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In this chapter, we demonstrate how to use a nonlinear polyhedral con-
strained optimization solver called the Polyhedral Active Set Algorithm
(PASA) for solving a general singular control problem. We present a
method for discretizing a general optimal control problem involving the
use of the gradient of the Lagrangian for computing the gradient of the
cost functional so that PASA can be applied. When a numerical solu-
tion contains artifacts that resemble “chattering,” a phenomenon where
the control oscillates wildly along the singular region, we recommend a
method of regularizing the singular control problem by adding a term to
the cost functional that measures a scalar multiple of the total variation
of the control, where the scalar is viewed as a tuning parameter. We then
demonstrate PASA’s performance on three singular control problems
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that give rise to different applications of mathematical biology. We also
provide some exposition on the heuristics that we use in determining an
appropriate size for the tuning parameter.

Keywords: Singular control, Total variation, Bounded variation Regu-
larization, Pontryagin’s Minimum Principle, Switching function, Fishery
problem, Plant problem, SIR problem

9.1 Introduction

Optimal control theory is a tool that is used in mathematical biol-
ogy for observing how a dynamical system behaves when employing
one or many variables that can be controlled outside of that system.
Mathematical biologists apply optimal control theory to disease mod-
els of immunologic and epidemic types,1–4 to management decisions
in harvesting,5, 6 and to resource allocation models.7, 8 In practice,
mathematical biologists tend to construct optimal control problems
with quadratic dependence on the control. Problems of this structure
are well-behaved in the sense that there are established methods of
proving existence and uniqueness of an optimal control.9–11 In addi-
tion, for numerically solving problems of this form, many employ the
forward–backward sweep method, a numerical procedure presented
in Lenhart and Workman’s book12 that involves combinations of the
forward application and the backward application of a fourth-order
Runge–Kutta method. We direct the reader to Refs. 13–16 which
are excellent surveys of other numerical procedures, such as gradient
methods, quasi-Newton methods, shooting methods, and collocation
methods, that are used within the optimization community for solv-
ing optimal control problems.

Control problems in biology tend to depend quadratically with
respect to the control due to the construction of the objective or
cost functional, which is the functional that is being optimized
with respect to the control variables. The construction of the objec-
tive functional is an essential component to optimal control theory
because it measures our criteria for determining what control strat-
egy is deemed “best.” In mathematical biology, the costs are fre-
quently nonlinear and depend on the states and the controls, and a
cost term for a particular control may be the sum of a bilinear term
in that control and one for the states and a quadratic term in the
control. Frequently, the quadratic term has a lower coefficient.
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With regard to the principle of parsimony, it is difficult to justify
the use of a quadratic term for representing the cost of administering
a control. A linear term would be a more realistic representation of
the cost of applying a control. For control problems that are linear
in the control, it is possible to obtain a solution that is piecewise
constant where the constant values correspond to the bounds of the
control. An optimal control of this structure, which is often called
a “bang-bang” control, can be readily interpreted and implemented.
These characteristics compel many (see Refs. 5,6,8 and 17–20), to use
control problems with linear dependence on the control for biological
models.

There are however evident setbacks to using optimal control
problems in which the control appears linearly. For one thing, these
problems are much more difficult to solve analytically due to the
potential existence of a singular subarc. As demonstrated in Refs. 5,6
and 18, procedures for obtaining an explicit formula for the singular
case involve taking one or many time derivatives of the switching
function as a means to gain a system of equations. Often the first-
order and second-order necessary conditions for optimality, which are
respectively named Pontryagin’s Maximum Principle10 and the Gen-
eralized Legendre–Clebsch Condition/Kelley’s Condition,21–24 are
checked. Naturally, methods for explicitly solving singular control
problems increase in difficulty when multiple state variables and mul-
tiple control variables are involved.

Additionally, numerically solving singular control problems are
inevitably problematic. If the parameters of an optimal control prob-
lem that is linear in the control are set to where all optimal control
variables are bang-bang, then the forward–backward sweep method12

can successfully run. However, if the presence of a singular control is
a possibility, then the forward–backward sweep method is not advis-
able. In Foroozandeh et al.,25 Foroozandeh, De Pinho, Shamsi test
four numerical solvers, including the Imperial College London Opti-
mal Control Software (ICLOCS)26 and the Gauss Pseudospectral
Optimization Software (GPOPS),27 by solving a singular optimal
control problem for Autonomous Underwater Vehicles (AUV). They
find that three of these methods have difficulty in detecting the struc-
ture of the optimal control and in accurately computing the switch-
ing points without a priori information. Switching points are the
corresponding points in time when an optimal control switches from
singular to non-singular and vice versa. When solving for the AUV
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problem, both ICLOCS and GPOPS obtain a control that exhibits
oscillations within the singular region, causing both methods to be
unable to provide direct information about the switching points.
Foroozandeh et al. conclude that only the mixed binary nonlinear
programming method (MBNLP)28 is successful in accurately approx-
imating the optimal control to the AUV problem and its switching
points.

One of the predominate issues associated with singular control
problems is the concept of “chattering,” which is also known as the
“Fuller Phenomenon” (see Ref. 24). As mentioned in Zelikin and
Borisov’s book,24 an optimal control is said to be chattering if the
control oscillates infinitely many times between the bounds of the
control over a finite region. It is thought that such an event occurs
in singular control problems when the optimal control has a singular
subarc that cannot be directly joined to a non-singular (bang) region
without promoting oscillations. In MacDanell and Powers,21 Mac-
Danell and Powers present some necessary conditions for joining sin-
gular and nonsingular subarcs. Zelikin and Borisov24 mention other
theorems that can be used to verify when chattering is present. It is
possible that the discretization of an optimal control problem causes
a numerical method to generate numerical artifacts that resemble
chattering even though the optimal control does not chatter. How-
ever, it is difficult to determine when a numerical solution is exhibit-
ing many oscillations due to chattering or due to numerical artifacts.

Regardless of the situation, it is evident that a wildly oscillating
optimal control is an unrealistic procedure to implement. A way to
bypass this issue is to solve for a regularized version of the opti-
mal control problem. In Ref. 29, Yang et al. present methods of
regularizing optimal control problems by adding a penalty term to
the cost functional of the original problem. The penalization terms
suggested in Yang et al.29 are: a weighted parameter times the L2

norm of the control, a weighted parameter times the L2 norm of the
derivative of the control, and a weighted parameter times the L2

norm of the second derivative of the control. In Ding and Lenhart,6

Ding and Lenhart employ a penalty term to a harvesting optimal
control problem to avoid a potential chattering result found in the
control h. The penalty term that was applied for this problem con-
sisted of a weighted parameter times �∇h�2L2 . The penalty term
that is used in Ding and Lenhart6 adds convexity properties to
the control problem which can be beneficial for verifying existence



April 20, 2023 20:14 Computational and Mathematical Population. . . 9in x 6in b4918-ch09 FA7 page 323

Solving Singular Control Problems in Mathematical Biology Using PASA 323

and uniqueness of an optimal control. Additionally, �∇h�2L2 can be
discretized to where it can serve as a crude estimate for the total
variation of the control. However, Lenhart and Ding6 need to use
variational inequalities to solve for their problem, and incorporating
such a penalty term restricts their set of admissible controls into a
functional space that requires its controls to be differentiable.

The penalty term that we believe to show the most promise has
been recently suggested in Capognigro, Ghezzi, Piccoli, and Trelat’s
work.30 In Ref. 30, recommend a method of regularizing chattering in
optimal control problems by adding a penalty term that represents a
tuning parameter times the total variation of the control. Total varia-
tion regularization or bounded variation regularization influences the
numerical solution in a way that reduces the number of oscillations.
In Caponigro et al.,30 this penalty is applied to the Fuller problem,
which is the classical example that introduced the concept of chatter-
ing, and they obtain a “quasi” optimal solution to the Fuller problem
that does not chatter. Caponigro et al. also prove that the optimal
value of the penalized problem converges to the associated optimal
value of the original problem as the penalty weight parameter p tends
to zero.

In this chapter, we demonstrate how to use a nonlinear poly-
hedral constrained optimization solver called PASA,1 developed by
Hager and Zhang,31 to solve a general singular control problem that
is being regularized by use of a total variation term.30 We recommend
PASA because it is user friendly to those who are not as acquainted
with optimization techniques for optimal control problems, and it
is freely accessible to use on MATLAB for Linux and Unix operat-
ing systems. According to Hager and Zhang,31 PASA consists of two
phases, with the first phase being the gradient projection algorithm
and the second phase being any algorithm that is used for solving
linearly constrained optimization problems. The gradient projection
algorithm is an optimization solver commonly used for bounded con-
strained optimization problems. When applying gradient descent to
a bounded constrained optimization problem, it is possible to obtain

1To access PASA software that can be used on MATLAB for Linux and Unix
operating systems, download the SuiteOPT Version 1.0.0 software given on
https://people.clas.ufl.edu/hager/software. For future reference, any updates to
the software will be uploaded to this link, and to access older versions of the
software, use the same link and then select “Software Archive.”
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an iterate that lies outside of the feasible set due to the negative direc-
tion of the gradient. Projected gradient method, takes this issue into
consideration by adding additional steps involving projecting points
outside the feasible set onto the feasible set. For more information
on projected gradient methods we direct the reader to Refs. 31–36.
Using PASA to solve optimal control problems involves converting
an optimal control problem into a discretized optimization problem.

In this chapter, the discretization for the general singular control
problem involves using explicit Euler’s method for the state equa-
tions, and left-rectangular integral approximation for the original
cost functional. Additionally, we need to ensure that the discretized
and regularized cost functional is differentiable, which requires per-
forming a decomposition of the absolute value terms associated with
the total variation penalty. We use the gradient of the Lagrangian
function of the discretized optimal control problem for computing the
gradient to the discretized cost functional. Conveniently, the process
of ensuring that the gradient of the Lagrangian is equal to the gra-
dient of the discretized objective functional yields a discretization
procedure for the adjoint equations.

Further, we demonstrate PASA’s performance on three singular
control problems that are being regularized via bounded variation.
The order of these examples increases in difficulty based upon the
number of state variables and the number of control variables. Addi-
tionally, each example gives rise to different applications of mathe-
matical biology. Explicit formulas for the singular case and for the
switching points are given for the first two examples, which allow
us to compare PASA’s numerical results with the exact solution.
For each problem, we illustrate the discretization process and then
present numerical results that were obtained when solving for both
the unpenalized and penalized problem. We also provide some expo-
sition on the heuristics that we use in determining an appropriate
size for the tuning parameter ρ.

The first example is a fishery harvesting problem that was orig-
inally presented in Clark’s37 and later restated in Lenhart and
Workman’s.12 The fishery problem consists of one state variable
and one control variable, where the state variable represents the fish
population and the control variable represents harvesting effort. In
Lenhart and Workman,12 an explicit formula for the singular case
is obtained by using Pontryagin’s Maximum Principle10; however,
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forward–backward sweep is unable to solve for the problem when-
ever parameters are set to ensure existence of a singular subarc.

The second example is from King and Roughgarden’s work,8 and
the optimal control problem is a resource allocation model for study-
ing an annual plant’s allocation procedure in distributing photosyn-
thate. The control problem consists of two state variables and one
control variable. One variable measures the weight of the compo-
nents of a plant that correspond to vegetative growth, while the other
variable measures the weight of the components of a plant that corre-
spond to reproductive growth. The control variable used in this prob-
lem represents the fraction of photosynthate being reserved for veg-
etative growth. King and Roughgarden use Pontryagin’s Maximum
Principle10 and find conditions based upon the parameters of the
problem for determining when the optimal control would be bang–
bang or concatenations of singular and bang control. They verify
that their explicit formula for the singular subarc satisfies the gener-
alized Legendre–Clebsch Condition and the strengthened Legendre–
Clebsch Condition.21–24 Additionally, King and Roughgarden use one
of MacDanell and Power’s Junction theorems21 to show the optimal
control to the problem satisfies the necessary conditions for joining
singular and non-singular subarcs. When using PASA to solve for
this plant problem, we only need to use the regularization term for
a degenerate case of the problem.

The final example, which is from Ledzewicz, Aghaee, and
Schättler’s,17 is an optimal control problem where the three state
variables correspond to an SIR model with demography. An SIR
model is a compartmental model that is used for modeling the spread
of an infectious disease in a population, where the population is
divided into the following three classes: (1) S is the class of individ-
uals who are susceptible to the disease; (2) I is the class of infected
individuals who are assumed to be infectious; and (3) R is the class
of individuals who have recovered from the disease and are consid-
ered immune to the disease. For books covering mathematical mod-
els for epidemiology, we recommend Brauer and Castillo-Chavez’s38

and Martcheva’s.39 The optimal control problem used in Ledzewicz
et al.17 consists of two control variables where one control represents
vaccination while the other represents treatment. Ledzewicz et al.
numerically solve this problem with parameters set to where a sin-
gular subarc is present in the optimal vaccination strategy while the
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optimal treatment strategy obtained appears to be bang-bang. When
using PASA, we regularize only the vaccination control via bounded
variation since the treatment control contains no oscillations. In the
Appendix section, we provide the MATLAB code that was used for
solving the last example to illustrate how to write up these optimal
control problems.

9.2 Discretization of the Regularized Control Problem

via Bounded Variation

The following problem is the optimal control problem of interest:

min
u∈A

J(u) =
� T

0 g(x(t),u(t))dt

sub. to ẋi(t) = fi(x(t),u(t)) for all i = 1, . . . , n,

xi(0) = xi,0, for all i = 1, . . . , n,

ξj ≤ uj(t) ≤ ωj for all t ∈ [0, T ] and for all j = 1, . . . ,m,

(9.1)

where functions f1, . . . , fn, and g are assumed to be continuously
differentiable in all arguments. In addition, we assume that if any of
the m control variables ui appear in functions f1, . . . , fn and g, then
ui appears linearly. The class of admissible controls is the following:

A = {u ∈ (L1(0, T ))m|ξ ≤ u(t) ≤ ω for all t ∈ [0, T ]}.

We assume that the conditions for the Filippov–Cesari Existence
Theorem9 hold for problem (9.1). State vector x ∈ R

n consists of n
state variables that satisfy the state equations and the initial condi-
tions given in problem (9.1).

The common procedure for solving problem (9.1) is employing
Pontryagin’s Maximum Principle10 to generate the first-order neces-
sary conditions for optimality. We first define the Hamiltonian func-
tion to problem (9.1), H(x,u,λ), as

H(x,u,λ) = g(x,u) + λTf(x,u)

= g(x,u) +
n
�

i=0

λi(t)fi(x,u),
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where λ ∈ R
n is the adjoint vector and the superscript T means

transpose. We have from Pontryagin’s Maximum Principle10 that if
u∗ is the optimal control to problem (9.1) with corresponding tra-
jectory x∗, then there exists a non-zero adjoint vector λ∗ that is a
solution to the following adjoint system:

λ̇�(t) = −
∂H(x,u,λ)

∂x�
, for all � = 1, . . . , n,

λ�(T ) = 0, for all � = 1, . . . , n,

and satisfies

H(u∗,x∗,λ∗) = min
u∈A

H(u,x∗,λ∗).

Using our definition of the Hamiltonian function, the adjoint equa-
tions are

λ̇�(t) = −
∂g(x,u)

∂x�
−

n
�

i=1

λi(t)
∂fi(x,u)

∂x�
for all � = 1, . . . , n,

(9.2)

with transversality conditions being

λ�(T ) = 0, for all � = 1, . . . , n. (9.3)

Based on assumptions of functions g and f1, . . . , fn in problem (9.1),
the Hamiltonian is linear in the control.

For demonstration purposes, we assume that every component of
control vector u in problem (9.1) needs to be regularized via bounded
variation.30 This means that when numerically solving problem (9.1)
without this regularization term, we obtain oscillatory numerical arti-
facts or other unwarranted numerical artifacts in each control. To
regularize problem (9.1) via bounded variation, we introduce a tun-
ing vector ρ where 0 ≤ ρj < 1 for all j = 1, . . . ,m, and we present
Conway’s40 definition of the total variation function V of a real or
complex valued function u that is defined on the interval [a, b]. Let K
be the field of complex numbers or the field of real numbers. Given
u : [a, b] → K, the total variation of u on [a, b] is defined to be

V (u) = sup
P

NP−1
�

k=0

|u(tk+1)− u(tk)|,
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where P = {P = {t0, t1, . . . , tNP
} : a ≤ t0 ≤ t1 ≤ · · · ≤ tNp ≤ b}.

Note that if we assume that function u is real-valued and piecewise
constant on [a, b], then the total variation of u on [a, b] is the sum of
the absolute value of the jumps in u.

The regularization of problem (9.1) via bounded variation is

min
u∈A

Jρ(u) =
� T

0 g(x(t)u(t))dt+
m
�

j=1
ρjV (uj)

sub.to ẋi(t) = fi(x(t),u(t)), for all i = 1, . . . , n,

xi(0) = xi,0, for all i = 1, . . . , n,

ξj ≤ uj(t) ≤ ωj for all t ∈ [0, T ] and for all j = 1, . . . ,m,

(9.4)

where V (uj) is the total variation of uj on interval [0, T ] and 0 ≤
ρj < 1 is the bounded variation penalty parameter associated with
control variable uj for all j = 1, . . . ,m. For this problem, we assume
that all control variables need to be penalized. However, if (based
upon observations of the numerical solutions for the unregularized
problem (9.1)) we notice that one of the control variables u� exhibits
no numerical artifacts or unusual oscillations, then we recommend
solving problem (9.4) with the corresponding tuning parameter ρ�
set to being zero. We can construct the Hamiltonian function that
corresponds to problem (9.4), and the Hamiltonian gives the same
adjoint equations (9.2) and transversality conditions (9.3).

For using PASA to numerically solve the regularized problem,
we need to discretize problem (9.4) and discretize the adjoint equa-
tions (9.2). We present the method of discretizing the regularized
problem only, but we emphasize that we can use PASA to solve
the discretized unpenalized problem by numerically solving the dis-
cretized regularized problem when the vector ρ is set to being the
zero vector. We begin by partitioning time interval [0, T ], by using
N+1 equally spaced nodes. For all i = 1, . . . , n and k = 0, . . . , N , we
denote xi,k = xi(tk), and we emphasize that component xi,0 is the
initial value given in problem (9.4). So for each i = 1, . . . , n, we have
that xi ∈ R

N+1 with xi,0 being the initial value given. We assume
that for all j = 1, . . . ,m, control variable uj is constant over each
mesh interval. For all j = 1, . . . ,m and k = 0, . . . , N − 2, we denote
uj,k = uj(t) for all tk ≤ t < tk+1, and for all j = 1, . . . ,m, we denote
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uj,N−1 = uj(t) for all tN−1 ≤ t ≤ tN = T . So for each j = 1, . . . ,m
we have that uj ∈ R

N . The assumption of each control variable uj
being constant on each mesh interval allows us to express the total
variation of uj on [0, T ] in terms of the particular partition of [0, T ]
that is used for the discretization:

V (uj) =

N−2
�

k=0

|uj,k+1 − uj,k|.

For simplicity of discussion, we use left-rectangular integral
approximation to discretize the integral used in objective functional
Jρ, and we use forward Euler’s method to discretize the state equa-
tions given in problem (9.4). In general, we recommend using an
explicit scheme for discretizing the state equations if the dynamics
of the system have only initial conditions involved. We then have the
following:

min Jρ(u1, . . . ,um)

=
N−1
�

k=0

hg(x
·,k,u·,k) +

m
�

j=1
ρj

N−2
�

k=0

|uj,k+1 − uj,k|

xi,k+1 = xi,k + hfi(x·,k,u·,k) for all i = 1, . . . , n and

k = 0, . . . , N − 1,

ξj ≤uj,k ≤ωj , for all j=1, . . . ,m and k=0, . . . , N − 1,

(9.5)

where h = T
N

is the mesh size, x
·,k = [x1,k, x2,k, . . . , xn,k], and u

·,k =
[u1,k, u2,k, . . . , um,k] for all k = 0, . . . , N − 1.

Since PASA consists of a phase that uses a projected gradient
method, we need the objective function in problem (9.5) to be differ-
entiable, which is not the case due to the absolute value terms that
correspond to the discretization of the total variation function. We
need to perform a decomposition of each absolute value term so that
Jρ can be differentiable. For each j = 1, . . . ,m, we introduce two
N − 1 dimensional vectors ζj and ιj whose entries are non-negative,
and every entry of ζj and ιj is defined as

|uj,k+1 − uj,k| = ζj,k + ιj,k for all k = 0, . . . , N − 2.



April 20, 2023 20:14 Computational and Mathematical Population. . . 9in x 6in b4918-ch09 FA7 page 330

330 S. Atkins et al.

Another way of viewing ζj and ιj, is that each component ζj,k and
ιj,k will be defined based upon the following conditions:

Condition 1 : If uj,k+1 − uj,k > 0, then

ζj,k = uj,k+1 − uj,k and ιj,k = 0,

Condition 2 : If uj,k+1 − uj,k ≤ 0, then

ζj,k = 0 and ιj,k = −(uj,k+1 − uj,k).

Employing this decomposition to problem (9.5) yields

min Jρ(u1, ζ1, . . . ,um, ζm, ιm)

=
N−1
�

k=0

hg(x·,k,u·,k) +
m
�

j=1

�

ρj
N−2
�

k=0

(ζj,k + ιj,k)

�

xi,k+1 = xi,k + hfi(x·,k,u·,k), for all i = 1, . . . , n and

k = 0, . . . , N − 1,

ξj ≤ uj,k ≤ ωj, for all j = 1, . . . ,m and k = 0, . . . , N − 1,

uj,k+1 − uj,k = ζj,k − ιj,k, for all j = 1, . . . ,m and

k = 0, . . . , N − 2,

0 ≤ ζj , 0 ≤ ιj for all j = 1, . . . ,m. (9.6)

For the above problem, we are now minimizing Jρ with respect to vec-
tors u1, ζ1, ι1, . . . ,um, ζm, and ιm. The constraints associated with
each ζj and ιj , are constraints that PASA can interpret. For all
j = 1, . . . ,m, the equality constraints associated with each ζj and ιj
in problem (9.6) are linear and can be expressed as

�

Aj −IN−1 IN−1

�

⎡

⎣

uj

ζj
ιj

⎤

⎦ = 0,

where IN−1 is the identity matrix of dimension N − 1, 0 is an N − 1
dimensional all zeros vector, and Aj is an N−1 by N matrix defined
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as

Aj =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−1 1 0 · · · 0

0
. . .

. . .
. . .

...

...
. . .

. . .
. . . 0

0 · · · 0 −1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (9.7)

Moreover, the equality constraints of the decomposition vectors given
in problem (9.6) can be written as

�

A1 −IN−1 IN−1 · · · Aj −IN−1 IN−1 · · · Am −IN−1 IN−1

�

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u1

ζ1
ι1
...
uj

ζj
ιj
...

um

ζm
ιm

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0,

where Aj is defined as (9.7) for all j = 1, . . . ,m and 0 ∈ R
N−1.

From problem (9.6), we wish to find the gradient of Jρ
with respect to u1, ζ1, ι1, . . . ,um, ζm, and ιm. We compute the
gradient of the Lagrangian of problem (9.6) with respect to
u1, ζ1, ι1, . . . ,um, ζm, and ιm to find ∇Jρ. This is necessary because
based upon problem (9.6), state variables x1, . . . ,xn can be viewed
as functions of u1, . . . ,um. So when computing the gradient of Jρ
with respect to u1, ζ1, ι1, . . . ,um, ζm, and ιm, we should consider
that vectors x1, . . . ,xm depend on the controls.

The discretized problem can be put in the following general form
for which the technique of using the Lagrangian to compute the gra-
dient of a cost functional can be used:

min G(x,u)

F (x,u) = 0,
(9.8)
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where u ∈ R
m, x ∈ R

n, G : Rn × R
m → R, and F : Rn × R

m → R
n

are differentiable; moreover, it is assumed in problem (9.8) that we
can uniquely solve for x in term of u. Based on these assumptions,
we can rewrite problem (9.8) as

min J (u) = G(x(u),u)

F (x(u),u) = 0,
(9.9)

where x = x(u) denotes the unique solution of F (x,u) = 0 for a
given u ∈ R

m. The following result can be deduced from the implicit
function theorem and the chain rule (see Ref. [41, Remark 3.2],
Ref. [42]):

Theorem 9.1. If the Jacobian ∇xF (x,u) is invertible for each u ∈
R
m and x = x(u), then for each u ∈ R

m the gradient of J in
problem (9.9) is

∇uJ (u) = ∇uL(x,u,λ)|x=x(u)
, (9.10)

where L : Rn × R
m × R

n → R is the Lagrangian of problem (9.9),

L(x,u,λ) = G(x,u) + λTF (x,u),

and λ is chosen such that

∇xL(x,u,λ) = ∇xG(x,u) + λT∇xF (x,u) = 0. (9.11)

Before computing the Lagrangian to problem (9.6), we rewrite the
state equations accordingly:

− xi,k+1 + xi,k + hfi(x·,k,u·,k) = 0,

for all i = 1, . . . , n and k = 0, . . . , N − 1.

The Lagrangian to problem (9.6) is then

L(u1, ζ1, . . . ,um, ζm, ιm)

=

N−1
�

k=0

hg(x
·,k,u·,k) +

m
�

j=1

ρj

N−2
�

k=0

(ζj,k + ιj,k)

+

n
�

i=1

N−1
�

k=0

λi,k(−xi,k+1 + xi,k + hfi(x·,k,u·,k)), (9.12)
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where λ1, . . . ,λn ∈ R
N−1 are the Lagrange multiplier vectors. For

all j = 1, . . . ,m and for all k = 0, . . . , N − 1, we compute the partial
derivative of L with respect to uj,k and obtain

∂

∂uj,k
L = h

∂

∂uj,k
g(x

·,k,u·,k) +

n
�

i=1

λi,k

�

h
∂

∂uj,k
fi(x·,k,u·,k)

�

.

For all j = 1, . . . ,m, we have that

∇uj
L = h

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂g(x
·,0,u·,0)

∂uj,0
+

n
�

i=1
λi,0

�

∂fi(x·,0,u·,0)
∂uj,0

�

...

∂g(x
·,k,u·,k)

∂uj,k
+

n
�

i=1
λi,k

�

∂fi(x·,k,u·,k)
∂uj,k

�

...

∂g(x
·,N−1,u·,N−1)

∂uj,N−1
+

n
�

i=1
λi,N−1

�

∂fi(x·,N−1,u·,N−1)
∂uj,N−1

�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9.13)

where ∇uj
L ∈ R

N . For all j = 1, . . . ,m and for all k = 0, . . . , N −2,
we compute the partial derivative of L with respect to ζj,k and the
partial derivative of L with respect to ιj,k, as follows:

∂

∂ζj,k
L = ρj,

∂

∂ιj,k
L = ρj.

We can then say for all j = 1, . . . ,m that

∇ζj
L =

⎡

⎢

⎢

⎣

ρj
...

ρj

⎤

⎥

⎥

⎦

, (9.14)
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and

∇ιjL =

⎡

⎢

⎢

⎣

ρj
...

ρj

⎤

⎥

⎥

⎦

(9.15)

where ∇ζj
L ∈ R

N−2 and ∇ιjL ∈ R
N−2. By Theorem 9.1, provided

that Lagrange multiplier vectors λ1, . . . ,λn satisfy theorem condition
(9.11), we have that

∇J = ∇L =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∇u1
L

∇ζ
1
L

∇ι1L

...
∇uk

L

∇ζk
L

∇ιkL

...
∇umL

∇ζm
L

∇ιmL

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9.16)

where entries of ∇L are defined in equations (9.13)–(9.15). Conve-
niently, our method of finding vectors λ1, . . . ,λn that satisfy condi-
tion (9.11) produces a discretization of the adjoint equations (9.2).
For all i = 1, . . . , n and for k = 1, . . . , N − 1, we compute the partial
derivative of L with respect to xi,k, as follows:

∂L

∂xi,k
= h

∂g(x
·,k,u·,k)

∂xi,k
− λi,k−1 + λi,k +

n
�

�=1

λ�,k

�

h
∂f�(x·,k,u·,k)

∂xi,k

�

.

Additionally, we have that

∂L

∂xi,N
= −λi,N−1.
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We did not take the partial derivative of L with respect to xi,0 since
xi,0 is a known value for all i = 1, . . . , n.

To satisfy theorem condition (9.11), we set ∂
∂xi,k

L equal to zero

for all i = 1, . . . , n and k = 1, . . . , N, and solve for λi,k−1. We obtain
the following for all i = 1, . . . , n:

λi,k−1 = h
∂g(x

·,k,u·,k)

∂xi,k
+ λi,k +

n
�

�=1

λ�,k

�

h
∂f�(x·,k,u·,k)

∂xi,k

�

(9.17)

for k = 1, . . . , N − 1, and

λi,N−1 = 0. (9.18)

The above equations not only allow us to use the gradient of the
Lagrangian of problem (9.5) to find the gradient of Jρ, but also give
us a discretization for adjoint equations (9.2). Additionally, for all
i = 1, . . . , n, equation (9.18) is analogous to the transversality con-
dition given in (9.3).

9.3 Example 1: The Fishery Problem

In this section, we focus on a basic resource model on harvesting,
which was first presented in Clark’s.37 We present the fishery prob-
lem as stated in Lenhart and Workman [12, Example 17.4], where a
logistic growth function is utilized within the fishery model.

max
u∈A

J(u) =
� T

0 (pqx(t)− c)u(t) dt

sub.to x�(t) = x(t)(1 − x(t))− qu(t)x(t),

x(0) = x0 > 0,

0 ≤ u(t) ≤ M

(9.19)

In problem (9.19), u(t) is the control variable that measures the
effort put into harvesting fish at time t, and x(t) measures the total
population of fish at time t. We are assuming that there is a maximum
harvesting rate, M . Parameter q represents the “catchability” of a
fish and parameter c represents the cost of harvesting one unit of
fish. Parameter p is the selling price for one unit of harvested fish.
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The objective functional J is constructed to represent the total profit,
revenue less cost, of harvesting fish over time interval [0, T ]. The set
of admissible controls, A, for problem (9.19) is

A = {u ∈ L1(0, T ) : for all t ∈ [0, T ], u(t) ∈ A, A = [0,M ]}.

Existence of an optimal control for problem (9.19) follows from the
Filippov–Cesari Existence Theorem.9

According to Lenhart and Workman,12 the standard forward–
backward sweep method does not converge if parameters in problem
(9.19) are set to where the optimal control u∗ contains a singular
region. In this section, we present an explicit formula for the singu-
lar case, which is obtained via Pontryagin’s Maximum Principle,10

and we show that the singular case satisfies the generalized Legendre–
Clebsch Condition.21–24 Additionally, we present a set of assumptions
on the parameters to the problem in order to obtain an optimal har-
vesting strategy that begins singular and switches to the maximum
harvesting rate. For this scenario, an explicit formula for the switch-
ing point is obtained. With parameters set to meet those particular
assumptions, we use the explicit solution to problem (9.19) to test
PASA’s accuracy in solving for the regularized problem for varying
values of the tuning parameter. We also discuss how to discretize for
both the fishery problem and the regularized version of the problem
in which a bounded variation regularization term is applied. And
finally, we present some empirical evidence for convergence between
the numerical solution obtained by PASA for the regularized fishery
problem and the exact solution to the fishery problem.

9.3.1 Explicitly solving the fishery problem

Lenhart and Workman demonstrate a method of using Pontryagin’s
Maximum Principle10, 12 and properties of the switching function to
solve for the singular case to problem (9.19). Lenhart and Workman
also discuss conditions for existence of a singular case. Since we use a
numerical solver that is used for solving minimization problems, we
provide an analytical solution to the minimization problem that is
equivalent to problem (9.19). The equivalent minimization problem is
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obtained by negating the objective functional J(u) in problem (9.19):

min
u

J(u) =
� T

0 −(pqx(t)− c)u(t)dt

sub. to x�(t) = x(t)(1 − x(t))− qu(t)x(t),

x(0) = x0 > 0,

0 ≤ u(t) ≤ M.

(9.20)

Our procedure for solving problem (9.20) is analogous to what
is used in Lenhart and Workman.12 We use Pontryagin’s Maximum
Principle10 to solve problem (9.20). The Hamiltonian for the above
problem is

H(x, u,λ) = (c− pqx)u+ λ(x− x2 − qux), (9.21)

where λ is the adjoint variable. By taking the partial derivative of the
Hamiltonian with respect to state variable x, we obtain the adjoint
equation associated with adjoint variable λ, which is

λ�(t) = −
∂H

∂x
= pqu− λ+ 2λx+ qλu (9.22)

with the transversality condition being

λ(T ) = 0. (9.23)

We also use the Hamiltonian given in (9.21) to compute the switching
function corresponding to problem (9.20)

ψ(t) =
∂H

∂u
= c− pqx(t)− qλ(t)x(t). (9.24)

Based on Pontryagin’s Maximum Principle,10 if there exists an
optimal pair (u∗, x∗) for problem (9.20), then there exists λ∗, sat-
isfying adjoint equation (9.22) and terminal condition (9.23), where
H(x∗, u∗,λ∗) ≤ H(x∗, u,λ∗) for all admissible controls u. Addition-
ally, if u∗ is the optimal control, then u∗ must have the following
form:

u∗(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 whenever ψ(t) > 0,

singular whenever ψ(t) = 0,

M whenever ψ(t) < 0.

(9.25)
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To solve for the singular case we suppose ψ(t) ≡ 0 on some subinter-
val I ⊂ [0, T ]. Assuming that parameter c > 0, then we have from
the switching function given in (9.24) that both x and pq + qλ are
nonzero on interval I. By setting the ψ equal to zero and solving for
λ, we have that

λ∗(t) =
c− pqx(t)

qx(t)
(9.26)

on the interval I. We differentiate equation (9.26) and use the state
equation given in problem (9.20) to obtain the following:

λ�(t) = −
c

qx2
(x(1 − x)− qux)

= −
c

qx
+

c

q
+

cu

x
. (9.27)

We rewrite equation (9.22) by using expression (9.26), and we get

λ�(t) = −
c

qx
+ p+

2c

q
− 2px+

cu

x
. (9.28)

Equating expressions (9.27) and (9.28) gives a solution for x on the
singular interval which is

x∗(t) =
c+ pq

2pq
.

Since x∗ is constant on I, we have that x�(t) = 0 on I. We use the
singular solution for x∗ and set the state equation found in problem
(9.20) equal to zero to solve for u∗. On the interval I, we have that

0 = x�(t) = x∗(1− x∗)− qux∗

u∗(t) =
1− x∗

q

u∗(t) =
pq − c

2pq2
.

Additionally, x∗ being constant on the singular region and expression
(9.26) would imply that λ∗ is also constant on the singular region
with constant value being as follows:

λ∗(t) =
p(c− pq)

c+ pq
.
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By substituting in the constant solutions for u∗, x∗, and λ∗ into
adjoint equation (9.22), we have that the right-hand side of the
adjoint equation is zero, as desired. To conclude, we find that if a
singular region, I, exists, then u∗, x∗, and λ∗ are all constant on I,
where

u∗ =
pq − c

2pq2
, x∗ =

c+ pq

2pq
, λ∗ =

p(c− pq)

c+ pq
. (9.29)

We wish to show that the singular case solution satisfies the
second-order necessary condition of optimality, which is referred to
as the generalized Legendre–Clebsch Condition 21, 22 or Kelley’s con-
dition.23, 24, 43 Before showing that the singular cases given in (9.29)
satisfy the Legendre–Clebsch Condition and/or Kelley’s condition,
we present some parameter assumptions on problem (9.20).

Assumption 9.1. Parameters p, c,M, q > 0 are set to satisfy 0 <
pq − c < 2pq2M .

Assumption 9.2. Initial value x0 is set to equal c+pq
2pq , which is the

constant value that is associated to the state solution corresponding
to singular u∗.

Note that Assumption 9.1 implies that the singular case solution
u∗ satisfies the bounded constraints that are assumed on the control.
Assumption 9.2 dynamically forces the problem to yield an opti-
mal control that begins singular. The generalized Legendre–Clebsch
Condition involves finding what is called the order of a singular arc,

which is defined as being the integer q such that ( d2q

dt2q
∂H
∂u

) is the low-
est order total derivative of the partial derivative of the Hamiltonian
with respect to u, in which control u appears explicitly. We use the
state equations given in problem (9.20) and the adjoint equations
given in (9.22) to find the first and second time derivative of the
switching function (9.24):

d

dt
ψ = pq(x2 − x)− qλx2,

d2

dt2
ψ = pq(2x− 1)(x − x2)− qλx2 + [pq2x+ q2λx2 − 3pq2x2]u.

(9.30)
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From above, we have that the order of the singular arc is q = 1.
We need to show that if u∗ is an optimal singular control on some
interval of order q, then it is necessary that

(−1)q
∂

∂u

�

d2

dt2

�

∂H

∂u

��
�

�

�

�

x=x∗,λ=λ∗

≥ 0. (9.31)

We take the partial derivative of (9.30) with respect to u and evaluate
at the corresponding singular case solutions for x and λ given in
(9.29):

∂

∂u

�

d2

dt2

�

∂H

∂u

��
�

�

�

�

x= c+pq

2pq
,λ= p(c−pq)

2pq2

=
q(c+ pq)

2
−

3(c+ pq)2

4p
−

(pq − c)(c + pq)2

8p2q2
.

Note that the term (pq−c)(c+pq)2

8p2q2 is positive by Assumption 9.1. Using

algebra, we combine the first two terms in the above equation to
obtain

∂

∂u

�

d2

dt2

�

∂H

∂u

���

�

�

�

x= c+pq

2pq
,λ= p(c−pq)

2pq2

= −
3c2

4p
− cq −

pq2

4
−

(pq − c)(c + pq)2

8p2q2
< 0.

By multiplying the above inequality by (−1)q where q = 1, we then
have the second-order necessary condition of optimality (9.31) being
satisfied.

Note that only Assumption 9.1 is needed in proving that the sin-
gular case satisfies the Legendre–Clebsch condition; however, we can
use both assumptions to obtain a control that begins singular and
switches to the maximum harvesting rate, where an explicit formula
for the switching point can be obtained. This particular scenario for
problem (9.20) makes it an excellent candidate problem to use for
testing PASA’s accuracy in solving the regularized variant of this
problem. We first verify Assumptions 9.1 and 9.2 imply that u∗ is not
singular on the entire time interval [0, T ]. By using the transversal-
ity condition, λ(T ) = 0, we recognize that the singular case solution
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for λ given in (9.26) is 0 if and only if parameters are set to either
satisfy p = 0 or c − pq = 0, and Assumption 9.1 ensures that both
cases are not possible. Let 0 < t∗ < T be the time when u∗ switches
from being singular to non-singular, and let I = [0, t∗) be the interval
corresponding to when the optimal control u∗ is singular.

By looking at the objective functional for problem (9.20), intuition
tells us that u∗ 
= 0 on [t∗, T ], and we can prove this by using proof
by contradiction. Assume that

u∗(t) =

⎧

⎨

⎩

pq − c

2pq2
0 ≤ t < t∗

0 t∗ ≤ t ≤ T

is the optimal control to problem (9.20). Consider the following
admissible control v̂ where v̂ is singular over the entire interval, i.e.,

v̂(t) =
pq − c

2pq2
for all t ∈ [0, T ].

By assumption of u∗ being optimal for problem (9.20), we have
J(v̂) ≥ J(u∗). Since v̂ = u∗ on the interval [0, t∗] and u∗ ≡ 0 on
interval [t∗, T ], we obtain the following:

J(v̂) = J(u∗)−

� T

t∗
((pqxv̂(t)− c)v̂(t))dt,

where xv̂(t) is the corresponding solution to the state equation given
in problem (9.20). A contradiction is obtained if we can show that
pqxv̂ − c > 0 for all t ∈ [t∗, T ] because the following implies J(v̂) ≤
J(u∗). Since v̂ is singular on the interval [t∗, T ], we have that xv̂ is the
corresponding singular case solution given in (9.29). We then have
that

pqxv̂ − c = pq

�

c+ pq

2pq

�

− c

=
1

2
(pq − c)

> 0,

where the above inequality holds by Assumption 9.1. Therefore, we
have our contradiction.
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It then follows by Pontryagin’s Maximum Principle that the opti-
mal harvesting policy for problem (9.20) with parameters set to sat-
isfy Assumptions 9.1 and 9.2 is a control that begins singular and
switches once to the maximal harvesting effort, meaning u∗ ≡ M on
the interval I = [t∗, T ]. We can find an explicit expression for t∗.
Assume that u∗(t) = M for all t ∈ [t∗, T ], then the adjoint equation
(9.22) becomes

λ�(t) = pqM − λ+ 2λx+ qλM. (9.32)

Now, λ is continuous at t∗. Hence,

λ(t∗) = lim
t→t∗

−

λ(t) =
p(c− pq)

c+ pc
,

which is the solution for equation (9.22) when u is singular. We can
then solve for equation (9.32) to where λ must satisfy the terminal
condition, λ(T ) = 0, and the condition that

λ(t∗) =
p(c− pq)

c+ pc
.

This condition allows us to obtain an explicit solution for t∗.When
solving differential equation (9.32), we use a standard method that
is used in solving linear differential equations. We rewrite (9.32) as

λ�(t) + λ(t)(α − 2x(t)) = pqM, (9.33)

where α = 1− qM . We let v(t) be the appropriate integrating factor,
which is defined as

v(t) = e
� t

t∗
(α−2x(τ))dτ . (9.34)

Multiplying v(t) to both sides of Eqs. (9.33), integrating over the
interval (t∗, t), and rearranging terms yields

λ(t) =
1

v(t)

�

v(t∗)λ(t∗) + pqM

� t

t∗
v(τ)dτ

�

. (9.35)

Now in order to evaluate v(t) and
� t

t∗
v(τ)dτ , we need an explicit

solution for x(t) over the interval [t∗, T ].
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Given that u∗(t) = M for all t ∈ [t∗, T ], the state equation given
in problem (9.20) over the specified interval becomes

dx

dt
= x(1− x)− qMx, (9.36)

which is separable. To solve the above equation, we separate variables
x and t

dx

x(α− x)
= dt,

where α = 1− qM . We perform a partial fraction decomposition on
the left-hand side of the above equation, integrate both sides, and
exponentiate to obtain the following:

x

|α− x|
= Keαt, (9.37)

whereK is some constant. We have that state variable x is continuous
at switching point t∗. By continuity and Assumption 9.2 we have

x∗(t∗) = lim
t→t∗

−

x∗(t) = x0 =
c+ pq

2pq
,

which is the state solution value associated with the singular case.
We can use the above equality to solve for constant value K found
in Eq. (9.37). Evaluating Eq. (9.37) at t = t∗ yields the following:

K =
x0e

−αt∗

|α− x0|
=

(c+ pq)e−αt∗

γ
, (9.38)

where γ = |2αpq−c−pq|. We obtain an explicit solution of Eq. (9.36),
by rewriting Eq. (9.37) as

x

α− x
= K̂eαt where K̂ =

�

K α− x ≥ 0,

−K α− x < 0
.

Solving for the above equation yields

x(t) =
αK̂eαt

1 + K̂eαt
for t ∈ [t∗, T ]. (9.39)

Note that the value of K̂ seems to depend on the sign of α − x(t).
However, we can use continuity of x and the structure of the solutions
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for x on [t∗, T ] to show that the value of K̂ only depends on the sign
of α− x0. But first, we prove the following:

Proposition 9.1. Assumptions 9.1 and 9.2 imply α−x0 < 0 where
α = 1− qM .

Proof. By Assumption 9.1, parameters c, p, q,M > 0 are chosen to
satisfy 0 < pq − c and pq − c < 2pq2M . Dividing both sides of the
second inequality by 2pq yields

pq − c

2pq
< qM.

Negating the inequality and adding one to both sides yields

α < 1 +
c− pq

2pq
=

c+ pq

2pq
,

and the right-hand side of the inequality is x0, by Assumption 9.2.
Therefore, we have α− x0 < 0.

Recall that by Assumption 9.2 and Eqs. (9.29) and (9.39), we
have the following solution for the state variable:

x(t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x0 =
c+ pq

2pq
0 ≤ t ≤ t∗

αK̂eαt

1 + K̂eαt
t∗ ≤ t ≤ T

, (9.40)

where the sign of K̂ is determined by the sign α − x(t). Since x is
continuous on the entire time interval and since x is constant on
the singular region, we have that x(t∗) = x0. Hence, at t = t∗, K̂
is determined by α − x(t∗) = α − x0. Differentiating x(t) along the
non-singular region yields

x�(t) =
α2K̂eαt

(1 + K̂eαt)2
,

which is either strictly positive or strictly negative based upon the
sign of K̂. Since K̂ is negative at t = t∗, there is some open interval
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containing t∗ such that the function x is a non-increasing function.
Note also

lim
t→∞

αK̂eαt

1 + K̂eαt
= α,

so this function has a horizontal asymptote being xhor = α on the
tx-plane. This implies that x(t) given in (9.40) remains above the
horizontal asymptote on the interval [t∗, T ] even though the func-
tion is non-increasing on (t∗, T ). In conclusion, the sign of α − x0
determines the structure of x(t) on the non-singular region. Using
Proposition 9.1 and Eq. (9.40) we then conclude x(t) is of the fol-
lowing form:

x(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x0 =
c+ pq

2pq
0 ≤ t ≤ t∗

αKeαt

−1 +Keαt
t∗ ≤ t ≤ T

,

where K is defined on Eq. (9.38). We now use the explicit solution
for variable x(t) to evaluate v(t) given in (9.34) as follows:

v(t) = exp

�

α(t− t∗)− 2

� t

t∗

αKeατ

−1 +Keατ
dτ

�

.

We use a u-substitution to evaluate the integral term in v. After
applying some logarithm rules, we obtain the following:

v(t) =

�

−1 +Keαt
∗

−1 +Keαt

�2

eα(t−t∗). (9.41)

To evaluate
� t

t∗
v(τ)dτ , we need to use a u-substitution method.

Let σ(τ) = −1+Keατ , then
� t

t∗
v(τ)dτ with v given in (9.41) becomes

� t

t∗
v(τ)dτ =

� t

t∗

�

−1 +Keαt
∗

−1 +Keατ

�2

eα(τ−t∗)dτ

=

� σ(t)

σ(t∗)

(−1 +Keαt
∗

)2e−αt∗

αKσ2
dσ

=
(−1 +Keαt

∗

)2

αK
e−αt∗

�

1

−1 +Keαt∗
−

1

−1 +Keαt

�
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=
e−αt∗(−1 +Keαt

∗

)

αK

�

1−
−1 +Keαt

∗

−1 +Keαt

�

=
e−αt∗(−1 +Keαt

∗

)

α(−1 +Keαt)

�

eαt − eαt
∗

�

� t

t∗
v(τ)dτ =

(−1 +Keαt
∗

)

α(−1 +Keαt)

�

eα(t−t∗) − 1
�

.

Now we use equation (9.35) to evaluate λ(t) as follows:

λ(t) =

�

−1 +Keαt

−1 +Keαt∗

�2

eα(t
∗−t)f(t). (9.42)

where

f(t) =
p(c− pq)

c+ pq
+

pqM

α

�

−1 +Keαt
∗

−1 +Keαt

�

�

eα(t−t∗) − 1
�

To find t∗, we set λ(T ) = 0 and solve for t∗. Note that the term
−1 + Keαt used in Eq. (9.42) must be non-zero for all t ∈ [t∗, T ],
otherwise the state variable solution given in Eq. (9.39) is not defined
for all t ∈ [t∗, T ]. Using −1+Keαt for all t ∈ [t∗, T ] with t∗ < T allows
us to conclude that λ(T ) = 0 if and only if f(T ) = 0. Consequently,
for finding t∗ we set f(T ) = 0 and solve for t∗.

0 = f(T )

0 =
c− pq

c+ pq
+

qM

α

�

−1 +Keαt
∗

−1 +KeαT

�

�

eα(T−t∗) − 1
�

We multiply both sides of the above equation by α(c+pq)(−1+KeαT )
to obtain

0 = α(c−pq)(−1+KeαT )+qM(c+pq)(−1+Keαt
∗

)
�

eα(T−t∗) − 1
�

.

Substituting the value for K given in (9.38) into the above equation
and multiplying everything by γ yields

0 = α(c − pq)
�

−γ + (c+ pq)eα(T−t∗)
�

+ qM(c+ pq)[−γ + (c+ pq)]
�

eα(T−t∗) − 1
�

.
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We rearrange terms from the above equation to isolate expression
eα(T−t∗)

eα(T−t∗) =
γα(c − pq) + qM(c+ pq)(−γ + (c+ pq))

(c+ pq)[α(c− pq) + qM(−γ + (c+ pq))]
.

We take the natural logarithm of both sides of the above equation
and rearrange terms to find that

t∗ = T −
1

α
ln

�

γα(c− pq) + qM(c+ pq)(−γ + (c+ pq))

(c+ pq)[α(c − pq) + qM(−γ + (c+ pq))]

�

,

where α = 1 − qM and γ = |pq − c − 2pq2M |. We simplify t∗ more
by substituting in α = 1− qM into the above expression:

t∗ = T −
1

1− qM
ln

�

−γ(pq − c)− 2γcqM + qM(c+ pq)2

(c+ pq)[(c− pq) + 2pq2M − γqM ]

�

. (9.43)

To summarize, Assumptions 9.1 and 9.2 imply that the optimal
control u∗ to problem (9.20) must begin singular and switch once to
the non-singular case where u∗ ≡ M on [t∗, T ] with t∗ given in (9.43).
Additionally, the solutions for u∗, x∗, and λ∗ are the following:

u∗(t) =

⎧

⎪

⎨

⎪

⎩

pq − c

2pq2
0 ≤ t < t∗,

M t∗ ≤ t ≤ T,

(9.44)

x∗(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c+ pq

2pq
0 ≤ t ≤ t∗,

αKeαt

−1 +Keαt
t∗ ≤ t ≤ T,

(9.45)

and

λ∗(t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

p(c− pq)

c+ pq
0 ≤ t ≤ t∗,

�

−1 +Keαt

−1 +Keαt∗

�2

eα(t
∗−t)f(t) t∗ ≤ t ≤ T,

(9.46)

where

f(t) =
p(c− pq)

c+ pq
+

pqM

α

�

−1 +Keαt
∗

−1 +Keαt

�

�

eα(t−t∗) − 1
�

,
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α = 1− qM,

K =
x0e

−αt∗

|α− x0|
=

(c+ pq)e−αt∗

γ
,

and

γ = |2αpq − c− pq|.

9.3.2 Discretization of the fishery problem

For numerically solving problem (9.20), we first discretize and then
optimize. We use the polyhedral active set algorithm (PASA), which
was developed by Hager and Zhang,31 to find an optimal solution
to the discretized problem. Additionally, we need to discretize the
adjoint equation associated with problem (9.20), which is

λ�(t) = pqu− λ+ 2λx+ qλu, (9.47)

with the transversality condition being

λ(T ) = 0.

For discretizing problem (9.20), we assume that control u is constant
over each mesh interval. We partition time interval [0, T ], by using
N + 1 equally spaced nodes, 0 = t0 < t1 < · · · < tN = T . For all
k = 0, 1, . . . , N , we assume that the xk = x(tk). For the control,
we denote uk = u(t) for all tk ≤ t < tk+1 when k = 0, . . . , N − 2
and uN−1 = u(t) for all tN−1 ≤ t ≤ tN . So we have x ∈ R

N+1

while u ∈ R
N . We use a left-rectangular integral approximation for

objective function J in (9.20), and we use forward Euler’s method
to approximate the state equation in (9.20). The discretization of
problem (9.20) is then

min J(u) =
N−1
�

k=0

h(c − pqxk)uk

xk+1 = xk + h(1− xk − quk)xk for all 0 ≤ k ≤ N − 1,

x0 > 0,

0 ≤ uk ≤ M for all 0 ≤ k ≤ N − 1, (9.48)

where h = T/N is the mesh size and the first component of state
vector, x0, is set to being the initial condition associated with the
state equation given in problem (9.20).
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Since PASA uses the gradient projection algorithm for one of its
phases, we need to compute the gradient of the cost functional for
problem (9.48). We use Theorem 9.1 to find ∇uJ , which requires
finding the Lagrangian to problem (9.48) and its gradient. Addition-
ally, we need to construct a Lagrange multiplier vector λ that sat-
isfies Eq. (9.11). Consequently, the Lagrange multiplier vector that
satisfies Eq. (9.11) produces the numerical scheme that is used for
discretizing adjoint equation (9.47) and produces the transversality
condition (9.23). To compute the Lagrangian to problem (9.48), we
first need to arrange the discretized state equations accordingly

−xk+1 + xk + h(xk − x2k − qukxk) = 0 for all k = 0, 1, . . . , N − 1.

(9.49)

The Lagrangian to problem (9.48) is

L(x,u,λ) =
N−1
�

k=0

(h(c − pqxk)uk)

+

N−1
�

k=0

λk(−xk+1 + xk + h(xk − x2k − qukxk)),

where λ ∈ R
N−1 is the Lagrange multiplier vector. Note that we

need not worry about the inequality constraints associated with the
bounds of the control when computing the Lagrangian to problem
(9.48) because these bounds are not being entered into the cost func-
tional J . By taking the partial derivative of L with respect to uk, we
obtain

∂L

∂uk
= h(c− pqxk − qλkxk) for k = 0, . . . , N − 1.

By Theorem 9.1, we have that

∇uJ = ∇uL =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

h(c− pqx0 − qλ0x0)

...

h(c− pqxk − qλkxk)

...

h(c− pqxN−1 − qλN−1xN−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (9.50)

provided that Eq. (9.11) is satisfied.
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To satisfy Eq. (9.11), we take the partial derivative of L with
respect to xk for all k = 1, . . . , N , and note that we do not take
the partial derivative of L with respect to x0 because x0 is a known
value. Taking the partial derivative of L with respect to the state
vector components yield the following expressions:

∂L

∂xk
= h(−pquk + λk(1− 2xk − quk))

+ λk − λk−1 for k = 1, . . . , N − 1, (9.51)

∂L

xN
= −λN−1 (9.52)

To align with Eq. (9.11), we set expressions (9.51) and (9.52) equal
to zero and solve for λk−1 for all k = 1, . . . , N :

λk−1 = λk + h(−pquk + λk(1− 2xk − quk))

for k = 1, . . . , N − 1, (9.53)

λN−1 = 0. (9.54)

Expressions (9.53) and (9.54) serve as the discretization for the
costate equation (9.47) and the transversality condition (9.23).

We use PASA to solve for the regularized version of problem (9.20)
where the penalty applied to the problem is a bounded variation
penalty, as suggested in Capognigro et al.,.30 The regularized version
of problem (9.20) is as follows:

min Jρ(u) =

� T

0
(c− pqx)udx+ ρV (u)

x�(t) = (1− x)x− qux, x(0) = x0 > 0,

0 ≤ u(t) ≤ M,

(9.55)

where 0 ≤ ρ < 1 is a tuning parameter and V (u) measures the total
variation of u which is

V (u) = sup
P

nP−1
�

i=0

|u(ti+1)− u(ti)| (9.56)

where P = {P = {t0, t1, . . . , tnP
} : P is a partition of [0, T ]}. Note

that if we numerically solve problem (9.55) with ρ = 0, then the prob-
lem is not being regularized via bounded variation. We use the same



April 20, 2023 20:14 Computational and Mathematical Population. . . 9in x 6in b4918-ch09 FA7 page 351

Solving Singular Control Problems in Mathematical Biology Using PASA 351

procedure as before to discretize problem (9.55). Assuming control u
to be constant over each mesh interval allows us to express the total
variation of u as being the sum of the absolute value of the jumps of
u. For a sufficiently small mesh size h, we have

V (u) =
N−1
�

k=0

|u(tk+1)− u(tk)|.

The discretized version of problem (9.55) is

min Jρ(u) =
N−1
�

k=0

(h(c − pqxk)uk) + ρ

N−1
�

k=0

|uk+1 − uk|

xk+1 = xk + h(1 − xk − quk)xk for all 0 ≤ k ≤ N − 1,

x0 > 0,

0 ≤ uk ≤ M for all 0 ≤ k ≤ N − 1. (9.57)

Because PASA involves a gradient scheme, we should be con-
cerned about the absolute value terms that are used in problem
(9.57)’s cost function. We suggest a decomposition of each absolute
value term in Jρ to ensure that Jρ is differentiable. We introduce two
N − 1 vectors ζ and ι whose entries are non-negative. Each entry of
ζ and ι is defined as

|uk+1 − uk| = ζk + ιk, for all k = 0, . . . , N − 2.

An equivalent way of expressing the above equation is to assign values
to the components of ζ and ι based upon the following conditions:

Condition 1: If uk+1 − uk > 0, then ζk = uk+1 − uk and ιk = 0;

Condition 2: If uk+1 − uk ≤ 0, then ζk = 0 and ιk = −(uk+1 − uk).

This decomposition converts problem (9.57) into the following:

min Jρ(u, ζ, ι) =
N−1
�

k=0

(h(c − pqxk)uk) + ρ
N−2
�

k=0

(ζk + ιk)

xk+1 = xk + h(1 − xk − quk)xk for all k = 0, . . . , N − 1,

x0 > 0,

0 ≤ uk ≤ M for all k = 0, . . . , N − 1,

uk+1 − uk = ζk − ιk for all k = 0, . . . , N − 2,

ζk ≥ 0 and ιk ≥ 0 for all 1, . . . , N − 1. (9.58)
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For problem (9.58), we are minimizing the regularized objective
function with respect to vectors u, ζ, and ι. The constraints asso-
ciated with ζ and ι, are constraints that PASA can interpret. The
equality constraints associated with ζ and ι can be written accord-
ingly as

�

A −IN−1 IN−1

�

⎡

⎣

u

ζ

ι

⎤

⎦ = 0, (9.59)

where IN−1 is the identity matrix with dimension N − 1, 0 is the
N−1 dimensional all zeros vector, andA is theN−1×N dimensional
sparse matrix given in (9.7). Since problem (9.58) is optimizing Jρ
with respect to u, ζ, and ι, the Lagrangian of problem (9.58) is

L(x,u, ζ, ι,λ) =

N−1
�

k=0

(h(c − pqxk)uk) + ρ

N−2
�

k=0

(ζk + ιk)

+
N−1
�

k=0

λk(−xk+1 + xk + h(xk − x2k − qukxk)).

If we use Theorem (9.1) to find the gradient of Jρ, we have the
following:

∇u,ζ,ιJρ = ∇u,ζ,ιL =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∇uJ
ρ
...
ρ

ρ
...
ρ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (9.60)

where ∇uJ is defined in Eq. (9.50), provided that the theorem’s
condition (9.11) is satisfied. As before, we satisfy condition (9.11)
by taking the partial derivative of L with respect to each xk for
k = 1, . . . , N and set each partial derivative equal to 0 and solve for
the components of λ. Performing this procedure yields Eqs. (9.53)
and (9.54), and they serve as our discretization procedure of the
adjoint equation (9.22) and our generalization of the transversality
condition (9.23).
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9.3.2.1 Summary of the discretization

We convert the regularized harvesting problem (9.55) into problem
(9.58) by performing the following steps.

(1) Discretization of the state equation: We use forward Euler’s
method to discretize the state equation which is given in
Eq. (9.49).

(2) Discretization of the objective functional and the decomposi-
tion of absolute value terms: We use a left-rectangular integral
approximation for discretizing the integral shown in (9.55). We
also assume u as being piecewise constant over each mesh inter-
val, which allows us to convert the total variation term given in
(9.56) into the finite series of absolute value terms that is used
in problem (9.57). Because we use a gradient scheme for solv-
ing the discretized problem, we need to decompose the absolute
value terms by introducing two N−1 vectors ζ and ι that satisfy
the constraints that are included in problem (9.58).

(3) Finding the gradient of the regularized objective functional : By
Theorem 9.1, we use the gradient of the Lagrangian to problem
(9.58) to find ∇[u,ζ,ι]Jρ. The formula for ∇[u,ζ,ι]Jρ is given in
Eq. (9.60), where as ∇uJ is given in equation (9.50).

(4) Discretization of the adjoint variable: In order to apply Theo-
rem 9.1 for computing the gradient of the penalized objective
function, adjoint vector λ needs to satisfy condition (9.11). We
set each partial derivative of the Lagrangian L with respect to xk
equal to 0 and solve for λk−1. This results in discretizing adjoint
equation (9.22) and the transversality condition λ(T ) = 0. The
discretized equations are given in Eqs. (9.53) and (9.54).

9.3.3 Numerical results of the fishery problem

We wish to numerically solve problem (9.20) with the following
parameters defined in Table 9.1. Note that these parameter values
satisfy Assumptions 9.1 and 9.2, so the optimal harvesting strat-
egy is of the form given in (9.44). Based on Table 9.1 and Eq. (9.43),
t∗ ≈ 9.5392, which is between values 0 and T = 10. Additionally, from
these parameter values the singular control solution is u∗ = 0.1875
which is between the bounds 0 and M = 1, as desired. After using
Table 9.1 to evaluate t∗ from (9.43), u∗ from (9.44), x∗ from (9.45),
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Table 9.1. Parameter settings for the fishery problem.

Parameter Description Value

T Terminal time 10
p Selling price of one unit of fish 2
q “Catchability” of the fish 2
c Cost of harvesting one unit of fish 1
M Maximum harvest effort 1
x0 Initial population size of fish c+pq

2pq
= 0.625

0 1 2 3 4 5 6 7 8 9 10

Time t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(t
)

Switching Function

Fig. 9.1. Plot of the Switching Function. The red dotted line is the vertical line
t = t∗ ≈ 9.5392.

and λ∗ from (9.46), we substitute these solutions into the switching
function (9.24) to see if u∗ satisfies (9.25). In Figure 9.1, we plot
the switching function ψ that we obtained. Regard that the switch-
ing function is zero when u∗ is singular and becomes negative at
the interval [t∗, T ], which is when u∗ = M . So we have that the
harvesting policy u∗ for (9.44) satisfies (9.25). This is equivalent to
saying that u∗ satisfies Pontryagin’s Maximum Principle,10 which is
the first-order necessary condition for optimality.

We use PASA to solve problem (9.20) with parameter settings
given in Table 9.1. Our initial guess for control u is u(t) = 0 for all
t ∈ [0, T ], and the stopping tolerance is set to 10−10. We partition
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(a) Unpenalized control û (red) vs
optimal control u

∗ (blue)
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(c) Fish population solution x̂ (pink)
corresponding to û vs exact state
solution x

∗ (green)

Fig. 9.2. Unpenalized Results for the fishery problem: Time interval [0, T ] is
partitioned to have N = 750 mesh intervals and PASA stopping tolerance is
tol=10−10.

[0, T ] to where there are N = 750 mesh intervals, and we use the
discretization method that is presented in Section 9.3.2. We first
observe PASA’s approximation of the optimal control for problem
(9.20) when no bounded variation regularization is being applied,
which we denote as being û. In Figure 9.2(a), a plot of û is shown
in red and is compared to the exact solution, u∗, which is shown
in blue. In Figure 9.2(a), û has oscillations that resemble chattering
on the singular region. Additionally, we reran experiments with a
tighter stopping tolerance and a finer partition of [0, T ], and PASA
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still obtained an oscillatory solution. It is likely that the discretiza-
tion of problem (9.20) causes PASA to generate the oscillatory arti-
facts. We computed a left-rectangular integral approximation of the
total profit of the harvested fish over time interval [0, T ], (i.e., the
cost functional for the equivalent maximization problem (9.19)) when
employing harvesting policy, û, and optimal harvesting policy, u∗,
and found that the −J(û) ≈ 3.074 and −J(u∗) ≈ 3.0575 where J is
the cost functional used in (9.20).

The major concern associated with the approximate solution
obtained in Figure 9.2(a) is that it is an unrealistic harvesting strat-
egy to use. We wish to regularize problem (9.20) by adding a bounded
variation term that reduces the number of oscillations. Before get-
ting into the results, we first discuss our methods for determining
which penalty parameter values give the best solution. We have some
advantages for choosing an appropriate tuning parameter value due
to knowing the analytic solution. However, for problems in which we
do not know what u∗ looks like we recommend looking at the plots
of PASA’s approximation of the regularized control uρ. Firstly, we
would rule out a penalty parameter value if the plot of uρ contained
any unusual jumps and/or oscillations. If such a solution occurred,
we suggest that the penalty parameter value is too small and is gener-
ating a solution that is similar to the unpenalized solution. Secondly,
we would rule out a ρ value if the corresponding penalized solution
uρ does not closely align with Pontryagin’s Maximum Principle.10

In this example, Pontryagin’s Maximum Principle implies that u∗

is a piecewise constant function where u∗(t) ∈ {0, pq−c
2pq2

,M} for all

t ∈ [0, T ]. So if the penalized solution uρ ever takes on values that
were not 0,M, or pq−c

2pq2
, then we find value ρ to be suspect. Thirdly,

one might find it useful to look at the plots of the switching function
that are associated with the penalized solution uρ. This third sug-
gestion might be the most useful if one were penalizing an optimal
control problem where the singular case solution cannot be found
explicitly. The sign of the switching function can help one verify
whether or not uρ aligns with Pontryagin’s Maximum Principle.

Since we have the advantage of comparing the regularized solution
uρ with the exact solution u∗, we can determine which penalty param-
eter value is appropriate by comparing the plots between u∗ and uρ
as well as the plots of u∗ − uρ. Additionally, we look at the instance
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in time when the penalized solution uρ switched from singular to
non-singular to see if it is close to when the switching point should
occur, i.e., when t∗ ≈ 9.5392.

When calculating the associated switching point for uρ, we look
at the first instance when uρ = M . Due to the discretization of
problem (9.55), each approximated switching point is some mesh
point value of [0, T ]. We also use the L1 norm difference between
u∗ and uρ for determining which penalty parameter value gives the
closest approximation to u∗. We observe the L∞ norm difference
between u∗ and uρ as well; however, this computation may not be
helpful since approximated switching points are restricted to mesh
points of the partitioned time interval.

Using parameter settings given in Table 9.1, we use PASA
to solve problem (9.55) for varying values of penalty parameter
ρ ∈ {10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1}. Our initial
guess for problem (9.55) is u(t) = 0 for all t ∈ [0, T ]. We partition
[0, T ] to where there are N = 750 mesh intervals, and we use the
discretization method described in Section 9.3.2.1. Additionally, the
stopping tolerance is set to 10−10. Results corresponding to the penal-
ized solutions that PASA obtained are found in Figures 9.3 and 9.4
and Table 9.2. Note that from looking at the plots of the penalized
controls of Figure 9.2 alone, we find that ρ = 10−2 is the most appro-
priate penalty parameter value. We believe that even if we do not
know what the explicit formula for the singular case was for prob-
lem (9.55), the plots of the regularized controls should lead us to
choose ρ = 10−2 as being the appropriate tuning parameter because
no oscillations are occurring and the end behavior of the penalized
control matches the non-oscillating region from the unpenalized con-
trol. This yields some evidence that we could potentially use PASA
for solving penalized control problems without a priori information
of the optimal control.

We continue to explain how we ruled out all cases except for ρ =
10−2. In Figure 9.3(b), we rule out tuning parameter value ρ = 10−8,
since its corresponding solution uρ is oscillating in the same manner
as the unpenalized solution, whose plot is given in Figure 9.3(a).
We do not provide plots of penalized solution uρ that corresponded
to when ρ = 10−9, 10−7, 10−6 because their plots possessed many
oscillations similar to Figure 9.3(b). Additionally, one could look at
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Fig. 9.3. Plots of the regularized control uρ (red) vs the optimal control u∗ (blue)
for varying values of the tuning parameter ρ. Time interval [0, T ] is partitioned
to have N = 750 mesh intervals. PASA stopping tolerance is tol=10−10.
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Fig. 9.4. Plots of the optimal control minus the regularized control u∗−uρ (cyan)
for varying values of the tuning parameter ρ. Time interval [0, T ] is partitioned
to have N = 750 mesh intervals. PASA stopping tolerance is tol=10−10.
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Table 9.2. Varying tuning parameter table for the fishery problem.

Parameters ρ �u∗ − uρ�L1 �u∗ − uρ�
∞

Switch Runtime

N = 750 0 2.89548286 0.8125 0∗ 8.82
tol = 10−10 10−9 2.89262350 0.8125 0∗ 14.44
T = 10 10−8 2.89708395 0.8125 0∗ 22.11
M = 1 10−7 2.89799306 0.8125 0∗ 28.45
p = 2 10−6 2.88774180 0.8125 0.04∗ 34.88
q = 2 10−5 0.19705717 0.8125 9.0667 6.58
c = 1 10−4 0.05427589 0.8125 9.5200 1.25
x0 = 0.625 10−3 0.01628685 0.8125 9.5333 0.68
h = 0.0133 10−2 0.01282480 0.8125 9.5333 0.38

10−1 0.22780044 0.5402 9.9867 0.43

Note: The total variation of our exact solution is v(u∗) = 0.8125, so if our
approximated solution uρ switched from the singular case to m at a time differ-
ent from u∗, then �u∗ − uρ�

∞
= v(u∗). the switch column is indicating the first

instance in time t when uρ(t) = m. the ∗-values on the switch column indicate
that the numerical solution is oscillating. The Runtime column indicates the
time (in seconds) it takes for PASA to solve the problem.

the �u∗ − uρ�L1 column in Table 9.2 to see that the penalized solution
for uρ for ρ ∈ {10−9, 10−8, 10−7, 10−6} are negligible in comparison
to the unpenalized solution. In Figures 9.3(c) and 9.4(c), we start to
see some improvements in the singular region of uρ when ρ = 10−5.
However, due to the oscillations appearing in time interval (8.5, 9.5),
we dismiss ρ = 10−5. We observe in Figure 9.3(d) that increasing
the penalty parameter ρ to 10−4 significantly reduces the number of
oscillations along the singular region. However, around time interval
[9.24, 9.37], uρ(t) ≈ 0.2366, which is a value different from the bounds
of the control and the singular case solution. We rule out penalty
ρ = 10−4 for this reason. We do not provide a figure of the solution
we obtained when penalty parameter value ρ = 10−3, but we dismiss
this penalty parameter value due to similar reasoning that was used
when ρ = 10−4. We also rule out tuning parameter ρ = 10−1 because
as illustrated in Figure 9.3(f), uρ is constant around [9.36, 10] with
constant value being approximately 0.7277. For this case, we say that
ρ = 10−1 is over-penalizing the control along the non-singular region.
Based on Table 9.2 and Figures 9.3(e) and 9.4(e), we find that penalty
parameter ρ = 10−2 is the most appropriate penalty parameter. For

ρ = 10−2, we have that uρ switches to the non-singular case at the
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Fig. 9.5. Results for when ρ = 10−2: Time interval [0, T ] is partitioned to have
N = 750 mesh intervals and PASA stopping tolerance is tol=10−10.

node that is closest to the actual switching point. In addition, uρ have
the lowest L1 norm error in Table 9.2 when the penalty parameter is
set to ρ = 10−2. In Figure 9.5(c), we have a plot of the state solution
corresponding to uρ when ρ = 10−2. Observe that the plot of the
approximated fish population corresponding to uρ lines up almost
perfectly with the true solution.

After finding an appropriate tuning parameter value for prob-
lem (9.55), we then study the numerical convergence rate between
PASA’s solution to the discretized regularized problem with tun-
ing parameter ρ = 10−2 and the exact solution to problem
(9.20). We observe the L1 norm error between the exact solution
u∗ and the regularized solution uh for varying mesh sizes h ∈
{0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125}. In Table 9.3, we have
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Table 9.3. Convergence analysis between the penalized solution and the exact
solution to fishery problem.

Parameters h errh
errh

errh/2
log2

�

errh
errh/2

�

tol = 10−10 0.2 0.28091381
ρ = 10−2 0.1 0.12111065 2.31948057 1.21380176

0.05 0.00089762 134.92448804 7.07600840
0.025 0.02736103 0.03280644 −4.92987718
0.0125 0.01089531 2.51126802 1.32841601
0.00625 0.00527063 2.06717301 1.04765914
0.003125 0.00165509 3.18450288 1.67106818

Note: Here errh = �uh − u∗�
L1 , where uh is the penalized solution for Fishery

problem when the mesh size is h.

errh representing the �u∗ − uh�L1 . Note that for almost all mesh size
values the L1 norm error between uh and u∗ is relatively close to
the mesh size value. However, in the case when h = 0.05, we have
that the L1 norm error is significantly less than the mesh size. This
is because the mesh size influences the discretization of time inter-
val [0, T ] to where one mesh point is exceedingly close to the true
switching point value. We look at the last column of Table 9.3 to
determine what the rate of convergence between the penalized solu-
tion and the exact solution is. All but two entries in the last column
of Table 9.3 are values that are slightly greater than one, and the
entries that are not close to one involved using the L1 norm error for
when h = 0.05. Based on the values of the last column of Table 9.3,
we find the convergence rate as being slightly better than a linear
rate. Additionally, form Table 9.3, we take the natural logarithm of
values found in columns 2 and 3, and use least squares method to
indicate if there is a linear relationship between ln (h) and ln (errh).
Since we view data point (ln(0.05), ln(0.00089762)) as being an out-
lier, we also perform least squares between ln(h) and ln(errh) without
the outlier point. In Figure 9.6, the blue line does a better job with
fitting to the data than the red line. In Table 9.4, we see that the
goodness of fit associated with the blue line is very strong. We look at
the slope associated with the blue line to determine the rate of con-
vergence. Since the slope of the blue line is approximately 1.200738,
we have further indication that the rate of convergence between the
penalized solution and the exact solution is better than linear.
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the linear fit of the data points including outlier point (ln(0.05), ln(0.00089762)).
Blue line is the linear fit of data points excluding the outlier point.

Table 9.4. Linear fit table.

ln(errh) = m(ln(h)) + b Slope m y-intercept b r2

With outlier 0.988064 −0.6645189 0.4826212
Without outlier 1.200738 0.7100375 0.9959617

9.4 Example 2: The Plant Problem

In this section, we implement a biological optimal control problem
from David King and Jonathan Roughgarden8 that can be solved
analytically. In Ref. 8, King and Roughgarden use optimal control
theory to study the allocation strategies that annual plants pos-
sess when distributing photosynthate to components of the plant
that pertain to vegetative growth and to components that pertain to
reproductive growth. The control variable u(t) involved represents the
fraction of photosynthate being reserved for vegetative growth. The
remaining photosynthate, 1 − u(t), is assigned to aid in the repro-
ductive growth processes. The annual plants that are being modeled
are assumed to live in an environment where consecutive seasons
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are identical. Since u(t) represents a fraction, the control variable is
assumed to be bounded in the obvious way:

0 ≤ u(t) ≤ 1 for all t ∈ [0, T ], (9.61)

where T represents the maximum season length. The optimal con-
trol problem has two state variables where one state x1 represents
the weight of the vegetative part of a plant, while the second state x2
represents the weight of the reproductive part of a plant. The con-
struction of the state equations is a continuous version of a discrete
time model of reproduction for annual plants that was developed by
Cohen44 and is given by

x�1(t) = u(t)x1, x1(0) > 0, (9.62)

x�2(t) = (1− u(t))x2, x2(0) ≥ 0. (9.63)

For the construction of an objective functional, King and
Roughgarden8 aim to find the strategy that maximizes total repro-
duction and assert that such a strategy is “expected in organisms if
natural selection maximizes total reproduction.” Their construction
of a cost functional that measures the total reproduction produced
by a plant is based on Cohen’s discrete model in45 which uses the
expectation of the logarithm of seed yield to express the long-term
rate of population increases observed in annual plants. The objective
functional is chosen to have natural logarithm of x2, which helps this
problem to have singular arcs. The optimal control problem is then

max
u∈A

J(u) =

� T

0
ln (x2(t))dt (9.64)

subject to the state equations (9.62)–(9.63) and control bounds
(9.61). The set of the admissible controls is defined A = {u ∈
L1(0, T ) : for all t ∈ [0, T ], u(t) ∈ A, A = [0, 1]}. Exis-
tence of an optimal control follows from the Filippov–Cesari Exis-
tence Theorem.9 An explicit solution is obtained for problem
(9.64) that satisfies Pontryagin’s Maximum Principle,10 the Gen-
eralized Legendre Clebsch Condition or Kelley’s Condition,22–24, 43

the Strengthened Generalized Legendre Clebsch Condition, and
McDanell and Powers’s Junction Theorem.21 The structure of the
optimal allocation strategy u∗ depends on the maximum season
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length T , the initial weight of the vegetative part of the plant x1(0),
and the initial weight of the reproductive part of the plant x2(0).

In this section, we provide a summary of the solution to the equiv-
alent minimization problem as follows:

min −J(u) = −
� T

0 ln (x2(t))dt

s.t. ẋ1(t) = u(t)x1,

ẋ2(t) = (1− u(t))x1,

x1(0) = x1,0 > 0, x2(0) = x2,0 ≥ 0,

0 ≤ u(t) ≤ 1.

(9.65)

Additionally we demonstrate how to discretize the penalized version
of problem (9.65)

min Jρ(u) = −
� T

0 ln (x2(t))dt+ ρV (u)

s.t. ẋ1(t) = u(t)x1,

ẋ2(t) = (1− u(t))x1,

x1(0) = x1,0 > 0, x2(0) = x2,0 ≥ 0,

0 ≤ u(t) ≤ 1,

(9.66)

where 0 ≤ ρ < 1 is the bounded variation tuning parameter and V (u)
measures the total variation of control u, as defined in Eq. (9.56). We
then use PASA to numerically solve problems (9.65) and (9.66) when
parameters x1,0, x2,0, and T are set in such a way where u∗ contains
a singular subarc.

9.4.1 Solving for the singular case to the plant problem

Before we present a summary of the solution to problem (9.65), we
discuss some terminology that is used in King and Roughgarden’s
work8 to describe the events when u∗(t) = 0 and when u∗(t) = 1. We
say that u∗ is purely reproductive at time t when u∗(t) = 0. We say
that u∗ is purely vegetative at time t when u∗(t) = 1. Our method
for obtaining a solution to the minimization problem (9.65) paral-
lels with what is used in King and Roughgarden.8 Our method for
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solving problem (9.65) involves Pontryagin’s Maximum Principle.10

We compute the Hamiltonian to problem (9.65) as

H = − lnx2 + x1(λ1 − λ2)u+ x1λ2.

We take the partial derivatives of the Hamiltonian with respect to
x1 and x2 to construct differential equations for costate variables λ1

and λ2 as follows:

λ�
1(t) = −

∂H

∂x1
= (λ2 − λ1)u− λ2, (9.67)

λ�
2(t) = −

∂H

∂x2
=

1

x2
, (9.68)

and use the transversality conditions to obtain boundary conditions
for the costate equations

λ1(T ) = λ2(T ) = 0. (9.69)

We construct the switching function ψ(t) by taking the partial deriva-
tive of the Hamiltonian with respect to control u as:

ψ(t) = x1(λ1 − λ2) (9.70)

Since x1(t) > 0 for all t, the sign of ψ depends on the sign of λ1−λ2.
By Pontryagin’s Maximum Principle, the optimal allocation strategy
u∗(t) is as follows:

u∗(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 whenever λ1(t) > λ2(t),

singular whenever λ1(t) = λ2(t),

1 whenever λ1(t) < λ2(t).

(9.71)

To solve for the singular case, we assume that there is an interval
I ⊂ [0, T ] where λ1(t) = λ1(t) for all t ∈ I. This implies that λ�

1(t) ≡
λ�
2(t) on I. From adjoint equations (9.67)–(9.68), we have that the

following holds on I:

(λ2(t)− λ1(t))u(t) − λ2(t) =
1

x2(t)
,
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which yields the following on interval I:

λ2(t) = −
1

x2(t)
. (9.72)

It follows from Eqs. (9.68) and (9.72) that

λ̇2 = −λ2

for all t ∈ I. Solving for the above differential equation yields

λ2(t) = Ae−t,

where A = − 1
x2(t1)

et1 and t1 is the time when the singular subarc

begins.
We can construct a differential equation for x2(t) on interval I by

differentiating Eq. (9.72) with respect to time and rearranging the
terms as follows:

ẋ2 = x2. (9.73)

Equations (9.63) and (9.73) yield

(1− u(t))x1 = x2,

which implies that

x2(t)

x1(t)
= 1− u(t) (9.74)

on interval I. We differentiate (9.74) to get

−u̇(t) =
x1ẋ2 − ẋ1x2

x21
.

We replace ẋ1 and ẋ2 in the above equation with state Eq. (9.62)
and equation (9.73), respectively, and obtain the following:

−u̇(t) =
x2
x1

(1− u(t)). (9.75)

Substituting (9.74) into (9.75) yields

u̇(t)

(1− u(t))2
= −1.
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We solve for the separable equation above and obtain the following
solution:

u(t) = 1−
1

C − t
, (9.76)

on interval I, where C is some constant. Observe that from Eq. (9.76),
(9.74) becomes

x2(t)

x1(t)
=

1

C − t
, (9.77)

on interval I.
In order to find constant term C we need to find the time, t2,

when the singular subarc ends. As mentioned in,8 we can be certain
that u∗ is not singular at time T because the singular case solution
for adjoint variable λ2(t) given in equation (9.72) would not satisfy
the transversality condition (9.69). Now from the adjoint equations
(9.67) and (9.68) and the transversality conditions (9.69), we have
that λ̇1(t) → 0 and λ̇2(t) →

1
x2(T ) as t → T . The derivatives of λ1 and

λ2 near T and the transversality conditions imply that λ1(t) > λ2(t)
for some interval, namely (t2, T ], and so from (9.71), we have that
u∗(t) ≡ 0 on (t2, T ]. So, an optimal control that possesses a singular
region switches to being purely reproductive on t2 and remains purely
reproductive on the interval (t2, T ].

In order to find t2, we must first solve for the state equations
and the associated adjoint equations on time interval [t2, T ]. From
the state equations (9.62)–(9.63), u(t) ≡ 0 on [t2, T ] implies the
following:

x1(t) = x1(t2),

x2(t) = x1(t2)(t− t2) + x2(t2),
(9.78)

where

x1(t2) = (C − t2)x2(t2), and x2(t2) = x2(t1)e
t2−t1 .

Differentiating x2(t) given in Eq. (9.78) yields

ẋ2(t) = x1(t) = x1(t2). (9.79)

We use the differential found from the above separable equation
and the transversality condition (9.69) to solve for the adjoint
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equation (9.68).

λ2(T )− λ2(t) =

� x2(T )

x2(t)

1

x2

dx2
x1(t2)

λ2(t) =
1

x1(t2)
ln

�

x2(t)

x2(T )

�

for t ∈ [t2, T ]. (9.80)

We use Eq. (9.80) and adjoint equation (9.67) to obtain the following
differential equation for λ1:

λ̇1(t) = −
1

x1(t2)
ln

�

x2(t)

x2(T )

�

. (9.81)

Again, we use the differential obtained from separable equation (9.79)
and the terminal condition for λ1 (9.69) to solve the above differential
equation as follows:

λ1(T )− λ1(t) = −
1

(x1(t2))2

� x2(T )

x2(t)
(ln x2 − lnx2(T ))dx2

−λ1(t) = −
1

(x1(t2))2

�

x2(t)− x2(T ) + x2(t) ln

�

x2(T )

x2(t)

��

.

By negating the above equality and applying logarithmic rules, we
obtain a solution for λ1(t):

λ1(t) = −
1

(x1(t2))2

�

x2(t) ln

�

x2(t)

x2(T )

�

+ x2(T )− x2(t)

�

for t ∈ [t2, T ]. (9.82)

After finding the solutions for the state and adjoint equations on
interval (t2, T ], we are ready to solve for t2. Since λ1(t) and λ2(t) are
continuous on [0, T ] and λ1(t) ≡ λ2(t) on the singular case, we have
λ1(t2) = λ2(t2) We equate Eqs. (9.82) and (9.80) at t = t2 and solve
for t2 as follows:

−
1

(x1(t2))2

�

x2(t2) ln

�

x2(t2)

x2(T )

�

+ x2(T )− x2(t2)

�

= −
1

x1(t2)
ln

�

x2(t2)

x2(T )

�

.
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We multiply the above equation by x1(t2) and rearrange the terms
to obtain the following equation:

x2(T )− x2(t2) = (x1(t2) + x2(t2)) ln

�

x2(T )

x2(t2)

�

. (9.83)

We use (9.78) to evaluate x2(T ), which yields x2(T ) = x1(t2)
(T − t2) + x2(t2), and apply it to Eq. (9.83) as follows:

T − t2 =

�

1 +
x2(t2)

x1(t2)

� �

ln

�

x1(t2)

x2(t2)
(T − t2) + 1

��

. (9.84)

We also have λ̇1(t2) = λ̇2(t2), so using (9.72), (9.81), and x2(T ) =
x1(t2)(T − t2) + x2(t2), we find that

x1(t2)

x2(t2)
= ln

�

x1(t2)

x2(t2)
(T − t2) + 1

�

. (9.85)

We rewrite Eqs. (9.84) and (9.85) into terms of y and z, where y =

T − t2 and z = x2(t2)
x1(t2)

, to obtain a nonlinear system of equations that

can be solved numerically through a nonlinear solver. Consequently,
we have the following:

y = T − t2 ≈ 2.79328213, and (9.86)

z =
x2(t2)

x1(t2)
≈ 0.55763674. (9.87)

Using x2(T ) = x1(t2)(T−t2)+x2(t2) and x1(t) = x1(t2) for t ∈ [t2, T ]
yields

x2(T )

x1(T )
= (T − t2) +

x2(t2)

x1(t2)
.

From Eqs. (9.86) and (9.87), we then have

x2(T )

x1(T )
≈ 3.35091887. (9.88)

Additionally, from Eqs. (9.84) and (9.85) we have

T − t2 =

�

1 +
x2(t2)

x1(t2)

�

x1(t2)

x2(t2)
= 1 +

x1(t2)

x2(t2)
,
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which implies that

x2(t2)

x1(t2)
=

1

(T − 1)− t2
.

Finally, we can evaluate Eq. (9.77) at t = t2 and use the above
equation to solve for constant C, and we have that C = T − 1.

9.4.1.1 Summary of singular case solution to the plant problem

In Section 9.4.1, we find that if the optimal control u∗ to problem
(9.65) contains a singular subarc where u∗ becomes singular at time
t1, then u∗ is the following on the interval [t1, T ]:

u∗(t) =

⎧

⎨

⎩

1−
1

T − 1− t
when t ∈ [t1, t2),

0, when t ∈ [t2, T ],
(9.89)

where t2 ≈ T−2.79328213. The corresponding state solutions x1 and
x2 are as follows:

x1(t) =

�

(T − 1− t)x2(t) when t ∈ [t1, t2],

x1(t2) when t ∈ [t2, T ],
(9.90)

x2(t) =

�

x2(t1)e
t−t1 when t ∈ [t1, t2],

x1(t2)(t− t2) + x2(t2) when t ∈ [t2, T ],
(9.91)

where x1(t2) = (T − 1− t2)x2(t2) and x2(t2) = x2(t1)e
t2−t1 . The cor-

responding solution to the adjoint variables λ1 and λ2 are as follows:

λ1(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

λ2(t) when t ∈ [t1, t2],

−
1

(x1(t2))2

�

x2(t) ln

�

x2(t)

x2(T )

�

+x2(T )− x2(t)

�

when t ∈ [t2, T ],

(9.92)

λ2(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
1

x2(t1)
et1−t when t ∈ [t1, t2],

1

x1(t2)
ln

�

x2(t)

x2(T )

�

when t ∈ [t2, T ].

(9.93)
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Additionally, King and Roughgarden’s work8 uses the general-
ized Legendre–Clebsch Condition,21–23 also referred to as Kelley’s
condition,24, 43 to show that the second order necessary condition for
optimality is satisfied. The generalized Legendre–Clebsch Condition
involves finding what is called the order of a singular arc, which

is defined as the integer q being such that
�

d2q

dt2q
∂H
∂u

�

is the lowest

order total derivative of the partial derivative of the Hamiltonian
with respect to u, in which control u appears explicitly. By using
Eqs. (9.62), (9.63), (9.67), (9.68), and (9.70), we have

d

dt

∂H

∂u
=

d

dt
ψ = −x1λ2 −

x1
x2

,

d2

dt2
∂H

∂u
=

d2

dt2
ψ =

�

−x1λ2 −
x1
x2

−
x21
x22

�

u−
x1
x2

+
x21
x22

.

So for problem (9.65), the order of singular subarc u∗ is 1. By General
Legendre Clebsch Condition, if u∗ is an optimal singular control on
some interval [t1, t2) of order q, then it is necessary that

(−1)q
∂

∂u

�

d2q

dt2q

�

∂H

∂u

��

≥ 0

if the extremum is a minimum, and the inequality is reversed if the
extremum is a maximum.21 Additionally, if the above inequality is
strict, then the strengthened Legendre–Clebsch Condition holds. On
singular region [t1, t2), we have that

(−1)1
∂

∂u

�

d2

dt2

�

∂H

∂u

��

=
x21
x22

> 0,

so the singular arc is of order 1 and satisfies both the general-
ized Legendre–Clebsch Condition and the strengthened Legendre–
Clebsch Condition.

What we have yet to discuss is conditions for problem (9.65) that
determine when the optimal control u∗ is bang-bang or concatena-
tions of bang and singular controls. In King and Roughgarden,8 King
and Roughgarden construct a series of conditions for determining the
structure of the optimal control solution u∗ to problem (9.65). Most
of the conditions are based upon the value of terminal time T and
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the ratio of the reproductive to vegetative weight at time t = 0. We
provide a summary of these conditions (see Ref. 8 for details on how
these conditions are constructed):

(1) The optimal allocation strategy cannot be purely reproduc-
tive on the entire time interval (u∗(t) cannot be zero over the

entire time interval [0, T ]) unless T ≤ 3.35091887 and x2(0)
x1(0)

≤

3.35091887 − T .
(2) If T > 3.35091887 and 0 ≤ x2(0)

x1(0)
< 0.55763674eT−2.79328213 , the

optimal allocation, u∗, contains a singular subarc.

(a) If x2(0)
x1(0)

= 1
T−1 , then the optimal allocation strategy u∗ begins

with a singular subarc and switches to being purely repro-
ductive at time t2 = T − 2.79328213.

(b) If 0 ≤ x2(0)
x1(0)

< 1
T−1 , then the optimal control u∗ contributes

to reproductive growth before and after the singular subarc
occurs.

(c) If 1
T−1 < x2(0)

x1(0)
< 0.55763674eT−2.79328213 , then u∗ begins

contributing to purely vegetative growth before the singular
subarc occurs. At time t2 = T−2.79328213, u∗ switches from
being singular to being purely reproductive.

(3) If x2(0)
x1(0)

≥ 0.55763674eT−2.79328213 , then the optimal control must

be bang-bang, where u∗ begins with purely vegetative growth and
switches once to being purely reproductive.

The value 1
T−1 corresponds to evaluating the right-hand side of equa-

tion (9.77) at t = 0. Additionally, some of the numerical values shown
in the above conditions correspond to Eqs. (9.86), (9.87), and (9.88).

We are only interested in finding the exact solutions to problem
(9.65) in the cases where the optimal control contains a singular
subarc, i.e., Cases 2a, 2b, and 2c. For Case 2a, we use Eqs. (9.89)–
(9.93) with t1 = 0 to construct the exact solution which is as follows:

Case 2a: If T > 3.35091887, 0 ≤ x2(0)
x1(0)

< 0.55763674eT−2.79328213 ,

and x2(0)
x1(0)

= 1
T−1 , then

u∗(t) =

⎧

⎨

⎩

1−
1

T − t− 1
0 ≤ t ≤ t2,

0 t2 < t ≤ T,
(9.94)
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x1(t) =

�

x2(t)(T − t− 1) 0 ≤ t ≤ t2,

x1(t2) t2 ≤ t ≤ T,

x2(t) =

�

x2(0)e
t 0 ≤ t ≤ t2,

x1(t2)(t− t2) + x2(t2) t2 ≤ t ≤ T,

λ1(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

λ2(t)−
1

(x1(t2))2
0 ≤ t ≤ t2,

×

�

x2(t) ln

�

x2(t)

x2(T )

�

+ x2(T )− x2(t)

�

t2 ≤ t ≤ T,

λ2(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
1

x2(0)
e−t 0 ≤ t ≤ t2,

1

x1(t2)
ln

�

x2(t)

x2(T )

�

t2 ≤ t ≤ T,

where t2 = T − 2.79328213, x1(t2) = (T − 1− t2)x2(t2), and x2(t2) =
x2(0)e

t2 .
For Case 2b, we solve the state equations (9.62) and (9.63) on

the interval [0, t1] with u set to being 0, and then we use continuity
of the state variables to get an explicit solution for t1. Then we
solve the adjoint equations (9.67) and (9.68) on [0, t1] where we use
Eqs. (9.92)–(9.93) and continuity of λ1 and λ2 at t1 to gain the
following boundary conditions: λ1(t1) = λ2(t1) = − 1

x2(t1)
.

The exact solution for Case 2b is as follows:

Case 2b: If T > 3.35091887, 0 ≤ x2(0)
x1(0)

< 0.55763674eT−2.79328213 ,

and x2(0)
x1(0)

< 1
T−1 , then

u∗(t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 0 ≤ t < t1,

1−
1

T − t− 1
t1 ≤ t ≤ t2,

0 t2 < t ≤ T,
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x1(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x1(0) 0 ≤ t ≤ t1,

(T − t− 1)x2(t) t1 ≤ t ≤ t2,

x1(t2) t2 ≤ t ≤ T,

x2(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x1(0)t+ x2(0) 0 ≤ t ≤ t1,

x2(t1)e
t−t1 t1 ≤ t ≤ t2,

x1(t2)(t− t2) + x2(t2) t2 ≤ t ≤ T,

λ1(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x2(t)

(x1(0))2
ln

�

x2(t1)

x2(t)

�

+
x2(t)− x2(t1)

(x1(0))2

+
x2(t)− x2(t1)

x2(t1)x1(0)
−

1

x2(t1)
0 ≤ t ≤ t1,

λ2(t)−
x2(t)

(x1(t2))2
t1 ≤ t ≤ t2,

×

�

ln

�

x2(t)

x2(T )

�

− 1

�

−
x2(T )

(x1(t2))2
t2 ≤ t ≤ T,

λ2(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

x1(0)
ln

�

x2(t)

x2(t1)

�

−
1

x2(t1)
0 ≤ t ≤ t1,

−
1

x2(t1)
et1−t t1 ≤ t ≤ t2,

1

x1(t2)
ln

�

x2(t)

x2(T )

�

t2 ≤ t ≤ T,

where t2 ≈ T − 2.7932821329007607, x1(t2) = x2(t2)(T − t2 − 1),
and x2(t1) = x1(0)t1 + x2(0). Also, switch t1 is the solution to the
following equation:

x2(t1)

x1(t1)
=

1

T − t1 − 1
.

The solution to the above equation is the following expression:

t1,± =
1

2

⎡

⎣T − 1−
x2(0)

x1(0)
±

�

T 2 + 2T

�

x2(0)

x1(0)
− 1

�

− 3 +

�

x2(0)

x1(0)

�2

⎤

⎦ ,
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and we choose t1 to be the solution that is between the values 0
and t2.

For Case 2c, we solve the state equations (9.62) and (9.63) on the
interval [0, t1] with u set to being 1, and then use continuity of the
state variables to obtain an equation that can be used to solve for t1.
Then we solve the adjoint equations (9.67) and (9.68) on [0, t1], where
we used Eqs. (9.92)–(9.93) and continuity of λ1 and λ2 at t1 to gain
the following boundary conditions: λ1(t1) = λ2(t1) = − 1

x2(t1)
.

The exact solution for Case 2c is as follows:

Case 2c: If T > 3.35091887 and 1
T−1 < x2(0)

x1(0)
≤

0.55763673eT−2.79328213 , then

u∗(t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 0 ≤ t < t1,

1−
1

T − t− 1
t1 ≤ t ≤ t2,

0 t2 < t ≤ T,

x1(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x1(0)e
t 0 ≤ t ≤ t1,

x2(t)(T − t− 1) t1 ≤ t ≤ t2,

x1(t2) t2 ≤ t ≤ T,

x2(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x2(0) 0 ≤ t ≤ t1,

x2(t1)e
t−t1 t1 ≤ t ≤ t2,

x1(t2)(t− t2) + x2(t2) t2 ≤ t ≤ T,

λ1(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−
1

x2(0)
et1−t 0 ≤ t ≤ t1,

λ2(t)−
x2(t)

(x1(t2))2
t1 ≤ t ≤ t2,

×

�

ln

�

x2(t)

x2(T )

�

− 1

�

−
x2(T )

(x1(t2)2
t2 ≤ t ≤ T,
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λ2(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

x2(0)
(t− t1)−

1

x2(t1)
0 ≤ t ≤ t1,

−
1

x2(0)
et1−t t1 ≤ t ≤ t2,

1

x1(t2)
ln

�

x2(t)

x2(T )

�

t2 ≤ t ≤ T,

where t2 = T − 2.79328213, x1(t1) = x1(0)e
t1 , x2(t1) = x2(0),

x1(t2) = x2(t2)(T − t2−1), and x2(t2) = x2(t1)e
t2−t1 . Also, switch t1

can be obtained by using a nonlinear solver for the following nonlinear
equation:

x2(0)

x1(0)
e−t1 =

1

T − 1− t1
.

9.4.2 Discretization of the plant problem

We discretize the following regularized problem:

min Jρ(u) = −
� T

0 ln (x2(t))dt+ ρV (u)

s.t. ẋ1(t) = u(t)x1,

ẋ2(t) = (1− u(t))x1,

x1(0) = x1,0 > 0, x2(0) = x2,0 ≥ 0,

0 ≤ u(t) ≤ 1,

(9.95)

where 0 ≤ ρ < 1 is the bounded variation penalty parameter
and V (u) measures the total variation of control u, as defined in
Eq. (9.56). We also discretize the following adjoint equations:

λ�
1(t) = −

∂H

∂x1
= (λ2 − λ1)u− λ2, (9.96)

λ�
2(t) = −

∂H

∂x2
=

1

x2
, (9.97)

with λ1(T ) = λ2(T ) = 0 being the transversality conditions.
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We assume the control u is constant over each mesh interval. We
partition time interval [0, T ], by using N + 1 equally spaced nodes,
0 = t0 < t1 < · · · < tN = T . For all k = 0, 1, . . . , N , we assume that
x1,k = x1(tk) and x2,k = x2(tk). For the control, we denote uk = u(t)
for all tk ≤ t < tk+1 when k = 0, . . . N − 2 and uN−1 = u(t) for
all tN−1 ≤ t ≤ tN . So we have x1 ∈ R

N+1, x2 ∈ R
N+1, while u ∈

R
N . We use a left-rectangular integral approximation for objective

functional Jρ in problem (9.95). The discretization of problem (9.95)
is then

min Jρ(u) =
N−1
�

k=0

(−h ln (x2,k)) + ρ
N−2
�

k=0

|uk+1 − uk|

x1,k+1 = x1,k + h(ukx1,k) for all k = 0, . . . , N − 1,

x2,k+1 = x2,k + h((1 − uk)x1,k) for all k = 0, . . . , N − 1,

x1,0 > 0, x2,0 ≥ 0

0 ≤ uk ≤ 1 for all k = 0, . . . , N − 1,

where h = T
N

is the mesh size and the first component of x1 and x2 is
set to being the initial condition associated with the state equations.
Since PASA uses a gradient scheme for one of its phases, we need the
cost functional to be differentiable. We perform a decomposition on
each absolute value term in Jρ to ensure that Jρ is differentiable. We
introduce two N − 1 vectors ζ and ι whose entries are nonnegative.
Each entry of ζ and ι is defined as

|uk+1 − uk| = ζk + ιk for all k = 0, . . . , N − 2.

With this decomposition in mind, the discretized penalized problem
is the following:

min Jρ(u, ζ, ι) =
N−1
�

k=0

(−h ln (x2,k)) + ρ
N−2
�

k=0

(ζk + ιk)

x1,k+1 = x1,k + h(ukx1,k) for all k = 0, . . . , N − 1,

x2,k+1 = x2,k + h(1 − uk)x1,k for all k = 0, . . . , N − 1,

x1,0 > 0 x2,0 ≥ 0,

0 ≤ uk ≤ for all k = 0, . . . , N − 1,

uk+1 − uk = ζk − ιk for all k = 0, . . . , N − 2,

ζk ≥ 0, ιk ≥ 0 for all k = 0, . . . , N − 1. (9.98)
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Note that for problem (9.98), we are minimizing the penalized
objective functional with respect to three vectors, u, ζ, and ι. The
equality constraints associated with ζ and ι are linear constraints
that PASA can interpret. The equality constraints associated with ζ

and ι can be written like so:

�

A −IN−1 IN−1

�

⎡

⎣

u

ζ

ι

⎤

⎦ = 0,

where IN−1 is the identity matrix with dimension N − 1, 0 is the
N − 1 dimensional all zeros vector, and A is an N − 1 × N sparse
matrix defined on Eq. (9.7).

For finding the gradient of Jρ in problem (9.98), we use Theo-
rem 9.1. In order to compute the Lagrangian of problem (9.98), we
rewrite the discretized state equations accordingly:

−x1,k+1 + x1,k + h(ukx1,k) = 0, for all k = 0, . . . , N,

−x2,k+1 + x2,k + h(1− uk)x1,k = 0, for all k = 0, . . . , N.

The Lagrangian of problem (9.98) is then

L(x1,x2,u, ζ, ι) =
N−1
�

k=0

(−h ln (x2,k)) + ρ

N−2
�

k=0

(ζk + ιk)

+

N−1
�

k=0

λ1,k(−x1,k+1 + x1,k + h(ukx1,k))

+

N−1
�

k=0

λ2,k(−x2,k+1 + x2,k + h((1 − uk)x1,k)),

where λ1,λ2 ∈ R
N−1 are the Lagrangian multiplier vectors. We take

the partial derivative of L with respect to uk and obtain

∂L

∂uk
= h(x1,k(λ1,k − λ2,k)) for all k = 0, . . . , N − 1.
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By using Theorem 9.1, we obtain the following:

∇u,ζ,ιJρ = ∇u,ζ,ιL =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

h(x1,0(λ1,0 − λ2,0))

...

h(x1,k(λ1,k − λ2,k)

...

h(x1,N−1)(λ1,N−1 − λ2,N−1)
ρ

...

ρ

ρ

...

ρ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (9.99)

provided that condition (9.11) in Theorem 9.1 is satisfied. To satisfy
(9.11), we take the partial derivative of the Lagrangian L with respect
to x1,k and x2,k for all k = 1, . . . , N , and note that we are not taking
the partial derivative of L with respect to x1,0 and x2,0 because they
are known values. Taking the partial derivative of L with respect to
each state vector components yields the following expressions:

∂L

∂x1,k
= h(λ1,kuk + λ2,k(1− uk)) + λ1,k − λ1,k−1

for k = 1, . . . , N − 1 (9.100)

∂L

∂x1,N
= −λ1,N−1 (9.101)

∂L

∂x2,k
= −h

�

1

x2,k

�

+ λ2,k − λ2,k−1 for k = 1, . . . , N − 1

(9.102)

∂L

∂x2,N
= −λ2,N−1. (9.103)

For satisfying condition (9.11) from Theorem 9.1, we set the above
equations equal to zeros and perform the following steps: solve for
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λ1,k−1 in Eq. (9.100); solve for λ1,N−1 in Eq. (9.101); solve for λ2,k−1

in Eq. (9.102); and solve for λ2,N−1 in equation (9.103). Conse-
quently, we generate a discretization for the adjoint equations (9.67)
and (9.68) that also produces the transversality conditions (9.69) as
follows:

λ1,k−1 = λ1,k + h(λ1,kuk + λ2,k(1− uk)) for k = 1, . . . , N − 1,

(9.104)

λ1,N−1 = 0, (9.105)

λ2,k−1 = λ2,k − h

�

1

x2,k

�

for k = 1, . . . , N − 1 and (9.106)

λ2,N−1 = 0. (9.107)

9.4.3 Numerical results of the plant problem

We use PASA to numerically solve problem (9.65) with stopping
tolerance set to being 10−10 and with our initial guess for the control
being u(t) = 0 over the entire time interval [0, T ]. We partition the
time interval to where there are N = 750 mesh intervals with mesh
size being h = 0.00667, and the discretization process is as described
in Section 9.4.2 with ρ = 0. We are interested in solving the problem
when the parameters are set so that a singular case occurs. King and
Roughgarden8 mention that from a biological standpoint, the initial
weight of the reproductive part of a plant, x2(0), is always zero since
germination involves vegetative growth only. Consequently, the only
realistic situation where the exact solution to problem (9.65) contains
a singular subarc is if the exact solution is of Case 2b with x2,0 = 0.
However, we still would like to observe how PASA performs for all
possible cases when the exact solution to problem (9.65) contains a
singular subarc. Table 9.5 describes the parameter settings that we
used for solving problem (9.65).

When parameters are set to the values shown in column three of
Table 9.5, the exact solution to problem (9.65) will be of Case 2a
where control u∗ begins singular and switches to the purely repro-
ductive case at t2 ≈ 2.2067. When parameters are set to the values
shown in column four of Table 9.5, the exact solution to problem
(9.65) is of Case 2b where control u∗ begins purely reproductive,
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Table 9.5. Numerical values of parameters used in computations for the plant
problem.

Parameter Description Case 2a Case 2b Case 2c

T Terminal time 5 5 5
x1,0 Initial value for vegetative weight 4 1 1
x2,0 Initial value for reproductive weight 1 10−4 2

Table 9.6. Results from unpenalized solution to the plant problem for each
case.

Case �u∗ − û�L1 �u∗ − û�L∞ t∗1 t̂1 t∗2 t̂2 −J(u∗) −J(û) Runtime

2a 0.017557 0.444444 NA NA 2.2067 2.2 11.7874 11.7875 46.25
2b 0.017519 0.444444 0.2678 0.2667 2.2067 2.2 3.6009 3.6010 32.97
2c 0.013588 0.444444 1.5778 1.5733 2.2067 2.2 8.6130 8.6130 7.48

Note: The starred notation corresponds to the exact solution, while the hat nota-
tion corresponds to the approximated solution. Note −J(u) is the left rectan-

gular integral approximation of
� T

0
ln (x(t))dt. We have that �u∗ − û�

L∞(0,T ) =
0.444444 for each case. This is due to the approximated switch from singular to
purely reproduction, t̂2, being off by one node. The Runtime column gives the
time (in seconds) it takes for PASA to solve the problem.

switches to the singular case solution at t1 ≈ 0.2678, and switches
back to being purely reproductive at t2 ≈ 2.2067. We want to empha-
size that in Case 2b parameter settings, x2,0 = 10−4 because we want
this initial value to be a close approximation of zero without having
any issues in computing the integral approximation for the objec-

tive functional J(u) =
� T

0 (− lnx2(t))dt. When parameters are set to
the values shown in the last column of Table 9.5, the exact solution
to problem (9.65) is of Case 2c where control u∗ begins purely veg-
etative, switches to the singular case solution at t1 ≈ 1.5778, and
switches back to being purely reproductive at t2 ≈ 2.2067.

For each case, we first observe the unregularized solutions that
PASA obtained when solving for problem (9.65) to see if it is even
necessary to penalize this problem. When numerically solving the
unpenalized problem, we obtain solutions that are not oscillatory
for all three cases. Figures and descriptions corresponding to the
unregularized solutions are given in Appendix Section 9.A.1 and in
Table 9.6. We find PASA’s unpenalized solution to be a sufficient
approximation to the true solution to problem (9.65) in Cases 2b
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Fig. 9.7. Varying penalty to plant problem (Case 2a): Plots of regularized
control uρ (red) vs optimal control u∗ (blue) for tuning parameter ρ ∈
{0, 10−6, 10−5, 10−4, 10−3, 10−2}. The top right corner of each figure is a zoomed-
in plot of the same figure over the time interval [0, 0.5].
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and 2c. However, in Figure 9.7(a) the unpenalized approximation
for Case 2a, û, appears to have an unusual dip at t = 0. Based
upon explicit solution (9.94) and the parameters setting given in
Table 9.5, u∗(0) = 0.75, but for the approximated, unpenalized solu-
tion we have û(0) ≈ 0.4980. We use PASA to solve for Problem
(9.65) for Case 2a with N = 1, 000 and tol = 10−12 to see if such
changes would provide any improvements for the initial value. The
unregularized solution that PASA obtained when N = 1, 000 and
tol = 10−12 still possesses a dip at t = 0 where u(0) ≈ 0.4985. The
reason behind this initial jump is because Case 2a is a degenerate
case. When looking at the conditions between becoming a solution
of Case 2a, Case 2b, and Case 2c, one notices that they all share a
condition that pertains to how the ratio of initial values relates with
the fraction 1

T−1 . When having parameters set to where
x2,0

x1,0
= 1

T−1 ,

the discretization of problem (9.65) can cause any numerical solver
to converge to a solution that does not begin singular.

Although there is no oscillations in Figure 9.7(a), we add a
bounded variation penalty term to the objective functional of
problem (9.65) to see if the approximated penalized control, uρ,
does not dip as significantly as the unpenalized solution did at
t = 0. As before, we partition time interval [0, T ] to where there
are N = 750 mesh intervals and use the discretization method
described in Section 9.4.2. We use PASA to solve the regularized
problem (9.66) for varying values of the tuning parameter ρ ∈
{0, 10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1}, with initial
guess for our control being u(t) = 0 over the entire time interval. We
have parameters set to being the third column in Table 9.5, with stop-
ping tolerance set to being 10−10. In Table 9.7, we record the L1 and
L∞ norm errors between the exact solution u∗ and the penalized solu-
tion that PASA obtained, uρ, the approximated value of uρ(0), the
approximated switching point t2, and the runtime that was needed
to solve for penalized problem (9.66). In column four of Table 9.7,
we are finding �u∗ − uρ�L∞(0,2) because otherwise the whole column

would be 0.444444, which is what we observed in Table 9.6. Observe
from Table 9.7, the penalty parameter starts to influence the behav-
ior of uρ when ρ ≥ 10−6. However, it is worth noting that for penalty
parameter values ρ = 10−9, 10−8, 10−7, PASA obtained a solution
comparable to the unpenalized solution at a faster rate. Based upon
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Table 9.7. Varying penalty parameter for plant problem.

ρ �uρ − u∗�
L1(0,T ) �uρ − u∗�

L∞(0,2) uρ(0) Switch t2 Runtime

0 0.01755676 0.25200195 0.4980 2.2 46.25
10−9 0.01755676 0.25153629 0.4985 2.2 45.81
10−8 0.01755672 0.24953915 0.5005 2.2 36.36
10−7 0.01755623 0.23038155 0.5196 2.2 32.01
10−6 0.01755173 0.10869044 0.6413 2.2067 27.54
10−5 0.01760049 0.03367945 0.7163 2.2667 32.82
10−4 0.01785072 0.01809606 0.7319 2.2667 27.60
10−3 0.01928274 0.02181486 0.7282 2.3667 26.27
10−2 0.02628408 0.03439004 0.7156 2.6067 23.42
10−1 0.06203874 0.07234748 0.6777 2.3667 9.96

Note: Case 2a. N = 750, tol = 10−10, and h = 0.00667.

Table 9.7, uρ was closest to u∗ with respect to the L1 norm when
ρ = 10−6, and uρ switched to being non-singular at the node that
was closest to the true switching point. The penalized solution uρ
that was obtained when ρ = 10−4 had an initial value that was the
closest to the true solution’s initial value u∗(0) = 0.75; however, this
improvement seems to be at the expense of increasing the L1 norm
error between uρ and u∗.

In Figures 9.7 and 9.8, we provide a chart of figures that per-
tain to uρ and a chart of figures that pertain to u∗ − uρ for ρ =
0, 10−6, 10−5, 10−4, 10−3, and 10−2. Note that in Figures 9.7 and 9.8,
the penalized solutions do not begin singular immediately; however,
in comparison to the unpenalized solution, they give better approxi-
mations to u∗(0). In Figure 9.7(d), the penalized solution associated
with penalty parameter ρ = 10−4 begins constant with constant value
approximately being 0.7319 and switches to the singular case solution
approximately at t = 0.32. Notice in Figures 9.7(e) and 9.7(f) that
these penalized solutions also begin constant at values close to 0.7,
but remain constant for a longer time period. Note also in the sixth
column of Table 9.7 that for values ρ ≥ 10−5, uρ starts to overesti-
mate the point at which the solution should switch from singular to
non-singular. In Figure 9.7(b), we find that the unpenalized solution
uρ associated with penalty parameter value ρ = 10−6 did the best
job in improving the approximated initial value without deviating too
much from the exact solution. In Figure 9.9, we have the trajectories
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Fig. 9.8. Varying penalty to plant problem (Case 2a): Plots of u∗ − uρ (cyan)
for tuning parameter ρ ∈ {0, 10−6, 10−5, 10−4, 10−3, 10−2}. The top right corner
of each figure is a zoomed-in plot of the same figure over the time interval [0, 0.5].
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Fig. 9.9. Corresponding trajectories of x1 and x2 for penalized plant problem
with ρ = 10−6.

of x1 and x2 corresponding to uρ when ρ = 10−6. The corresponding
state solutions to the penalized control are comparable to the exact
state solutions.

9.5 Example 3: The SIR Problem

Our next example is from Ledzewicz, Aghaee, and Schättler’s arti-
cle.17 This example demonstrates how PASA can be applied to prob-
lems in the absence of a true solution. In Ref. 17, Ledzewicz et al.
use an SIR model with demography to study the 2013–2016 out-
break of Ebola in West Africa. In an SIR model, the total population
N is divided into the following three compartments: the susceptible
class (S), the infectious class (I), and the recovered class (R). The
dynamics in consideration are based on a modification of a system
of equations that was first presented in Brauer and Castillo-Chavez’s
book38:

Ṡ = γN − νS − β
IS

N
+ ρR, S(0) = S0, (9.108)

İ = β
IS

N
− (ν + μ)I − αI, I(0) = I0, (9.109)

Ṙ = −νR− ρR+ αI, R(0) = R0. (9.110)
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The Greek letters in the equations above represent constant param-
eters. In Eq. (9.108), the coefficient γ is the birth rate per unit
time, and it is assumed that the population of newborns are imme-
diately classified as being susceptible to the disease. Standard inci-
dence is assumed in the model with transmission rate being β, and
it is assumed that infected members recover from Ebola at rate α.
Parameter ν is the natural death rate while parameter μ is the death
rate due to infection. We emphasize here that for this model ρ is not
the bounded variation tuning parameter, but instead ρ is the param-
eter that measures the rate at which a recovered individual becomes
again susceptible to Ebola.

In Ref. 17, Ledzewicz, et al. construct an optimal control prob-
lem to gain understanding on how treatment and a theoretical vac-
cination of Ebola should be applied to best contribute to limiting
the spread of the disease. For the state equations, they incorporate
controls, u and v, into Eqs. (9.108)–(9.110), where u represents the
vaccination rate and v represents the treatment rate. The modified
dynamics are as follows:

Ṡ = γN − νS − β
IS

N
+ ρR− κSu, S(0) = S0, (9.111)

İ = β
IS

N
− (ν + μ)I − αI − ηIv, I(0) = I0, (9.112)

Ṙ = −νR− ρR+ κSu+ αI + ηIv, R(0) = R0, (9.113)

where κ and η are denoted as being the efficacy of vaccination and
treatment, respectively. For constructing of an objective functional,
Ledzewicz et al.17 have the following goal in mind: “Given initial pop-
ulation sizes of all three classes, S0, I0, and R0, find the best strategy
in terms of the combined efforts of vaccination and treatment that
minimizes the number of infectious persons while at the same time
also taking into account the cost of vaccination and treatment.” The
objective functional in consideration for minimization is as follows:

J(u, v) =

� T

0
(aI(t) + bu(t) + cv(t))dt (9.114)

The objective functional J is intended to represent the weighted
average of the number of infectious persons and costs of vaccination
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and treatment. The optimal control problem is as follows:

min
(u,v)∈A

J(u, v) =
� T

0 (aI(t) + bu(t) + cv(t))dt

s.t. Ṡ = γN − νS − β IS
N

+ ρR− κSu,

İ = β IS
N

− (ν + μ)I − αI − ηIv,

Ṙ = −νR− ρR+ κSu+ αI + ηIv,

S(0) = S0, I(0) = I0, R(0) = R0,

(9.115)

where A is the set of admissible controls, which is assumed as being
the set of all Lebesgue measurable functions u : [0, T ] → [0, umax]
and v : [0, T ] → [0, vmax], where umax is the maximum vaccination
rate and vmax is the maximum treatment rate. The assumptions on
A ensure existence of an optimal solution to problem (9.115), which
follows from Fleming and Rishel’s .11

For problem (9.115), Ledzewicz et al.17 used Pontryagin’s Max-
imum Principle10 to find the first-order necessary conditions for
optimality. By rewriting the state equations into a multi-input
control-affine system of vector form and using Lie derivatives they
were able to compute the switching functions for controls u and v as
well as multiple derivatives of the switching function, allowing the
Legendre–Clebsch Condition to be checked. Their methods of using
Lie brackets are particularly useful in determining existence of a sin-
gular control when observing problems with many states and control
variables, and we direct the reader to their article17 and to Schättler
and Ledzewicz’s book 46 for more details on their procedures.

In Ref. 17, Ledzewicz et al. use the Tomlab algorithm PROPT,47

a collocation solver, to obtain an approximate solution to problem
(9.115) with the numerical values of parameters set to where a sin-
gular subarc is present in u∗, while v∗ contains no singular subarc. In
this section, we discuss how to discretize the penalized Ebola problem
given in problem (9.116), where the penalty term involved is based
on the total variation of the vaccination control u.30 Additionally, in
Appendix Section 9.A.2, we provide the MATLAB file, demoOC.m,
to demonstrate how to use PASA to solve problem (9.116). We use
PASA to solve both the unpenalized and penalized problems with
parameters set to being what was used in Ledzewicz et al.17 and
remark about PASA’s performance on this problem.
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9.5.1 Discretization of the SIR problem

We discretize the following regularized problem:

min
(u,v)∈A

Jp(u, v) =
� T

0 (aI(t) + bu(t) + cv(t))dt+ pV (u)

s.t. Ṡ = γN − νS − β IS
N

+ ρR− κSu,

İ = β IS
N

− (ν + μ)I − αI − ηIv,

Ṙ = −νR− ρR+ κSu+ αI + ηIv,

S(0) = S0, I(0) = I0, R(0) = R0, (9.116)

where 0 ≤ p < 1 is the bounded variation tuning parameter and
function V measures the total variation of the control which is defined
in Eq. (9.56). Since we are numerically solving the problem with
parameters set to where control v∗ has no singular subarcs, it is
likely that v need not be penalized. Additionally, we discretize the
following adjoint equations:

λ̇S = λS

�

−γ + ν + β
I

N
− β

IS

N2
+ κu

�

+ λI

�

β
IS

N2
− β

I

N

�

− λRκu, (9.117)

λ̇I = −a+ λS

�

−γ + β
S

N
− β

IS

N2

�

+ λI

�

−β
S

N
+ β

IS

N2
+ (ν + μ+ α) + ηv

�

− λR(α+ ηv),

(9.118)

λ̇R = −λS

�

γ + β
IS

N2
+ ρ

�

+ λI

�

β
IS

N2

�

+ λR(ν + ρ), (9.119)

with transversality conditions being

λS(T ) = 0, λI(T ) = 0, λR(T ) = 0. (9.120)

First we assume that controls u and v are constant over each mesh
interval. We partition time interval [0, T ], by using n + 1 equally
spaced nodes, 0 = t0 < t1 < · · · < tn = T . For all k = 0, 1, . . . , n,
we assume that Sk = S(tk), Ik = I(tk), and Rk = R(tk). For the
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controls we denote uk = u(t) and vk = v(t) for all tk ≤ t < tk+1

when k = 0, . . . , n − 2. Additionally, we denote un−1 = u(t) and
vn−1 = v(t) for all tn−1 ≤ t ≤ tn. We then have S ∈ R

n+1, I ∈ R
n+1,

and R ∈ R
n+1, while u ∈ R

n and v ∈ R
n. Furthermore, N ∈

R
n+1 where Nk = N(tk) = Sk + Ik + Rk for all k = 0, 1, . . . , n. We

use a left-rectangular integral approximation for approximating the
objective functional Jp(u, v) in problem (9.116), and we use forward
Euler’s method for discretizing the state equations. Since PASA uses
a gradient scheme for one of its phases, we need the cost function to
be differentiable. We suggest a decomposition of each absolute value
term arising from the total variation term in Jρ to ensure that Jρ is
differentiable. We introduce two n−1 vectors, ζ and ι, whose entries
are nonnegative. Each entry of ζ and ι is defined as

|uk+1 − uk| = ζk + ιk for all k = 0, . . . , n− 2.

The discretization of problem (9.116) then becomes

min Jp(u, ζ, ι,v) =
n−1
�

k=0

h(aIk + buk + cvk) + p
n−1
�

k=0

(ζk + ιk)

Sk+1 = Sk + h
�

γNk − νSk − β IkSk

Nk
+ ρRk − κSkuk

�

for k = 0, . . . , n − 1,

Ik+1 = Ik + h
�

β IkSk

Nk
− (ν + μ+ α)Ik − ηIkvk

�

for k = 0, . . . , n − 1,

Rk+1 = Rk + h(−νRk − ρRk + κSkuk + αIk + ηIkvk)

0 ≤ uk ≤ umax for k = 0, . . . , n− 1,

0 ≤ vk ≤ vmax for k = 0, . . . , n− 1,

uk+1 − uk = ζk − ιk; for k = 0, . . . , n− 2,

ζk ≥ 0, ιk ≥ 0 for k = 0, . . . , n− 1, (9.121)

where h = T
n
is the mesh size and the first components of S, I, and R

are set to be the initial conditions associated with the state equations.
Note that, for the above problem, we are minimizing the penalized
objective function with respect to vectors u, ζ, ι, and v. The equality
constraints associated with ζ and ι are linear constraints that PASA
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can interpret. The equality constraints associated with ζ and ι are
written as

�

A −In−1 In−1 On−1,n

�

⎡

⎢

⎢

⎣

u

ζ

ι

v

⎤

⎥

⎥

⎦

= 0, (9.122)

where In−1 is the identity matrix with dimension n − 1, On−1,n is
an n− 1× n all zeros matrix, 0 is the n − 1 all zeros vector, and A

is an n− 1× n dimensional sparse matrix give in Eq. (9.7).
For finding the gradient of Jp in problem (9.121), we use Theorem

9.1. The Lagrangian of problem (9.121) is as follows

L =

n−1
�

k=0

h(aIk + buk + cvk) + p

n−1
�

k=0

(ζk − ιk)

+

n−1
�

k=0

λS,k

�

−Sk+1 + Sk + h

�

γNk − νSk

−β
IkSk

Nk

+ ρRk − κSkuk

��

+
n−1
�

k=0

λI,k

�

−Ik+1 + Ik + h

�

β
IkSk

Nk

− (ν + μ+ α)Ik − ηIkvk

��

+
n−1
�

k=0

λR,k (−Rk+1 +Rk + h (−νRk − ρRk

+κSkuk + αIk + ηIkvk)) , (9.123)

where λS ∈ R
n−1, λI ∈ R

n−1, λR ∈ R
n−1 are the Lagrangian

multiplier vectors. As suggested in Theorem 9.1, we use the gra-
dient of the Lagrangian with respect to vectors u, ζ, ι, and v to
find ∇u,ζ,ι,vJp ∈ R

2(n−1)+2(n−2). This is necessary because based
upon the state equations (9.111)–(9.113) of problem (9.116), S, I,
and R can be viewed as functions of u and v. So when computing
∇u,ζ,ι,vJp ∈ R

2(n−1)+2(n−2), we should consider that S, I, and R

depend on u and v. We find the partial derivative of L with respect
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to uk, ζk, ιk, and vk, and obtain the following:

∂L

∂uk
= hb+ hκSk(λR,k − λS,k) for all k = 0, . . . , n− 1

∂L

∂ζk
= p for all k = 0, . . . , n− 2

∂L

∂ιk
= p for all k = 0, . . . , n− 2

∂L

∂vk
= hc+ hηIk(λR,k − λI,k) for all k = 0, . . . , n − 1.

By Theorem 9.1, we compute ∇u,ζ,ι,vJp ∈ R
2(n−1)+2(n−2) as

follows

∇u,ζ,ι,vJp = ∇u,ζ,ι,vL =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

hb+ hκS0(λR,0 − λS,0)

...

hb+ hκSk(λR,k − λS,k)

...

hb+ hκSn−1(λR,n−1 − λS,n−1)
p

...

p
p

...

p
hc+ hηIk(λR,0 − λI,0)

...

hc+ hηIk(λR,k − λI,k)

...

hc+ hηIn−1(λR,n−1 − λI,n−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(9.124)

provided that the Lagrange multiplier vectors satisfy condition (9.11)
in Theorem 9.1. To satisfy condition (9.11), we take the partial
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derivative of the Lagrangian L with respect to Sk, Ik, and Rk for
all k = 1, . . . , n. Note that we are not finding the partial deriva-
tive of L with respect to S0, I0, and R0 since these entries are the
known values. Taking the partial derivative of the Lagrangian, given
in Eq. (9.123), with respect to Sk, Ik, and Rk yields the following:

∂L

∂Sk

= −λS,k−1 + λS,k + hλS,k

�

γ − ν − β
Ik
Nk

+ β
IkSk

N2
k

− κuk

�

+ hλI,k

�

β
Ik
Nk

− β
IkSk

N2
k

�

+ hλR,k(κuk), (9.125)

for k = 1, . . . , n− 1 and

∂L

∂Sn

= −λS,n−1, (9.126)

∂L

∂Ik
= ha− λI,k−1 + λI,k

+ hλI,k

�

β
Sk

Nk

− β
IkSk

N2
k

− (ν + μ+ α)− ηvk

�

+ hλS,k

�

γ − β
Sk

Nk

+ β
IkSk

N2
k

�

+ hλR,k(α+ ηvk), (9.127)

for k = 1, . . . , n− 1 and

∂L

∂In
= −λI,n−1, (9.128)

∂L

∂Rk

= −λR,k−1 + λR,k − hλR,k(ν + ρ)

+ hλS,k

�

γ + ρ+ β
IkSk

N2
k

�

− hλI,k

�

β
IkSk

N2
k

�

, (9.129)

for k = 1, . . . , n− 1 and

∂L

∂Rn

= −λR,n−1. (9.130)

For finding multiplier vectors λS, λI , λR that satisfy Theorem con-
dition (9.11), we set the above equations (9.125)–(9.130) equal to
zero and do the following: solve for λS,k−1 in Eq. (9.125), solve for
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λS,n−1 in Eq. (9.126), solve for λI,k−1 in Eq. (9.127), solve for λI,n−1

in Eq. (9.128), solve for λR,k−1 in Eqs. (9.129), and solve for λR,n−1

in Eq. (9.130). After performing the following steps and rearranging
terms, we generate a discretization of Eqs. (9.117)–(9.119) that sat-
isfy the transversality conditions (9.120):

λS,k−1 = λS,k + hλS,k

�

γ − ν − β
Ik
Nk

+ β
IkSk

N2
k

− κuk

�

+ hλI,k

�

β
Ik
Nk

− β
IkSk

N2
k

�

+ hλR,k(κuk), (9.131)

for k = 1, . . . , n− 1, and

λS,n−1 = 0, (9.132)

λI,k−1 = λI,k + ha+ hλS,k

�

γ − β
Sk

Nk

+ β
IkSk

N2
k

�

+ hλI,k

�

β
Sk

Nk

− β
IkSk

N2
k

�

+ hλR,k(α+ ηvk), (9.133)

for k = 1, . . . , n− 1, and

λI,n−1 = 0, (9.134)

λR,k−1 = λR,k + hλS,k

�

γ + ρ+ β
IkSk

N2
k

�

− hλI,k

�

β
IkSk

N2
k

�

− hλR,k(ν + ρ), for k = 1, . . . , n− 1, and (9.135)

λR,n−1 = 0. (9.136)

9.5.2 Numerical results of the SIR problem

We first use PASA to numerically solve the unregularized problem
given in (9.115) with stopping tolerance set to being 10−8. Our ini-
tial guess for the vaccination and treatment control is u(t) = 0 and
v(t) = 0 over the entire time interval, respectively. The numerical
parameters, which are given in Table 9.8, are set to the values that
are used in Ledzewicz et al.17 because we want to see if our numerical
results are comparable to theirs. Now, Ledzewicz et al.17 are inves-
tigating optimal vaccine and treatment strategies for a theoretical
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Table 9.8. Numerical values of parameters used in computations.

Parameter Numerical value Parameter description

γ 0.00683 Birth rate of the population
ν 0.00188 Natural death rate of the population
β 0.2426 Rate of infectiousness of the disease
μ 0.005 Disease induced death rate
α 0.00002 Rate at which disease is overcome
ρ 0.007 Resensitization rate
κ 0.3 Effectiveness of vaccination
η 0.1 Effectiveness of treatment
a 5 Weight of I used in cost functional
b 50 Weight for cost of vaccination
c 300 Weight for cost of treatment
T 50 Time horizon (weeks)
umax 1 Maximum vaccination rate
vmax 1 Maximum treatment rate
S0 1000 Initial condition for S

I0 10 Initial condition for I

R0 0 Initial condition for R

vaccine and treatment for Ebola, and one can infer from their param-
eter settings that they are not concerned with realistic limitations in
widely developing and administering these theoretical controls. For
example, based on these parameter values, a vaccination strategy
being u(t) = umax = 1 implies that we are vaccinating approxi-
mately 97% of the susceptible population immediately at time t.
When considering realistic limitations in developing and administer-
ing vaccines, one might want to consider setting umax to a value that
is less than one.

We partition the time interval to where there are n = 750 mesh
intervals with mesh size being h = 0.0667, and use the discretization
methods presented in Section 9.5.1 with penalty parameter set to
being p = 0. The results corresponding to the approximated solution
that PASA obtained for problem (9.115) are given in Figure 9.11.
Observe in Figure 9.11(a) that the numerical solution associated
with the vaccination control, û, begins with a full dose segment (i.e.,
û = 1), followed by an interval of many oscillations, and ends with
the control being turned off. The many oscillations approximately
start at time tu,1 = 12.933 and end at time tu,2 = 36.533. We looked
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Fig. 9.10. Spread of disease without vaccination and treatment.

at the corresponding switching function to û, which is Φu(t) =
b + (λR(t) − λS(t))κS(t) (see Ref. 17 for construction of switching
function) to verify that the oscillating region corresponds to a singu-
lar subarc. It is necessary that the optimal control u∗ is as follows:

u∗(t) =

�

0 if Φu(t) > 0,

umax if Φu(t) < 0,
(9.137)

and u∗(t) is singular if Φu is zero over an open interval of time. A plot
of the switching function Φu is given in Figure 9.11(c).

Although we observe in Figures 9.11(c)–9.11(e) that the dynam-
ics of S, I, and R corresponding to the approximated controls û and
v̂ give significantly favorable results in comparison to the dynamics
associated with no application of vaccination or treatment, which is
given in Figure 9.10, we recognize that the wild oscillations found in
û makes it an unrealistic strategy to implement. In order to obtain a



April 20, 2023 20:14 Computational and Mathematical Population. . . 9in x 6in b4918-ch09 FA7 page 398

398 S. Atkins et al.

Fig. 9.11. Spread of disease with unpenalized vaccination and treatment.
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more realistic vaccination strategy, we penalize control u via a total
variation penalty term.30 We are not penalizing control v, since con-
trol v is a piecewise constant function that can be easily interpreted.

We use PASA to solve for penalized problem (9.116) with stop-
ping tolerance set to 10−8 and with parameter value settings given
in Table 9.8. Our initial guess for controls are u(t) = 0 and v(t) = 0
over the entire time interval. We partitioned [0, T ] to n = 750 mesh
intervals of size h = 0.0667, and the discretization procedure is given
in Section 9.5.1. Additionally in Section 9.A.2, we have a MATLAB
file given that can be used for solving the problem. Note that this
MATLAB file is associated with the most up to date version of PASA
(SuiteOPT Version 2.0.0), but our experiments presented here are
using an older version of PASA (SuiteOPT Version 1.0.0). We numer-
ically solve for problem (9.116) for varying values of penalty param-
eter p ∈ {10−5, 10−4, 10−3, 10−2, 10−1}. If the approximated control,
up, corresponding to penalty parameter value p is no longer oscillat-
ing and if the sign of the approximated switching, Φup , aligns with
Eq. (9.137), then we consider p as being a suitable penalty parameter
value to use.

In Table 9.9, we record an approximation of the unpenalized cost
functional, given in Eq. (9.114), being evaluated at the penalized
solution up. The values corresponding to J(up) are remarkably simi-
lar to the approximated objective value that corresponds to the unpe-
nalized solution û. We also record PASA’s runtime performance (in

Table 9.9. Varying penalty results.

p J(up) tu,1 tu,2 Runtime

N = 750 0 6572.955 12.933 36.533 16.77
h = 0.0667 10−5 6572.956 13.067 36.400 17.07
tol = 10−8 10−4 6572.948 13.133 36.400 20.58

10−3 6573.018 12.933 36.533 19.12
10−2 6573.101 12.467 36.000 56.58
10−1 6575.429 12.333 37.067 10.47

Note: J(up) is the approximated unpenalized cost functional value, tu,1
and tu,2 are the approximated switches corresponding to each solution.
The Runtime column corresponds to the time (in seconds) it took to run
PASA for each problem.
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seconds) on solving problem (9.116), and we record the approximated
switches of up, tu,1, and tu,2. When numerically solving problem
(9.116), we observe oscillations in all cases except for when p = 10−1.
In Figure 9.12, we provide the plots of the penalized solution up and
the plots of the corresponding switching function when the penalty
parameter was set to being 10−3, 10−2, and 10−1. Figures 9.12(a),
9.12(b), and 9.12(c) illustrate a trend of how increasing the tun-
ing parameter p influences the penalized solution to where many
oscillations no longer occur. We could increase the penalty parame-
ter values larger than 10−1; however, we did not do so because the
approximated switching function associated up when p = 10−1, given
in Figure 9.12, gave indication that the structure of up aligns with
Eq. (9.137). Meaning we have a non-oscillatory vaccination strategy
that is not only more realistic to implement, but also satisfies the
first-order necessary conditions of optimality.10 In addition, we do
not increase the tuning parameter to values larger than 10−1 due
to the possibility of over-penalization. In terms of runtime perfor-
mances, we have that PASA performed the fastest when the penalty
parameter was set to being 10−1.

We recognize in Figure 9.12 that the singular region associated
with up when the bounded variation tuning parameter is set to
p = 10−1 is a rather crude approximation. However, if we want a
smoother presentation of the singular region, we recommend either
increasing the number of mesh intervals used for the discretization
and/or tightening the stopping tolerance. In Figure 9.13, we provide a
solution that PASA obtained in solving for penalized problem (9.116)
with p = 10−1 when time interval [0, T ] was partitioned to have 2000
mesh intervals with mesh size being h = 0.025. The approximated
singular subarc that is given in Figure 9.13 is comparable to the
approximation that Ledezewicz et al.17 obtained.

Although these results are theoretical due to no vaccination for
Ebola, optimal control theory is used to see how vaccination and
treatment can influence the spread of the disease. We observe in
Figure 9.10 that without treatment and vaccination, the susceptible
class starts to decline due to many individuals becoming infectious,
and few individuals recover from the disease. When incorporating
the vaccination strategy and treatment strategy that is respectively,
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Fig. 9.12. Plots of the regularized vaccination strategy up and its corresponding
switching function φu for varying tuning parameter values for SIR Problem.
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Fig. 9.13. Spread of the disease with regularized vaccination and unregularized
treatment. Tuning parameter: p = 10−1, mesh intervals: n = 2, 000, and Error
Tolerance: 10−8.
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given in Figures 9.13(a) and 9.13(b), we observe in Figures 9.13(a)–
9.13(b) a large portion of the susceptible class transfer to the recov-
ered class through vaccination. The positive influence that treatment
has on the infectious class occurs approximately in the first 6 weeks
when the treatment strategy is set to treat all infectious individuals.
We believe that the weighted cost of treatment parameter value c
is influences the optimal treatment strategy to switch to incorporat-
ing no treatment at tv,1 ≈ 6.4 weeks. Reducing the weighted cost of
treatment parameter would alter the optimal treatment strategy to
extending the region(s) when v∗ = vmax.

9.6 Concluding Remarks

We demonstrate how Hager and Zhang’s31 Polyhedral Active Set
Algorithm (PASA) can be implemented for numerically solving opti-
mal control problems that are linear in the control. If problems of
this form possess a singular subarc, we recommend regularizing such
problems by using a penalty term based on the total variation of the
control as suggested in Caponigro et al..30 Total variation regulariza-
tion allows for PASA to yield approximations that do not oscillate
wildly over the singular region. We provide a discretization method
for a general optimal control problem that uses Euler’s method for
the state variables and uses the gradient of the Lagrangian of the
discretized optimal control problem to approximate the gradient of
the cost functional that is being used. Additionally, the use of the
Lagrangian consequently aids in the discretization of the adjoint
equations.

We then present in detail three optimal control problems that
apply to biological models. For the first two problems, an explicit
solution satisfying the first-order necessary conditions of optimality10

is found. In the third problem, we can verify existence of a singular
subarc for one of the control variables used. For all three examples,
we use PASA to numerically solve each problem with parameters
set to where the existence of a singular subarc is possible. For the
example associated with the plant problem that was presented in
King and Roughgarden’s,8 three cases are investigated where each
case determines the beginning behavior of the optimal allocation
strategy. PASA solves the unpenalized plant problem for all three
cases, and in all three cases no oscillations are found. However, in
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the degenerate case, the case corresponding to the optimal control
beginning singular, the unpenalized solution has an unusual dip at
t = 0. For this case, we regularize the problem via total variation and
obtain a penalized solution that serves to be a better approximation
of the true solution. When using PASA to solve the unpenalized
fishery problem12, 37 and to solve the unpenalized SIR problem,17

we obtain numerical solutions that possessed oscillations along the
singular region. We then apply a total variation regularization for
varying values of the penalty parameter. We find that the oscillatory
solution can be controlled by increasing the penalty parameter size.

In these examples, we find that observing the plots of the approxi-
mated penalized solution and of the corresponding switching function
are effective heuristics for determining whether or not the penalty
parameter size is over or under-penalizing the solution. For the fish-
ery problem, we use additional information such as the approximated
switching points and the L1 norm difference between the true solution
and the penalized solution to help determine what penalty parame-
ter value is the most appropriate choice in comparison to all of the
other penalty parameter values being tested. For the SIR problem,
we find that the penalized solution that PASA obtains is comparable
to the approximated solution that is presented in Ledzewicz et al.,17

which was obtained via a collocation method called PROPT.47

Overall, the use of PASA and the use of total variation regu-
larization make the process of numerically solving singular control
problems more tractable. With the aid of PASA and total varia-
tion penalization, mathematical biologists can consider constructing
an optimal control problem with a cost functional that possesses a
more accurate representation of the cost in implementing the con-
trol, which aligns more with the principle of parsimony than when
using an optimal control problem with quadratic dependence. Solving
an optimal control problem with a more accurate representation of
the cost functional ensures that the optimal control associated with
the problem truly meets the criteria that are being considered for
determining which control strategy is the best relative to the state
dynamics being studied. Additionally, using an optimal control prob-
lem where the control variables appear linearly can potentially yield
optimal control solutions with regions that are both easy to interpret
and implement. Incorporating a more practical, uncomplicated, and
accurate optimal control into a dynamical system that is intended to
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model some biological phenomenon can provide more compelling and
elucidating results that are applicable to practice and worthwhile to
study.
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Appendix 9

9.A.1 Numerical Results Associated with the Unpenalized

Plant Problem

The unpenalized solutions that PASA obtained when parameters
were set to be of Cases 2a, 2b and 2c are shown in Figures 9.A.14,
9.A.15, and 9.A.16, respectively; and numerical results associated
with each case are provided in Table 9.6. As you can see in
Figures 9.A.14(a), 9.A.15(a), and 9.A.16(a), the unpenalized control
found for each case does not present any oscillatory artifacts. We see
in Figures 9.A.15(b) and 9.A.16(b) that other than the discrepancies
arising from the switching points, the unpenalized solutions for Case
2b and Case 2c only differ slightly from their respective exact solution
along the singular region. The state solutions that correspond to the
unpenalized solution for Cases 2a, 2b, and 2c, which are respectively
shown in Figures 9.A.16(a)–9.A.16(d), Figures 9.A.15(c)–9.A.15(d)
and Figures 9.A.16(c)–9.A.16(d), compare relatively well with the
state solutions that correspond to u∗. In Figures 9.A.14(c), 9.A.15(c),
and 9.A.16(c), we see that in each case the approximate solutions
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Fig. 9.A.14. Results from solving unpenalized plant problem (Case 2a).

associated with the vegetative parts of the plant do give slightly
underestimated values along the interval [1.5, T ]. This could be due
to the small discrepancies in û along the singular region. Moreover,
if we look at the analytic solution for x1 on [t2, T ] given in (9.90),
we can see how errors between u∗ and û and how switching prema-
turely to the non-singular case could contribute errors in x1 along
the non-singular region [t2, T ]. Now in Figures 9.A.14, 9.A.15, and
9.A.16 we see that solutions associated with the reproductive parts
of plants give slightly underestimated values on the interval [t2, T ].
From the explicit solution of state variable x2 given in Eq. (9.91),
we see that state variable x2 is a line on time interval [t2, T ] with
slope being x1(t2). So for each case, the approximated solution for
x2 presents underestimated values along time interval [t2, T ] because
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Fig. 9.A.15. Results from solving unpenalized plant problem (Case 2b).

the approximation of state variable x1 yields underestimated values
near t2. Despite these differences, we find PASA’s unpenalized solu-
tion to be a sufficient approximation to the true solution to problem
(9.65) in Cases 2b and 2c.

9.A.2 MATLAB code for the SIR problem

The following is the MATLAB file called demoOC.m. It can be used
in solving problem (9.116). This file is included when downloading
the PASA package, and it is located in the following directory:

SuiteOPT/PASA/MATLAB. This demo file is associated with the
most up-to-date version of PASA, which is SuiteOPT Version 2.0.0.
To access PASA software which can be used on MATLAB for
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Fig. 9.A.16. Results from solving unpenalized plant problem (Case 2c).

Linux and Unix operating systems, download the SuiteOPT Version
2.0.0 software given on https://people.clas.ufl.edu/hager/software.
For future reference, any updates to the software will be uploaded to
this link, and to access older versions of the software, use the same
link and then select “Software Archive.” We recommend the reader to
read MATLAB file readme.m which is located in the same directory
as demoOC.m. The readme.m file goes into detail about the inputs
that are used for running PASA. Note that we have state variables
initialized as n-vectors rather than n + 1-vectors because from the
discretization of problem (9.116) given in Section 9.5.1, the (n+1)th
mesh point of S, I, and R is not present in the following: the approx-
imation of the penalized objective functional, the approximation
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of gradient of the objective functional, and the discretized adjoint
equations. We only used the (n+ 1)th mesh points to generalize the
transversality conditions for the adjoint equations. We still are dis-
cretizing [0, T ] with n mesh intervals, which is why the mesh size is
set to being h = T/n.

1 % This t e s t problem i s an optimal c on t r o l problem that
a r i s e s in the

2 % treatment o f the ebo la v i r u s ( s e e ∗) . An important
f e a tu r e o f the problem i s

3 % that i t i s s i n gu l a r . I f the dynamics were
d i s c r e t i z e d and the co s t

4 % was optimized , then the s o l u t i o n o s c i l l a t e s w i ld ly
in the s i n gu l a r

5 % reg ion , so the optimal c on t r o l in that r eg i on would
not be determined .

6 % The o s c i l l a t i o n s are removed us ing a pena l ty term
based on the t o t a l

7 % va r i a t i o n o f the optimal c on t r o l . The dynamics are
d i s c r e t i z e d us ing

8 % Euler ’ s method with a constant c on t r o l on each mesh
i n t e r v a l . I f u i

9 % i s the c on t r o l on the i−th i n t e r v a l , then we add the
con s t r a i n t

10 %
11 % u { i +1} − u i = i o t a i − z e t a i
12 %
13 % where z e t a i and i o t a i >= 0 . The pena l ty term that

we add to the o b j e c t i v e
14 % funct i on i s p ∗ sum { i = 1}ˆn i o t a i + z e t a i , which

i s p times the t o t a l
15 % va r i a t i o n in the c on t r o l . Bes ides the c on t r o l u ,

which can be s ingu la r ,
16 % ther e i s another c on t r o l v which i s bang/bang . The

opt im iza t i on in t h i s
17 % problem i s over x = [ u , zeta , io ta , v ] where u and v

are both cons t r a ined
18 % to the i n t e r v a l [ 0 , 1 ] , whi l e the only c on s t r a i n t on

zeta and i o t a i s the
19 % nonnega t iv i ty c on s t r a i n t . I f the r e are n i n t e r v a l s

in the mesh , then the
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20 % dimension o f x i s 4∗n − 2 s i n c e u and v both have n
components whi l e

21 % zeta and i o t a have n−1 components . For pasa , the
c o n s t r a i n t s should be

22 % wr i t t en in the form bl <= A∗x <= bu and l o <= x <=
hi . Thus a row o f the A

23 % matrix cor re sponds to the c on s t r a i n t :
24 %
25 % 0 <= u i − u { i+1} + i o t a i − z e t a i <= 0 ,

1 <= i <= n−1
26 %
27 % The s t a t e va r i a b l e in the c on t r o l problem i s the

t r i p l e (S , I , R)
28 % corresponding to the s u s c ep t i b l e , i n f e c t ed , and

recovered i n d i v i d u a l s .
29 % The con t r o l u i s vacc ina t i on ra t e whi l e v i s

r e f e r r e d to as treatment ra te .
30 % The con t r o l s a re l i n e a r in both the dynamics and the

cost , which l eads
31 % to the s i n g u l a r i t y o f the s o l u t i o n .
32 %
33 % ∗ Optimal Contro l f o r a SIR Ep idemio l og i c a l Model

with Time−vary ing
34 % Populat ions by Urszula Ledzewicz , Mahya Aghaee ,

and Heinz Schae t t l e r ,
35 % 2016 IEEE Conference on Contro l App l i ca t i ons (CCA)

, pp . 1268−1273 ,
36 % DOI: 10 .1109/CCA.2016 .7587981
37

38 f unc t i on demoOC
39 % −−−−−− I n i t i a l i z e constant parameters −−−−−− %
40 g l o ba l gamma beta nu rho kappa mu alpha eta T n a

b c p
41 c l f ;
42 gamma = 0.00683 ; %b i r th ra te o f the popula t ion
43 nu = 0.00188 ; %natura l death ra te o f the

populat ion
44 beta = 0 .2426 ; %ra te o f i n f e c t i o u s n e s s o f the

d i s e a s e
45 rho = 0 .007 ; %r e s e n s i t i z a t i o n ra te
46 kappa = 0 .3 ; %e f f e c t i v e n e s s o f vac c ina t i on
47 mu = 0.005 ; %d i s e a s e induced death ra te
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48 alpha = 0.00002 ; %ra te at which d i s e a s e i s
overcome

49 eta = 0 .1 ; %e f f e c t i v e n e s s o f treatment
50 T = 50 ; %time hor izon ( weeks )
51 n = 500 ; % Dimension o f u and v , the

number o f mesh i n t e r v a l s
52 a = 5 ; % Constant in co s t func t i on
53 b = 50 ; % Constant in co s t func t i on
54 c = 300 ; % Constant in co s t func t i on
55 p = 1e−1 ; % pena l ty parameter in co s t

func t i on
56 umax = 1 ; % maximum vacc ina t i on ra t e
57 vmax = 1 ; % maximum treatment ra te
58 h = T/n ; % Step s i z e
59 S = ze ro s (n , 1) ;
60 I = ze ro s (n , 1) ;
61 R = ze ro s (n , 1) ;
62

63 %% −−− Store problem d e s c r i p t i o n in a s t r u c tu r e which
we c a l l pasadata −−− %

64 % −−−−−−−−−−−− Setup spa r s e matrix A −−−−−−−−−−− %
65 A1 = spd iag s ( [ ones (n−1 ,1) −ones (n−1 ,1) ] , [ 0 , 1 ] , n

−1, n ) ;
66 A2 = speye (n−1) ;
67 A = spar s e (n−1, 4∗n−2) ;
68 % A1 corre sponds to the u i − u { i +1} term in the

c on t r a i n t whi l e
69 % A2 i s used f o r the zeta and i o t a terms in the

c on s t r a i n t
70 A( : , 1 :3∗n−2) = [A1 −A2 A2 ] ;
71

72 % put A in the s t r u c tu r e
73 pasadata .A = A ;
74

75 % I f the c on s t r a i n t b l <= A∗x <= bu i s present ,
then pasa uses the

76 % dimensions o f A to determine the number o f
l i n e a r c o n s t r a i n t s

77 % and the number o f components in x . Thus i f the
c on s t r a i n t matrix l i e s

78 % in the upper l e f t nrow by nco l submatrix o f a
l a r g e r matrix Afu l l ,
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79 % se t pasadata .A = Afu l l ( 1 : nrow , 1 : nco l ) . In the
example above , the

80 % statement A = spar s e (n−1, 4∗n−2) s p e c i f i e d the
dimensions o f A

81

82 % −−−−−−− s t o r e the bounds f o r A∗x −−−−−−− %
83 pasadata . b l = ze ro s (n−1, 1) ;
84 pasadata . bu = ze ro s (n−1, 1) ;
85

86 % −−−−−−−− s t o r e the bounds f o r x −−−−−−−− %
87 pasadata . l o = ze ro s (4∗n−2 ,1) ;
88 pasadata . h i = . . .
89 [ umax∗ ones (n , 1 ) ; i n f ∗ ones (n−1 ,1) ; i n f ∗ ones

(n−1 ,1) ; vmax∗ ones (n , 1 ) ] ;
90

91 % The codes to eva lua te the co s t func t i on and i t s
g r ad i en t appear below .

92 % Store the name o f the codes in the pasadata
s t r u c tu r e .

93 pasadata . grad = @grad ; % ob j e c t i v e g rad i en t
94 pasadata . va lue = @cost ; % ob j e c t i v e va lue
95

96 %% −−−−−−−−−−−−−−−− User de f ined parameter va lue s f o r
pasa −−−−−−−−−−−−− %%

97 % Type ”pasa readme” f o r d i s c u s s i on o f the
parameters .

98 % By de fau l t , the r e i s no p r i n t i ng o f s t a t i s t i c s .
99 pasadata . pasa . P r in tSta t = 1 ; % pr in t

s t a t i s t i c s f o r used r ou t i n e s
100 pasadata . pasa . g r ad to l = 1 . e−8 ; % PASA stopping

t o l e r an c e ( 1 . e−6 de f au l t )
101

102 % −−−−−−−−−−−−−−− Cal l pasa to determine optimal x
−−−−−−−−−−−−−− %

103 [ x , s t a t s ] = pasa ( pasadata ) ;
104

105 % Since pasadata . pasa . P r in tS ta t = 1 , the
s t a t i s t i c s a re d i sp l ayed at

106 % the end o f the run . S ince the s t a t s s t r u c tu r e
was inc luded as an

107 % output , the cor responding numer ica l e n t r i e s can
be found in the
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108 % st r u c tu r e s s t a t s . pasa and s t a t s . cg
109

110 % −−−−−−−−−−−−−−−−−−−−−− Plot the s t a t e s
−−−−−−−−−−−−−−−−−−−−−− %

111 u = x ( 1 : n ) ; % ex t r a c t the c on t r o l u
from the returned s o l u t i o n x

112 v = x (3∗n−1:4∗n−2) ; % ex t r a c t the c on t r o l v
from the returned s o l u t i o n x

113 [ S , I , R] = s t a t e (u , v ) ; % the s t a t e a s s o c i a t e d
with the optimal c on t r o l s

114

115 t = l i n spa c e (0 , T−h , n ) ;
116 subplot (3 , 2 , 1 )
117 p lo t ( t , S , ’ l i n ew id th ’ , 2 ) ;
118 x l ab e l ( ’Time ’ )
119 y l ab e l ( ’ S ’ )
120 subplot (3 , 2 , 2 )
121 p lo t ( t , I , ’ l i n ew id th ’ , 2 ) ;
122 x l ab e l ( ’Time ’ )
123 y l ab e l ( ’ I ’ )
124 subplot (3 , 2 , 3 )
125 p lo t ( t , R, ’ l i n ew id th ’ , 2 ) ;
126 x l ab e l ( ’Time ’ )
127 y l ab e l ( ’R ’ )
128

129 % −−−−−−−−−−−−−−−−− Plot the c on t r o l s u and v
−−−−−−−−−−−−−−−−− %

130 subplot (3 , 2 , 5 ) ;
131 p lo t ( t , u , ’ l i n ew id th ’ , 2 ) ;
132 x l ab e l ( ’Time ’ )
133 y l ab e l ({ ’ Contro l u ’ , ’ ( Vacc inat ion ) ’ })
134 subplot (3 , 2 , 6 ) ;
135 p lo t ( t , v , ’ l i n ew id th ’ , 2 ) ;
136 x l ab e l ( ’Time ’ )
137 y l ab e l ({ ’ Contro l v ’ , ’ ( Treatment ) ’ })
138

139 %% −−−−−−−−−−−−−−−−−− User de f ined func t i o n s f o r pasa
−−−−−−−−−−−−−−−−−− %%

140 % −−−− Object ive func t i on −−−− %
141 f unc t i on J = cos t ( x )
142 h = T/n ;
143 u = x ( 1 : n ) ;
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144 zeta = x(n+1:2∗n−1) ;
145 i o t a = x(2∗n :3∗n−2) ;
146 v = x (3∗n−1: 4∗n−2) ;
147 [ S , I , R] = s t a t e (u , v ) ;
148 J = h∗( a∗sum( I ) + b∗sum(u) + c∗sum(v ) ) ;
149 J = J + p∗sum( zeta + i o t a ) ;
150 end
151

152 % −−−− Gradient o f o b j e c t i v e func t i on −−−− %
153 f unc t i on g = grad (x )
154 h = T/n ;
155 u = x ( 1 : n ) ;
156 v = x (3∗n−1: 4∗n−2) ;
157

158 % Compute s t a t e and co s t a t e
159 [ S , I , R] = s t a t e (u , v ) ;
160 [ lS , l I , lR ] = co s t a t e (S , I , R, u , v ) ;
161

162 % Update g rad i ent va lue s
163 f o r i =1:n
164 Fu( i ) = h∗(b − lS ( i ) ∗kappa∗S( i ) + lR ( i ) ∗

kappa∗S( i ) ) ;
165 Fv( i ) = h∗( c − l I ( i ) ∗ eta ∗ I ( i ) + lR ( i ) ∗ eta ∗

I ( i ) ) ;
166 end
167

168 % Store g rad i ent va lue s in ar ray g to re turn
169 g = [ Fu , p∗ ones (1 ,n−1) , p∗ ones (1 , n−1) , Fv ] ;
170 end
171

172 % −−−− State −−−− %
173 f unc t i on [ S , I , R] = s t a t e (u , v )
174 h = T/n ;
175 S (1 ) = 1000 ;
176 I (1 ) = 10 ;
177 R(1 ) = 0 ;
178

179 f o r i = 1 : n−1
180 N = S( i ) + I ( i ) + R( i ) ;
181 S( i + 1) = S( i ) + h∗(gamma∗N − nu∗S( i ) − (

beta ∗S( i ) ∗ I ( i ) ) /N . . .
182 + rho∗R( i ) − kappa∗S( i ) ∗u( i ) ) ;
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183 I ( i + 1) = I ( i ) + h∗( beta ∗S( i ) ∗ I ( i ) /N − (
nu + mu + alpha ) ∗ I ( i ) . . .

184 − eta ∗ I ( i ) ∗v ( i ) ) ;
185 R( i + 1) = R( i ) + h∗( − nu∗R( i ) − rho∗R( i )

. . .
186 + kappa∗S( i ) ∗u( i ) + alpha ∗ I ( i ) + eta ∗

I ( i ) ∗v ( i ) ) ;
187 end
188 end
189

190 % −−−− Costate −−−− %
191 f unc t i on [ lS , l I , lR ] = co s t a t e (S , I , R, u , v )
192 h = T/n ;
193 lS (n ) = 0 ;
194 l I (n ) = 0 ;
195 lR (n) = 0 ;
196

197 f o r i=n:−1:2
198 N = S( i ) + I ( i ) + R( i ) ;
199 lS ( i −1) = lS ( i )+ h∗ lS ( i ) ∗(gamma − nu −

beta ∗( I ( i ) /N) . . .
200 + beta ∗(S ( i ) ∗ I ( i ) /(Nˆ2) ) −

kappa∗u( i ) ) . . .
201 + h∗ l I ( i ) ∗( beta ∗( I ( i ) /N) −

beta ∗(S ( i ) ∗ I ( i ) /(Nˆ2) ) ) . . .
202 + h∗ lR ( i ) ∗( kappa∗u( i ) ) ;
203 l I ( i −1) = l I ( i )+ h∗a +h∗ lS ( i ) ∗(gamma − (

beta ∗S( i ) ) /N . . .
204 + ( beta ∗S( i ) ∗ I ( i ) ) /Nˆ2) . . .
205 + h∗ l I ( i ) ∗ ( ( beta ∗S( i ) ) /N − (

beta ∗S( i ) ∗ I ( i ) ) /(Nˆ2) . . .
206 − (nu + mu + alpha ) − eta ∗v ( i )

) . . .
207 + h∗ lR ( i ) ∗( alpha + eta ∗v( i ) ) ;
208 lR ( i −1) = lR ( i )+ h∗ lS ( i ) ∗(gamma + ( beta ∗S(

i ) ∗ I ( i ) ) /(Nˆ2) + rho ) . . .
209 + h∗ l I ( i )∗(− ( beta ∗S( i ) ∗ I ( i ) )

/(Nˆ2) ) . . .
210 + h∗ lR ( i )∗(− nu − rho ) ;
211 end
212 end
213 end
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