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ABSTRACT

Deep neural networks have become essential for developing
data-driven surrogate models of complex multiscale and multi-
physics simulations. Trained with high-fidelity simulation data,
these surrogate models enable computational predictions with
significantly reduced time and resources compared to physics-
based simulations. Surrogate models based on Convolutional
Neural Networks (CNNs) are emerging as powerful tools for
learning the complex relationships between microstructural im-
ages and the corresponding macroscopic properties of materials,
facilitating tasks once computationally prohibitive, such as op-
timal design and synthesizing materials with target properties.
However, the common neural network training method, relying
on maximum likelihood parameter estimation, limits CNNs’ abil-
ity to handle uncertainty due to sparse and limited high-fidelity
data generated by physics-based simulations. This often leads
to overfitting and overly confident predictions, compromising the
reliability of CNNs, especially in high-consequence tasks such
as model-based material design. This contribution proposes a
Bayesian CNN for surrogate modeling by treating the network’s
training as statistical inference to overcome the formidable chal-
lenge of uncertainty assessment in predictions provided by neu-
ral network-based models. We employ Variational Inference to
introduce probability distributions over the CNN'’s weights, en-
suring accurate uncertainty estimation. The proposed Bayesian
CNN surrogate model is applied to learn microstructure image-
mechanical property relations in silica aerogel porous materials,
known for its superior insulation properties but suffer from low
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mechanical strength. Training data is obtained from elastic de-
formation simulations of the solid phase in the porous materi-
als governed by stochastic partial differential equations. Results
demonstrate the effectiveness of the Bayesian CNN in predicting
the strain energy corresponding to a given microstructure image
while considering confidence levels in predictions. The impact
of training data points on prediction accuracy and reliability is
also investigated using Bayesian CNN.

INTRODUCTION

In recent years, the simulation-based design of microstructures
with the aim of achieving enhanced material properties has
gained significant attention [13]. Despite notable advancements
in image processing techniques and the development of physics-
based models to predict microstructure-property relationships
[3,4,6, 14, 22], the utilization of these tools often results in com-
putational bottlenecks in microstructure design, primarily due to
the necessity for iterative evaluations of the forward model. To
overcome the computationally prohibitive microstructure design,
the construction of surrogate models based on physics-based
simulations has emerged as a pivotal solution. After training
with data obtained from physics-based simulations, these sur-
rogate models allow for computational predictions with signif-
icantly reduced time.

The emergence of deep learning methodologies has led to
a paradigm shift in surrogate modeling of high-fidelity physical
simulations, facilitating numerous computationally prohibitive
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tasks such as optimization, design, and uncertainty quantifica-
tion. Among these methodologies, Convolutional Neural Net-
works (CNNs) have emerged as a prominent class, offering
robust capabilities in capturing the complex relationships be-
tween microstructural images and the corresponding macro-
scopic properties of materials. CNNs are particularly favored
for microstructure-property surrogate modeling due to their abil-
ity to autonomously extract features from image-like inputs us-
ing convolution operations, thereby facilitating the linkage of lo-
cal features within an image to associated properties. For in-
stance, Yang et al. [25] developed a CNN-based model to es-
tablish structure-property linkages for high-contrast elastic 3-
D composites, demonstrating superior predictive performance
compared to simplified physics-based approaches. Shishir et
al. [16] employed a CNN-based surrogate model of molecu-
lar dynamics to predict fracture thoroughness of polycrystalline
graphene from microstructure images. In a similar vein, Mann et
al. [10] introduced a novel CNN architecture for capturing com-
plex microstructure-property relationships in high-contrast com-
posite materials that significantly reduces the number of trainable
parameters by eliminating fully connected layers and exclusively
leveraging 2-point spatial correlations of the microstructure as
input.

Despite advancements in deep learning, a fundamental chal-
lenge in surrogate modeling stems from the scarcity and uncer-
tainty of training data derived from high-fidelity physical sim-
ulations. Conventional training methods, relying on maximum
likelihood estimation of parameters, are susceptible to overfit-
ting, wherein the model fits to noise in the training data rather
than capturing underlying patterns, thereby resulting in overly
confident predictions. In scientific domains such as simulation-
based material design, which informs critical decision-making
processes, the compromised reliability and trustworthiness of
surrogate model predictions lead to significant implications. Ad-
dressing this challenge involves framing deep learning training as
Bayesian inference [2, 11], which enables the representation of
parameter uncertainty through probability distributions resilient
to overfitting, facilitating learning from small datasets and en-
abling the characterization of surrogate model predictions, e.g.,
[12, 19]. However, the application of Bayesian inference to
CNNs has been limited due to the substantial number of parame-
ters inherent in this class of deep learning models. Zhu et al. [26]
introduced a novel approach for uncertainty quantification and
propagation in systems governed by stochastic partial differen-
tial equations (PDEs) using deep convolutional encoder-decoder
networks. They employed a variational gradient descent algo-
rithm based on Stein’s method to extend approximate Bayesian
inference to deep convolutional networks with millions of un-
certain parameters. Their surrogate model effectively quanti-
fies flow in heterogeneous media, despite the absence of shared
underlying structures between input (permeability) and output
(flow/pressure) fields. Furthermore, Shridhar et al. [17] utilized

a variational inference method to learn the posterior weight dis-
tribution of CNN parameters and propagate this uncertainty in
classification tasks across various datasets, including the MNIST
[8], CIFAR-10, and CIFAR-100 datasets.

This contribution introduces a Bayesian CNN for surrogate
modeling under limited and uncertain training data to predict
material properties given a microstructure image. The Bayesian
CNN model is applied to learn microstructure-property relations
in silica aerogel, a class of porous materials with superinsulation
properties but low mechanical strength. The training data are
obtained from the elastic deformation of the solid phase in the
silica aerogel materials, where the samples of the stochastic mi-
crostructural patterns are derived from another generative model
trained using the lattice Boltzmann simulation of the foaming
process for synthesizing the aerogel. The results demonstrate
the effectiveness of the Bayesian CNN framework in predicting
strain energy for a given microstructure image of the silica aero-
gel while accounting for the level of confidence in the surrogate
model prediction. Using Bayesian CNN, the effect of the number
of training data points (ranging from 250 to 1000) on the accu-
racy and reliability of the microstructure-property prediction is
investigated.

THEORY AND METHODOLOGY

High-fidelity Simulation

We aim to develop a surrogate model of microstructure image to
mechanical property relation in silica aerogel materials. Silica
aerogel involves a highly porous microstructure composed of in-
terconnected amorphous ceramic nanoparticles at the nanometer
scale. These materials have exceptional thermal properties, mak-
ing them highly desirable for insulation applications in extreme
environments, including civil and military aircraft, fire-resistant
wearables, and high-performance insulation material for net-zero
buildings, e.g., [1, 15, 21]. The high-fidelity simulation of me-
chanical deformation in silica aerogel consists of the stochastic
partial differential equation (PDE) to determine a stochastic dis-
placement field and compute the strain energy as the Quantity
of Interest (Qol), given the microstructural images. Let Q be a
bounded domain in R?, d = 1,2,3, with Lipschitz boundary de-
noted as dQ. The problem is to determine a stochastic displace-
ment field #(®,y) and compute strain energy as the Qol from it.
Here, y € Q is the spatial points and @ belongs to the sample
set of possible outcomes describing realizations of microstruc-
tural patterns of silica aerogel. The governing equation for the
high-fidelity model is expressed as follows,

V-T(o,u)=f(y), yeQ,
T(w,u)n =1t(y), y€cTly,

*

u(w,y)=u", yelp, ey
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where V represents the spatial gradient operator, f and ¢t are pre-
scribed source and traction terms, I'y is a subset of dQ on which
Neumann boundary condition is prescribed, and I'p = dQ\T'y
denotes the domain boundary subjected to Dirichlet condition.
The Cauchy stress tensor, T is defined by

T(o,u) =2u,0(0,y)E(u)+ A0(o,y)tr(E(u))l,
E(u) = 5 (Vut (Va)"), @)

where A; and yg are the Lamé constants of the solid aerogel
phase (equivalent to Young’s modulus E; and Poisson’s ratio vy),
¢©(w,u) is the microstructure indicator function, taking ¢ =0
for the spatial points inside pores and ¢ = 1 at the aerogel solid
skeleton, and E (u) is the strain tensor. Samples of the stochastic
microstructure indicator function are derived from a generative
model, trained using microstructural images of silica aerogel ob-
tained from a lattice Boltzmann simulation of the foaming pro-
cess. It efficiently generates ¢ while preserving the same mor-
phological properties across arbitrary domain sizes. Thus, the
high-fidelity simulation for the elasticity problems involves the
finite element solution of the PDE (1), employing a uniformly
fine mesh to resolve the resolution of microstructure patterns as
dictated by ¢(w,y). The model output is defined as the scalar
strain energy of the material system, determined through the so-
lution of the stochastic high-fidelity simulation as,

up = / T(o,u) : E(u) dy. 3)
Q

The high-fidelity simulation is utilized to generate training
datasets for constructing the surrogate models, as depicted in Fig-
ure 1. Specifically, strain energy is assessed for 1000 microstruc-
ture images of silica aerogel. As illustrated in the kernel density
estimate presented in this figure, the strain energies range from
8.80e-05 mJ to 9.80e-05 mJ, with the mean strain energy of the
dataset approximately 9.36e-05 mJ and a standard deviation of
approximately 14e-07.

Convolutional Neural Network (CNN)

Convolutional neural networks are specially designed neural net-
works for image processing-related applications. It can deal with
images in a specific way by using filters (or kernels) on images
and storing the convoluted values as weights. There are four
main layers of a CNN [5], i.e. Input layer, convolutional layer,
pooling layer and fully-connected layer. The input layer serves
as the initial entry point for data into the CNN, storing the raw
pixel values of the input images. These pixel values are then
processed through subsequent layers. The convolutional layer
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FIGURE 1. Training data from high-fidelity simulation: (left) Four
sample microstructure images (left). (right) Kernel density estimate of
the strain energies of two different datasets with sizes of 1000 denoted
in blue and 250 denoted in red.

follows the input layer. It contains the filters that extract fea-
tures such as patterns, edges, and color depth from the input im-
ages. These filters are adjustable during training, enabling the
network to learn relevant features. The convolutional layer out-
puts feature maps, which are then passed to the pooling layer.
The pooling layer reduces the spatial dimensions of the feature
maps, aiding computational efficiency and memory usage. This
layer doesn’t perform feature extraction but rather aggregates in-
formation, commonly using max or average pooling methods.
Finally, the fully connected layer integrates the features learned
from previous layers to make predictions. Each neuron in this
layer is connected to every neuron in the preceding layer, facili-
tating comprehensive feature utilization for accurate predictions.
The architecture of CNN used in this study is shown in Fig-
ure 2. It contains four convolutional layers, three average pooling
layers, and two fully-connected layers. The last layer of CNN
(linear layer) is also a fully connected layer that performs the
regression task. Each convolutional layer comprises three com-
ponents: the number of filters, batch normalization, and activa-
tion function. The number of filters determines the variety of
features extracted from the input data, with each filter capturing
different aspects. Batch normalization ensures stable and accel-
erated training by normalizing the inputs of each layer, reducing
internal covariate shifts. The Rectified Linear Unit (ReLU) acti-
vation function introduces non-linearity, allowing the network to
learn complex patterns and gradients efficiently. Table 1 shows
the number of parameters and output shape of each layer. This
architecture has a total of 14,721,121 trainable parameters.

Bayesian CNN surrogate model

We define the CNN surrogate model for microstructure-property
linkage as a mapping between the input vector x (representing
a microstructure image) and the output u (representing material
properties, such as strain energy). Using the CNN model, this
map is parameterized by a set of weights w within the filters
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FIGURE 2. CNN architecture breakdown of the full model and a sam-
ple convolutional layer.

TABLE 1. Summary of the CNN architecture used for developing the
microstructure-property surrogate model.
Layer (type) Output Shape Param #
Conv2d-1 [1, 16, 168, 168] 416
BatchNorm2d-1 [1, 16, 168, 168] 32
ReLU-1 [1, 16, 168, 168] 0
Conv2d-2 [1, 32, 168, 168] 12,832
BatchNorm2d-2 [1, 32, 168, 168] 64
ReLU-2 [1, 32, 168, 168] 0
AvgPool2d-2 [1,32, 84, 84] 0
Conv2d-3 [1, 64, 84, 84] 51,264
BatchNorm2d-3 [1, 64, 84, 84] 128
ReLU-3 [1, 64, 84, 84] 0
AvgPool2d-1 [1, 64,42, 42] 0
Conv2d-4 [1, 128, 42, 42] 204,928
BatchNorm2d-4  [1, 128, 42, 42] 256
ReLU-4 [1, 128, 42, 42] 0
AvgPool2d-2 [1, 128,21, 21] 0
Flatten-1 [1, 56448] 0
Linear-1 [1,256] 14,450,944
ReLU-5 [1,256] 0
Linear-2 [1, 1] 257

of convolutional layers and fully-connected layers. The train-
ing process of the CNN involves adjusting the values of these
weights using the training dataset D = {(x;, u,')}?g. Traditional
training methods in regression problems aim to minimize an er-
ror function between the output and the training data without ex-
plicitly considering the uncertainty. In a Bayesian framework,

a prior probability distribution function (PDF) is assigned to the
weights Trior (W) before observing data. Subsequently, the prior
is updated based on the data using Bayes’ rule, e.g., [9, 18, 20],

Tlike (D | W)ﬂ:prior (W)
Tlevid (D) ’

ﬂ'post (W | D) = (4)

where Tk (D | w) represents the likelihood of observing the data
D given the parameter w, and T.yiq (D) serves as the evidence
PDF, acting as a normalization factor. Given the posterior PDF
Tpost (W | D), the output can be predicted for any new input x*
from the predictive distribution such that,

7w | x*,D) = /n(u* | X", W) oo (W | D)dw.  (5)

Computing the posterior PDF is computationally intractable due
to the high-dimensional parameter space inherent in CNNs. To
tackle this challenge, some inference methods attempt to ap-
proximate the posterior distribution using alternative distribu-
tions such as variational inference described in the following sec-
tion or generate samples from it using Markov chain Monte Carlo
(MCMC) algorithms. After the inference phase, a collection of
parameter samples denoted as {W; }1/”:1 are obtained, and the pre-
diction distribution can be approximated using Monte Carlo es-
timation as follows,

1
M

™=

7 (u* | x*,D) =Ewp [m(u* | x*,w)] =~ [ | x*w;),

(6)

where, f is a deterministic map between x* and u* given ;.

j=1

Variational inference: This approach involves approx-
imating the true posterior o (W | D) using a variational dis-
tribution gg (w) that is computationally tractable and parameter-
ized by 0. Typically, the variational distribution is expressed as
a product of independent Gaussian distributions, known as the
mean-field approximation gg(w) = [];ge,(w;), where 6 encom-
passes the means ut and standard deviations ¢ of each Gaussian
component. The Bayesian training is then framed as learning
the variational parameters 6 by minimizing the Kullback-Leibler
(KL) divergence between the density gg(w) and the posterior
PDF m,05 (W | D), yielding,

0°"" = argmin .7 (9), @)
']
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where .% is the loss function and denoted as [2],

F = KL [0 (W) | os (| D)]

= KL [0 (W) Tprior ()] ®)
—Egp (w)[InTiike (D | w)],

and the KL divergence term in (8) can be expressed as,

/619 (w) —————dw, (9)

KL[ ( )HTCPOSt W|D Tost W‘D)
representing the dissimilarity between the posterior and its vari-
ational approximation. Minimizing the loss function in (8) en-
sures that the variational distribution captures a good representa-
tion of the data while imposing regularization through the prior
distribution to prevent overfitting. The data dependent term in
(8) is known as “data misfit” and usually computed with sam-
pling methods,

’iilnmike (D | w<i>)7 (10)

i=1

E 0w )[lnmlke D|W

where ') are samples drawn from the variational distribution
go(w) and n is the number of draws. To this end, the loss
function to update the parameters, known as the evidence lower
bound (ELBO), can be expressed as,

1| & i
7 ~ B KL (q0 (W) | Tyrior (w)) — lzlnmike (p| w)] :
i=1
an

where [ is a weighting factor for the regularization term in com-
parison to the data misfit term. Use of § weighting is not a
standard component of the variational inference algorithm and
is instead empirically motivated rather than theoretically justi-
fied. It’s inclusion is motivated by the Cold Posterior Effect [23]
which suggests that the standard Bayesian posterior can be sub-
optimal in certain deep learning models and requires artificial
sharpening (i.e., temperature scaling) to achieve optimal perfor-
mance. It can be shown that sharpening the posterior is equiva-
lent to reducing the prior weight. Consequently, we empirically
adjusted the prior weight to enhance performance. Details on the
determination of this weighting factor are provided in the follow-
ing section.

The closed form solution that was used to compute the KL
divergence function analytically is as below,

KL [qs (W) ||717prior(w)] =

d A TR (12)
21 —1+<") +< . q) .
;[ 0g< q) Op Op

1

In (12), d is the dimention of the random variables w and y,,, o),
Uy, and o, are the mean and standard deviation of the prior and
posterior distributions respectively.

To solve the minimization problem given by (7) with the loss
function in (11) using gradient-based optimization algorithms, it
is necessary to compute the gradient of the ELBO with respect to
the variational parameters 8. However, directly optimizing over
random distributions is not feasible. Therefore, we employ the
“Reparameterization Trick™ [7] to facilitate the optimization of
the distribution’s parameters.

Local Reparametrization Trick: The core idea of this ap-
proach is to apply an affine transformation to a standard normal
distribution for each weight w; such that w; = y; + o; *x;, where
x; ~ A (0,1). During training, x; is treated as a constant, and the
parameters of the affine transformation (u; and o;) are optimized.
To ensure that o; > 0, we use a common practice of parameter-
izing it with the softplus function, o;(p;) = e /8(P1) > 0, where
p; is optimized instead of o;. This allows for the variational pa-
rameters ( and ¢ to be updated through standard backpropaga-
tion. Using this method for updating the variational parameters
is known as “Bayes by Backprop” [2].

This work uses stochastic gradient descent (SGD) to solve
the optimization problem. The performance of the SGD largely
depends on the variance of the gradients. So, for keeping the
variance low and computational acceleration, the local reparam-
eterization trick was used, where instead of sampling w (weights)
directly, samples are taken from the neuron pre-activation sums
from their implied Gaussian distribution. This approach essen-
tially involves treating the mean p and standard deviation o as
deterministic, while introducing stochasticity via noise (typically
standard Gaussian) in the pre-activation sums.

RESULTS AND DISCUSSION

Hyperparameters Tuning

The hyperparameters of the Bayesian CNN were determined
through a validation process. One such hyperparameter is the
learning rate utilized within the Adam optimizer during varia-
tional inference. To this end, the entire high-fidelity dataset was
partitioned into training and validation sets, comprising 80% and
20% of the data, respectively. The validation loss, defined as the
mean squared error between the validation data and the corre-
sponding Bayesian CNN mean prediction trained on the train-
ing data, serves as an indicator of the model’s performance on
new data at each epoch. Figure 3 (a) depicts the progressive re-
duction in validation loss over epochs for four different learning
rates: 0.001, 0.002, 0.003, and 0.004. These plots indicate that a
learning rate of 0.003 corresponds to the plot displaying minimal
validation losses. Moreover, it is observed that the losses plateau
approximately after 300 epochs, coinciding with the epoch ex-
hibiting the lowest validation loss. Consequently, based on this
study, a learning rate of 0.003 was selected for the model train-
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FIGURE 3. Tuning the hyperparameters of the Bayesian CNN sur-
rogate model: (a) Validation loss decreases over the number of epochs
for four distinct learning rates. A learning rate of 0.003 was selected
due to its association with the minimum validation loss. (b) The stan-
dard deviation of a randomly chosen weight in the first convolutional
layer declines as the number of epochs increases. This trend is observed
across all weights, prompting the selection of a regularization weight of
B =0.0001.

ing.

The second hyperparameter is § in (11), which represents
the weighting factor of the regularization term relative to the
likelihood function. The efficacy of Bayesian inference crucially
hinges on the accurate determination of this parameter to strike
a balance between data misfit in the likelihood function and the
prior distribution of parameters. An overestimated 8 may lead to
the neglect of valuable information contained in the data, while
underestimating this weight can result in overfitting, leading to
overly confident and biased parameter estimation. To avoid bias
in Bayesian inference, we determine this parameter through it-
erative experimentation, monitoring the variation of the standard
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FIGURE 4. Prediction of 4 images, labeled respectively 1,2,3, and
4 (left to right) in Table 2. The blue distribution represents prediction
trained with 1000 data points, the red distribution represents prediction
with 250 data points and the black dashed line is the true strain energy.

deviation of inferred weights across epochs. Figure 3 (b) illus-
trates an example of the standard deviation of a kernel within
the first convolutional layer. In this study, B = 0.0001 is chosen
as it corresponds to a decreasing trend in the standard deviation
of all kernel parameters, aligning with the expected increase in
confidence levels as the model is informed by additional data at
each epoch, in accordance with the notion of Bayesian learning.
Moreover, the determined value of the regularization weight falls
within the range of 8 values reported in prior studies [24].

Prediction Uncertainty

Following the validation of the Bayesian inference process, the
entire dataset is utilized to determine the probability distribu-
tion of the CNN parameters. Subsequently, the resulting pre-
dictive CNN surrogate model can be leveraged to predict strain
energy with quantified uncertainty for any given microstructural
image input. Figure 4 presents the Bayesian CNN predictions
on the testing set, represented through kernel density estimates
of strain energies across four microstructural images outside the
training set. These prediction distributions, as per (6), incorpo-
rate M = 50 samples of the posterior PDF of the weight param-
eters, each characterized by two means and variances. Further-
more, this figure compares the prediction results obtained from
two sets of training data: one comprising 1000 images and the
other 250 images. The mean and standard deviation of the pre-
dictions, compared with the true strain energy values obtained
from high-fidelity simulations, are presented in Table 2. The
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findings suggest that, as anticipated, employing a larger dataset
of 1000 images for training yields more precise and reliable pre-
dictions from the surrogate model, as evidenced by the closer
alignment of the mean with the true strain energy and the sharper
probability distributions of strain energy.

TABLE 2. The mean and standard deviation of strain energies (in
10~7 mJ) predicted by the Bayesian CNN surrogate model (trained with
1000 and 250 data points) in the testing set, contrasted with the true val-
ues acquired from high-fidelity simulation.

1000 training data 250 training data
Testing image True value Mean StD Mean StD
1 937 936 0.65 929 1.60
2 940 948 0.85 935 1.66
3 950 948 0.82 931 1.88
4 919 931 0.78 932 1.11

CONCLUSION

This paper introduces a Bayesian CNN surrogate model aimed
at capturing the relationship between microstructural images and
their corresponding mechanical strain energy in silica aerogel
materials. To achieve this, variational inference, along with
Bayes by Backprop, has been utilized to determine the probabil-
ity distributions of weights within the filters of convolutional lay-
ers and the weights in fully-connected layers. The training data
are obtained from a pore-scale elasticity model of aerogel gov-
erned by a stochastic partial differential equation. Hyperparam-
eters, including the learning rate and the weighting factor of the
regularization term, were determined using a validation dataset.
Following hyperparameter tuning, the entire dataset is employed
within Bayesian inference to determine the distributions of pa-
rameters for the Bayesian CNN surrogate model. The accuracy
and reliability of the surrogate model’s predictive capability are
assessed using a testing dataset. The results demonstrate that
the proposed Bayesian CNN is capable of characterizing uncer-
tainty in training data obtained from high-fidelity simulations,
thus translating into uncertainty in surrogate model predictions.

Future work will concentrate on expanding the application
of the Bayesian CNN surrogate model to predict aerogel prop-
erties across a wide range of microstructural features, encom-
passing different pore sizes and morphologies. Additionally,
thorough investigations will be conducted on the effect of CNN
architecture on its predictive ability, and leveraging Bayesian
model plausibility to guide the determination of optimal archi-
tecture and hyperparameters.
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