each bank) - The following constraints are incorrect because the variables N1, N2, and N3 are quanti-
fied over all integer values. It should instead be represented with an implication (always (. . . ) � (. . . ). What is trying to be
represented (the natural language writing) is not necessary. Therefore they can be simply removed.

always N1 + N2 + N3 = 3 & N1 = numMissionariesAt (bank1) & N2 = numMissionariesAt (bank2) & N3 = numMissionariesOn( boat ) .

% 11. Total number of cannibals i s always 3.

always N1 + N2 + N3 = 3 & N1 = numCannibalsAt(bank1) & N2 = numCannibalsAt(bank2) & N3 = numCannibalsOn( boat ) .

% 12. Total number of oars i s always 2.

always N1 + N2 + N3 = 2 & N1 = numOarsAt(bank1) & N2 = numOarsAt(bank2) & N3 = numOarsOn( boat ) .

MCP #10 (a missionary can walk on water) - The following makes it so the boat’s location and Jesus’s location cannot
change. They should only be set in the query at time 0. These should be removed.

% I n i t i a l conditions

boatLocation = bank1 .

jesusLocation = bank1 .



name - explanation

Harmful rules attempting to represent an aspect of the problem. MCP # 17 (cannibals can become hungry) - The following
constraint about cannibals outnumbering missionaries should be changed to include the condition hungry. This is because the
problem description states that if the cannibals are not hungry, then the missionaries will not be eaten.

impossible numAt( missionaries , Loc) = N1 &

numAt( strongMissionary , Loc) = N2 &

numAt( cannibals , Loc) = N3 &

N1 + N2> 0 &

N3> N1 + N2 & hungry .

MCP #2 (missionaries and cannibals can exchange hats) - Incrementing/decrementing does not work properly due to BC+
semantics.

% For missionaries :

cross (V) decrements numMissionariesAt (bank1) by 1 i f onboard(V, Ms) & loc member(Ms) = bank1 & loc vessel (V) = bank1 .

cross (V) increments numMissionariesAt (bank2) by 1 i f onboard(V, Ms) & loc member(Ms) = bank1 & loc vessel (V) = bank1 .

cross (V) decrements numMissionariesAt (bank2) by 1 i f onboard(V, Ms) & loc member(Ms) = bank2 & loc vessel (V) = bank2 .

cross (V) increments numMissionariesAt (bank1) by 1 i f onboard(V, Ms) & loc member(Ms) = bank2 & loc vessel (V) = bank2 .

% For cannibals :

cross (V) decrements numCannibalsAt(bank1) by 1 i f onboard(V, Cs) & loc member(Cs) = bank1 & loc vessel (V) = bank1 .

cross (V) increments numCannibalsAt(bank2) by 1 i f onboard(V, Cs) & loc member(Cs) = bank1 & loc vessel (V) = bank1 .

cross (V) decrements numCannibalsAt(bank2) by 1 i f onboard(V, Cs) & loc member(Cs) = bank2 & loc vessel (V) = bank2 .

cross (V) increments numCannibalsAt(bank1) by 1 i f onboard(V, Cs) & loc member(Cs) = bank2 & loc vessel (V) = bank2 .

These should be corrected to:

cross (V) decrements numMissionariesAt (L) by N i f numMissionariesOnBoard(V) = N & loc vessel (V) = L.

cross (V) increments numMissionariesAt (L) by N i f numMissionariesOnBoard(V) = N & loc vessel (V) = L1 & L\=L1.

cross (V) decrements numCannibalsAt(L) by N i f numCannibalsOnBoard(V) = N & loc vessel (V) = L.

cross (V) increments numCannibalsAt(L) by N i f numCannibalsOnBoard(V) = N & loc vessel (V) = L1 & L\=L1.

MCP #9 (big cannibal and small missionary) - The disjunction should be encapsulated in parentheses.

nonexecutable cross2 (P1, P2) i f loc(P1) \= loc(boat) | loc(P2) \= loc(boat). % The disjunction should be encapsulated in parentheses

MCP #9 (big cannibal and small missionary) - The following laws need to assure that the location where the missionaries/-
cannibals are incremented is not where the boat is.

cross1 (P) increments num missionaries (NewLoc) by 1 i f P = M & NewLoc \= Loc.

cross1 (P) increments num cannibals (NewLoc) by 1 i f P = C & NewLoc \= Loc.

These should be corrected to:

cross1 (P) increments num missionaries (NewLoc) by 1 i f P = M & NewLoc \= Loc & loc ( boat ) = Loc .

cross1 (P) increments num cannibals (NewLoc) by 1 i f P = C & NewLoc \= Loc & loc ( boat ) = Loc .

MCP #9 (big cannibal and small missionary) - The term “else” is not recognized in CPLUS2ASP.

cross2 (P1, P2) decrements num missionaries (Loc) by L1 i f L1 = N1 + N2 & N1 = 1 i f P1 = M else N1 = 0 & N2 = 1 i f P2 = M else N2 = 0 & loc (P1) =

Loc & loc (P2) = Loc .

cross2 (P1, P2) decrements num cannibals (Loc) by L2 i f L2 = N1 + N2 & N1 = 1 i f P1 = C else N1 = 0 & N2 = 1 i f P2 = C else N2 = 0 & loc (P1) = Loc &

loc (P2) = Loc .

cross2 (P1, P2) increments num missionaries (NewLoc) by L1 i f L1 = N1 + N2 & N1 = 1 i f P1 = M else N1 = 0 & N2 = 1 i f P2 = M else N2 = 0 & NewLoc \=

Loc & loc (P1) = Loc & loc (P2) = Loc .

cross2 (P1, P2) increments num cannibals (NewLoc) by L2 i f L2 = N1 + N2 & N1 = 1 i f P1 = C else N1 = 0 & N2 = 1 i f P2 = C else N2 = 0 & NewLoc \=

Loc & loc (P1) = Loc & loc (P2) = Loc .

These should be corrected to:



cross2 (M1, M2) decrements num missionaries (Loc) by 2 i f loc ( boat ) = Loc .

cross2 (C1, C2) decrements num cannibals (Loc) by 2 i f loc ( boat ) = Loc .

cross2 (M1, C1) decrements num missionaries (Loc) by 1 i f loc ( boat ) = Loc .

cross2 (C1, M1) decrements num missionaries (Loc) by 1 i f loc ( boat ) = Loc .

cross2 (M1, C1) decrements num cannibals (Loc) by 1 i f loc ( boat ) = Loc .

cross2 (C1, M1) decrements num cannibals (Loc) by 1 i f loc ( boat ) = Loc .

cross2 (M1, M2) increments num missionaries (Loc) by 2 i f loc ( boat ) = Loc1 & Loc\=Loc1 .

cross2 (C1, C2) increments num cannibals (Loc) by 2 i f loc ( boat ) = Loc1 & Loc\=Loc1 .

cross2 (M1, C1) increments num missionaries (Loc) by 1 i f loc ( boat ) = Loc1 & Loc\=Loc1 .

cross2 (C1, M1) increments num missionaries (Loc) by 1 i f loc ( boat ) = Loc1 & Loc\=Loc1 .

cross2 (M1, C1) increments num cannibals (Loc) by 1 i f loc ( boat ) = Loc1 & Loc\=Loc1 .

cross2 (C1, M1) increments num cannibals (Loc) by 1 i f loc ( boat ) = Loc1 & Loc\=Loc1 .

MCP #10 (a missionary can walk on water) - This rules incorrectly disallows crossing if there are more cannibals than
missionaries on board, but it should only disallow it if there are more and there is at least one missionary on board.

% 9b . Crossing the boat i s not executable i f cannibals loaded onto the boat exceed missionaries loaded onto the boat i f jesusOnBoat ( Vessel ) =

false .

nonexecutable cross ( Vessel ) i f loading ( Vessel , cannibals ) = N c & loading ( Vessel , missionaries ) = N m & jesusOnBoat ( Vessel ) = false & N c > N m.

% N m > 0 should be added to the if clause

MCP #10 (a missionary can walk on water) - Similarly, there being at least one missionary needs to be adding to the body of
these rules to make them correct.

% 10b . Crossing the boat i s not executable i f cannibals remaining on the s ta r t ing bank af te r loading would outnumber missionaries remaining on

the s ta r t ing bank when Jesus i s not at that bank .

nonexecutable cross ( Vessel ) i f boatLocation = Loc & jesusLocation \= Loc &

numOnBank( cannibals , Loc) = N c & loading ( Vessel , cannibals ) = L c & Rem c = N c − L c &

numOnBank( missionaries , Loc) = N m & loading ( Vessel , missionaries ) = L m & Rem m = N m − L m &

Rem c > Rem m.

% Rem m > 0, needs to be added to the if clause

MCP #10 (a missionary can walk on water) - Similarly, there being at least one missionary needs to be adding to the body of
this rule to make it correct.

I t should be possible for the number of cannibals to be larger than the number of missionaries i f there are no missionaries on the bank .

generated :

% 14b . I t i s impossible for cannibals to outnumber missionaries on any bank when Jesus i s not at that bank .

impossible N c > N m & numOnBank( cannibals , Loc) = N c & numOnBank( missionaries , Loc) = N m & jesusLocation \= Loc.

% N m > 0, needs to be added to the if clause

D.3 Query

Syntax issues. Sudoku1 - The following query is written with incorrect keywords “initially” and “goal” to represent the initial
and goal state of Sudoku.

initially valueAt (0 ,0) =8.

initially valueAt (1 ,2) =3.

initially valueAt (1 ,3) =6 . . .

goal valueAt (R,C)\=0.

Sudoku (var2) - “maxstep: 81” is not syntactically correct.

:− query

0:

val (1 ,2)=9 & val (1 ,4)=3 & val (1 ,9)=1 &

val (2 ,5)=8 & val (2 ,8)=4 & val (2 ,9)=6 &

val (3 ,7)=8 &

val (4 ,1)=4 & val (4 ,3)=5 & val (4 ,5)=6 & val (4 ,8)=3 &

val (5 ,3)=3 & val (5 ,4)=2 & val (5 ,5)=7 & val (5 ,6)=5 & val (5 ,7)=6 &

val (6 ,2)=6 & val (6 ,5)=1 & val (6 ,7)=9 & val (6 ,9)=4 &

val (7 ,3)=1 &

val (8 ,1)=5 & val (8 ,2)=8 & val (8 ,5)=2 &

val (9 ,1)=2 & val (9 ,6)=7 & val (9 ,8)=6;

maxstep: 81. % should be “maxstep :: 81.”, alternatively it can be removed)



Semantic issues. Tower of Hanoi (7, var1) - The following query goal condition incorrectly states that that every disk should
be on peg c. Instead, they should be stacked in order, with only disk d1 on c.

:− query

0: loc (d1)=c & loc (d2)=d1 & loc (d3)=d2 & loc (d4)=a & loc (d5)=b & loc (d6)=d4 & loc (d7)=d5 &

weight (d1)=7 & weight (d2)=6 & weight (d3)=5 & weight (d4)=4 & weight (d5)=3 & weight (d6)=2 & weight (d7)=1;

maxstep : loc (d1)=c & loc (d2)=c & loc (d3)=c & loc (d4)=c & loc (d5)=c & loc (d6)=c & loc (d7)=c .

% The maxstep should be as follows:

maxstep: loc(d1)=c & loc(d2)=d1 & loc(d3)=d2 & loc(d4)=d3 &

loc(d5)=d4 & loc(d6)=d5 & loc(d7)=d6.

MCP #3 (there are 4 missionaries and 4 cannibals) - There are two issues: (1) The query includes a maxstep of 11, which
it should not, (2) the query uses 3 for the number of missionaries and cannibals, this should be 4.

:− query

0: numOn(bank1 , missionaries ) = 3 & numOn(bank1 , cannibals ) = 3 & loc ( boat ) = bank1 & numOn(bank2 , missionaries ) = 0 & numOn(bank2 ,

cannibals ) = 0;

maxstep :: 11; % (should be removed)

maxstep : numOn(bank2 , missionaries ) = 3 & numOn(bank2 , cannibals ) = 3 .

E Missionaries and Cannibals Elaborations

In McCarthy (1998), there are 20 elaborations discussed in which we include 16 in this work, as well as the original problem:
“Three missionaries and three cannibals come to a river and find a boat that holds two. If the cannibals ever outnumber the

missionaries on either bank, the missionaries will be eaten. How shall they cross?”

#1 “The boat is a rowboat. (Or the boat is a motorboat). By itself this is a trivial elaboration. Adding it should not affect the
reasoning. By default, a tool, i.e. the boat, is usable. Further elaborations might use specific properties of rowboats.”

#2“The missionaries and cannibals have hats, all different—another trivial elaboration. These hats may be exchanged among
the missionaries and cannibals.”

#3“There are four missionaries and four cannibals. The problem is now unsolvable.”

#4 - “The boat can carry three.” Five missionaries and cannibals can cross, but not six. We use the version with six members
of each group, which no solution is possible.

#5 - “There is an oar on each bank. One person can cross in the boat with just one oar, but two oars are needed if the boat is
to carry two people.”

#6 - “Only one missionary and one cannibal can row.”

#7 - “The missionaries can’t row. This makes the problem impossible, since any solution requires two missionaries in the
boat at some time”

#8 - “The biggest cannibal cannot fit in the boat with another person.”

#9 - “If the biggest cannibal is isolated with the smallest missionary, the latter will be eaten.”

#10 - “One of the missionaries is Jesus Christ.” This makes it so that one of the missionaries can walk on water, which has
a solution with only 7 steps.

#11 - “Three missionaries alone with a cannibal can convert him into a missionary.”

#13 - “There is a bridge. ” This makes makes it so any number can cross, we use the version with 5 missionaries and
cannibals.

#14 - “The boat leaks and must be bailed concurrently with rowing.” We use the version from Lifschitz (2000) which
assumes that bailing is only needed when there are two people in the boat, and that one person could not row and bail at the
same time.

#16 - “There is an island. ” This makes it so any number can cross. We use an instance with 5 missionaries and cannibals.

#17 - “There are four cannibals and four missionaries, but if the strongest of the missionaries rows fast enough, the cannibals
won’t have gotten so hungry that they will eat the missionaries.” This has some vagueness, we make it more concrete by
specifying that as long as the strongest missionary rows then the cannibals will not be hungry.

#19 - “There are two sets of missionaries and cannibals too far apart along the river to interact. The two problem should
be solvable separately without considering interleaving actions at the two sites.” Here we assume that the two sets are two
identical versions of the original problem.


