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ABSTRACT

This study focuses on developing a computational framework
for model-based design of the thermal insulation elements of net-
zero buildings based on silica aerogel porous materials, ensuring
they provide superinsulation while upholding structural integrity.
This approach employs a multiphase continuum model, captur-
ing the thermomechanical properties of the insulation component
through a set of partial differential equations (PDE). The frame-
work considers the uncertainty associated with both the physical
parameters like elasticity and thermal conductivity for the solid
and fluid phases, as well as the design parameter, which is the
spatial distribution of the aerogel porosity over the domain of
the component. The combination of spatially varying design
and uncertainty parameters, along with their finite element dis-
cretization, results in a high dimensional PDE-constrained opti-
mal design problem. A mean cost functional is implemented to
achieve both target insulation performance and uncertainty re-
duction during the design process. To avoid stress concentration
in the component, chance constraints are included in the opti-
mization formulation, which ensures that the probability of a func-
tion that measures the difference between evaluated stress from
the multiphase model and a critical threshold value lies within
tolerance. A scalable method is introduced for solving PDE-
constrained optimization under uncertainty that is both efficient
and dimension-independent. For efficiency, this method exploits
a second-order Taylor approximation of the design objective and
chance constraint function, which solves a generalized eigenvalue
problem. Combined with a gradient-based optimization built
on Lagrangian formulation, it results in dimension-independent
(scalable) computational costs. The numerical experiments on
the design of thermal breaks of the buildings demonstrate that the
proposed framework leads to a significant reduction in computa-
tional cost while preserving thermal insulation performance and
avoiding mechanical failure due to stress concentration.
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1. INTRODUCTION

Thermal breaks play a pivotal role in net-zero buildings by in-
tercepting the path of heat transfer and mitigating the adverse
effects of thermal bridging, thereby significantly reducing energy
consumption. Silica aerogels, characterized by their lightweight
nature and ultra-low thermal conductivity, are poised to revolu-
tionize the next generation of thermal break materials. However,
their intrinsic limitation lies in their low mechanical strength,
posing a barrier to their widespread adoption in practical appli-
cations. Recent advancements in additive manufacturing, partic-
ularly the direct ink writing method, offer a promising avenue
for addressing this challenge. This method enables the fabrica-
tion of components with diverse geometries and spatially varying
properties to enhance the aerogel’s mechanical properties and ex-
pand its functional capabilities. In the context of thermal breaks,
high-porosity aerogels exhibit exceptional thermal insulation per-
formance, while low-porosity variants are essential for imparting
the necessary mechanical robustness to withstand external loads.
Achieving this thermo-mechanical balance necessitates the adop-
tion of simulation-based design methods [1-4], aimed at develop-
ing cost-effective components with superior insulation properties
and requisite mechanical stability.

This paper presents an efficient computational framework for
the optimal design of thermal break components subject to par-
tial differential equation (PDE) constraints and high-dimensional
uncertainty, focusing specifically on the spatial distribution of the
silica aerogel porosity. The forward PDE model employed herein
relies on a two-phase thermo-mechanical model of aerogel based
on the continuum theory of mixtures. The design parameter
under consideration is the spatial distribution of porosity across
the domain, which inherently exhibits spatially correlated uncer-
tainty stemming from material variations and fabrication errors.
The optimization objective involves minimizing the mean of the
uncertain thermal insulation performance. To ensure the mechan-
ical integrity of the component, chance constraints are imposed
on the optimization problem [2, 3], limiting the maximum von
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Mises stress induced in the domain to a specified threshold below
the critical stress level, thus averting mechanical failure due to
excessive stress. To develop a computationally efficient solution
algorithm, a second-order Taylor approximation is employed to
linearize the optimization cost function and chance constraint.
These linearizations leverage the action of the Hessian on a set of
random directions, employing a randomized algorithm to solve
the associated generalized eigenvalue problem. The optimiza-
tion procedure is grounded in a gradient-based approach formu-
lated within the Lagrangian framework, ensuring scalability by
requiring only a modest number of vectors and their gradients
for constructing the design gradient. This results in a frame-
work with computational cost scalability that is independent of
the dimensionality of the design parameters. Numerical exper-
iments conducted on thermal breaks for buildings demonstrate
that the proposed framework yields a substantial reduction in
computational cost compared to Monte Carlo-based estimations
of objective function moments and chance constraints.

The structure of the paper is as follows: Section 2 depicts
the optimization problem under uncertainty, encompassing the
forward model, specification of design and uncertain parameters,
and representation of the design objective. Section 3 is devoted
to detailing the scalable framework for PDE-constrained chance-
constrained optimal design, outlining the Taylor approximation of
both the mean cost functional and chance constraint function. In
Section 4, the gradient-based optimization method is expounded
upon, including the assessment of the cost functional and its
gradient concerning design parameters. Section 5 presents the
numerical findings regarding optimal design, succeeded by the
concluding remarks in Section 6.

2. FORWARD MODEL

The forward model is based on the continuum mixture theory [5].
The model considers two phases which are the incompressible
solid aerogel and compressible fluid phases between the materi-
als. The governing equations at steady state for the thermal and
mechanical parts can be described using the following PDEs,

=V (¢sksVOs) = —h(6s — gf) (D
=V - (¢rrrVOr) = h(6s — bf) 2
Dp =—(V-us) (3)

V.T, + (2¢; — )Vp =0 (4)

where model parameters are § = («g, k¢, D, Eg) and states are
u = (0s,0r,us, p). The state variables 6, 6¢, us and p represent
the solid and fluid temperatures, solid displacement, and fluid
pressure respectively over the whole domain. The stress tensor
is defined as T’ = 2uEs + A tr(Eg)I with Eg = 3(Vug + (us)")
where Ej is the solid strain and A and u are the Lame constants.

Due to the imprecise control of the aerogel ink properties,
there is an uncertainty associated with the porosity value within
the aerogel thermal break. The uncertain parameter m is repre-
sented by a Gaussian measure u = N (m, €) with mean m and co-
variance €, which can be represented by a Matern covariance ker-
nel such that € = 91~2 [6]. The design parameter d(x) € [0, 1] is

related to the uncertain and spatially-correlated fluid volume frac-
tion (porosity) ¢ (x), through ¢r(x) = g(d(x) + m(x)), where
g(-) is a linear map. Finally, the design objective is defined as
thermal compliance of the insulation system as,

1
0= 5 i;f (9ikiV;, V9i>g+i;f (Pihair (0i = Oamp), 6i). (5)

3. SCALABLE FRAMEWORK FOR CHANCE CONSTRAINT
OPTIMAL DESIGN

The PDE-constrained optimization under uncertainty problem
aims to determine the spatial distribution of porosity within the
thermal break, which avoids stress concentration and provides
thermal performance. The PDE (1) can be abstractly represented
as R(u,m,d) = 0in %, where m € Jl denotes an uncertain
parameter field residing in a Banach space ./ and has a probability
distribution u. To incorporate the uncertainty stemming from the
dependence on m into the design process, we use the mean of
design objective in the cost functional as,

J(d) =E[Q(m,d)] + R(d), (6)

where the term R(d) represents the regularization term. In this
work, we considered Tikhonov regularization, which can be ex-
pressed as,

R(d) = j BunlVd[? d,
Q

where (3 is the parameter that controls the interface thickness.
To mitigate the risk of stress concentration within the domain, it
is imperative that the maximum stress remains below the critical
stress threshold. However, due to the non-differentiable nature of
the maximum stress, direct optimization poses significant chal-
lenges. This can be resolved using stress aggregation function
based on p-norm [7], which is a smooth approximation of the
maximum stress facilitating the application of gradient-based op-
timization techniques. For the chance constraint function, we
consider the p-norm of the von Mises stress for the component,
which approximates its maximum value in the entire domain. The
p-norm for the von mises stress can be computed as

1
I)
Ton = (J Tou dQ) (7)
Q
The chance constraint function can hence be written as,
f=Ter - Tpna (3)

where T, is the limiting critical stress and T}, is the p-norm of the
von Mises stress over the domain. To avoid stress concentration,
we consider a chance constraint:

P(f(m,d) 20) < a, ©))
for a critical chance 0 < @, < 1. The probability is given by
E[I0,001 (f (m, d))]

[ tocrtsoma dutm), 10

P(f(m,d) > 0)
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where [ ] (f(m, d)) is an indicator function defined as:

L if f(m.d) 20
L[0,001(f (m, d)) = {() jf;EZ d; z 0

Hence, the PDE-constrained optimization can be written as,

mc}'n J (d) subject to (1)-(4) and chance constraint (9). (11)

3.1 Taylor Approximation

Due to the requirement of large PDE evaluations in the sample
averaged calculation of the mean in the cost functional, Taylor
approximation is applied for both the objective function and the
constraint function, which requires an efficient eigenvalue decom-
position of the Hessian of the objective and constraint functions
with respect to the random parameter field. We assume that
the objective function Q can be approximated as a second-order
Taylor expansion centered around the mean of the uncertain pa-
rameter 71, which is given by

2
120 (m,d) = ), 95,0, d)(m — )" (12)
k=0

The closed form for the expectation of the quadratic Taylor ap-
proximation ¥y,qq is defined as:

1 —
}quud = E[T2Q(d)] = Q(m’ d) + Etr(%q) (13)

where tr(%q) represents the trace of 7, which is the covariance-
preconditioned Hessian of the objective Hessian Q. The eigen-
values A, are obtained by solving the following generalized eigen-
value problem,

(L VomQ W) = 4L, B ), VL €l j =1, Neig (14)

where the eigenvectors ; exhibit orthonormality with
%_],<¢i,(€_l$j> = 0ij,i,] = 1,..Nejg and 0ij denote the
Kronecker delta function. Using an n-degree finite element
discretization, 14 can be written as Ay = ABy. The eigenvalue
problem at hand can be effectively solved using a double-
pass randomized algorithm [8]. Subsequently, the obtained
eigen-decomposition is employed to estimate the trace of
the covariance-preconditioned Hessian %, via its dominant
eigenvalues A, expressed as,

N‘I
tr(Hg) = D An, (15)
n=1

where, N, represents the low-dimensional dominant modes. As
demonstrated in the results section, N, is invariant to the pa-
rameter dimension, and the eigenvalues exhibit rapid decay for
numerous problems when the covariance-preconditioned Hessian
is low-rank.

We construct a second-order Taylor expansion of the con-
straint function f at m similar to (13) denoted by 7> f to facilitate

approximation of the probability P(f(m,z) > 0) through sam-
pled averaged approximation as:

1
P(f(m,d)) = 0) ~ f&(d) = ﬁfﬂm,w) (Tof (mi,d)).  (16)

This approximation of the constraint function obviates the neces-
sity for a large number of PDE solves to assess the probability
utilizing sample averaging methods.

4. GRADIENT-BASED OPTIMIZATION

A gradient-based approach is employed to tackle the chance-
constrained optimization problem outlined in the preceding sec-
tion. Specifically, the Newton Conjugate Gradient algorithm
is employed, which constitutes a modified variant of Newton’s
method. This algorithm leverages the conjugate gradient tech-
nique to compute the inverse of the local Hessian matrix. The
optimization process necessitates the incorporation of four key
components: (1) a smooth approximation of the indicator func-
tion, (2) a penalty method for handling inequality chance con-
straints, (3) a continuation scheme to refine both the smooth
approximation and the penalty term associated with inequality
chance constraints, and (4) the calculation of the gradient of the
quadratic approximate cost functional $;,4q. This section elab-
orates the entire methodology to solve the optimization problem.

4.1 Smooth approximation

The indicator function utilized in the chance constraint exhibits
discontinuity at f(m,d) = 0. In order to employ a gradient-
based optimization method, this discontinuous indicator function
must be approximated with a smooth, continuous counterpart.
One approach involves employing a logistic function as a smooth
approximation of the indicator function such that,

1
]I[O,oo] (x) = lﬁ(x) = He——zﬁx’ (17)

where a larger 8 corresponds to a sharper transition at x = 0.

4.2 Penalty Method

To impose the inequality constraint (9), a quadratic penalty
method [9] is applied. The quadratic penalty function is defined
as,

S, (x) = %(max{o,x})z (18)

where y > 0 is a constant corresponding to the weight of the
penalty. Using the penalty method, the chance-constrained prob-
lem can be rewritten as

dgn[glllf(d) + 8y (Ellg(f)] - ac) 19)

Let ¥ (d) denote the approximation of the cost functional in (6),
and V;¥ denote the gradient of cost functional with respect to
design variable. A continuation scheme [3] is utilized, which
gradually increases the smoothing parameter 8 and penalty pa-
rameter y inside an outer loop and Newton Conjugate Gradient
optimizer.
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4.3 Adaptive optimization

The gradient-based scheme uses a continuation scheme that grad-
ually increases the smoothing parameter 8 and penalty parameter
v to achieve convergence [3]. An initial value of the smooth-
ing parameter B¢ and the penalty parameter vy is defined for the
continuation scheme. These parameters are updated at the end
of each iteration using scaling parameters o and o, for smooth-
ing and penalty parameters, respectively. For k" iteration , the
updated smoothing parameter is Sr+1 = ogfBx and the updated
penalty parameter is yx+1 = 05¥k. In an outer loop, we update
the parameters § and y, whereas a Newton Conjugate Gradient
(Newton CG) is applied in the inner loop to solve the optimization
problem (19). The stopping criterion for the outer loop is if the
maximum number of iterations kn,x 1S reached. For each itera-
tion, the approximated chance is computed through the quadratic
approximation fAZ,I of the chance function as given in (16). The
output is the optimal value of design parameter dop. The algo-
rithm for this adaptive optimization is given in Algorithm 1.

Algorithm 1

Input: do, Bo, Yo, 0p, 0y, f = f(d)

while ||di — di-1]| < €ur OF k < kmax

1. di+1 = Newton CG(dg, F(d), VaF(d), €n)-
2. Evaluate approximate chance fi+1 at dy.
3. Update Br+1 = 08Bk, Yk+1 = Oy Yk

end while

return dop

4.4 Computation of gradient of cost functional

The gradient and Hessian of design objective Q with respect
to uncertain parameter m are known as mgp-gradient and m -
Hessian; also, the gradient and Hessian of constraint function f
with respect to m are known as my-gradient and ms-Hessian. An
approximate cost functional using Taylor approximation and its
gradient with respect to the design variable is computed using a
gradient-based algorithm. Lagrangian formulation is employed
to derive the gradient of the quadratic approximation of the design
objective J,uqq With respect to the design parameter d denoted
as d-gradient. A Lagrangian functional is created by enforcing
all the PDE constraints. Setting the variation of Lagrangian
as zero with respect to state variables, adjoint variables, and
eigenvalues, we can come up with a set of incremental state
problems, incremental adjoint problems, linear state problems,
and linear adjoint problems. The algorithm for computing the
d-gradient is given in Algorithm 2.

Algorithm 2
1. Solve for mg-gradient and mp-Hessian

2. Solve for ms-gradient and m¢-Hessian.

3. Solve for generalized eigenpairs with double-pass randomized
algorithm.

4. Compute approximate cost functional $;,qq by (13)
5. Solve the linear state problem.

6. Solve the linear adjoint problem.
7. Obtain the d-gradient.

5. RESULTS AND DISCUSSIONS

This section presents numerical experiments conducted on an
insulation component with the objective of maximizing thermal
insulation performance while ensuring adequate mechanical sta-
bility through the incorporation of chance constraints. The nu-
merical results aim to assess the impact of critical chance, limiting
critical stress value, Tikhonov regularization weight, smoothing,
and penalty parameters. The problem under consideration entails
an L-shaped geometry. For the heat transfer model, Neumann
boundary conditions are imposed, with ambient temperatures set
at 1 and O at the outer and inner boundaries, respectively, and in-
sulated conditions applied to the remaining two boundaries. The
boundary conditions of the mechanical model involve prescrib-
ing a uniform traction load with magnitude 1 along and in the
opposite direction of the unit vectors on the outer boundary, fix-
ing solid displacement on the inner boundary, and applying roller
conditions to the other boundaries. Model parameters are speci-
fied as ks = 0.477, ks = 0.085, h = 81059, C = 0.25, 1 = 6.77,
and p = 3.38, adopted from the previous research [S]. The un-
certain parameter m is the Gaussian random field with Matern
covariance and mean m = 0 and correlation length L = 0.02.
Figure 1 shows some samples of the uncertain parameter used in
the numerical experiments.

\
o
Uncertain parameter m

FIGURE 1: Samples of uncertain parameter m with correlation
length L~ = 0.02

In all numerical examples, a finite element mesh with 8587
nodes is utilized. The proposed design under uncertainty frame-
work is implemented leveraging a suite of open-source libraries,
including FEniCS [10] for finite element solution of the forward
model, hIPPYLib [11-13] for the trace estimator and Newton
conjugate gradient algorithm, and SOUPy [14] for quadratic ap-
proximation of the design objective.

5.1 Scalability of the optimization algorithm

Figure 4 depicts the decay of eigenvalues in (14) for various di-
mensions of design and uncertain parameters, denoting different
finite element discretizations. The consistent nature of the eigen-
value decay across these dimensions underscores the scalability
of the quadratic approximation with respect to the parameter di-
mension. In other words, the computational cost of the proposed
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FIGURE 2: The probability distribution of the thermal objective Q
for the designed components at different values of a.

design under an uncertainty framework is independent of the
number of designs and uncertain parameters but rather depends
on the low rank of the preconditioned Hessian.

5.2 Effect of critical chance

The critical chance a, represents the probability threshold beyond
which the p-norm of von Mises stress may exceed the limiting
critical stress. Therefore, a. signifies the accepted degree of
uncertainty in stress concentration to prevent mechanical failure
of the insulation component. Figure 3 illustrates the optimal de-
sign results achieved by setting a, to two distinct values. The
limiting critical stress T, for both cases is 1.6 MPa. Addition-
ally, this figure presents the corresponding states, and von Mises
stress assessed at the mean of the uncertain parameters. The
findings suggest that considering a higher critical chance entails
the placement of mechanically stronger material (shown in red)
over a broader region of the domain, resulting in diminished local
stress values across the component. However, enhancing stability
with higher o, values will come at the expense of the insulation
performance of the component, as evidenced by the probability
distribution of thermal compliance depicted in Figure 2.

5.3 Effect of Tikhonov weight

Next, we explore the impact of Tikhonov regularization by consid-
ering two different weights: B,;x = 1 x 107 and B;;x = 2x 1074,
depicted in Figure 5. As illustrated in this figure, stronger reg-
ularization yields smoother optimal design solutions within the
domain, resulting in increased interface thickness between the
two materials. For more intricate problems, it may be necessary
to enhance regularization to achieve a nearly sharp interface [4].

5.4 Effect of smoothing and penalty parameter

We demonstrate the effect of the scaling parameters o and
oy. The effect of scaling parameter o is demonstrated in two
cases. As the smoothing parameter § increases, the approxima-
tion to the indicator function becomes more accurate, and hence
the solution starts to improve. Figure 6 shows the convergence
of the value of chance Igf for two different values of scaling
parameter o while keeping the other parameters constant. The
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FIGURE 3: Effect of the critical chance parameter a. on the op-
timal design of the insulation component: (a) a. = 0.1 and (b)
a. = 0.4. Each row displays the optimal design corresponding
to different material porosity settings, along with the correspond-
ing states (solid and fluid temperatures, solid displacement, and
fluid pressure) and von Mises stress, all evaluated at the mean of
the uncertain parameters m.
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FIGURE 4: Decay of the eigenvalues for the quadratic approxi-
mation with different uncertain parameter dimensions (mesh dis-
cretizations) indicating that the quadratic approximation results in
a scalable design under uncertainty algorithm.
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FIGURE 5: Effect of Tikhonov weight on the optimal design solu-
tions: (a) Bk = 1 x 10~% and (b) Bk = 2 x 10~4
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convergence of lgf is observed with an increasing number of
iterations k in Algorithm 1. When the value of op is higher,
the value of computed chance /g is much closer to the value of
critical chance @, = 0.1. As the scaling factor for penalty param-
eter o, increases, the violation of critical chance a. is strongly
penalized, and it leads to a reduction in the number of function
calls required to attain convergence. Here, the number of func-
tional calls refers to the number of times the function inside the
Newton CG algorithm is evaluated for computing the gradient
and the hessian. The number of function calls is related to the
computational cost. If the number of function calls is high, then
the computational cost is also high, and vice-versa. We analyze
the effect of scaling parameter ¢, on the number of function calls
for the optimization problem (19). Figure 7 shows the reduction
in the number of functional calls with an increasing number of
iteration k as we closely move towards the optimal solution dopy,
as explained for Algorithm 1. As illustrated in Figure 7, the
number of function calls required for o, = 1000 is less as com-
pared to o5, = 100. This shows that stronger penalization leads
to faster convergence for obtaining the optimal solution dop, with
less number of function calls.

6. CONCLUSIONS

This paper presents an efficient and scalable computational
framework for chance-constrained optimal design under high-
dimensional uncertainty for systems governed by PDEs. To cap-

0.8}

o
=

Chance I3

0.2F

Iteration

FIGURE 6: Effect of parameter o on the convergence of the value
of chance.

200

Function calls

Iteration

FIGURE 7: Effect of parameter o, on the reduction in the number
of functional calls with an increasing number of iteration.

ture spatially correlated uncertainty, a Gaussian random field with
a Matern covariance kernel is utilized, requiring the solution of a
stochastic PDE. To address challenges posed by high-dimensional
parameter spaces, an approximation method is proposed to solve
the resultant optimization problem, ensuring computational cost
remains invariant to the number of design parameters. To han-
dle discontinuous indicator functions and inequality constraints,
a smooth approximation and a penalty method within a continua-
tion Newton conjugate gradient algorithm are taken into account.

The framework is applied to the design of thermal insu-
lation components in building envelopes utilizing silica aero-
gel porous materials. The material behavior is governed by a
thermo-mechanical model of aerogel based on the continuum
theory of mixtures. The design parameter of interest is the spatial
distribution of porosity across the domain, inherently exhibit-
ing uncertainty due to material variations and fabrication errors.
The cost functional comprises the mean of thermal insulation
properties, with chance constraints imposed on the optimization
problem to limit the maximum von Mises stress in the domain
below a specified threshold, to prevent mechanical failure due
to excessive stress. Application of the proposed framework to
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the design of building insulation components aims to achieve
both thermal insulation and mechanical stability. The impact of
critical chance, limiting critical stress value, Tikhonov regulariza-
tion weight, smoothing, and penalty parameters on the designed
spatial distribution of material porosity and corresponding ther-
mal and mechanical performances is investigated. The results
highlight the efficacy of the proposed design under uncertainty
framework, offering orders of magnitude reduction in compu-
tational cost compared to sampling-based methods for handling
the design objective moments and constraints. In future work,
the proposed method will be expanded to account for uncertainty
in material model parameters, characterized via Bayesian model
calibration, e.g., [5, 15—18] using experimental measurements of
thermal and mechanical properties of silica aerogel, e.g., [19].
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