
ar
X

iv
:2

40
6.

09
21

7v
1

 [m
at

h.
N

A
]

13
 Ju

n
20

24

Convergence and error control of consistent PINNs for elliptic PDEs

Andrea Bonito, Ronald DeVore, Guergana Petrova, and Jonathan W. Siegel

June 14, 2024

Abstract

We provide an a priori analysis of a certain class of numerical methods, commonly referred to as
collocation methods, for solving elliptic boundary value problems. They begin with information in the
form of point values of the right side f of such equations and point values of the boundary function g

and utilize only this information to numerically approximate the solution u of the Partial Differential
Equation (PDE). For such a method to provide an approximation to u with guaranteed error bounds,
additional assumptions on f and g, called model class assumptions, are needed. We determine the best
error (in the energy norm) of approximating u, in terms of the number of point samples m, under all
Besov class model assumptions for the right hand side f and boundary g.

We then turn to the study of numerical procedures and asks whether a proposed numerical procedure
(nearly) achieves the optimal recovery error. We analyze numerical methods which generate the numerical
approximation to u by minimizing a specified data driven loss function over a set Σ which is either a finite
dimensional linear space, or more generally, a finite dimensional manifold. We show that the success of
such a procedure depends critically on choosing a correct data driven loss function that is consistent with
the PDE and provides sharp error control. Based on this analysis a loss function L

∗ is proposed.
We also address the recent methods of Physics Informed Neural Networks (PINNs). Minimization of

the new loss L
∗ over neural network spaces Σ is referred to as consistent PINNs (CPINNs). We prove

that CPINNs provides an optimal recovery of the solution u, provided that the optimization problem can
be numerically executed and Σ has sufficient approximation capabilities. Finally, numerical examples
illustrating the benefits of the CPINNs are given.

1 Introduction

This paper is concerned with numerical methods for solving elliptic partial differential equations (PDEs).
Our primary goal is to provide a rigorous analysis of rates of convergence for collocation methods, including
PINNs (Physics Informed Neural Networks), for solving such differential equations.

Let Ω be a bounded domain in the Euclidean space R
d, d ≥ 2, and Ω be its closure in R

d. Consider the
elliptic Dirichlet problem

−∇ · (a(x)∇u(x)) = f(x), x ∈ Ω,

u(z) = g(z), z ∈ ∂Ω, (1.1)

where ∂Ω is the boundary of Ω. In order to prove the existence and uniqueness of a solution to (1.1), one
needs to impose conditions on f, g, a, and Ω. A standard set of assumptions that guarantee the existence
and uniqueness of a solution (1.1) is the following:

A1: Ω is a Lipschitz (graph) domain, i.e., Ω is an open connected set in R
d with a Lipschitz boundary in

the sense described in [57];

A2: f ∈ H−1(Ω);

A3: g ∈ H1/2(∂Ω);

1

http://arxiv.org/abs/2406.09217v1

A4: the diffusion coefficient a satisfies the coercivity condition

0 < r ≤ a(x) ≤M, x ∈ Ω, (1.2)

for some constants r,M > 0. Here the spaces Hs(Ω), s ∈ R, are the Sobolev spaces of order s in L2(Ω).
Under the assumptions A1-A4, the Lax-Milgram theorem (see e.g. [25]) implies that (1.1) has a unique

solution u ∈ H1(Ω) which satisfies

c{‖f‖H−1(Ω) + ‖g‖H1/2(∂Ω)} ≤ ‖u‖H1(Ω) ≤ C{‖f‖H−1(Ω) + ‖g‖H1/2(∂Ω)}, (1.3)

where the constants c, C depend on Ω, r and M 1. Therefore, if we consider the theoretical loss function

LT (v) := ‖f +∆v‖H−1(Ω) + ‖g − v‖H1/2(∂Ω), (1.4)

then minimizing this loss over the whole of H1(Ω) has u as its unique solution.
In order to make our presentation as clear as possible, we want to avoid the technicalities of handling

general domains and general diffusion coefficients a. Accordingly, we restrict our presentation to the case
Ω = (0, 1)d and a ≡ 1. This will allow us to concentrate on the novelties of PINNs and alternative collocation
methods. The treatment of more general settings for the diffusion a and domains Ω is left to future works.
We also want to point out that assumptions A2-A3 could be replaced with other smoothness assumptions
on f and g, respectively, which will result in a theory similar to the one described in this paper.

1.1 Numerical methods for solving (1.1)

We are interested in numerical methods for solving (1.1). The most prominent of these are the Finite Element
Methods (FEMs) and the adaptive variations of these (AFEMs). Over the last decades, a rigorous theory
has been developed for FEMs and AFEMs which guarantees, a priori, the convergence of these numerical
methods and even provides bounds on their rate of convergence under additional assumptions on f and g.
These additional assumptions stipulate extra smoothness of f and g than those assumed in A2-A3.

A numerical method assumes that f, g, and Ω are known and suggests a procedure for solving (1.1) based
on that information. The numerical procedure generates a function û which is an approximation to u. The
efficiency of the numerical method is then evaluated in the following sense. One chooses a norm ‖ · ‖X in
which to measure performance and then seeks to quantify how fast the error ‖u − û‖X between the true
solution u and the output û of the numerical procedure tends to zero in terms of the complexity of the
numerical procedure. The classical norm ‖ · ‖X used to measure error is the energy norm which corresponds
to choosing X = H1(Ω). Other function norms sometimes used to measure error correspond to X = Lp(Ω),
1 ≤ p ≤ ∞. We restrict our analysis of convergence and rates of convergence to the case X = H1(Ω) in
going further.

An important question is how one can compare the performance of different numerical methods for
solving (1.1) in order to give a fair competition between all possible numerical methods. This is typically
done by assigning some form of complexity to the numerical method. In the case of FEMs and AFEMs,
this complexity can be measured in terms of the number n of machine operations used to compute ûn = û
and there are theorems that give a priori bounds for the error ‖u− ûn‖H1(Ω) under additional assumptions
on the smoothness of f and g (see e.g. [5]). Some alternatives to measuring the complexity n in terms of
machine operations are the following. If the numerical approximation û to u is an element from a linear
n-dimensional space Vn, then the associated complexity is typically assigned to be the dimension n. This
may not be directly converted to an appropriate number of machine operations because numerical stability
becomes an issue. If the approximation û comes from a nonlinear manifold Mn, then one can use the
number of parameters n determining the manifold as a complexity measure. However, in the latter case,
one has to impose extra conditions on the manifold (or the numerical procedure) to prevent the use of space

1Throughout this paper, we use the notation c, C, c1, C1, etc, to denote constants. Unless they are absolute constants, we

indicate the quantities on which they depend when they occur. The value of these constants can change at each occurrence.

We also use the notation A ≍ B to denote that c1A ≤ B ≤ c2A with c1, c2 > 0.

2

filling manifolds and thus avoid unstable numerical methods, see [9]. In the absence of such restrictions,
the numerical method may require an inordinate amount of computational resources to achieve a desired
accuracy even in the case when the dimension n is small.

Another issue to consider is in what sense f, g,Ω are known/given to us. One setting is to assume that
we can query (ask questions about) f, g,Ω, and receive the answer to such queries. In this setting, one has to
decide which type of questions are allowed and whether these queries are answered free of charge or should
the cost of asking/answering such queries be included in the numerical cost of the algorithm. For example, in
FEMs, the data used are certain linear functionals (inner products with the basis functions of the Galerkin
space) which are then utilized in the FEM approximation.

In this paper, we are interested in collocation methods as described in the next section. Accordingly,
the linear functionals we consider are point evaluations of f and g at points from Ω. In order for these to
make sense, we assume that f and g are continuous functions, i.e., f ∈ C(Ω), g ∈ C(∂Ω). The accuracy of
how well û approximates u will depend on two components. The first is the number m of point evaluations
and their positioning. The optimal accuracy that any numerical method can achieve from these m pieces of
information under the model class assumption on the function is called the optimal recovery rate. A central
question in this paper is to determine this optimal recovery rate under various model class assumptions,
provided the m data sites are optimally positioned. This is the subject of §3.

A second item in collocation methods is how one numerically uses the m pieces of information provided
to create a numerical approximation to u. If Σn is the underlying space used to create û then the accuracy of
the numerical recovery will depend on n and the choice of Σn. In other words, û can be viewed as û = ûn,m.
If one fixes m, then one can study how fast the accuracy of approximation ‖u− ûn,m‖ tends to the optimal
recovery rate as n→ ∞. This issue is discussed in §8.

Concerning the sense in which we know Ω, one usually considers polyhedral domains whose vertices and
edges are given to us. As already noted, for simplicity, we assume that Ω = (0, 1)d. However, with some
additional technicality, we could equally well start with polyhedral domain. The standard way of handling
more general domains Ω is to first find a polyhedral domain Ω̂ that approximates Ω, solve the corresponding
PDE on Ω̂, and then analyze the effect of the approximation of Ω by Ω̂.

1.2 Collocation methods and PINNs

Recently, there has been significant interest in using neural networks (NNs) as a nonlinear manifold to
generate the approximation û to the solution u of (1.1). Let Σn denote the set of outputs of a neural
network with n parameters and fixed architecture. Once Σn is chosen, the numerical procedure queries
f and g and then uses this information to numerically construct a function û ∈ Σn which serves as an
approximation to u in a specified norm ‖ · ‖X . The queries of f and g are taken as point evaluations at
specified points from Ω, thereby providing the values

f = (f1, . . . , fm̃), fi := f(xi), i = 1, . . . , m̃; g = (g1, . . . , gm), gi := g(zi), i = 1, . . . ,m, (1.5)

where xi ∈ Ω, i = 1, . . . , m̃, and zi ∈ ∂Ω, i = 1, . . . ,m, are the query sites. We refer to these points as data
sites and denote them by

X := {x1, . . . ,xm̃}, Z := {z1, . . . , zm}.
The performance of such a numerical method will depend on the numbers m̃,m, which we refer to as the
query budget, and also on the positioning of these points.

In PINNs, the numerical procedure to find û is to search over Σn and find a û ∈ Σn which ‘fits the data’.
The most frequently used procedure (there are many variants) is to take û as one of the elements of the set

û ∈ argmin
S∈Σn

L0(S), (1.6)

where

L0(S) :=
1

m̃

m̃∑

i=1

[∆S(xi) + f(xi)]
2 +

λ

m

m∑

i=1

[S(zi)− g(zi)]
2, (1.7)

3

with λ being a tuning parameter. For simplicity, throughout the paper we will set λ = 1 and consider the
loss

L(S) :=
[
1

m̃

m̃∑

i=1

[∆S(xi) + f(xi)]
2

]1/2

+

[
1

m

m∑

i=1

[S(zi)− g(zi)]
2

]1/2

(1.8)

in our analysis. Note that this is equivalent to the square root of the typical PINNs loss with λ = 1. The
appropriateness of the loss L0 and how m̃,m, λ and the data sites (X ,Z) should be chosen are major issues
and one of the focal points of this paper.

The PINNs numerical procedures fall into the broad class of collocation methods for solving PDEs, i.e.
numerical methods that use only values of f and g at specified data sites X and Z. Such methods were
studied in the last century (see e.g. [1, 34, 31]) but became less popular with the advent of FEMs. The
novelty of PINNs is to use neural networks instead of polynomials or splines to build the approximation û
from the given data.

Some assumptions are necessary for collocation methods to make sense. Firstly, to ensure that point values
of f and g make sense, we assume that f and g are continuous function on Ω and ∂Ω, respectively. Secondly,
to have any hope of proving a priori guarantees on convergence or rates of convergence as m̃,m, n→ ∞, we
need at a minimum that f comes from a compact subset F of C(Ω) and g comes from a compact subset G
of C(∂Ω). This in turn guarantees that u is in a compact subset U of H1(Ω).

1.3 Overview of this paper

The idea of using neural networks to solve PDEs goes back to the last century [20, 39], and has recently
become extremely popular with the introduction of physics-informed neural networks (PINNs) [50]. Despite
the increasing usage of PINNs for numerically solving a wide range of PDEs (see for example, [36, 6, 10, 6, 43]
and the references therein), a satisfactory analysis of the convergence and performance of these methods
has not been given. Some partial progress towards this goal has recently been made, see for instance
[24, 45, 53, 54, 65].

For example, in [53], convergence is proved in the C(Ω)-norm for a modified physics-informed neural
network for elliptic PDEs under the assumption that the right hand side f and boundary data g are Hölder
continuous. Under the additional assumption that the outputs of the neural network satisfy the boundary
conditions exactly, convergence is obtained in H1(Ω). In this situation, the boundary values are not enforced
via the loss function and must instead be implemented through the neural network architecture. We remark
that although methods for exactly enforcing boundary conditions with neural networks have been proposed
in [39, 40, 3], this approach appears unable to rigorously handle arbitrary boundary conditions on general
domains.

Further, in [54] and [65], an abstract framework for analyzing methods based upon residual minimization,
such as PINNs, is presented. This framework has been used in a variety of follow up works to analyze PINNs
(see [2, 58, 22] for instance). However, the current analysis is, to the best of our knowledge, not able to obtain
convergence rates with respect to the number of collocation points when a fixed (as opposed to random) set
of collocation points are used.

An analysis taking into account the rate of convergence with respect to the number of collocation points
has been obtained in [45]. It applies to the heat equation (instead of elliptic PDEs) under the assumption
that the initial data lies in the Sobolev space Hs(Ω) for sufficiently large s to ensure that point values are
well-defined.

However, so far, none of the existing literature treats the problem of obtaining convergence rates in terms
of both the number of collocation points and the network size for elliptic PDEs under general Besov regularity
assumptions on the right hand side f and boundary value g. A proper a priori analysis that addresses this
problem would answer the following questions:

Q1: Given the model class assumptions on f and g, which query sites should be used and how large would
we have to take m̃ and m to be able to reach a target accuracy ε for the error ‖u− û‖H1(Ω)?

4

Q2: Given a budget of m queries and given model class assumption on f and g, what is the smallest error
that can be achieved in the recovery of u? This is called the optimal recovery accuracy.

Q3: If we use a NN space Σn with n parameters to build the approximation û to u, then how large do we
need to choose n to achieve near optimal accuracy?

Q4: If we use minimization of a data driven loss function to generate the numerical approximation û, then
what form should the loss function take so that small values of this loss function guaranees small values of
the solution approximation error, up to the optimal recovery rate ?

The goal of the present paper is to answer the above questions for all Besov space model classes and
thereby establish such an a priori analysis of collocation methods and in particular PINNs. In contrast to
previous works, we also consider the error in the H1(Ω)-norm, and treat the situation where the boundary
values are enforced through the loss function. As already noted, in order to simplify our presentation, we will
only consider the case of Laplace’s equation (1.1) with a ≡ 1 on Ω and Ω = (0, 1)d. We leave the problem
of handling more general settings to future work. We remark that an analysis of other methodologies for
solving (1.1) using neural networks, such as the deep Ritz method [60] and finite neuron method [61], can
be found in [42, 41, 56, 47, 23, 21].

As we have already mentioned, any a priori convergence analysis of collocation methods requires assump-
tions on the functions f and g in the form that f ∈ F , g ∈ G, where F and G are compact subsets of
the space of continuous functions on the domains Ω and ∂Ω, respectively. Such compact sets are typically
described by smoothness conditions. In this paper, we measure smoothness by membership in Besov classes.
For this reason, we begin in §2 with the definition of Besov spaces and the properties we will need in the
sequel. That section will also discuss how well functions in Besov classes can be approximated (in various
norms) by piecewise polynomials. All of the results in that section are known and are therefore presented in
a summary form. However, for completeness of the paper, and for the specific presentation of these results,
we give proofs of the results we need in the appendix.

We use membership in Besov spaces Bs
q(Lp(Ω)) as the smoothness we impose on f and g. Once such

assumptions are placed on f and g, we answer questions Q1-Q2 in §3. Questions of this type are commonly
referred to as optimal recovery (OR) of a function u from data. Since our data is given by point samples, this
is also known as optimal sampling. Our general setting is not usually addressed in the OR literature because
our data is not point evaluations of the target function u, but rather of f and g. Nevertheless, we consider the
results of §3 to be for the most part known in the sense that we are simply piecing together various known
results and techniques such as those in [12, 13, 38, 49]. The paper [59], which studies optimal sampling
with respect the negative Sobolev norm H−1(Ω) on Lipschitz domains Ω, comes closest to presenting the
optimal recovery results in the form we need. However, note that the cases 0 < p, q < 1 for all d, or p = 1,
0 < q ≤ ∞, d = 2 are not covered in [59]. Notably, we observe that the optimal sampling rates for Besov
spaces in H−1(Ω) coincide with the optimal sampling rates in a certain space Lγ(Ω), determined by the
Sobolev embedding (see Theorem 3.1 (iv)).

The results of §3 do not give a numerical method for finding û from the given data that provides the
error bound ‖u− û‖X ≤ ε. They simply establish the theoretical benchmark for the optimal accuracy of any
numerical procedure for the recovery of u based on the point samples of f and g. This theoretical analysis
does not involve NNs or any other proposed collocation method. NNs and PINNs only enter the picture
when one wants to transform the theoretical analysis into a numerical procedure that utilizes NNs to find
an approximant to u.

We next discuss in §4 the use of classical numerical methods such as Finite Element Methods (FEMs)
for optimal recovery. In §5, we turn to the question of using optimization to solve the PDE. We observe
that minimizing the theoretical loss LT over a space Σn will approximate well u, provided Σn has sufficient
approximation power. However, this is not a numerical algorithm per se because it does not provide a
numerical recipe for evaluating LT (S) when S ∈ Σn.

The remainder of this paper discusses possible numerical methods to achieve the optimal recovery rate,
i.e., to solve the PDE to the highest accuracy possible given only the information (f ,g) (see (1.5)). An
important consequence of the analysis in §5 is that the widely used loss function L0 (or L) may not be an

5

appropriate discretization of the theoretical loss LT . We show that the correct loss function L∗ : H1(Ω) → R

to use in collocation methods in our setting is

L∗(v) :=

[
1

m̃

m̃∑

i=1

|f(xi) + ∆v(xi)|γ
]1/γ

+




1

m2

m∑

i,j=1
i6=j

|[g − v](zi)− [g − v](zj)|2
|zi − zj |2




1/2

+


 1

m

m∑

j=1

|g(zj)− v(zj)|2


1/2

,

(1.9)
where γ is the smallest number (if this is possible) so that Lγ(Ω) embeds in H−1(Ω). For example, γ = 2d

d+2
in the case d ≥ 3. The case d = 2 is more complicated and we will discuss it later in the paper.

The loss L∗ and its properties are given in §5, §6 and §7. A large component of its development centers
on how to discretize Lp (quasi-)norms and the H1/2 norm. Our analysis on this subject may be useful in
the development of other methods for solving PDEs numerically.

The first term in the loss L∗ are shown to bound ‖f + ∆v‖H−1(Ω) and the second and third terms are
shown to bound ‖g − v‖H1/2(∂Ω). These in turn give a bound for ‖u− v‖H1(Ω) via (1.3). We go on to show
how near minimizers of the suggested loss L∗ give an a priori bound of the approximation error, provided
that the approximation method Σn has suitable approximation properties. The a priori guarantee provides a
near optimal recovery whenever Σn provides sufficiently good approximation of the elements in the solution
model class U . Notice that this new loss function replaces the first discrete ℓ2 term in (1.7) by a discrete ℓγ
loss for a proper choice of γ and the second discrete ℓ2 loss (used to match boundary values) by a weighted
ℓ2 loss.

We next develop in §8 the properties needed of a set Σn so that minimizing the loss L∗ over Σn results
in a near optimal recovery of u. It turns out that a certain restricted approximation property, guaranteed
to hold when Σn is sufficiently good at approximating the elements of solution model class U , is sufficient.
In particular, we show that this is the case for suitable NN spaces Σn, provided n is large enough.

The remainder of this paper focuses on using minimization over neural network spaces as the numerical
method as is the case in PINNs. As noted above, the loss L∗ is the correct loss to use in such a minimization
since it is consistent with recovering u in the H1(Ω). When the loss L∗ is minimized over a neural network
space, we call the numerical procedure consistent PINNs (CPINNs).

The later sections of the paper analyze the theoretical gains in using CPINNs over PINNS. We give a
priori bounds on how well the solution CPINNs approximates u and, in particular, we provide a sufficient
condition on the size n of the neural network to guarantee optimal recovery. These bounds are established
under the assumption that the optimization problem is solved (or approximately solved) when optimizing
over the NN space Σn. As we know, proving that a particular numerical method of optimization (such as
gradient decent) converges to a minimizer (or near minimizer) of the loss is a serious issue in optimization,
which we do not address here. However, we do prove that for any function v ∈ H1(Ω), the quantity L∗(v)
always provides an upper bound of the true error ‖u − v‖H1(Ω) up to the optimal recovery rate for the
solution model class U . This means that L∗(v) can be used as an a posteriori error estimator for any
proposed numerical approximation v to u. This error estimate can be used to check whether the output of a
PINNs optimization achieves the desired accuracy ε. In other words, although we do not guarantee a priori
that PINNs will achieve the accuracy ε (because of lack of performance analysis of optimization procedures
like gradient descent or stochastic gradient descent), we do give an a numerically implementable a posteriori
bound on performance which may serve to guarantee optimality.

In summary, a theorem which guarantees that PINNs provide an approximation to u in the ‖ · ‖H1(Ω)

norm with a prescribed accuracy ε requires not only smoothness assumptions on f and g as described above,
assumptions on the spacing and number of elements in the data sites X and Z, and assumptions on the
size of n, i.e., the complexity of Σn, but also an efficient numerical method that properly chooses a good
approximation û to u in the norm ‖ · ‖H1(Ω) through minimizing the loss L∗ over Σn.

6

Acknowledgments

We are grateful to Peter Binev, Albert Cohen, Wolfgang Dahmen, and Jinchao Xu for many insightful
conversations about the material in this paper.

This research was supported by the NSF Grants DMS-2409807 (AB), DMS-2424305 (JWS), CCF-2205004
(JWS), and DMS 2134077 (RD and GP), and the MURI ONR Grant N00014-20-1-278 (RD, GP, and JWS).

2 Besov spaces

We start this section by recalling the definition of Besov spaces and their properties. We confine this paper
to the case of functions defined on the domain Ω = (0, 1)d, d ≥ 2. For the range s > 0, and 0 < p, q ≤ ∞,
the Besov space Bs

q(Lp(Ω)) is a space of functions with smoothness of order s > 0 in Lp(Ω). Here q is a
secondary index that gives a fine gradation of these spaces. The material in this section is taken for the most
part from the papers [18, 16, 17] and the reader will have to refer to those papers for some of the definitions
and proofs. Let us also mention that the univariate case is covered in the book [15].

If r is a positive integer and 0 < p ≤ ∞ and f ∈ Lp(Ω), we define the modulus of smoothness ωr(f, ·)p
of f by

ωr(f, t)p := ωr(f, t,Ω)p := sup
|h|≤t

‖∆r
h(f, ·)‖Lp(Ωrh), t > 0, (2.1)

where

∆r
h
(f, ·) := (−1)r

r∑

k=0

(−1)k
(
r

k

)
f(·+ kh), (2.2)

is the r-th difference of f for h ∈ R
d and Ωh := {x ∈ Ω : [x,x + h] ⊂ Ω}. Here [x,x + h], x,h ∈ R

d,
denotes the line segment in R

d between x and x+h, and |h| denotes the Euclidean norm of h. If s > 0 and
0 < p ≤ ∞, then Bs

q(Lp(Ω)) is defined as the set of all functions in Lp(Ω) for which

|f |Bs
q(Lp(Ω)) :=




1∫

0

[t−sωr(f, t)p]
q dt

t



1/q

<∞, 0 < q <∞, (2.3)

where r can be taken as any integer strictly bigger than s. When q = ∞ we replace the integral by a
supremum in the definition. This is a (quasi-)semi-norm and we obtain the (quasi-)norm for Bs

q(Lp(Ω)) by
adding ‖f‖Lp(Ω) to it. An equivalent (quasi-)semi-norm is given by

|f |Bs
q(Lp(Ω)) ≍

[
∞∑

k=0

[2ksωr(f, 2
−k)p]

q

]1/q

, 0 < q <∞, (2.4)

with equivalency constants independent of f . This is proved by discretizing the integral in (2.3) and using
the monotonicity of ωr as a function of t. When q = ∞, (2.4) uses the ℓ∞ norm in place of the ℓq norm, i.e.,

|f |Bs
∞

(Lp(Ω)) ≍ sup
k≥0

2ksωr(f, 2
−k)p. (2.5)

While different choices of r result in different (quasi-)semi-norms, the corresponding Besov (quasi-)norms
are equivalent, provided r > s. To fix matters, we define the Besov norm with the value of r = r(s) as the
smallest integer strictly larger than max{s, 1}. It follows that r(s) is always larger than or equal to 2. This
choice is for notational convenience in the material that follows.

Let us make some remarks on these spaces. Consider the role of q in this definition. If q2 < q1, then
Bs

q2(Lp(Ω)) ⊂ Bs
q1(Lp(Ω)), i.e., these spaces get smaller as q gets smaller. Thus, all Bs

q(Lp(Ω)), q > 0, are
contained in Bs

∞(Lp(Ω)) once s and p are fixed. The effect of q in the definition of the Besov spaces is subtle.

7

In this paper, the space Bs
∞(Lp(Ω)) is especially important, and accordingly, we use the abbreviated

notation
Bs

p := Bs
p(Ω) := Bs

∞(Lp(Ω)) (2.6)

in going forward. It follows that a function f ∈ Bs
p(Ω) if and only if

ωr(f, t)p ≤Mts, t > 0, (2.7)

and the smallest M for which (2.7) is valid is the (quasi-)semi-norm |f |Bs
p
. This space is commonly referred

to as (generalized) Hölder smoothness of order s in Lp. It is important to note that when s is a positive
integer, we take r > s in its definition. Therefore the Besov space Bs

p is not a Lipschitz space when s is a
positive integer. In view of (2.5), we have that a function f is in Bs

p if and only if

ωr(f, 2
−k)Lp(Ω) ≤M ′2−ks, k = 0, 1, . . . , (2.8)

and the smallest M ′ for which this is true is an equivalent (quasi-)semi-norm.

2.1 The Sobolev spaces Hs(Ω)

Since the results of this paper heavily use the Sobolev spaces Hs(Ω), we give here a short review of these
spaces and list some of their properties. The classical Sobolev spaces Hs(Ω), s > 0, are the Besov spaces

Hs(Ω) = Bs
2(L2(Ω)) ⊂ Bs

∞(L2(Ω)) =: Bs
2(Ω).

Two of the Hs(Ω) spaces play an important role in what follows, namely H−1(Ω) and H1/2(∂Ω). Let us
recall the definition of H−1(Ω). The space H1

0 (Ω) is the collection of functions in H1(Ω) which vanish on
the boundary of Ω, i.e., it is the closure of smooth functions in H1(Ω) which are identically zero on ∂Ω. The
space H−1(Ω) is by definition the dual space of H1

0 (Ω) and is equipped with the norm

‖f‖H−1(Ω) := sup
‖v‖

H1
0 (Ω)

=1

〈f, v〉H−1×H1
0
. (2.9)

There are two equivalent ways to describe the space H1/2(∂Ω) appearing in A3. The first is as the Besov

space B
1/2
2 (L2(∂Ω)). Here, one needs the concept of Besov spaces on manifolds. In our case, the boundary of

Ω is quite simple since it is the union of the faces of Ω. This definition gives the norm in H1/2(∂Ω) through
the modulus of smoothness. Using the averaged modulus of smoothness, see the Appendix, one finds that
the semi-norm of g ∈ H1/2(∂Ω), is

|g|2H1/2(∂Ω) :=

∫

∂Ω

∫

∂Ω

|g(z) − g(z′)|2
|z− z′|d dz dz′, (2.10)

which is commonly referred to as the intrinsic semi-norm on this space. We obtain the norm on this space
by adding ‖g‖L2(∂Ω) to this semi-norm.

The second way to describe H1/2(∂Ω) and its norm is through the trace operator Tr = Tr∂Ω. Recall
that if g is a continuous function on Ω then the trace Tr(g) is simply the restriction of g to ∂Ω. While the
trace operator has an extension to certain functions that are not continuous, in our applications that appear
later the function g will always be continuous. Using the trace operator one defines H1/2(∂Ω) as the trace
of functions in H1(Ω) and its trace norm is

‖g‖H1/2(∂Ω) := inf{‖v‖H1(Ω) : Tr(v) = g}. (2.11)

It is well known that the trace norm and the intrinsic norms for H1/2(Ω) are equivalent for Lipschitz domains
and in particular for our case of Ω = (0, 1)d (see [27]). We use both of these norms in what follows while
always making clear which norm is being employed.

8

2.2 Piecewise polynomial approximation and interpolation

Recall that one can characterize membership in Besov spaces by piecewise polynomial approximation. We
describe and prove such characterizations in the appendix. An important additional fact is that the piecewise
polynomials in such characterizations can be described by interpolation. This allows us to generate near best
piecewise polynomial approximations to f and g by using only the data (fi), respectively (gi).

Let us begin with the cube Ω = (0, 1)d and discuss polynomial interpolation on Ω which we will later
rescale to any dyadic cube. We fix r ∈ N, r > 1 and let

Gr :=

{(
j1

r − 1
, . . . ,

jd
r − 1

)
, ji ∈ {0, 1, . . . , r − 1}

}
⊂ [0, 1]d,

be the tensor product grid of rd equally spaced points in Ω . Consider the simplicial (Kuhn-Tucker) decom-
position of Ω into simplices T ,

Ω =
⋃
T .

Given any one of these simplices T , the number nr of grid points in this simplex T is the same as the
dimension of Pr := Pd

k , where Pd
r denotes the linear space of algebraic polynomials of order r (total degree

r − 1), namely,

Pd
r :=





∑

|k|1<r

akx
k, ak ∈ R



 , where xk := xk1

1 · · ·xkd

d , k := (k1, . . . , kd), kj ≥ 0, |k|1 :=

d∑

j=1

kj .

Let us consider the standard closed simplex

T 0 := {x = (x1, . . . , xd) ∈ R
d : x1 + . . .+ xd ≤ 1, xi ≥ 0, i = 1, . . . , d}.

It is well known that polynomial interpolation using elements of Pr at the grid points in Gr∩T0 is well posed
(see e.g. Section 4 in [51] or Chapter 2 in [7]. Let φj := φj,T0 , j = 1, . . . , nr, be the Lagrange polynomial
basis for Pr corresponding to the points in Gr ∩ T 0. Then, the operator

LT0(f) :=
∑

xj∈Gr∩T0

f(xj)φj , (2.12)

is a bounded projector from C(Ω) onto Pr, i.e.,

‖LT0(f)‖C(T0)
≤ Λr‖f‖C(T0)

, where Λr := ‖
nr∑

j=1

|φj,T0(x)|‖C(T0)
, (2.13)

is the Lebesgue constant which depends only on r, d, and T0.
Now, fix k ≥ 0 and consider the dyadic cubes I ∈ Dk. If we rescale to any such dyadic cube I and any

simplex T in the simplicial decomposition of I and denote by φj,T the rescaled polynomial φj,T := φj,T0 ◦F−1
T

where FT : T 0 → T is an affine map from the reference simplex T 0 to T , we obtain the projector LT onto
Pr which satisfies

‖LT (f)‖C(T) ≤ Λr(T)‖f‖C(T), where Λr(T) := ‖
nr∑

j=1

|φj,T (x)|‖C(T), T ⊂ I ∈ Dk, k ≥ 0. (2.14)

Notice that Λr = Λ(T). Moreover, the interpolating polynomial LT (f) provides a good approximation to f
on T . For example, for any polynomial P ∈ Pr, we have

‖f − LT (f)‖C(T) ≤ ‖f − P‖C(T) + ‖LT (f − P)‖C(T) ≤ (1 + Λr)‖f − P‖C(T). (2.15)

9

Let us denote by S∗
k(f) the piecewise polynomial interpolant

S∗
k(f) := S∗

k,r(f) :=
∑

T∈Tk

LT (f)χT , (2.16)

where Tk is the collection of all simplicies arising from the (Kuhn-Tucker) decomposition of the dyadic cubes
in Dk(Ω) and χT is the characteristic function of T . The function S∗

k(f) is continuous on Ω since the number
points from Gr that are on a shared face of any two simplicies from Tk is the same as the dimension of the
polynomial space Pd−1

r .
The following theorem (proved in the appendix) describes the appproximation accuracy of S∗

k .

Theorem 2.1. Let s > 0, 0 < p ≤ ∞, be fixed with s > d/p. Let r = r(s) be the smallest integer strictly
larger than max(s, 1) and let S∗

k be the interpolation operator (2.16). Then, for any f ∈ Bs
p(Ω) = Bs

∞(Lp(Ω))
and any τ ≥ p, we have

‖f − S∗
k(f)‖Lτ (Ω) ≤ C|f |Bs

p(Ω)2
−k(s−d/p+d/τ), (2.17)

with C independent of f and k.

We will also need similar results where the approximation takes place in the H1(Ω) = B1
2(L2(Ω)) norm.

Theorem 2.2. Let d ≥ 2. If f ∈ Bs
q(Lp(Ω)) with s > d/p and 0 < p ≤ 2 and S∗

k(f) is as defined in (2.16),
then

‖f − S∗
k(f)‖H1(Ω) ≤ C|f |Bs

q(Lp(Ω))2
−k(s−1−d/p+d/2), k ≥ 0. (2.18)

There are many results concerning the embeddings of Besov spaces into other Besov spaces or Lp spaces.
We are particularly interested in those when a Besov space is embedded into C(Ω). For this, we can use the
following theorem proved in the appendix

Theorem 2.3. For every f ∈ Bs
p(Ω), s > d/p, 0 < p ≤ ∞, there is a continuous function f̃ such that f = f̃

a.e. In fact, f̃ ∈ Lip α, with α := s− d/p, i.e.,

ωr(f̃ , t)C(Ω) ≤ C|f |Bs
p(Ω)t

s−d/p, t > 0. (2.19)

3 Optimal recovery

In this section, we study the question of whether the information (f ,g) at the fixed data sites X :=
{x1, . . . ,xm̃} and Z := {z1, . . . , zm} is sufficient to determine u to a prescribed accuracy ε in the H1(Ω)
norm. Questions of this type are well studied and referred to as optimal recovery (OR). The answer to our
specific question depends on the numbers m̃,m, the positions of the points in X and Z, and the assumptions
we make on f and g. As we have mentioned, we assume that f and g are continuous so that point evaluation
makes sense. It follows that the unknown function u is continuous as well. If we wish to ensure an error
bound on how well we can recover u in the H1(Ω) norm, then the conditions we impose on f and g also
have to guarantee that u lies in a compact subset of H1(Ω). We require that f, g are in certain Besov spaces
that compactly embed into the appropriate space of continuous functions, i.e., f lies in a Besov space that
compactly embeds into C(Ω) and g is in a Besov space that compactly embeds into C(∂Ω).

Before presenting the results on optimal recovery of this section, let us remark that the results given
below are (in essence) all known. For example, the optimal recovery rates for the Besov model classes of
this section have all been given in the papers [12, 13, 59] save for one small discrepancy on optimal recovery
in H−1(Ω) (explained below) and for the fact that they do not directly consider recovery on manifolds
like ∂Ω. The main distinction between the results in [59] and ours given below is in how the optimal
recovery is obtained/proven.The optimal recovery method in [59] uses linear combinations of certain ‘bump
functions’, whereas we use continuous piecewise polynomial Lagrange interpolation. One can argue that the
fact that optimal recovery can be obtained by interpolation is also known since it is a prominent method
of approximation in Finite Element Methods. However, the latter community usually considers Sobolev

10

classes, rather than the more general Besov classes, and also typically restricts p ≥ 1. In summary, we could
not find a direct reference which proves the results given below based on continuous piecewise polynomial
interpolation. In any case, those not familiar with optimal recovery may find the results below useful and
the OR community can just do a very light reading of this section. The results stated in this section are all
proved in detail in the appendix.

We assume that f, g belong to the unit ball of a smoothness space that compactly embeds into the space
of continuous functions on the relevant domain. The function f is defined on the domain Ω ⊂ R

d with
continuous extension on Ω. The classical assumptions on function smoothness for a domain Ω is membership
in a Besov space. Accordingly, we shall assume that

f ∈ F := U(B), B = Bs
q(Lp(Ω)), 0 < q, p ≤ ∞, s > d/p, (3.1)

where U(B) is the unit ball of B and the restriction on s ensures that F compactly embeds into the space of
continuous functions C(Ω).

The function g is defined on the manifold ∂Ω. There are two ways to describe smoothness conditions on
such functions g. The first is through the trace operator Tr := Tr∂Ω. The second is to place smoothness
conditions directly on g as a function from C(∂Ω). The latter is usually referred to as an intrinsic definition.
We choose in this paper to define the set G via the trace operator. Namely, we define the model class G via
the trace of functions from the unit ball of a Besov class Bs

q(Lp(Ω)) with s > d/p, to ensure continuity. We
also place the restrictions 0 < p̄, q̄ ≤ 2 in order to simplify the presentation that follows. In other words, our
model class assumptions on the boundary function g take the form

g ∈ G := Tr(U(B)), where B := Bs
q(Lp(Ω)), with s̄ > d/p̄, 0 < p̄, q̄ ≤ 2. (3.2)

Then G is a compact subset of H1/2(∂Ω). Note that in general the parameters s, p, q used in defining F are
different from s, p, q used in defining G. These assumptions imply that the function u we want to numerically
approximate is an element of the set

U := {ũ ∈ C(Ω) : ũ satisfies (1.1) with f ∈ F , g ∈ G}. (3.3)

Given data f := (f1, . . . , fm̃), the totality of information we have about f is that it belongs to the set

Fdata := Fdata(f) := {f̃ ∈ F : f̃i = fi, i = 1, . . . , m̃}.

Similarly, if the data g := (g1, . . . , gm) is coming from a g ∈ G, then, what we know about g is that in lies
in the set

Gdata := Gdata(g) := {g̃ ∈ G : g̃i = gi, i = 1, . . . ,m}. (3.4)

Notice that the gi = u(zi), i = 1, . . . ,m. Finally, the totality of information we have about the sought after
u is that it is in the set

Udata := Udata(u) :={ũ ∈ U : −∆ũ(xi) = fi, i = 1, . . . , m̃, ũ(zi) = gi, i = 1, . . . ,m}.

or equivalently

Udata := Udata(u) := {ũ : ũ is a solution to (1.1) with f ∈ Fdata, g ∈ Gdata}.

We are interested in knowing to what extent the information that u ∈ Udata identifies u.
There is a simple theoretical answer to such questions. Given a compact set K of a Banach space X , we

let B(K) := B(K)X denote a ball with the smallest radius in X which contains K, called a Chebyshev ball
of K in X . If we wish to provide an element from X that simultaneously approximates all elements in K
(in the norm of X), then the center of this ball is the best we can do and its radius

R(K)X := rad(B(K))X (3.5)

11

is the optimal error we can obtain. It is called the error of optimal recovery of K.
If Udata is a compact subset of X , let B = B(Udata)X be a Chebyshev ball of this set. Since all we know

about u is that it is in Udata, any element from B(Udata)X will give a near best approximation to u in ‖ · ‖X .
The radius of B

R(Udata(u))X := rad(B(Udata(u)))X (3.6)

is then the optimal recovery error. We are interested in bounds for R(Udata)X , where ‖ · ‖X is the norm in
which we wish to measure accuracy. We introduce similar notation for the recovery of f and g.

The recovery rate (3.6) will not only depend on the data sites X , and Z, but also on the values (f ,g)
assigned at these data sites. In order to obtain uniform estimates, we fix the data sites (X ,Z) and introduce

R∗(U ,X ,Z)X := sup
u∈U

R(Udata(u))X , (3.7)

where the data values come from any u ∈ U . This is measuring the worst possible performance over the class
U and is called the uniform optimal recovery rate at the fixed data sites (X ,Z). If we prescribe a budget
for the number m = |X | + |Z| of data sites, we can ask for the optimal error we can achieve under such a
budget restriction. Accordingly, we define

R∗
m(U)X := inf

X⊂Ω,Z⊂∂Ω, |X |+|Z|=m
R∗(U ,X ,Z)X , m ≥ 2.

Similarly,

R∗(F ,X)X := sup
f∈F

R(Fdata(f))X and R∗
m̃(F)X := inf

X⊂Ω,|X |=m̃
R∗(F ,X)X , m̃ ≥ 1,

where the latter is the minimum error we can achieve over all the possible choices of X = {x1, . . . ,xm̃}. We
can similarly ask the question of how well can we can recover g from the data g, and therefore how well we
can recover u? Each of these questions has an associated uniform optimal recovery error which is dependent
on which norm ‖ · ‖X we use to measure the error of recovery.

3.1 Optimal recovery of f

Let F := U(B) where B = Bs
q(Lp(Ω)) with 0 ≤ q, p ≤ ∞ and s > d

p . We define the tensor product grid Gk,r

of Ω = [0, 1]d for r ≥ 2,
Gk,r := {x1, . . . ,xm̃} ⊂ Ω, m̃ = (r2k)d, (3.8)

with spacing h = 2−k(r − 1)−1 (the role of r will be made clear below) and prove that, see Theorem 3.1,

R∗(F , Gk,r)X . m̃−αX .

Moreover, we show that for any choice of data cites X ⊂ Ω with |X | = m̃, we have

R∗(F ,X)X & m̃−αX ,

and therefore R∗
m̃(F)X ≍ m̃−αX . The proof of this theorem is presented in the Appendix.

Theorem 3.1. Let Ω = (0, 1)d and F := U(B), where B is the Besov space Bs
q(Lp(Ω)) with s > d/p, and

0 < p, q ≤ ∞. Then the following holds for the optimal recovery rate R∗
m̃(F)X in the norm of X:

(i) If X = C(Ω), then

R∗
m̃(F)X ≍ m̃−αC , m̃ ≥ 1, where αC :=

s

d
− 1

p
, (3.9)

with constants of equivalence independent of m̃.

12

(ii) If X = Lτ (Ω), τ > 0, then

R∗
m̃(F)X ≍ m̃−ατ , m̃ ≥ 1, where ατ :=

s

d
−

[
1

p
− 1

τ

]

+

, (3.10)

with constants of equivalence independent of m̃.

(iii) If X = H1(Ω), 0 < p ≤ 2, then

R∗
m̃(F)X ≍ m̃−αH , m̃ ≥ 1, where αH :=

s− 1

d
−
[
1

p
− 1

2

]
, (3.11)

with constants of equivalence independent of m̃.

(iv) If X = H−1(Ω), then

• if d ≥ 3 and 0 < p ≤ ∞, or d = 2 and 1 < p ≤ ∞, we have

R∗
m̃(F)X ≍ m̃−α−1 , m̃ ≥ 1 where α−1 :=

s

d
−
[
1

p
− 1

δ

]

+

and
1

δ
:=

1

2
+

1

d
, (3.12)

with constants of equivalence independent of m̃.

• if d = 2 and 0 < p ≤ 1, we have

R∗
m̃(F)X . log(m̃)m̃−α−1 , R∗

m̃(F)X & m̃−α−1 , m̃ ≥ 1, (3.13)

with α−1 and δ as in (3.12).

Moreover, when m̃ = (r2k)d, the upper bounds in each of these estimates are obtained when we take the
data sites X = Gk,r, provided r > max(s, 1). In this case, the approximant to f is given by the continuous
piecewise polynomial

S∗
k(f) =

∑

T∈Tk

LT (f)χT ,

described in (2.16), where Tk = Tk(Ω) =
⋃
T is the collection of all simplicies arising from the (Kuhn-

Tucker) conforming decomposition of the dyadic cubes in Dk(Ω), the χT ’s are the characteristic functions of
T , and the LT (f)’s are the polynomials of order r (LT (f) ∈ Pd

r), gotten by interpolating f at the data points
T ∩Gk,r.

We remark that in the case d = 2 and 0 < p ≤ 1, the logarithm appears because of the failure of the
Sobolev embedding to provide L1(Ω) ⊂ H−1(Ω). However, it is actually true that the Hardy space H1(Ω)
embeds into H−1(Ω). This could potentially be used to improve our later analysis, but for the sake of
simplicity we do not pursue this here.

We make some further observations that will help explain the above theorem, especially what is happening
for recovery in H−1(Ω). Notice that under the model class assumption f ∈ F = U(Bs

q(Lp(Ω))) with s > d/p,
the OR for this class is the same whether we measure error in H−1(Ω) or in Lδ(Ω) when d ≥ 3 or d = 2,
1 < p ≤ ∞. We also have that

‖f‖H−1(Ω) ≤





C(d)‖f‖Lδ(Ω), d ≥ 3,

C
τ−1‖f‖Lτ(Ω), d = 2, τ > 1,

(3.14)

with C an absolute constant, as discussed in Lemma 12.4 of the appendix . These two facts explain the form
of the loss function L∗ which we discuss in detail later.

13

3.2 Optimal recovery of g

In this section, we study the optimal recovery rate of functions g ∈ G in the norm of H1/2(∂Ω). Let
Tr = Tr∂Ω be the trace operator onto ∂Ω and let B := Bs̄

q̄(Lp̄(Ω)), where we fix s̄, p̄, q̄ and assume that

s > d/p so that we are sure that the functions in B are continuous on Ω. We consider the case 0 < p̄ ≤ 2,
which together with the restriction d ≥ 2 implies that s̄ − d(1/p̄ − 1/2) > 1, and thus the unit ball of B
compactly embeds into H1(Ω). We define the model class

G := {g : g = Tr(v) : ‖v‖B ≤ 1}, (3.15)

and use the trace norm definition of ‖ · ‖H1/2(∂Ω) throughout this section.

Recall the tensor product grid Gk,r for Ω = [0, 1]d, see (3.8). We let

Gk,r := {zi : i = 1, . . . ,m} = Gk,r ∩ ∂Ω (3.16)

denote the set of those grid points of Gk,r that are on the boundary ∂Ω. We will use the points Z = Gk,r

to recover g. Note that the number m̄ of data sites in Gk,r is

m = #(Gk,r) = 2d[r2k]d−1 ≍ 2k(d−1), (3.17)

with constants of equivalency depending only on r and d.
Given g ∈ G, we define the continuous piecewise polynomial

Sk(g) :=

m∑

i=1

g(zi)φi, (3.18)

where each φi is the trace of the Lagrange element φi centered at zi ∈ Gk,r. Note that if v ∈ B is any
function whose trace on ∂Ω is g, and S∗

k(v) is its continuous piecewise polynomial Lagrange interpolant at
the grid points Gk,r , see (2.16), then we have

Tr(S∗
k(v)) = Sk(g).

This follows from the fact that each Lagrange interpolant φi centered at xi ∈ Gk,r \ Gk,r vanishes at the
faces of the simplex from the corresponding Kuhn-Tucker decomposition that contains xi. We also want to
point out that Sk(g) does not depend on v.

The proof of the following result is provided in the appendix.

Theorem 3.2. Let B = Bs
q(Lp̄(Ω)) with s̄ > d/p̄, 0 < p̄ ≤ 2, 0 < q ≤ ∞, and let G = {Tr(v) : ‖v‖B ≤ 1}.

Then the optimal recovery rates of the model classe G in H1/2(∂Ω) is

R∗
m(G)H1/2(∂Ω) ≍ m−β , m ≥ 1, where β :=

s− 1

d− 1
− d

d− 1

[
1

p̄
− 1

2

]
, (3.19)

with constants of equivalency independent of m.
Moreover, when m = #(Gk,r), the upper bound in (3.19) is achieved when we take the data sites Z = Gk,r,

provided r > max(s, 1) and the approximant to g is given by the function Sk(g).

To understand the exponent β in (3.19) better, let v be a function in U(Bs̄
q(Lp̄(Ω))) whose trace is g.

Note that β can be rewritten as

β =
s− 1− (dp̄ − d

2)

d− 1
,

where the numerator is the excess regularity of v in H1(Ω) and thereby corresponds to the excess regularity
of g in H1/2(∂Ω), and the denominator is d− 1 since ∂Ω has dimension d− 1.

14

3.3 Optimal recovery of u

We turn now to determining the optimal H1(Ω) recovery rate for the functions u in the model class U from
data

−∆u(xi) = fi, xi ∈ X , i = 1, . . . , m̃; u(zi) = gi, zi ∈ Z, i = 1, . . .m, (3.20)

under a given budget m = m̃+m of data observations. Recall that F := U(Bs
q(Lp(Ω))), where s > d/p and

0 < q, p ≤ ∞, G := Tr(U(Bs
q(Lp(Ω))), where s > d/p and 0 < p ≤ 2, and

U := {u ∈ C(Ω) : u satisfies (1.1) with f ∈ F , g ∈ G}.

The following theorem gives the optimal recovery rate for U .

Theorem 3.3. Let Ω = (0, 1)d and let F , G, U be as above. Then the following holds for the optimal
recovery rate R∗

m(U)H1(Ω):

• if d ≥ 3, or d = 2 and p > 1, we have

R∗
m(U)H1(Ω) ≍ m−min(α,β), m ≥ 2, (3.21)

• if d = 2 and 0 < p ≤ 1, we have

m−min(α,β) . R∗
m(U)H1(Ω) . log(m)m−α +m−β, m ≥ 2, (3.22)

where α := α−1 is given by (3.12), β is given by (3.19), and all constants of equivalence are independent of
m.

Proof. Let us fix the data cites X ,Z with |X | = m̃, |Z| = m, m = m + m̃, and let u1, u2 ∈ Udata with
corresponding f1, f2 ∈ Fdata and g1, g2 ∈ Gdata. It follows from (1.3) that

‖u1 − u2‖H1(Ω) ≍ ‖f1 − f2‖H−1(Ω) + ‖g1 − g2‖H1/2(Ω).

It follows that
R∗(U ,X ,Z)H1(Ω) ≍ R∗(F ,X)H−1(Ω) +R∗(G,Z)H1/2(Ω). (3.23)

Clearly, if m = m̃ ≍ m/2 and using the rates from Theorem 3.1 and Theorem 3.2, we have that

R∗
m(U)H1(Ω) .





m−α +m−β . m−min(α,β), d ≥ 3, or d = 2, p > 1,

log(m)m−α +m−β, d = 2, 0 < p ≤ 1.

On the other hand, using the same theorems and (3.23), we obtain

m−min(α,β) . inf
m=m+m̃

(m̃−α +m−β) . inf
m=m+m̃

(
R∗

m̃(F)H−1(Ω) +R∗
m(G)H1/2(Ω)

)

. inf
m=|X |+|Z|

R∗(F ,X)H−1(Ω) +R∗(G,Z)H1/2(Ω)

. inf
m=|X |+|Z|

R∗(U ,X ,Z)H1(Ω) = R∗
m(U)H1(Ω),

and the proof is completed.

15

3.4 Final observations on optimal recovery

This section gave the optimal recovery rates for the model classes F ,G,U from m̃,m,m, data observations,
respectively. While we began by considering general model class assumptions F and G for f and g to be the
unit balls of Besov spaces Bs

q(Lp), we found that the optimal recovery rate is the same for many of these
model classes. This means that some of the model classes are superflous in that they are contained in a
larger model class with the same recovery rate. It makes sense only to use these largest model classes in
going forward.

Consider, for example, the model classes F = U(B) with B = Bs
q(Lp(Ω)) for f . We found that in the

case d ≥ 3 and 0 < p ≤ ∞, or d = 2 and 1 < p ≤ ∞, the optimal recovery rate of F in H−1(Ω) is the same
as its optimal recovery rate in Lδ(Ω) with δ = 2d

d+2 . Moreover, the model class F has an optimal recovery

rate m−α/d in H−1(Ω) if and only if it is contained in U(Bα
∞(Lγ(Ω))) and, in addition, F embeds into C(Ω).

Largest Model Classes for f :
In the case d ≥ 3, 0 < p ≤ ∞ or d = 2, 1 < p ≤ ∞ the class

F := U(B), B = Bs
∞(Lp(Ω)), with p ≥ δ and s >

d

p
(3.24)

has the optimal recovery rate
R∗

m(F)H−1(Ω) ≍ m−s/d, m ≥ 1, (3.25)

and any Besov model class that gives the optimal recovery rate O(m−s/d) is contained in one of these model
classes. In each of these cases, the number s represents the smoothness of f ∈ F in Lδ(Ω). These largest
model classes are pictured in Figure 3.1.

In the case d = 2, 0 < p ≤ 1, the largest class

F := U(B), B = Bs
∞(L1(Ω)), with s > 2, (3.26)

has recovery rate
m−s/2 . R∗

m(F)H−1(Ω) . (1 + log(m))m−s/2, m ≥ 1. (3.27)

Largest Model Classes for g: We have considered the model classes G = Tr(Bs̄
∞(Lp̄(Ω)) with 0 < p̄ ≤ 2

and s̄ > max{ d
p̄ , 1}. Thus, all of the model classes which give a given rate O(m−α) will all be contained in

one model class
G := Tr(U(B)), B = Bs̄

∞(L2(Ω)), with s̄ > d/2. (3.28)

This class has optimal recovery rate in H1/2(∂Ω)

R∗
m(G)H1/2(∂Ω) ≍ m−(s̄−1)/(d−1), m ≥ 1. (3.29)

Moreover, any Besov model class that gives this recovery rate is contained in one of these largest model
classes. For each of these largest model classes s̄ − 1 is the excess smoothness of v in H1(Ω) and also the
excess smoothness of g = Tr(v) in H1/2(Ω).

Remark 3.4. Because of the above remarks, in going further, we always take F as in (3.24) and G as in
(3.28).

Model Classes for u: If we use one of the model classes from (3.24) for F and one of the model classes
from (3.28) for G, we obtain a model class U for u. The optimal recovery rate for this model class is

R∗
m(U)H1(Ω) ≍ m−min{s/d,(s̄−1)/(d−1)}, m ≥ 2,

which could be obtained by assigning m̃ ≍ m/2 points in Ω and m ≍ m/2 points on the boundary ∂Ω.

16

s

1/δ 1/p
0

s=d/p s

1/2 1/p
0

d
2

s=d/p

Figure 3.1: The spaces Bs
∞(Lp(Ω)) are represented by the point (1/p, s) in the first quadrant. The arrows

indicate embedding with a slope of d for the oblique lines. In particular, the spaces above the line s = d/p
embed into C(Ω). (Left) The largest model classes for f are the unit balls of spaces just above the thick
and dashed segment or on the on the thick vertical half-line (excluding the point (1/δ, d/δ)). (Right) The
largest model classes for g are the traces of the unit balls of spaces on the thick vertical half-line (excluding
the point (1/2, d/2)).

4 Numerical algorithms based on linear approximation

The above analysis of optimal recovery tells us to what extent the information (f ,g) determines u. That
is, the optimal recovery analysis tells us that if two functions u, ũ from our model class U satisfy the same
data, then they are close in the H1(Ω) norm, that is

‖u− ũ‖H1(Ω) . R∗
m(U)H1(Ω).

However, it does not give a numerical algorithm that takes the data and creates an approximation û to u
with accuracy of the optimal recovery rate. In this section, we discuss two numerical methods which would
accomplish the latter task. The methods discussed in this section are not in the form of PINNs. The latter
will be discussed in §9.

We assume in this section that the data sites form a tensor product grid G of Ω. We know such data sites
G provide a near optimal recovery. We have shown that if we use the data f at G, then we can numerically
construct a piecewise polynomial interpolant f̂ to f at the data sites which is a near optimal (in terms of
the budget m̃) approximation to f in the H−1(Ω) norm. Similarly, we can numerically construct a ĝ from
the data g which is a near optimal recovery of g in the H1/2(∂Ω) norm.

We define ũ as the solution to (1.1) with right hand side f̂ and boundary value ĝ. We know that ũ is a
near optimal recovery of u in the H1(Ω) norm. Then, in view of (1.3), we have

‖u− ũ‖H1(Ω) . R∗
m(U)H1(Ω). (4.1)

Note that the constructions of f̂ and ĝ are numerical and we can control their complexity. In order to do
that for ũ, we use an existing numerical method for solving (1.1). This will, of course, incur a numerical
error depending on the algorithm we choose. We mention two natural possibilities.

4.1 Using FEMs or AFEMs

Let ûn be the approximation to ũ obtained from the Galerkin projection onto a standard finite element space
Vn of dimension n. That is, ûn is the Galerkin solution to (1.1) with right side f̂ and boundary value ĝ.
Then, we have

‖u− ûn‖H1(Ω) . R∗
m(U)H1(Ω) + εn(U)H1(Ω), (4.2)

17

where
εn(U)H1(Ω) := dist(U , Vn)H1(Ω), n ≥ 1. (4.3)

The term εn will tend to zero as n→ ∞ and we would obtain the optimal recovery error on the right side of
(4.2) if n is chosen suitably large. The actual decay rate of εn depends on the regularity of the model class
U in H1(Ω). Therefore, the issue becomes what do our model class assumptions f ∈ F , g ∈ G, say about the
regularity of u in the H1(Ω) norm. If we use linear spaces such as standard finite element spaces, then we
would want to know the regularity of u in the scale of Ht(Ω) spaces, t > 1. There are several theorems that
obtain such regularity results (see e.g. [11, 35, 46] and the references therein) and thereby obtain concrete
bounds on the decay rate εn. We do not elaborate on this further but refer the interested reader to the
papers cited above.

If we use nonlinear numerical methods such as AFEMs from for solving (1.1) with right side f̂ , and
boundary value ĝ, then the decay rate for εn(U) can be improved (see [5] for a summary of such results).

4.2 Reduced models

If one is faced with solving several PDEs with the same data sites (X ,Z) but with different data (f ,g), one
can build a numerical algorithm as follows. Suppose that X = Gk,r, |Gk,r| = m̃ = [r2k]d, see (3.8) and
Z = Gk,r, |Gk,r| = m = 2d[r2k]d−1, see (3.16) Ω with spacing h = r−12−k.

We know that the simplicial interpolation operator S∗
k defined in (2.16) provides a near optimal recovery

for F . Namely,
‖f − S∗

k(f)‖H−1(Ω) . R∗
m̃(F)H−1(Ω), m̃ = [r2k]d. (4.4)

We write

S∗
k(f) =

m̃∑

i=1

f(xi)φi, (4.5)

where the φi are the local Lagrange functions with φi(xi) = 1 and φi(xj) = 0 when j 6= i, supported on
the simplex containing the point xi. Let φ∗i be the solution to (1.1) with right side φi and zero boundary
conditions.

Similarly, the interpolant Sk(g) to g ∈ G used for optimal recovery, see (3.18), can be written as

Sk(g) =

m∑

i=1

g(zi)ψi, m = 2d[r2k]d−1. (4.6)

Let ψ∗
i be the solution to (1.1) with g = ψi and zero right side.

Given any data (f ,g), the function

ũ :=

m̃∑

i=1

f(xi)φ
∗
i +

m∑

i=1

g(zi)ψ
∗
i (4.7)

is a near optimal recovery of the solution u to (1.1) with right side f and boundary values g. Note that ũ is
the solution to (1.1) with right side S∗

k(f) and boundary value Sk(g).

Given a budget m, one computes offline to a sufficiently high accuracy suitable approximations φ̂i and
ψ̂i in H

1(Ω) to the φ∗i and ψ∗
i , respectively. Then the function

û :=
m̃∑

i=1

f(xi)φ̂i +
m∑

i=1

g(zi)ψ̂i (4.8)

is a near optimal recovery for the solution u to (1.1) with f ∈ F , g ∈ G, where f |X = f and g|Z = g.
Note also that the near optimality can be guaranteed for all model class assumptions provided s and s

are all less than a fixed number s0.

18

5 Numerical methods based on optimization

Another approach to finding a near optimal approximation to u from the given data is through optimization,
such as the one used in PINNS. To analyze this approach, we begin this section by first considering a
theoretical optimization algorithm which we shall later turn into a numerical procedure. We begin by
introducing the functional LT : H1(Ω) → R, defined as

LT (v) := ‖f +∆v‖H−1(Ω) + ‖v − g‖H1/2(∂Ω), (5.1)

for fixed f ∈ F ⊂ H−1(Ω) and g ∈ G ⊂ H1/2(∂Ω). Clearly, the unique solution u ∈ H1(Ω) to (1.1) with
right side f and boundary condition g is the unique minimizer of this functional since LT (u) = 0. In other
words, we have

u = argmin
v∈H1(Ω)

LT (v). (5.2)

Note also that because of (1.3), we have for every v ∈ H1(Ω)

‖u− v‖H1(Ω) ≍ ‖f +∆v‖H−1(Ω) + ‖g − v‖H1/2(∂Ω) = LT (v), (5.3)

with absolute constants in the equivalence. In other words, the loss LT (v) for any v tells us how close v is
to the true solution u.

The minimization in (5.2) is over all v ∈ H1(Ω). To make this minimization more amenable to numerical
implementation, we take this minimization over a set Σ = Σn, where Σ is either a linear space of dimension
n or a nonlinear manifold of order n (i.e., depending on n parameters), and study any function

SΣ ∈ {argmin
S∈Σ

LT (S)}. (5.4)

We want to understand how close such an SΣ is to u with error measured in the norm of H1(Ω). Therefore,
we need to require that Σ ⊂ H1(Ω).

Let us fix our model class U as given in (3.3). If we want SΣ to be a good approximation to u, then we
need Σ to be good at approximating the elements of U . We define the error

E(U ,Σ) := sup
v∈U

inf
S∈Σ

‖v − S‖H1(Ω).

If we return to our specific u ∈ U determined by f and g, then for any SΣ from (5.4) and any S ∈ Σ, we
have from (5.3) that

‖u− SΣ‖H1(Ω) . LT (SΣ) . LT (S) . ‖u− S‖H1(Ω), (5.5)

where the last inequality is a consequence of the left inequality in (1.3). Since (5.5) holds for all S ∈ Σ, we
have that

‖u− SΣ‖H1(Ω) . inf
S∈Σ

‖u− S‖H1(Ω) . E(U ,Σ). (5.6)

The discussion that we have just given shows that if we solve the continuous minimization problem (5.2)
over Σ instead of all of H1(Ω), then the solution will get as close to u as the efficiency of Σ in approximating
U , i.e., E(U ,Σ). This error can be made as small as we wish by taking finer spaces for Σ, i.e., letting
n increase. The error we incur is then proportional to the error in E(U ,Σ) which tell us that the best
candidates for Σ are those that approximate our model class U well.

Several issues arise that prevent the direct implementation of the above loss in our setting. The first of
these is that we do not know neither f nor g. We only know these functions through the given data. The
remedy for this is to introduce a surrogate for the H−1(Ω) and H1/2(∂Ω) norms that use only the data
information (f ,g) we have about f and g. The next section addresses this issue.

19

6 Discretizing norms

The optimization procedure of the previous section is not a numerical algorithm since it does not incorporate
numerical methods for estimating the norms appearing in the loss LT , namely ‖ · ‖H−1(Ω) and ‖ · ‖H1/2(∂Ω).
In this section, we address this issue by introducing discrete norms which involve only the values of functions
at the data sites. Replacing the norms in L by these discrete norms leads to a loss which can be numerically
computed. The equivalence between the norms in LT and their discrete counterparts holds (modulo cor-
responding optimal recovery rates) for functions whose Laplacians are uniformly bounded in B and whose
traces are uniformly bounded in B.

6.1 A discrete Lτ norm

In this section, we study the discretization of the Lτ norm for any 1 ≤ τ ≤ ∞. Let F = U(Bs
q(Lp(Ω))),

s > d/p, be a model class assumption on f . We consider the uniform grid Gk,r ⊂ Ω, see (3.8), consisting of
m points, m = |Gk,r| = [r2k]d, k ≥ 0 and r > max{s, 1}. For any continuous function f and any 1 ≤ τ <∞,
we define

‖f‖∗Lτ
:=


 1

m

m∑

j=1

|f(xj)|τ


1/τ

, where xj ∈ Gk,r . (6.1)

When τ = ∞ we make the usual modification to define the ‖f‖∗L∞
norm.

The following lemma shows that the discrete Lτ norm is close to the true Lτ norm for functions in the
model class F .

Lemma 6.1. Let B = Bs
q(Lp(Ω)), Ω = (0, 1)d, be a Besov space with s > d/p. If f ∈ B, then for any

1 ≤ τ ≤ ∞, we have

‖f‖Lτ(Ω) . ‖f‖∗Lτ
+ ‖f‖Bm−ατ , and ‖f‖∗Lτ

. ‖f‖Lτ(Ω) + ‖f‖Bm−ατ ,

with ατ := s
d −

(
1
p − 1

τ

)
+
. Recall that m−ατ is the uniform rate of optimal recovery of the model class F in

Lτ (Ω). The constant in . depends only on r and d.

Proof. We prove the lemma for 1 ≤ τ < ∞. A simple modification of the proof handles the case τ = ∞.
We use the simplicial interpolation operator S∗

k given in (2.16). Let Tk := Tk(Ω) be the set of simplices that
make up the simplicial decomposition of the cubes in Dk(Ω). Then, from (2.16) we have

‖S∗
k(f)‖τLτ (Ω) =

∑

T∈Tk

‖LT (f)‖τLτ(T), (6.2)

where LT (f) is the polynomial in Pd
r that interpolates the data {f(xi) : xi ∈ T}. By equivalence of norms

on Pd
r , we know that

‖LT (f)‖Lτ(T) ≍
[1

m

∑

xi∈T

|f(xi)|τ
]1/τ

, (6.3)

with constants of equivalency depending only on d, r. Summing over T ∈ Tk the quantities in (6.3) gives

‖S∗
k(f)‖Lτ (Ω) ≍

[1

m

m∑

i=1

|f(xi)|τ
]1/τ

= ‖f‖∗Lτ(Ω). (6.4)

For f ∈ B = Bs
q(Lp(Ω), the piecewise polynomial interpolant S∗

k(f) provides a near optimal recovery of
f from the data f , that is

‖f − S∗
k(f)‖Lτ (Ω) ≤ C‖f‖Bm−ατ . (6.5)

It follows then from (6.4) that
∣∣‖f‖Lτ(Ω) − ‖S∗

k(f)‖Lτ(Ω)

∣∣ ≤ C‖f‖Bm−ατ , (6.6)

and the proof is completed.

20

6.2 Discrete H1/2(∂Ω) norms

In this section, we introduce discrete H1/2(∂Ω) norms and discuss their accuracy in computing the true
H1/2(∂Ω) norm for functions g in our model class G. The discrete norm we introduce will only uses the
values of g at the data sites and can therefore be computed from the given data. We fix any k ≥ 1 and let
Z := Gk,r = {zj}m̄j=1 = Gk,r ∩ ∂Ω, see (3.16), be the grid points on the boundary ∂Ω. The number of grid

points in Z is m = 2d[r2k]d−1.
We fix a model class G = Tr(U(B)) of the form (3.28). The optimal recovery rate for this class is

R∗
m(G)H1/2(∂Ω) ≍ m−β , m ≥ 1, β =

s̄− 1

d− 1
. (6.7)

This also serves to fix r which we recall is the smallest integer satisfying r > max(s̄, 1). For any continuous
function g which is the trace of a v ∈ B, we use the trace norm

‖g‖Tr(B) := inf
Tr(v)=g

‖v‖B. (6.8)

Recall that the intrinsic semi-norm for H1/2(∂Ω) is given by

|g|2H1/2(∂Ω) :=

∫

∂Ω×∂Ω

|g(x)− g(y)|2
|x− y|d dxdy. (6.9)

We obtain the intrinsic H1/2(∂Ω) norm by adding ‖g‖L2(∂Ω) to this semi-norm. It is known that this
definition is equivalent to the trace norm definition (6.8) for this domain Ω (see [27]). We shall use (6.9)
through out this section.

Let Sk be as defined in (3.18). We have proven in Theorem 3.2 that

‖g − Sk(g)‖H1/2(∂Ω) ≤ C‖g‖Tr(B)m̄
−β , (6.10)

with C independent of m and g. This gives the comparison
∣∣‖g‖H1/2(∂Ω) − ‖Sk(g)‖H1/2(∂Ω)

∣∣ ≤ ‖g − Sk(g)‖H1/2(∂Ω) ≤ C‖g‖Tr(B)m̄
−β.

We concentrate therefore on finding a discrete H1/2(∂Ω) norm for the functions Sk(g), g ∈ G. Note that
Sk(g) is completely determined by the values of g at the data sites Gk,r.

Given k ≥ 0, let Tk := Tk(∂Ω) denote the collection of all d−1 dimensional simplicies given by the Kuhn-
Tucker partition of the dyadic cubes I ∈ Dk(∂Ω) of the boundary ∂Ω. For each dyadic cube I ∈ Dk(∂Ω),
there are (d− 1)! simplices contained in I

Let us further introduce the finite dimensional linear space V r(Tk) of functions that are continuous on
∂Ω and piecewise polynomial (subordinate to Tk) of order r on ∂Ω. The linear operator Sk is a projector
onto V r(Tk).

If g is in C(∂Ω), we define

|g|∗H1/2(∂Ω) :=


 1

m2

∑

i6=j

|g(zi)− g(zj)|2
|zi − zj |d



1/2

(6.11)

and prove that the the two semi-norms | · |∗
H1/2(∂Ω)

and | · |H1/2(∂Ω) are equivalent on V r(Tk).
We begin with the following lemma.

Lemma 6.2. For each pair T, T ′ ∈ Tk and each S ∈ V r(Tk), we have



1

m̄2

∑

i6=j

zi∈T , zj∈T
′

|S(zi)− S(zj)|2
|zi − zj |d




1/2

≍




∫

T×T ′

|S(z)− S(z′)|2
|z− z′|d dz dz′



1/2

, (6.12)

where the constants in ≍ depend only on r and d.

21

Proof. We fix d, r, and a pair T, T ′ ∈ Tk := Tk(∂Ω). Let us first consider the case when k ≤ 4. Let
N (S) := NT,T ′(S) denote the expression in (6.12) involving the sum, and N ′(S) the expression involving
the integral. Both are semi-norms on the finite dimensional linear space X = X(T, T ′) of functions from
V r(Tk) restricted to T ∪ T ′. A function S ∈ X satisfies N (S) = 0 if and only if S is constant on T , T ′ and,
additionally, S is constant on T ∪T ′ when T and T ′ touch. A similar statement holds for the semi-norm N ′.
It follows that for any pair T, T ′, we have

cN (S) ≤ N ′(S) ≤ CN (S), S ∈ X(T, T ′), (6.13)

where the constants c, C depend on T , T ′, r and d, but are independent of S. Since there are only a finite
number (depending on d) of pairs of simplicies in Tk(∂Ω), k ≤ 4, there are constants c1, C1 which depend
only on r, d for which (6.13) is valid for all pairs of simplices from Tk(∂Ω), k ≤ 4. Then (6.13) holds for all
such pairs with c = c1, C = C1, and we have completed the proof in this case.

We now consider the case k > 4. Given a pair T, T ′, we let c(T, T ′) be the largest number such that the
lower inequality in (6.13) holds uniformly for all S ∈ X(T, T ′). Similarly C(T, T ′) is the smallest constant
so that the upper inequality of (6.13) holds uniformly on X(T, T ′). The above argument using equivalence
of semi-norms shows that there always exist positive constants c(T, T ′), C(T, T ′). We are left to show that
there are constants 0 < c∗ < C∗ <∞, depending only on d and r, for which c(T, T ′) ≥ c∗ and C(T, T ′) ≤ C∗

holds for all pairs T, T ′ such that T, T ′ ∈ Tk and k > 4.
We consider two cases.

Case 1: T ∩ T ′ 6= ∅.
In this case there is a pair T0, T

′
0 ∈ T4, and a linear mapping consisting of a translation and a dilation

with factor 2−k+4 that rigidly transforms T0, T
′
0 to the pair T, T ′. If we use this linear transformation to

change variables in (6.2) we obtain the validity of (6.2) for this case with the same constants c1, C1.

Case 2: T ∩ T ′ = ∅. First note that from the L2 discretization of the previous section, we have that there
are constants c2, C2 depending only on r, d such that for each S ∈ V r(Tk(∂Ω))

c2

[∫

T×T ′

|S(z)− S(z′)|2dz dz′
]1/2

≤
[1

m2

∑

z6=z
′∈Z

z∈T, z
′∈T ′

|S(z) − S(z′)|2
]1/2

≤ C2

[∫

T×T ′

|S(z) − S(z′)|2dz dz′
]1/2

.

(6.14)
Now, on T × T ′, the expressions |z − z′| that appear in (6.12) are all comparable with absolute constants.
Therefore, we obtain (6.12) holds in this case as well with constants depending only on r, d.

We can now prove that the discrete semi-norm and the true semi-norm of functions in G are comparable.

Theorem 6.3. For any g ∈ G = Tr(U(B)), where B = Bs̄
∞(L2(Ω)) with s̄ > d/2, and any m ≥ 1, we have

|g|H1/2(∂Ω) . |g|∗H1/2(∂Ω) + ‖g‖Tr(B)m
−β, and |g|∗H1/2(∂Ω) . |g|H1/2(∂Ω) + ‖g‖Tr(B)m

−β, (6.15)

with

β =
s̄− 1

d− 1
, (6.16)

and constants in . depending only on r, d. Note that the optimal recovery rate of G in the H1/2(∂Ω) is m̄−β.

Proof. For any S ∈ V r(Tk), we have

|S|H1/2(∂Ω) =


 ∑

T,T ′∈Tk

∫

T

∫

T ′

|S(z)− S(z′)|2
|z− z′|d dz dz′



1/2

22

and

|S|∗H1/2(∂Ω) =




∑

z6=z′∈Gk,r

1

m2

|S(z)− S(z′)|2
|z− z′|d



1/2

≍




∑

T,T ′∈Tk

∑

z6=z
′∈Gk,r

z∈T, z
′∈T ′

1

m2

|S(z)− S(z′)|2
|z− z′|d




1/2

.

Here, in the second expression, we only have equivalence since a given data site may be used for more than
one simplex. Note, however that the constant in the second equivalence depends only on d and r.

In view of Lemma 6.2, we know that there exist constants 0 < c < C <∞ that depend only on d and r
such that for each S ∈ V r(Tk), we have

c|S|H1/2(∂Ω) ≤ |S|∗H1/2(∂Ω) ≤ C|S|H1/2(∂Ω). (6.17)

In particular this holds for S = Sk(g) whenever g ∈ G. If we combine (6.17) with (6.10) and observe that
|g|∗

H1/2(∂Ω)
= |Sk(g)|∗H1/2(∂Ω)

we obtain the theorem.

In order to define a discrete norm forH1/2(∂Ω), we will also need a discrete L2(∂Ω) norm for the functions
in our model class G. Using the same m data sites Z := Gk,r, we define

‖g‖∗L2(∂Ω) :=


 1

m

m∑

j=1

|g(zj)|2


1/2

, g ∈ G, zj ∈ Gk,r. (6.18)

Arguing as we have done in §6.1, we have for α = s̄−1/2
d−1 > β and any g ∈ Tr(B)

‖g‖L2(∂Ω) . ‖g‖∗L2(∂Ω) + ‖g‖Tr(B)m
−α, and ‖g‖∗L2(∂Ω) . ‖g‖L2(∂Ω) + ‖g‖Tr(B)m

−α. (6.19)

We now define for any continuous function g the discrete H1/2(∂Ω) norm

‖g‖∗H1/2(∂Ω) := ‖g‖∗L2(∂Ω) + |g|∗H1/2(∂Ω). (6.20)

Theorem 6.4. For any g ∈ G = Tr(U(B)), where B = Bs̄
∞(L2(Ω) with s̄ > d/2, and any m ≥ 1, we have

‖g‖H1/2(∂Ω) . ‖g‖∗H1/2(∂Ω) + ‖g‖Tr(B)m
−β, and ‖g‖∗H1/2(∂Ω) . ‖g‖H1/2(∂Ω) + ‖g‖Tr(B)m

−β , (6.21)

where β is given in (6.16), and the constants in . depend only on r and d.

Proof. The theorem follows from the comparisons (6.15), (6.19), and the fact that α > β.

7 A discrete loss function with error control

In this section, we introduce a discrete loss function L∗ which is a surrogate for the theoretical loss function
LT of (5.1). The advantage of L∗ is that it can be computed directly from the data (f ,g). Let k, r be fixed
and let X = Gk,r ⊂ Ω and Z = Gk̄,r be the data sites of ∂Ω. Note that k̄ could be different from k. This

fixes m̃ = #(Gk,r) and m := #(Gk̄,r) for the remainder of this section.

Remark 7.1. In this and the following two sections, the results and the proofs of the results are simplest
in the case d ≥ 3. When d = 2, the results and proofs are clouded by the appearance of log factors. For
this reason, we state the results in correct form (including the log factors) for all cases d ≥ 2 but give the
exposition and proofs only for d ≥ 3. The proofs for the case d = 2 are given in the Appendix, §12.7.

23

Let ‖ · ‖∗Lγ
be the discrete norm, see (6.3), introduced in §6.1 for the following choices of

γ =





2d
d+2 , d ≥ 3,

1 + [log(m̃)]−1, d = 2,

and let ‖ · ‖∗
H1/2 be the discrete norm, see (6.11), for H1/2(∂Ω) introduced in §6.2. Given the data vectors

for (f ,g), we introduce the discrete loss function

L∗(v) :=





‖f +∆v‖∗Lγ(Ω) + ‖g − v‖∗
H1/2(∂Ω)

, d ≥ 3,

[1 + log(m̃)]‖f +∆v‖∗Lγ(Ω) + ‖g − v‖∗
H1/2(∂Ω)

, d = 2,

(7.1)

which is defined whenever v and ∆v are continuous on Ω. Notice that to compute L∗(v) we use only the
values of v at the data sites.

We want to show that making L∗(v) small guarantees that v is a good approximation to u in the H1(Ω)
norm. As in [4], such a result requires model class assumptions on f and g. Keeping in mind the remarks of
§3.4, we make the model class assumptions F = U(B) of (3.24) and G = Tr(U(B)) of (3.28).

Recall that, in the case d ≥ 3 and all 0 < p ≤ ∞, or d = 2 and 1 < p ≤ ∞, for a model class F
of the form (3.24), the uniform optimal recovery rate for F in H−1(Ω) is ≍ m̃−s/d, m̃ ≥ 1 where s is
the excess regularity of F in Lδ(Ω). For a model class G of the form (3.28), its uniform optimal recovery
rate in H1/2(∂Ω) is ≍ m−(s̄−1)/(d−1) ,where s̄ − 1 is the excess regularity in H1/2(∂Ω). These model class
assumptions on f, g imply that the solution u to (1.1) is in a model class U which has a uniform optimal
recovery rate max{m̃− s

d ,m−(s̄−1)/(d−1)}. We introduce the following notation for a function v

‖v‖U := max{‖∆v‖B, ‖Tr(v)‖Tr(B)}. (7.2)

The following theorem bounds the error ‖u−v‖H1(Ω) in terms of the discrete loss L∗(v), provided ∆v ∈ B
and v ∈ B.

Theorem 7.2. Let u be the solution to (1.1) with f ∈ F = U(B) of (3.24) and g ∈ G = Tr(U(B)) of (3.28).
Given the data (f ,g) of f and g at grid data sites (Gk,r , Gk̄,r) with |Gk,r| = m̃ and |Gk̄,r| = m, consider the
functional L∗, defined in (7.1). If v is any continuous function in H1(Ω), then

‖u− v‖H1(Ω) . L∗(v) + [1 + ‖v‖U]RU (m̃,m), (7.3)

with the constants in . independent of u, v, m̃ and m, where

RU (m̃,m) :=

{
max{m̃− s

d ,m− s̄−1
d−1 }, d ≥ 3,

max{log(m̃)m̃− s
2 ,m−(s̄−1)}, d = 2.

(7.4)

Proof. We only prove this for d ≥ 3. From (1.3), we have

‖u− v‖H1(Ω) . ‖f +∆v‖H−1(Ω) + ‖g − Tr(v)‖H1/2(∂Ω) . ‖f +∆v‖Lγ(Ω) + ‖g − Tr(v)‖H1/2(∂Ω)

.
[
‖f +∆v‖∗Lγ(Ω) + ‖g − Tr(v)‖∗H1/2(Ω)

]
+
[
‖f +∆v‖Bm̃− s

d + ‖g − Tr(v)‖Tr(B)m
− (s̄−1)

d−1

]
,

where in the second inequality we used the continuous embedding of Lγ(Ω) into H−1(Ω) and in the third
inequality we used the comparisons between continuous and discrete norms (see Lemma 6.1 and Theorem
6.3). Finally, if we use the facts that ‖f‖B ≤ 1 and ‖g‖Tr(B) ≤ 1, we complete the proof of the theorem.

Let us make some remarks on this theorem.

24

Remark 7.3. If we knew in advance the smoothness class of f , or at least the value of p, and if this value
were 1 < p ≤ ∞, then in the case d = 2 we could modify appropriately the the loss L∗ so that it is independent
of m̃. This choice would lead to the actual optimal recovery rates max{m̃− s

2 ,m−(s̄−1)} for this class (i.e the
logarithm will not be present), see the Appendix, §12.7.

Remark 7.4. It is natural that ‖v‖U enters into the error bounds since we need some control on v away from
the data. However, this means that when we try to obtain a good approximation to u (in H1(Ω)), through
optimization, then the norm ‖ · ‖U will have to enter the picture [4].

Remark 7.5. This error estimator can be used to monitor the error in any optimization scheme that attempts
to minimize the loss L∗(v). For example, suppose that Σ = Σn is a linear space of dimension n or a nonlinear
manifold determined by n parameters such that each S ∈ Σ is continuous and has a continuous Laplacian
∆S. If at any stage of the optimization procedure we have an S ∈ Σn then we can use (7.3) to bound the
error of ‖u− S‖H1(Ω). Of course, a good estimate requires a bound for ‖S‖U .
Remark 7.6. Note that for fixed values of m̃ and m, the losses L and L∗ are equivalent up to a constant
depending upon the parameters m̃ and m. This means that if the original loss L is driven to 0, i.e. we are
perfectly interpolating the data, then both losses give the same error control. However, in the situation where
the data is not interpolated, the new loss L∗ gives control on the error according to Theorem 7.2, while the
original PINNs loss L does not.

In view of the above remarks, we see that the effectiveness of using Σn together with the discrete loss L∗

to provide an approximation to u is not simply governed by the error E(U ,Σn)H1(Ω) of approximating the
class U by Σn in the H1(Ω) but rather by a form of restricted approximation which involves ‖ · ‖U [4].

8 A numerical optimal recovery algorithm

Let U be the model class (3.3) determined by the model classes F and G, where F is a maximal model class
(3.24), (3.26) and G is a maximal model class (3.28). To build a numerical algorithm for the recovery of
u ∈ Udata, we want to minimize the discrete loss L∗ over a suitable set Σn. Let M ≥ 1 and let ũ be such
that

ũ ∈ {argmin
‖v‖U≤M

L∗(v)}. (8.1)

Clearly, u is a solution to this problem since ‖u‖U ≤ 1 and L∗(u) = 0. Thus, L∗(ũ) = 0 and it follows from
(7.3) that

‖u− ũ‖H1(Ω) .MRU (m̃, m̄), m ≥ 1. (8.2)

with the implied constant depending only on r and d. In other words, ũ provides a near optimal recovery
when d ≥ 3 and a near optimal recovery up to a logm factor when d = 2. Of course, the minimization
problem (8.1) is taken over too large of a set to be numerically viable and so we would like to utilize
minimization over a smaller set.

Let Σn ⊂ H1(Ω) be an approximating set. Here, the primary examples for Σn are linear spaces of finite
dimension n or a nonlinear manifolds depending on n parameters such as NNs. For M ≥ 1 (typically taken
as some fixed number not dependent on n) we define the set

Σn(M) := {S ∈ Σn : ‖S‖U ≤M} ⊂ Σn, (8.3)

and consider the solution û of the minimization problem

Ŝ ∈ { argmin
S∈Σn(M)

L∗(S)}. (8.4)

We assume for the moment that d ≥ 3 and show that Ŝ is a near optimal recovery of u from the given data
provided the set Σn(M) is sufficiently good at approximating the elements of our model class U . Later, we
explain the changes needed for the case d = 2.

25

In order to present our results, we denote by

E(v,Σn(M)) :=





infS∈Σn(M)

(
‖∆v −∆S‖Lγ(Ω) + ‖Tr(v − S)‖H1/2(∂Ω)

)
d ≥ 3,

infS∈Σn(M)

(
(1 + log(m̃))‖∆v −∆S‖Lγ(Ω) + ‖Tr(v − S)‖H1/2(∂Ω)

)
d = 2.

(8.5)

the error of simultaneously approximating v and ∆v. We remark that in the case d = 2 and 1 < p ≤ ∞, then
this analysis can be modified to remove the logarithm. Then, for the model class U of H1(Ω), we denote by

E(U ,Σn(M)) := sup
v∈U

E(v,Σn(M)),

the error of restricted approximation of the class U by elements from Σn(M).
We have the following theorem.

Theorem 8.1. Let Σn be a set in H1(Ω) and let Σn(M) be defined by (8.3)for a fixed value M ≥ 1. If Ŝ is
any function from (8.4) then

‖u− Ŝ‖H1(Ω) .MRU(m̃,m) + E(u,Σn(M)), (8.6)

with the constant in . depending only on r, d. Moreover, if the approximation set Σn(M) is such that

E(U ,Σn(M)) ≤ CRU (m̃,m) for some C depending only on r, d, then Ŝ provides a uniform near optimal
recovery (up to a logarithmic factor in the case d = 2) for the model class U .
Proof. We only prove this in the case d ≥ 3. In the case d = 2 the same modifications can be made as before.
We use (7.3) for Ŝ to obtain

‖u− Ŝ‖H1(Ω) . L∗(Ŝ) + (1 +M)RU (m̃,m). (8.7)

For all S ∈ Σn(M), Lemma 6.1 and Theorem 6.4 give the bound

L∗(Ŝ) ≤ L∗(S) . ‖∆u−∆S‖Lγ(Ω) + ‖Tr(u− S)‖H1/2(∂Ω) + CMRU (m̃,m),

with the constant in . depending only on r, d. Taking an infimum over all S ∈ ΣM gives

L∗(Ŝ) . E(u,Σn(M)) +MRU (m̃,m). (8.8)

When this is inserted in (8.7) we obtain the theorem.

9 CPINNs

The previous section has shown that any minimizer of the loss L∗ over Σn(M) provides a near optimal
recovery of u provided Σn(M) is sufficiently good at approximating the elements of the model class U . In
this section, we specialize these results to the case where Σ := Σn is a space generated by neural networks
with n parameters and a prescribed architecture. As a primary example, we can take the activation function
σ to be ReLUk with k ≥ 3. This guarantees that the elements in Σn have continuous Laplacians, i.e., ∆S is
continuous whenever S ∈ Σn. This also guarantees that L∗(S) is well defined for each S ∈ Σn. Regarding
the architecture of the network, we consider the case of deep networks which is the space usually utilized in
PINNs. A similar discussion applies to shallow networks.

Consistent PINNs (CPINNs): We call any algorithm which minimizes the loss L∗ over a neural network
space Σn consistent PINNs and denote it by the acronym CPINNs. The discussion in Remark 7.6 has
given the advantages of using CPINNs over standard PINNs with the loss L. Here, we do not necessarily
require the minimization take place over the constrained space Σn(M), unless explicitly stated since the latter
invokes numerical difficulties in implementation.

26

We do not address the question of designing an optimization algorithm that is guaranteed to come close
to minimizing the loss L∗ over Σn or Σn(M). We know that the lack of such theoretical guarantees is a
bottleneck in rigorously proving convergence results. We analyze the performance of any minimizer or near
minimizer of the loss without addressing how such a minimizer is found.

Let ûn denote any minimizer of (8.4). Theorem 8.1 guarantees that ûn is a near optimal recovery of u
provided that for the model class U , we can make E(U ,Σn(M)) small by taking n large. Thus, the question
is whether Σn has favorable restricted approximation properties. There is a large literature of approximation
theoretic results concerning how efficiently deep neural networks can approximate various classes of functions
(see [19] and the references therein). Let us briefly discuss the specific case of approximating functions from
Besov spaces using deep ReLU neural networks. When error is measured in the Lp-norm, optimal rates
have been obtained [55, 64, 52]. There has also been recent work on the problem when error is measured in
another Besov space, although in this case a smoother activation function must be taken [63, 62].

On the other hand, the question of restricted approximation that is used in the present paper has seem-
ingly not been studied. We conjecture that the techniques developed in [55, 64, 52] can be appropriately
modified to give the same rates for restricted approximation with a fixed suitably large value for M (inde-
pendent of n). Since the proofs are already quite difficult, we leave the proof of this conjecture to future
work.

10 Numerical Illustrations

In this section, we present some numerical experiments in support of the theoretical results of the previous
sections. The main take away from these theoretical results is that when using optimization of a prescribed
loss function over a set Σn to numerically compute an approximation û to the solution u of (1.1), then the loss
function L∗ given by (1.9) as in CPINNs is the proper choice. The purpose of the numerical experiments of
this section is to analyze the effect of using L∗ rather than the standard loss L when taking Σn as a neural
network space.

As a prelude to presenting our numerical experiments, we make some remarks on minimization of loss
functions over Σn that are well known to practitioners. Since both losses are non convex when viewed as a
function of the parameters of the neural network space Σn, there is not a known mathematical procedure
which is proven to converge to a minimizer of the loss. Typical approaches used in practice, try various
initial guesses of the parameters and use variations of gradient descent with variable step sizes, i.e., learning
rates, in an attempt to find a minimizer of the loss. There is no a priori guarantee that any specific recipe
will work. In other words, one cannot blindly apply any prescribed procedure with an a priori guarantee of
success.

Another drawback of this approach to solving the PDE is that one cannot test its efficacy unless the true
solution is in some sense known so that one can measure performance a posteriori. One advantage of using
the loss L∗ in place of L is that our theory provides an a posteriori bound of the error (see (7.3)) that does
not require knowledge of the solution u. In other words, when using L∗, one can guarantee an a posterior
bound of the error by computing L∗(S), where S is the output of the numerical optimization procedure.
Indeed, one would compute ‖S‖U and from (7.3) we know

‖u− S‖H1(Ω) . L∗(S) + (1 + ‖S‖U)RU (m̃,m). (10.1)

Here the second term is the recovery error. All quantities on the right side of (10.1) only involve S and so
one has a bound for the error without knowing u.

Let us also note that in practice, for the PDE setting and in other learning scenarios, one does not try
to impose the model class restriction in the optimization routine since it is computationally too expensive.
We follow this paradigm in our numerical procedures.

Finally, we want to point out that the minimization of the new loss L∗ differs from the standard loss L
in advocating the use of:

• a discrete Lγ(Ω) norm (we take γ = 1.1 when d = 2) rather than a discrete L2(Ω) for the PDE residual;

27

• a discrete H1/2(∂Ω) norm rather than a discrete L2(∂Ω) norm for the boundary condition residual.

Although it is not possible to completely separate the effect of these two modifications, we consider two
different test cases corresponding to a harmonic solution u with non-vanishing boundary conditions and a
singular solution with vanishing boundary conditions; see Sections 10.2. In each case, we compare the results
of the minimization of the new loss function (referred as CPINNs) and the standard loss (referred as PINNs).

10.1 Practical Algorithm

We now describe the practical algorithm implemented for the minimization of the losses L∗ and L. We remark
that PINNs algorithms rely on the inherent assumption that the minimization processes are successful. As
noted above, there is no prescribed recipe for the initial choice of parameters, the activation functions, the
optimization algorithm and the hyperparameters that will guarantee convergence. Rather, one is left to
experimenting with different choices and employing different heuristics until satisfactory convergence of this
method is obtained.

There is no way to explore all of the possible minimization algorithms. Moreover, once a particular
numerical optimization procedure is chosen to implement, one is always subjected to the possibility that
some other choice would have been better and demonstrated different results. So,our numerical results must
be viewed from this perspective.

Our approach in this section is to find one procedure that works reasonably well in minimizing the loss
(1.9). We remark that in order to conform the common practice of minimizing the squared residual in
PINNs, we actually used a loss function obtained by squaring each of the terms in (1.9) and (1.8) in our
experiments, i.e. we minimize the losses (sq is shorthand for squared)

L∗
sq :=

[
1

m̃

m̃∑

i=1

|f(xi) + ∆v(xi)|γ
]2/γ

+




1

m2

m∑

i,j=1
i6=j

|[g − v](zi)− [g − v](zj)|2
|zi − zj |2


+


 1

m

m∑

j=1

|g(zj)− v(zj)|2

 ,

and

Lsq :=

[
1

m̃

m̃∑

i=1

[∆v(xi) + f(xi)]
2

]
+

[
1

m

m∑

i=1

[v(zi)− g(zi)]
2

]
.

Here we take a uniform grid of collocation points and m̃ is the total number of collocation points (where we
penalize the residual of the equation), while m is the number of collocation points which lie on the boundary
(where we penalize the residual of the boundary values).

We then apply the exact same procedure to minimize both the original PINNs loss Lsq and the CPINNs
loss L∗

sq. We observe from the final loss values that our procedure obtains sufficient minimization of both
loss functions, so that our results enable us to compare the effect of using the two different loss functions
Lsq and L∗

sq. These results demonstrate a significant improvement in accuracy when minimizing the loss L∗
sq

instead of Lsq.
Finally, we remark that the running time of the training the we have implemented is very high and is

not remotely competitive with traditional numerical methods for this problem. Improving the efficiency of
the training of PINNs on both Lsq and L∗

sq is an important and active area of research (see for instance
[44, 14, 37, 48, 66]), and incorporating these recently developed techniques into our algorithm is an area of
future work.

In our experiments, we use a deep neural network with the following structure. We use a deep network
with L = 8 hidden layers of width W = 100. The first layer uses a tanh activation function, while the
remaining layers are residual layers [33] with the ReLU3 activation function. The network is initialized as
follows:

• The parameters in the first layer are randomly initialized from a normal distribution with variance 1.

28

• For the residual layers with ReLU3 activation function, the parameters are randomly initialized from
a normal distribution with variance

√
2

(
2

15

)1/6
1√
LW

.

In analogy with Xavier and He initialization [26, 32], this ensures that the variance of the output of
each layer gets multiplied by a factor of (1 + 2/L) in each residual layer, which guarantees that the
expected magnitude of the neural network function at initialization is bounded.

• In the final layer the weights are initialized randomly from a normal distribution with variance 1/
√
W ,

which ensures that the network output has the same variance as the output of the final hidden layer.

We train the networks with gradient descent with an initial step size of 10−3 decreasing by a factor of
2 every 4000 steps and momentum 0.9 for a total of 40, 000 steps. We also rescale the velocities (i.e.
weighted averages of the previous gradients according to the momentum) in each layer to have the same
maximum as the parameters in that layer, we have found that this makes the training somewhat more stable
and improves the final loss values obtained. The full code and all experimental details can be found at
https://github.com/jwsiegel2510/consistent-PINNs.

We also note that although the H1/2(∂Ω) norm is nonlocal, the implementation of the discrete H1/2(∂Ω)-
norm present in L∗

sq can easily be vectorized and is fairly efficient in our practical implementation. Of course,

the computation and optimization of the discrete H1/2(∂Ω)-norm scales quadratically with the number of
collocation points on the boundary, while the norm used in the standard loss Lsq scales only linearly. In our
examples, the number of collocation points in the interior scales quadratically with the number of points on
the boundary, so that using the discrete H1/2(∂Ω)-norm on the boundary is comparably expensive to the
penalty on the interior. In addition, the evaluation of the neural network at the collocation points typically
dominates the calculation, rather than the calculation of the norms or their gradients from these values.
However, when using a large number of collocation points on the boundary optimizing the new loss function
L∗
sq may be less efficient than optimizing the original Lsq loss. This can potentially be mitigated by using a

truncated version of the discrete H1/2(∂Ω)-norm, but we leave this to future work.

10.2 Results

In our first experiment, we solve the Poisson equation

−∆u = f in Ω, u = g on ∂Ω, (10.2)

where f and g are chosen so that the exact solution is given by

u(x, y) = ex cos(πy), (x, y) ∈ Ω = (0, 1)2.

For this solution u, we have f = 0 and the boundary values g are non-zero. The results of this experiment
with different numbers of collocation points m̃ can be found in Table 1.

In our second experiment, we solve the Poisson equation (10.2) where f and g are chosen so that the
exact solution is given by

u(x, y) = 1000x(1− x)y(1− y)
(
(x − 0.5)2 + (y − 0.5)2

)9/4
, (x, y) ∈ (0, 1)2.

This solution is chosen such that it is not smooth (although its second derivatives are still continuous) to
test the ability of the algorithm to handle lower regularity. The results of this experiment can be found in
Table 2.

We remark that the H1 relative errors in both experiments are reported with respect to the discrete
H1(Ω)-norm

‖v‖∗H1(Ω) :=

√(
‖v‖∗L2(Ω)

)2

+
(
‖|∇v|‖∗L2(Ω)

)2

29

https://github.com/jwsiegel2510/consistent-PINNs

m̃ m
CPINNs CPINNs PINNs PINNs

H1 Rel error Loss L∗
sq H1 Rel error Loss Lsq

25 16 2.02% 2.4 · 10−5 1.77% 9 · 10−6

100 36 0.15% 3 · 10−6 0.39% 5 · 10−6

225 56 0.06% 2 · 10−6 0.55% 1.9 · 10−5

400 76 0.07% 6 · 10−6 0.58% 2.5 · 10−5

625 96 0.11% 1.1 · 10−5 0.48% 2 · 10−5

900 116 0.07% 5 · 10−6 0.34% 1.3 · 10−5

Table 1: Results of the numerical experiments for the harmonic solution u. We see that the CPINNs loss
function L∗

sq results in about 3− 5 times lower error compared with the original PINNs loss Lsq.

using 500 points in each direction.
From these results, we see that using the new loss function L∗

sq consistently gives errors that are about
3−10 times smaller compared with the original PINNs loss. From the final loss values achieved, we conclude
that this is not due to the training algorithm performing better on the new loss, but is rather due to the
fact that L∗

sq gives a better control on the solution error than Lsq. We remark that by weighting the terms
in Lsq differently (i.e. by choosing different values of λ in (1.7)), one may be able to improve the results for
the original PINNs loss, as we have not rigorously tested this. However, our method does not require such
tuning as all terms in L∗

sq should naturally carry the same weight.
We also remark that in our first experiments, the solution is very smooth. This has the consequence that

the optimization error is the dominant source of error once m̃ ≥ 100, i.e. in this regime the sampling error is
already significantly smaller than the optimization error. This is why the error does not continue to decrease
as the number of collocation points is increased beyond this point. By using a more effective optimization
method which drives the loss L∗

sq this balance can be shifted and lower error can be obtained. On the other
hand, in our second experiment, the solution u is not particularly smooth. In this case, the sampling error is
dominant all the way up to m̃ = 900 collocation points and we see the error of our method decrease all the
way down to this point. This is due to the fact that the optimal sampling rate decreases much more slowly
because of the non-smoothness of u.

m̃ m
CPINNs CPINNs CPINNs CPINNs

H1 Rel error Loss L∗
sq H1 Rel error Loss Lsq

25 16 52.4% 1.4 · 10−4 46.7% 2.6 · 10−3

100 36 22.3% 1.4 · 10−3 28.0% 6.6 · 10−3

225 56 9.6% 4.2 · 10−3 26.7% 1.6 · 10−2

400 76 7.2% 5.9 · 10−3 19.2% 7.7 · 10−3

625 96 5.5% 6.8 · 10−3 25.4% 2.3 · 10−2

900 116 3.9% 3.5 · 10−3 23.6% 2.8 · 10−2

Table 2: Results of the numerical experiments for the non-smooth solution u. We see that the CPINNs loss
function L∗

sq results in about 5− 10 times lower error compared with the original PINNs loss Lsq .

11 Concluding Remarks

We have investigated collocation methods for solving elliptic PDEs of the form (1.1). A collocation method
seeks to generate an approximation to the true solution u of (1.1) from point value information of the right
side f and the boundary value g. Under model class assumptions of the form f ∈ F and g ∈ G which
are both unit balls of Besov spaces, we showed that there is an optimal error (called the error of optimal
recovery) in recovering u in the H1(Ω) norm. We determined this optimal recovery error for the various
model classes.

30

We then turned to the study of theoretical and numerical algorithms which would yield an optimal
recovery. The most prominent of these methods is to minimize a certain loss function L that measures how
well we have fit the data observations. We have shown that the typical loss function used in practice (based
on least squares minimization) is not the correct loss and have proposed the correct loss function L∗ defined
in (7.1). We then showed that any minimizer of the correct loss L∗ over a suitable set Σn(M) yields a near
optimal recovery of u.

We have then gone on to show that a modfication of PINNs which we call Consistent PINNs (CPINNs)
leads to a provable near optimal recovery algorithm. The modifications needed are to use the loss L∗ in
place of the loss L usually used in PINNs. Secondly, the minimization needs to be taken over the constrained
set Σn(M) rather than all of Σn. Finally, we provide numerical experiments which demonstrate that the
CPINNs loss function significantly outperforms the original PINNs loss function on elliptic PDEs.

We now wish to make some further comments that one can view as serious caveats to the above theory.
The first and most serious objection to the above development is that we do not provide a numerical algorithm
for finding a minimizer or near minimizer of the loss L∗ over Σn(M). This is the same objection that can
be made for almost all learning problems and certainly for PINNs. The usual numerical method used to try
and solve the minimization problem in PINNs, as well as other learning problems, is to use gradient descent
or some modification of gradient descent, to solve the minimization of the loss. Unfortunately, there is no
proof of convergence or accuracy when applying gradient descent to non-convex losses such as L or L∗. This
has not impeded the use of gradient descent in practice with much empirical success. We have utilized such
techniques as well in our numerical examples.

We do not want to enter into a discussion of the art of using gradient descent in optimization. However,
we want to address two issues that arise relevant to this paper. The first of these is the fact that we must
optimize the loss over Σn(M) rather than Σn itself to gain the proof of optimality. This is a serious numerical
burden. We have ignored this issue in our numerical experiments much like one ignores the lack of a provable
gradient descent algorithm. One could implement the restricted approximation term by adding a penalty
to the loss L∗ to guarantee that at each step of the optimization one remains in the constrained set Σn(M)
(see [4]) but this does not ease the computational burden and one is still faced with a lack of convergence of
the numerical optimization.

Finally, let us point out another issue which is understood by practitioners but not usually pointed
out in the theory. Neural network spaces are a very unstable manifold. By this we mean that changing
parameters very slightly can have a huge effect on the output of the neural network. That is, the mapping
from parameters to output in neural networks is very unstable. This instability appears more in deep
networks than in shallow networks. Avoiding this lack of stability is an art in practice that manifests itself
in judiciously choosing the starting parameters and the learning rates (step size in gradient descent). The
theoretical aspects of this lack of stability, and how to avoid the instability theoretically, is addressed in a
series of recent papers [8, 29, 28, 30]. There remains a serious gap between theoretical algorithms for learning
and their numerical implementation.

12 Appendix

In this appendix, we provide proof of the results stated in sections §2 and §3.

12.1 Local approximation by polynomials

There are many important results on the approximation of functions in Besov classes. We will use approxi-
mation by piecewise polynomials. We begin by describing local polynomial approximation.

For any integer r ≥ 1, we let Pd
r := Pr denote the linear space of algebraic polynomials of order r (total

degree r − 1), namely,

Pr :=





∑

|k|1<r

akx
k, ak ∈ R



 , where xk := xk1

1 · · ·xkd

d , k := (k1, . . . , kd), kj ≥ 0, |k|1 :=

d∑

j=1

kj .

31

Note that ωr(P, t)p = 0, t ≥ 0, for all P ∈ Pr. If I is any cube in R
d and f ∈ Lp(I), 0 < p ≤ ∞, we denote

by
Er(f, I)p := inf

P∈Pr

‖f − P‖Lp(I), (12.1)

the error of approximation of f on I in the ‖ · ‖Lp(I) norm by the elements of Pr. A well known result in
approximation theory, commonly referred to as Whitney’s theorem, says that for any f ∈ Lp(I) with I a
cube with sidelength ℓI , we have

cEr(f, I)p ≤ ωr(f, ℓI)Lp(I) ≤ CEr(f, I)p, (12.2)

with the constants c, C depending only on r, d and also p if p is close to 0. Whitney’s theorem usually only
refers to the lower inequality in (12.2). However, the upper inequality follows trivially since

ωr(f, ℓI)Lp(I) = ωr(f − P, ℓI)Lp(I) ≤ C‖f − P‖Lp(I),

holds for any polynomial P ∈ Pr.
It is useful to use the following modified form of Whitney’s theorem. For any cube I ⊂ R

d, any 0 < p <∞,
and f ∈ Lp(I), we define

w̃r(f, t)
p
Lp(I)

:= t−d

∫

h∈[−t,t]d

∫

Irh

|∆r
h
(f,x)|p dx dh, (12.3)

where Irh := {x : [x,x+ rh] ⊂ I}. This is called the averaged modulus of smoothness of f . It is known that
wr is equivalent to w̃r (see §2 of [18]),

cw̃r(f, t)Lp(I) ≤ ωr(f, t)Lp(I) ≤ Cw̃r(f, t)Lp(I), 0 < t ≤ 1, (12.4)

where again the constants c, C depend only on r and p and can be taken absolute when r is fixed and
0 < p0 ≤ p ≤ ∞ with p0 fixed. Thus, Whitney’s theorem holds with ωr replaced by w̃r

cEr(f, I)p ≤ w̃r(f, ℓI)Lp(I) ≤ CEr(f, I)p. (12.5)

Before proceeding further, let us remark on why we introduce the averaged modulus of smoothness w̃r.
The advantage of w̃r over ωr is that w̃p

r it is set subadditive. We shall use this in the following form. Let
Ω = (0, 1)d and let I be a collection of subcubes of Ω which form a partition of Ω. Then, from the definition
of w̃r. we have ∑

I∈I

w̃r(f, t)
p
Lp(I)

≤ w̃r(f, t)
p
Lp(Ω), t > 0. (12.6)

This same subadditivity holds when I is replaced by a set T of simplices which form a partition of Ω.
If I ⊂ Ω is a cube, we say that PI ∈ Pr is a near best Lp(I) approximation to f with constant λ ≥ 1 if

‖f − PI‖Lp(I) ≤ λEr(f, I)p. (12.7)

It is shown in Lemma 3.2 of [16] that if PI ∈ Pr is near best in Lp(I) with constant λ, then it is also near
best in Lp(I) whenever p ≥ p, i.e.,

‖f − PI‖Lp(I) ≤ CλEr(f, I)p, (12.8)

with the constant C depending only on r, d and p. This constant does not depend on I or p̄.
Another important remark is that any near best approximation PI with constant λ is near best on any

larger cube J which contains I in the sense that

‖f − PI‖Lp(J) ≤ CλEr(f, J)p, (12.9)

where now C depends additionally on |J |/|I|, see Lemma 3.3 in [16]. Note that even though Lemma 3.2
and Lemma 3.3 in [16] are stated for polynomials of coordinate degree < r, they also hold for polynomials
of total degree < r.

In summary, a near best Lp(I) approximation is also near best on large cubes J containing I and larger
values p ≥ p. We shall use these facts going forward.

32

12.2 Polynomial norms and inequalities

We need good bounds on the constants that appear when comparing norms. For this, we recall the following
equivalences, see (3.2) of [18] or Lemma 3.1 and Lemma 3.2 in [17]. For any cube I in R

d and any function
g ∈ Lp(I), we introduce the normalized Lp norm

‖g‖#Lp(I)
:= |I|−1/p‖g‖Lp(I). (12.10)

For any cube I ⊂ R
d and any polynomial P ∈ Pr, and any 0 < p, q ≤ ∞, we have

‖P‖#Lq(I)
≍ ‖P‖#Lp(I)

, (12.11)

with absolute constants of equivalency provided q, p ≥ p0 with p0 > 0 fixed.
One can also compare Besov norms of polynomials. For example, we will use the fact that if P ∈ Pℓ and

I is a cube in R
d, then for every s > 0, we have

|P |Bs
q(Lp(I)) ≤ Cℓ−s

I ‖P‖Lp(I), (12.12)

with a constant independent of I. This is proved by dilation (see e.g. Corollary 5.2 of [16]).

12.3 Besov spaces and piecewise polynomial approximation

We now recall how membership in Bs
p(Ω) guarantees a rate of approximation by piecewise polynomials. In

actuality the membership of a function in a Besov space can be characterized by its rate of approximation
by piecewise polynomials. However, we only need the results that prove that a function in a Besov space
can be approximated by piecewise polynomials with a certain accuracy and therefore only concentrate on
proving results of this type.

For each k ≥ 0, we define Dk to be the partition of Ω into dyadic cubes I of side length 2−k. Here we
take a dyadic cube I ∈ Dk to be the tensor product of the dyadic intervals [(j − 1)2−k, j2−k), 1 ≤ j ≤ 2k.
We then define

Sk = Sk(r)

to be the space of all piecewise polynomials of order r that are subordinate to the partition Dk. In other
words, a function S ∈ Sk if an only the restriction of S on each I ∈ Dk belongs to Pr.

If I ∈ Dk, let PI ∈ Pr be the polynomial of best Lp(I) approximation to f and let us define

Sk := Sk(f) :=
∑

I∈Dk

PIχI ∈ Sk, (12.13)

where χI is the characteristic function of I. Notice that Sk(x) is defined pointwise for each x ∈ Ω, We extend
Sk to all of Ω by continuity.

The following lemma holds.

Lemma 12.1. Let 0 < p ≤ ∞, s > 0, and let r ≥ 2 be any fixed integer strictly larger than s. If a function
f ∈ Bs

p = Bs
∞(Lp(Ω)), with Ω = (0, 1)d, then

dist(f,Sk(r))Lp(Ω) ≤ C|f |Bs
p(Ω)2

−ks, k ≥ 0, (12.14)

with C depending only on p and s.

Proof. Consider Sk defined in (12.13). From Whitney’s theorem, we have

‖f − PI‖Lp(I) ≤ Cωr(f, 2
−k)Lp(I) ≤ Cw̃r(f, 2

−k)Lp(I), (12.15)

where w̃r is the averaged modulus of smoothness.

33

If p <∞, we raise both sides of (12.15) to the power p and then sum over I ∈ Dk to obtain

‖f − Sk‖pLp(Ω) ≤ Cp
∑

I∈Dk

w̃r(f, 2
−k)pLp(I)

≤ Cpw̃r(f, 2
−k)pLp(Ω) ≤ Cp|f |pBs

p(Ω)2
−ksp, (12.16)

where we used the subadditivity (12.6) and the fact that Dk is a partition of Ω. This proves (12.14) in the case
p <∞. When p = ∞, these inequalities follow directly from (12.15) and the fact that ‖ · ‖L∞(I) ≤ ‖ · ‖L∞(Ω)

for each I ⊂ Ω.

12.4 Piecewise polynomial approximation in Lτ (Ω)

All constants C appearing in this section depend at most on s and p and may change at each occurrence.

Theorem 12.2. Let Sk be defined as in (12.13). If s > d/p and p ≤ τ ≤ ∞, then we have

‖f − Sk‖Lτ(Ω) ≤ C|f |Bs
p(Ω)2

−k(s−d/p+d/τ), f ∈ Bs
p(Ω). (12.17)

Proof. Let us fix any f ∈ Bs
p(Ω) and consider the corresponding Sk = Sk(f), see (12.13). It was proven in

Lemma 12.1 that
‖f − Sk‖Lp(Ω) ≤ C|f |Bs

p(Ω)2
−ks, k ≥ 0.

Let R0 := S0 and for each x ∈ Ω, we define

Rk(x) := Sk(x)− Sk−1(x), k ≥ 1. (12.18)

The functions Rk are defined for all x ∈ Ω and are in Sk, k ≥ 0,

‖Rk‖Lp(Ω) ≤ C[‖f − Sk‖Lp(Ω) + ‖f − Sk−1‖Lp(Ω)] ≤ C|f |Bs
p(Ω)2

−ks, k ≥ 1, (12.19)

and of course ‖R0‖Lp(Ω) ≤ C‖f‖Lp(Ω). It follows that

f =

∞∑

k=0

Rk (12.20)

with the series converging in Lp(Ω). We now consider the following cases for τ .
Case 1: τ = ∞. On each dyadic cube I ∈ Dk, we have

Rk(x) = QI(x) := PI(x) − PI(x), x ∈ I,

where I ∈ Dk−1 is the parent of I. From Whitney’s theorem and (12.11), we have for every I ∈ Dk, k ≥ 1,

‖QI‖C(I) ≤ C|I|−1/p‖QI‖Lp(I) ≤ C2kd/p[‖f − PI‖Lp(I) + ‖f − PI‖Lp(I)]

≤ C2kd/pωr(f, 2
−k+1)Lp(I)

. (12.21)

This gives that for each x ∈ Ω, we have

|Rk(x)| ≤ C2kd/pωr(f, 2
−k+1)Lp(Ω) ≤ C|f |Bs

p(Ω)2
−k(s−d/p), k ≥ 1. (12.22)

Thus the series (12.20) converges in L∞(Ω) and also pointwise to a limit function f̃ and for each x ∈ Ω, we
have

|f̃(x)− Sk(x)| ≤
∑

j>k

|Rj(x)| ≤ C|f |Bs
p(Ω)2

−k(s−d/p), k ≥ 0. (12.23)

Since the same bound holds for ‖f − Sk‖L∞(Ω), we have f = f̃ , a.e. on Ω, and we have proven the theorem
in the case τ = ∞.

34

In going further, we refer to f̃ , which is defined pointwise on Ω as the representer of f . We shall see in
Theorem 2.3 that f̃ is continuous and in Lip α, α = s− d/p.
Case 2: τ <∞. Similarly to (12.21) and using the comparison of polynomial norms of (12.11), we find that

∫

Ω

|Rk|τ =
∑

I∈Dk

∫

I

|QI |τ ≤ Cτ2kd(τ/p−1)
∑

I∈Dk

‖QI‖τLp(I)
≤ Cτ2kd(τ/p−1)

∑

I∈Dk

w̃r(f, 2
−k+1)τ

Lp(I)

≤ Cτ2kd(τ/p−1)

[
∑

I∈Dk

w̃r(f, 2
−k+1)p

Lp(I)

]τ/p

≤ 2dτ/pCτ2kd(τ/p−1)




∑

I∈Dk−1

w̃r(f, 2
−k+1)p

Lp(I)



τ/p

≤ 2dτ/pCτ2kd(τ/p−1)w̃r(f, 2
−k+1)τLp(Ω),

where we used the subadditivity (12.6). In other words, for any τ ≥ p, we have

‖Rk‖Lτ (Ω) ≤ C2kd(1/p−1/τ)|f |Bs
p(Ω)2

−ks, k ≥ 1. (12.24)

Since f − Sk =
∑

j>k Rj , when τ ≥ 1, we can add these estimates to arrive at

‖f − Sk‖Lτ (Ω) ≤
∑

j>k

‖Rj‖Lτ(Ω) ≤ C|f |Bs
p(Ω)2

−k(s−d/p+d/τ),

which is the desired inequality. When p < τ < 1, we use (12.24) to obtain

‖f − Sk‖τLτ(Ω) ≤
∑

j>k

‖Rj‖τLτ(Ω) ≤ Cτ |f |τBs
p(Ω)

∑

j>k

2−jτ(s−d/p+d/τ) ≤ Cτ |f |τBs
p(Ω)2

−kτ(s−d/p+d/τ),

which completes the proof in this case.

Remark 12.3. Theorem 12.2 is valid for more general Sk ∈ Sk, for example, for Sk =
∑

I∈Dk
PIχI , where

‖f − PI‖Lτ(I) ≤ C2kd(1/p−1/τ)w̃r(f, 2
−k)Lp(I), I ∈ Dk(Ω), (12.25)

where C does not depend on I, see (12.21).

12.4.1 Proof of Theorem 2.3

For any f ∈ Bs
p(Ω), consider the corresponding Sk(f), defined in (12.13) and the function f̃ , see (12.23).

As shown in Theorem 12.2, f = f̃ a.e.. We want to observe that the function f̃ is continuous on Ω and
moreover, (2.19) holds. Indeed, it is enough to consider 0 < t ≤ 1. Let x ∈ Ω and |h| ≤ t be such that
[x,x + rh] ⊂ Ω. Let J be the smallest cube that contains [x,x+ rh]. Then, we have ℓJ ≤ rt. We argue as
in the proof of (12.22) and (12.23), replacing Ω by J to show that there is a polynomial PJ ∈ Pr such that

sup
x∈J

|f̃(x)− PJ (x)| ≤ C|f |Bs
p(J)

ℓ
s−d/p
J ≤ C|f |Bs

p(Ω)t
s−d/p.

It follows that
|∆rh(f̃ ,x)| ≤ C|f |Bs

p(Ω)t
s−d/p,

uniformly for x ∈ Ω. This proves that f̃ is continuous and (2.19) holds. ✷

12.5 Polynomial interpolation

In this section, we prove the results for piecewise polynomial approximation stated in §2.

35

12.5.1 Proof of Theorem 2.1

In view of Theorem 12.2, it is enough to show that for any fixed k ≥ 0, we have

‖Sk(f)− S∗
k(f)‖Lτ (Ω) ≤ C|f |Bs

p(Ω)2
−k(s−d/p+d/τ), (12.26)

with C here and for the remainder of the proof always denoting a constant not depending on f or k, but
depending on r and d. If I ∈ Dk, we let PI be the best Lp(I) approximation to f by elements of Pr and
similarly let P ∗

I be the best C(I) approximation to f from Pr. Recall that by definition Sk(f) =
∑

I∈Dk
PIχI .

It follows that if T ∈ Tk and T ⊂ I, then we have

‖S∗
k(f)− Sk(f)‖L∞(T) ≤ ‖LT (f − PI)‖L∞(T) ≤ C‖f − PI‖L∞(T) ≤ C‖f − PI‖L∞(I), (12.27)

and therefore
‖S∗

k(f)− Sk(f)‖L∞(I) ≤ C‖f − PI‖L∞(I). (12.28)

We know from Theorem 12.2 that ‖f − PI‖L∞(I) ≤ C|f |Bs
p(Ω)2

−k(s−d/p) for each I ∈ Dk, and thus

‖Sk(f)− S∗
k(f)‖L∞(Ω) ≤ C|f |Bs

p(Ω)2
−k(s−d/p), (12.29)

which completes the proof of the theorem when when τ = ∞.
To handle the case p ≤ τ < ∞, we first give an improved bound for ‖f − PI‖L∞(I) when I ∈ Dk. Let

x ∈ I be any fixed point. For each index j ≥ k, let Jj ∈ Dj be the dyadic cube that contains x and
Qj := PJj+1 − PJj , j ≥ k, I = Jk. Then, arguing as in (12.21), we have

|f(x)− PI(x)| ≤
∑

j≥k

‖Qj‖L∞(Jj+1) ≤ C
∑

j≥k

|Jj+1|−1/p‖Qj‖Lp(Jj+1) ≤ C
∑

j≥k

2jd/p‖f − PJj‖Lp(Jj). (12.30)

Since ‖f − PJj‖Lp(Jj) ≤ w̃r(f, 2
−j)Lp(I), this gives

‖f − PI‖L∞(I) ≤ C
∑

j≥k

2jd/pw̃r(f, 2
−j)Lp(I), (12.31)

which is the improved bound we want.
We now consider two cases.

Case p ≤ 1: From (12.28) and (12.31) we derive

‖Sk(f)− S∗
k(f)‖L∞(I) ≤ C‖f − PI‖L∞(I) ≤ C

∑

j≥k

2jd/pw̃r(f, 2
−j)Lp(I)

≤ C


∑

j≥k

2jdw̃r(f, 2
−j)pLp(I)



1/p

. (12.32)

The set subadditivity (12.6) of w̃r then gives

‖Sk(f)− S∗
k(f)‖pLp(Ω) ≤ C2−kd

∑

I∈Dk

‖Sk(f)− S∗
k(f)‖pL∞(I) ≤ C2−kd

∑

j≥k

2jd
∑

I∈Dk

w̃r(f, 2
−j)pLp(I)

≤ C2−kd
∑

j≥k

2jdw̃r(f, 2
−j)pLp(Ω) ≤ C|f |pBs

p(Ω)2
−kd

∑

j≥k

2jd2−jsp ≤ C|f |pBs
p(Ω)2

−ksp.

This proves (12.26) for the case τ = p. For general τ ∈ (p,∞), we use (12.29) and obtain

|Sk(f)−S∗
k(f)|τ ≤ |Sk(f)−S∗

k(f)|τ−p|Sk(f)−S∗
k(f)|p ≤ C|f |τ−p

Bs
p(Ω)2

−k(s−d/p)(τ−p)|Sk(f)−S∗
k(f)|p. (12.33)

36

We now integrate both sides of this inequality and find that

‖Sk(f)− S∗
k(f)‖τLτ (Ω) ≤ C|f |τBs

p(Ω)2
−k(s−d/p)(τ−p)2−ksp ≤ C|f |τBs

p(Ω)2
−k(s−d/p+d/τ)τ . (12.34)

as desired.

Case p ≥ 1: From (12.31), we find for any β ∈ (0, s− d/p) that

‖f − PI‖L∞(I) ≤ C{
∑

j≥k

2−jβp′}1/p′{
∑

j≥k

[2j(d/p+β)w̃r(f, 2
−j)pLp(I

]p}1/p, (12.35)

where p′ is the conjugate index to p, i.e., 1/p+ 1/p′ = 1. Arguing as in (12.33), we arrive at

‖Sk(f)− S∗
k(f)‖Lp(Ω) ≤ C|f |Bs

p(Ω)2
−ks. (12.36)

This proves (12.26) for τ = p. In other words, we know (12.26) for τ = p and τ = ∞. We complete the proof
for general τ ∈ [p,∞) as in (12.34). This completes the proof of the theorem. ✷

12.5.2 Proof of Theorem 2.2

Since Bs
q(Lp(Ω)) is embedded in Bs

p(Ω) := Bs
∞(Lp(Ω)), it is enough to prove the theorem when f ∈ Bs

p(Ω),
i.e., when q = ∞. We know from Theorem 2.1 that

‖f − S∗
k(f)‖L2(Ω) ≤ C|f |Bs

p(Ω)2
−k(s−d/p+d/2), k ≥ 0. (12.37)

We define
R∗

k(f) := S∗
k(f)− S∗

k−1(f), k ≥ 1. (12.38)

It follows from (12.37) that

‖R∗
k(f)‖L2(Ω) ≤ C|f |Bs

p(Ω)2
−k(s−d/p+d/2), k ≥ 1. (12.39)

Since on each simplex T ∈ Tk, the function R∗
k(f) is a polynomial QT from Pr, we have

‖QT‖H1(T) ≤ C2k‖QT‖L2(T), T ∈ Tk. (12.40)

Since the function R∗
k(f) is continuous on Ω, we have (see Theorem 2.1.2 in [7])

‖R∗
k(f)‖2H1(Ω) ≤ C

∑

T∈Tk

‖R∗
k(f)‖2H1(T) ≤ C22k

∑

T∈Tk

‖R∗
k(f)‖2L2(T) = C22k‖R∗

k(f)‖2L2(Ω).

This gives
‖R∗

k(f)‖H1(Ω) ≤ C2k‖R∗
k(f)‖L2(Ω) ≤ C|f |Bs

p(Ω)2
−k(s−1−d/p+d/2), k ≥ 1. (12.41)

Writing,

f − S∗
k(f) =

∑

j>k

R∗
j (f),

and then applying H1 norms gives the theorem because s− d/p+ d/2 > 1. ✷

12.6 The proofs of the Theorems on optimal recovery

This subsection will be devoted to the proof of the theorems on optimal recovery stated in §3.

37

12.6.1 The proof of Theorem 3.1

It will be convenient to consider only the case d ≥ 2 to avoid changes in notation. We leave the case d = 1
to the reader. The proofs are divided into two parts: a proof of the upper bounds and then a proof of the
lower bounds.

Proof of the upper bounds in Theorem 3.1: A proof of (i) and (ii) can already be found in [49], but for
completeness, we give the following proof using the results of §2. Recall our notation Bs

p(Ω) := Bs
∞(Lp(Ω))

and the fact that all other Besov spaces Bs
q(Lp(Ω)), with the same values for p and s, are contained in

Bs
p(Ω). Therefore, it is enough to prove the upper bounds when B = Bs

p(Ω). To prove these upper bounds,
we need to exhibit a set of m̃ data sites at which we achieve the claimed bound. We take these data sites
as the tensor product grid points Gk,r of Ω where r > max(s, 1). This will yield the upper bounds when
m̃ = (2kr)d. The upper bounds for the other values of m̃ follow from the fact that R∗

m̃ is monotonically
nonincreasing as m̃→ ∞
The cases (i) and (ii): Let Tk = Tk(Ω) be the simplicial partition of Ω into simplices T as in §12.5. We
have shown in that section, that from the data (fi)

m̃
i=1 we can create a continuous piecewise polynomial

S = S∗
k(f) =

∑

T∈Tk

LT (f)χT , (12.42)

where LT (f) is a polynomial of order r (LT (f) ∈ Pr), gotten by interpolating f at the data points T ∩Gk,r .
We have shown (see (2.17)) that if τ ≥ p then

‖f − S‖Lτ(Ω) � |f |Bs
p(Ω)2

−kdατ � |f |Bs
p(Ω)m

−ατ .

This bound also holds for τ < p since then Bs
p(Ω) is continuously embedded in Bs

τ (Ω). The function S only

depends on the data (fi)
m̃
i=1. This shows that every function f̃ ∈ Fdata is within an Lτ (Ω) distance Cm

−ατ

of S and hence the proof of the upper bound in the cases (i) and (ii) follow.

The case (iii): This is similar to case (ii) except now we use Theorem 2.2.

The case (iv): We shall need the following lemma.

Lemma 12.4. Let Ω = (0, 1)d, d ≥ 3, and let γ = γ(d) be defined as in (3.12). Then, the space Lγ(Ω) is
embedded into H−1(Ω) and we have

‖f̃‖H−1(Ω) ≤ C‖f̃‖Lγ(Ω), f̃ ∈ Lγ(Ω), (12.43)

with C depending only on d. In the case d = 2, then for any γ(2) = 1 < τ ≤ ∞, the space Lτ (Ω) embeds
into H−1(Ω) and we have the bound

‖f̃‖H−1(Ω) ≤ C
τ

τ − 1
‖f̃‖Lτ(Ω), f̃ ∈ Lτ (Ω), (12.44)

where C is an absolute constant.

Proof. Consider first the case d ≥ 3, in which case γ(d) > 1. Let γ′ be the dual index of γ, that is, 1
γ′ =

1
2− 1

d ,

so that γ′ <∞. If v ∈ U(H1
0 (Ω)) , then by the Sobolev embedding theorem we have

‖v‖Lγ′(Ω) . ‖v‖H1(Ω) . |v|H1
0 (Ω) := ‖|∇v|‖L2(Ω), v ∈ H1

0 (Ω), (12.45)

where the last inequality is Poincare’s inequality. From Hölder’s inequality, it follows that for any v ∈ H1
0 (Ω)

and any f̃ ∈ Lγ(Ω), we have

∫

Ω

f̃ v ≤ ‖f̃‖Lγ(Ω)‖v‖Lγ′(Ω) . ‖f̃‖Lγ(Ω)|v|H1
0 (Ω). (12.46)

38

This gives

‖f̃‖H−1(Ω) := sup
v∈U(H1

0 (Ω))

∫

Ω

f̃v . ‖f̃‖Lγ(Ω), f̃ ∈ Lγ(Ω), (12.47)

which proves the lemma when d ≥ 3.
When d = 2, the Sobolev embedding fails at the endpoint since γ′ = ∞. However, for any τ > 1 we have

that τ ′ <∞, where τ ′ is the dual index to τ . In this case we have a compact Sobolev embedding

‖v‖Lτ′(Ω) ≤ Cτ ′‖v‖H1(Ω), (12.48)

where one can show that the constant Cτ ′ = Cτ ′ = Cτ/(τ−1) for an absolute constant C. For completeness,
we sketch this argument. Given a function f ∈ H1(Ω), we consider a multiscale decomposition of f

f =

∞∑

n=0

(fn − fn−1), (12.49)

where fn denotes a piecewise linear interpolation of f on a triangulation Tn made ofC22n triangles of diameter
c2−n (here we set f−1 = 0). We use a standard polynomial interpolation bound and scaling argument,
combined with the fact that the linear polynomials are finite dimensional (essentially the Bramble-Hilbert
Lemma) to see that

‖fn − fn−1‖τ
′

Lτ′(Ω) =
∑

T∈Tn−1

‖fn − fn−1‖τ
′

Lτ′(T) ≤ C22n(τ
′/2−1)

∑

T∈Tn−1

‖fn − fn−1‖τ
′

L2(T)

≤ C22n(τ
′/2−1)2−τ ′n

∑

T∈Tn−1

‖f‖τ ′

H1(T).
span

Taking τ ′-th roots, we then get using that the ℓτ ′-norm is bounded by the ℓ2-norm since τ ′ ≥ 2 that

‖fn − fn−1‖Lτ′(Ω) ≤ C2−2n/τ ′




∑

T∈Tn−1

‖f‖τ ′

H1(T)




1/τ ′

≤ C2−2n/τ ′




∑

T∈Tn−1

‖f‖2H1(T)




1/2

= C2−2n/τ ′‖f‖H1(Ω),

span

where C is independent of τ ′. Using the multiscale decomposition, this now implies that

‖f‖Lτ′(Ω) ≤ C‖f‖H1(Ω)

∞∑

n=0

2−2n/τ ′

=
C

1− 2−2/τ ′
‖f‖H1(Ω) ≤ Cτ ′‖f‖H1(Ω)

for a constant C independent of τ ′. Utilizing (12.48), the same duality argument used for d ≥ 3 now
completes the proof when d = 2.

We can now prove the upper bound in the case (iv) when error is measured in H−1(Ω). Let us consider
first the case where d ≥ 3. Since the exponent α−1 does not change over the p ≥ γ, it is enough to consider
the case when p ≤ γ. Indeed, if p > γ then U(Bs

q(Lp(Ω))) is contained in U(Bs
∞(Lγ(Ω))) =: U(Bs

γ(Ω)).
Therefore the upper bound follows once we have established the case F = U(Bs

q(Lp(Ω))) with p ≤ γ.
Similarly, when p ≤ γ, then U(Bs

q(Lp(Ω))) ⊂ U(Bs
∞(Lp(Ω)). Accordingly, in going further we only need to

consider the case when F = U(Bs
∞(Lp(Ω)) =: U(Bs

p(Ω)) with p ≤ γ.
Let f be any function in F := U(Bs

∞(Lp(Ω)) with s > d and p ≤ γ. We know that f ∈ C(Ω). Given the
data f , we define S as in (12.42). From (2.17), we have

‖f − S‖Lγ(Ω) � |f |Bs
p(I)

2−kdα−1 . (12.50)

39

We now use Lemma 12.4 to obtain

‖f − S‖H−1Ω ≤ C‖f − S‖Lγ(Ω) ≤ Cm−α−1 |f |Bs
p(Ω). (12.51)

The function S only depends on the data. This shows that every element in Fdata(f) is within an H−1(Ω)
distance Cm−α−1 of S and hence proves that the Chebyshev radius of this set does not exceed Cm−α−1 .
Since f was arbitrary we obtain the same bound for R∗(F). This concludes the proof of the upper bound in
case (iv) when d ≥ 3.

If d = 2, we must slightly modify the above argument. Suppose first that p > 1. In this case, we have

‖f − S‖Lp(Ω) � |f |Bs
p(I)

2−kdα−1 , (12.52)

since the sampling numbers in Lp and L1 are the same in this case. Thus, Lemma 12.4 implies that (setting
τ = p)

‖f − S‖H−1Ω ≤ Cp‖f − S‖Lp(Ω) ≤ Cpm
−α−1 |f |Bs

p(Ω). (12.53)

On the other hand, if p ≤ 1, we see that

‖f − S‖Lτ(Ω) � |f |Bs
p(I)

2−kd(α−1−1+1/τ). (12.54)

Applying Lemma 12.4 we get that

‖f − S‖H−1Ω ≤ Cp‖f − S‖Lp(Ω) ≤
C

τ − 1
m−α−1m1−1/τ |f |Bs

p(Ω). (12.55)

Since this is true for all τ > 1 we finally optimize in τ , which gives

min
τ>0

m1−1/τ

τ − 1
≤ C log(m) (12.56)

by setting τ = 1 + (log(m))−1. ✷

Proof of the lower bounds in Theorem 3.1. We shall now prove the lower bounds in Theorem 3.1. The
proofs of lower bounds all take the following form. Suppose that xi, i = 1, . . . ,m, are any m data sites. In
order to prove a lower bound for R∗(F)X , we construct a function η in F so that

(a) η(xi) = 0, i = 1, . . . ,m,

(b) ‖η‖X ≥ cm−α,

where α is the appropriate index for X . Since both η and the zero function satisfy zero data the bound (b)
gives the lower bound we want for R∗(F)X .

We proceed to explain how to construct an appropriate function η for each of the choices of X . Let ϕ be
a smooth non-negative function on R

d which vanishes outside Ω and additionally satisfies

‖ϕ‖L∞(Rd) = 1 and ϕ(x) ≥ 1/2, x ∈ Ω0, (12.57)

where Ω0 := [1/4, 3/4]d. Of course, there are many such functions ϕ but to be more specific, and for use
further, we assume ϕ(x) = φ(x1) · · ·φ(xd) where φ is a univariate function with these properties (for d = 1).

We choose ϕ with these properties which has the smallest norm

Ms,p,q := ‖ϕ‖Bs
q(Lp(Ω)). (12.58)

So, ϕ depends on s, p, q and Ms,p,q is a fixed constant since the parameters s, p, q are fixed.
Now consider any cube I ⊂ Ω and let ξI be the smallest vertex of I and as usual ℓI is its side length. We

define the function

ϕI := ϕI,s,p,q(x) := ℓ
s− d

p

I ϕ(ℓ−1
I (x− ξI)), x ∈ R

d. (12.59)

40

This function vanishes outside I and on its boundary. Moreover, one easily checks that for all cubes I, we
have

‖ϕI‖Bs
q(Lp(Ω)) =Ms,p,q. (12.60)

Here the norm is independent of I.
Because of the monotonicity of R∗

m(F)X , it is enough to prove the lower bound when m = 2kd as we now
assume for m. Suppose that m sample points Xm := {x1, ...,xm} ∈ Ω are given. Consider the regular tensor
product grid Gk+2,2 with spacing 2−(k+2). The number of cubes in this grid is equal to 4dm by construction
and thus at least (4d − 1)m cubes do not contain any sample points in its interior. Denote by I := I(Xm)
the set of cubes which do not contain any sample points, so that |I| ≥ (4d − 1)m = Cdm and the volume of
each cube I ∈ I is |I| ≥ cdm

−1. For any cube I ∈ I, we define

ηI :=M−1ϕI , M =Ms,p,q. (12.61)

It follows that each ηI is in F . Also, each of the ηI vanishes at each of the data sites. We shall use the ηI
to prove the lower bounds of Theorem 3.1.

The lower bound in case (i): Let us fix s, p, q and consider the functions ηI defined by (12.61). We take
I as any fixed cube from I and define η := ηI . Then η vanishes at each of the data sites. Also, it follows
from the definition of η that with M =Ms,p,q, we have

‖η‖L∞(Ω) =M−1‖ϕI‖L∞(Ω) =M−1ℓ
s− d

p

I ≥ cm−(s
d−

1
p) = cm−αC .

This gives that R∗(F)C(Ω) ≥ cm−αC and thereby proves the lower bound in case (i).

The lower bound in case (ii): We consider separately the cases τ < p and τ ≥ p. If τ ≥ p, then we take
η = ηI where I is any single fixed cube in I. For M =Ms,p,q, we have from (12.57) that

‖η‖Lτ(Ω) =M−1‖ϕI‖Lτ(Ω) ≥ cM−1ℓ
s− d

p+
d
τ

I ≥ cm−(s
d−

1
p+

1
τ) = cm−ατ ,

since 1/p− 1/τ ≥ 0. It follows that R∗(F)Lτ (Ω) ≥ cm−ατ in the case τ ≥ p.
Next consider the case τ < p < ∞. Since U(Bs

q(L∞(Ω))) ⊂ U(Bs
q(Lp(Ω))), it is sufficient to prove the

lower bound in the case p = ∞, i.e., when F = U(Bs
q(L∞(Ω))) with 0 < q < ∞ arbitrary but fixed. We

define
η = κ

∑

I∈I

ηI , (12.62)

with κ a fixed constant chosen so that η ∈ U(Bs
q(L∞(Ω))). Here, ηI is defined as in (12.61) with p = ∞. We

next derive a lower bound for κ. The terms ηI in (12.62) each have L∞ norm bounded by M2−ks and they
have disjoint supports. Therefore, ‖η‖L∞(Ω) ≤ M2−ks. For each r ≥ 1, these functions are in Cr(Ω) with

Cr(Ω) norms not exceeding M2−ks2kr where M depends only on the choice of r. We take r := ⌈s⌉+ 1 and
find that the modulus of smoothness of η satisfies

ωr(η, t)∞ ≤Mκ2−ks min(1, 2krtr). (12.63)

Therefore, breaking the integral into the integral over [0, 2−k] and (2−k, 1] we find that

1∫

0

[t−sωr(η, t)∞]q
dt

t
≤ κqM q2−kq(s−r)

2−k∫

0

t(r−s)q dt

t
+ κqM q2−kqs

1∫

2−k

t−sq dt

t
≤ κqCq, (12.64)

with C a fixed constant. This shows that we can take κ ≥ c where c depends only on s. Since η ≥ κ2−ks

on a set of measure ≥ 1/2, we have that ‖η‖Lτ(Ω) ≥ c2−ks ≥ cm−s/d which finishes the proof of the lower
bound in case (ii).

41

The lower bound in case (iii): By assumption we have p ≤ 2. We take η = ηI for any fixed I ∈ I. We
estimate

‖η‖H1(Ω) =M−1‖ϕI‖H1(Ω) ≥ cM−1ℓ
s−1− d

p+
d
2

I ≥ cm−(s
d−

1
d−

1
p+

1
2), (12.65)

which proves the lower bound in (iii) for R∗(F)H1(Ω).

The lower bound in case (iv): We consider first the case where p ≤ γ, where γ is given by (3.12). In
this case, we choose η = ηI where I is any cube in I. The function η vanishes at all of the data sites. By
construction, we have that η ∈ F and the lower bound

η(x) ≥ cm− s
d+

1
p , x ∈ I0, (12.66)

where I0 = [ξI − ℓI/4, ξI + 1/4]d is the subcube corresponding to Ω0 in I (see (12.57)).
We want to bound the H−1(Ω) norm of η from below. For this, we choose a function v from the unit

ball of H1
0 (Ω) which vanishes outside of I and is large on I0. Namely, we take

v(x) := cℓ
1−d

2

I ϕ(ℓ−1
I (x− ξI)). (12.67)

where now c is chosen as a constant depending only on d so that ‖v‖H1
0(Ω) = 1. As in the case for ηI , we

have

v(x) ≥ cℓ
1− d

2

I ≥ cm− 1
d+

1
2 , x ∈ I0. (12.68)

It follows that

‖η‖H−1(Ω) ≥
∫

Ω

η(x)v(x) dx =

∫

I0

η(x)v(x) dx ≥ cm− s
d+

1
pm− 1

d+
1
2 |I0|. (12.69)

Since |I0| ≥ cm−1 the right side of (12.69) is

cm− s
d+

1
p−

1
d−

1
2 = cm− s

d+
1
p−

1
γ .

This proves that R∗(F)H−1(Ω) ≥ cm−α−1 in the case p ≤ γ since 1/p− 1/γ ≥ 0.
We finally consider the case when p > γ. This is handled in a similar way to case (ii). Namely, we can

assume F = U(Bs
q(L∞(Ω))) where s, q are fixed. We take η as in (12.62). We know this function is in F

and vanishes at all of the data sites. To provide a lower bound the H−1(Ω) norm of η,

v(x) = cϕ(x), (12.70)

where c is a constant chosen so that ‖v‖H1
0 (Ω) = 1. By construction, we have v(x) ≥ 0 for all x ∈ Ω and

v(x) ≥ c for x ∈ Ω0. Let I0 be the set of I ∈ I such that I ⊂ Ω0. Since η is also non-negative, we estimate

‖η‖H−1(Ω) ≥
∫

Ω

η(x)v(x)dx ≥
∫

Ω0

η(x)v(x)dx ≥
∫

Ω0

η(x)dx ≥ κ
∑

I∈I0

∫

I

ηI ≥ c2−ks2−kd#(I0), (12.71)

because κ ≥ c and ηI ≥ 2−ks on I0. We need to estimate the cardinality of the set I0. Observe that the
number of cubes I in the original grid which are contained in Ω0 is 2

−d(4dm) = 2dm. Since #(I) ≥ (4d−1)m,
we see that

#(I0) ≥ 2dm−m = (2d − 1)m.

Since m = 2kd, placing this lower bound of #(I0) into (12.71), we find that

‖η‖H−1(Ω) ≥ cm− s
d . (12.72)

This implies that R∗(F)H−1(Ω) ≥ cm−α−1 in the case p > γ since 1/p− 1/γ < 0 and therefore completes the
proof of the lower bound in (iv). This completes the proof of Theorem 3.1. ✷

42

12.6.2 The proof of Theorem 3.2

We first prove (ii) which also gives the upper bound in (3.19). From the definition of the trace norm, we
have

‖g − Sk(g)‖H1/2(∂Ω) ≤ ‖v − Sk‖H1(Ω) ≤ C[r2k]−t+1 ≤ Cm−β , (12.73)

where the next to last inequality uses the estimate (2.18) and also the fact that m ≍ 2k(d−1). This proves
(ii).

It follows that
Rm(g)H1/2(∂Ω) ≤ Cm−β , (12.74)

for the values of m that equal 2d[(r − 1)2k]d−1. Since g ∈ G was arbitrary, we obtain

R∗
m(G)H1/2(∂Ω) ≤ Cm−β , (12.75)

for the above values of m. From the monotonicity of R∗
m we obtain (12.75) for all m. Thus, we have proven

the upper bound in (3.19).
We next prove the lower inequalities in (3.19). From the monotonicity of R∗

m(G)H1/2(∂Ω), it is enough to

prove this lower bound for m = 2k(d−1) − 1 whenever k is any non-negative integer. The following reasoning
is the same as in the proof of the lower inequalities in Theorem 3.1.

Let Z := {z1, . . . , zm}, m = 2k(d−1) − 1, be any proposed set of data sites on ∂Ω. Let F := {x ∈ Ω :
x · e1 = 0, e1 = (1, 0, . . . , 0) ∈ R

d, be the face of ∂Ω corresponding to the points x ∈ Ω whose first coordinate
is equal to zero. Consider the set Dk(F) of (d − 1 dimensional) dyadic cubes of F . Since there are 2k(d−1)

cubes in Dk(F), it follows that there is a J ∈ Dk(F) such that J contains none of the data sites from Z in
its interior. We will now construct an appropriate function η ∈ G which vanishes at each of the data sites.

Let J be the d dimensional cube in Dk(Ω) which has J as a face and let ϕJ be the function defined in
(12.59) with the parameters s̄, d, p̄, q̄. We know that M−1ϕJ ∈ U(Bs̄

q̄(Lp̄(Ω)) when M :=Ms̄,p̄,q̄. If ξ
′
J is the

center of J , then the point ξ′J − (2−k−1, 0, . . . , 0) is the center of J .
We now define

v(x) :=M−1ϕJ(x − (2−k−1, 0, . . . , 0)), x ∈ Ω, (12.76)

which is also a function in U(Bs̄
q̄(Lp̄(Ω)). Hence, the function

η := T∂Ωv (12.77)

is in our model class G and η vanishes at all of the data sites Z.
We now show that for the intrinsic H1/2(∂Ω) norm we have

‖η‖H1/2(∂Ω) ≥ cm−β, (12.78)

with c not depending on m. This will prove the lower bound we seek. First consider the function ϕ defined
in (12.57). Let e1 = (1, 0, . . . , 0) ∈ R

d. Because of the tensor product structure of ϕ described after (12.57),
the trace η0 of ϕ onto the hyperplane x · e1 = 1/2 is the d− 1 version of ϕ. We define

M := |η0|H1/2(∂Ω) > 0. (12.79)

By a change of variables and the fact that m = 2k(d−1) − 1, it follows that

|η|H1/2(∂Ω) =MM−12−k(s̄−d/p̄)2k/22−k(d−1)/2 ≥ cm−β , (12.80)

where c > 0 does not depend on m. This proves the lower bound and completes the proof of the theorem. ✷

43

12.6.3 Proof of Theorem 3.3

We first prove the right inequality of (3.21). Given m ≥ 1, let X be a collection of m̃ := ⌊m
2 ⌋ data sites in

Ω for optimal sampling of the functions in F . Similarly let Z be a collection of m := ⌊m
2 ⌋ data sites in ∂Ω

for optimal sampling of the functions in G. Given u ∈ U let f = −∆u and g be the trace of u on ∂Ω. We
know that there is an f̂ ∈ H−1(Ω) which is an optimal H−1(Ω) recovery of f using the point samples at X .

That is, we have ‖f̃ − f̂‖H−1(Ω) ≤ Cm−α whenever f̃ ∈ F shares the same data as f . Similarly, let ĝ be an

optimal H1/2(∂Ω) recovery of g using the data at Z. Then, we have ‖g̃ − ĝ‖H1/2(∂Ω) ≤ Cm−β whenever g̃

is a function in G which shares the same data as g. Now, define û as the solution to (1.1) with right side f̂
and boundary value ĝ. Let ũ be any function from U which shares the same data as u. From (1.3), we have

‖ũ− û‖H1(Ω) ≤ Cm−min(α,β),

where C is independent of m and the data. Since this holds for all u ∈ U , this proves the upper inequality
in (3.21)

To prove the lower inequality we consider two cases. First suppose that α ≤ β. Given any set X of m
data sites in Ω at which we sample the f ∈ F , we can find two functions f1, f2 ∈ F that have the same
values on X and yet ‖f1 − f2‖H−1(Ω) ≥ cm−α where c does not depend on m. For i = 1, 2, we let ui satisfy
(1.1) with right side fi and with gi ≡ 0. Then, (1.3) says that

‖u1 − u2‖H1(Ω) ≥ cm−α = cm−min(α,β).

This proves the lower inequality in (3.21) in this case. A similar argument applies when β < α. ✷

12.7 The proof of Theorem 7.2 in the case d = 2

In this section we provide the proof of Theorem 7.2 in when d = 2. We discuss two cases.
Case 1: p = 1
Let ε > 0. According to Lemma 12.4, Lemma 6.1 and Theorem 6.3, we have

‖u− v‖H1(Ω) . ‖f +∆v‖H−1(Ω) + ‖g − Tr(v)‖H1/2(∂Ω)

. ε−1‖f +∆v‖L1+ε(Ω) + ‖g − Tr(v)‖H1/2(∂Ω)

. ε−1‖f +∆v‖∗L1+ε(Ω) + ‖g − Tr(v)‖∗H1/2(Ω)

+
[
‖f +∆v‖Bε−1m̃1−1/(1+ε)m̃− s

2 + ‖g − Tr(v)‖Tr(B)m
−(s̄−1)

]
.

Optimizing ε as in Lemma 12.4 gives a choice of ε = [log(m̃)]−1, for which

ε−1m̃1−1/(1+ε) . log(m̃)

and thus we have

‖u− v‖H1(Ω) . log(m̃)‖f +∆v‖∗L1+ε(Ω) + ‖g − Tr(v)‖∗H1/2(Ω)

+
[
‖f +∆v‖B log(m̃)m̃− s

2 + ‖g − Tr(v)‖Tr(B)m
−(s̄−1)

]

. L∗(v) + [1 + ‖v‖U]RU (m̃,m).

Case 2: 1 < p ≤ ∞

44

‖u− v‖H1(Ω) . ‖f +∆v‖H−1(Ω) + ‖g − Tr(v)‖H1/2(∂Ω)

. C(p)‖f +∆v‖Lp(Ω) + ‖g − Tr(v)‖H1/2(∂Ω)

.
[
C(p)‖f +∆v‖∗Lp(Ω) + ‖g − Tr(v)‖∗H1/2(Ω)

]
.

+
[
C(p)‖f +∆v‖Bm̃− s

2 + ‖g − Tr(v)‖Tr(B)m
−(s̄−1)

]

.
[
C(p)‖f +∆v‖∗Lp(Ω) + ‖g − Tr(v)‖∗H1/2(Ω)

]
+ [1 + ‖v‖U]RU (m̃,m).

Notice that in this case we could have chosen L∗ as in the case of d = 3 with γ = p and obtained the optimal
recovery rate for this class. However, this choice would result in a loss functional depending on F .

References

[1] D. Arnold and J. Saraven, On the asymplotic convergence of spline-collocation methods for partial
differential equations, SIAM J. Num. Anal. 21 (1984), 459–472.

[2] Genming Bai, Ujjwal Koley, Siddhartha Mishra, and Roberto Molinaro, Physics informed neural net-
works (pinns) for approximating nonlinear dispersive pdes, arXiv preprint arXiv:2104.05584 (2021).

[3] Jens Berg and Kaj Nyström, A unified deep artificial neural network approach to partial differential
equations in complex geometries, Neurocomputing 317 (2018), 28–41.

[4] Peter Binev, Andrea Bonito, Ronald DeVore, and Guergana Petrova, Optimal learning, Calcolo 61
(2024), no. 1, 15.

[5] Andrea Bonito, Claudio Canuto, Ricardo H Nochetto, and Andreas Veeser, Adaptive finite element
methods, to appear in Acta Numerica (2024).

[6] Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis, Physics-
informed neural networks (PINNs) for fluid mechanics: A review, Acta Mechanica Sinica 37 (2021),
no. 12, 1727–1738.

[7] Philippe G Ciarlet, The finite element method for elliptic problems, SIAM, 2002.

[8] Albert Cohen, Ronald DeVore, Guergana Petrova, and Przemyslaw Wojtaszczyk, Optimal stable non-
linear ap- proximation, Foundations of Computational Mathematics 22 (2022), 607–648.

[9] , Optimal stable nonlinear approximation, Foundations of Computational Mathematics 22 (2022),
no. 3, 607–648.

[10] Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi, and
Francesco Piccialli, Scientific machine learning through physics–informed neural networks: Where we
are and what’s next, Journal of Scientific Computing 92 (2022), no. 3, 88.

[11] Stephan Dahlke and Ronald A DeVore, Besov regularity for elliptic boundary value problems, Commu-
nications in Partial Differential Equations 22 (1997), no. 1-2, 1–16.

[12] Stephan Dahlke, Erich Novak, and Winfried Sickel, Optimal approximation of elliptic problems by linear
and nonlinear mappings i, Journal of Complexity 22 (2006), no. 1, 29–49.

[13] , Optimal approximation of elliptic problems by linear and nonlinear mappings ii, Journal of
Complexity 22 (2006), no. 4, 549–603.

45

[14] Caio Davi and Ulisses Braga-Neto, Pso-pinn: Physics-informed neural networks trained with particle
swarm optimization, arXiv preprint arXiv:2202.01943 (2022).

[15] R. DeVore and G. Lorentz, Constructive approximation, Springer-Verlag, 1993.

[16] R. DeVore and V. Popov, Interpolation of Besov spaces, Transactions AMS 305 (1988), no. 1, 397–414.

[17] R. DeVore and R. Sharpley, Maximal functions measuring smoothness, Memoirs of AMS 293 (1984).

[18] , Besov spaces on domains in Rd, TAMS 335 (1993), no. 2, 843–364.

[19] Ronald DeVore, Boris Hanin, and Guergana Petrova, Neural network approximation, Acta Numerica
30 (2021), 327–444.

[20] MWMG Dissanayake and Nhan Phan-Thien, Neural-network-based approximations for solving partial
differential equations, communications in Numerical Methods in Engineering 10 (1994), no. 3, 195–201.

[21] Patrick Dondl, Johannes Müller, and Marius Zeinhofer, Uniform convergence guarantees for the deep
ritz method for nonlinear problems, Advances in Continuous and Discrete Models 2022 (2022), no. 1,
49.

[22] Nathan Doumèche, Gérard Biau, and Claire Boyer, Convergence and error analysis of pinns, arXiv
preprint arXiv:2305.01240 (2023).

[23] Chenguang Duan, Yuling Jiao, Yanming Lai, Dingwei Li, Jerry Zhijian Yang, et al., Convergence rate
analysis for deep ritz method, Communications in Computational Physics 31 (2022), no. 4, 1020–1048.

[24] Dimitrios Gazoulis, Ioannis Gkanis, and Charalambos G Makridakis, On the stability and convergence
of physics informed neural networks, arXiv preprint arXiv:2308.05423 (2023).

[25] David Gilbarg and Neil S Trudinger, Elliptic partial differential equations of second order, vol. 224,
Springer, 1977.

[26] Xavier Glorot and Yoshua Bengio, Understanding the difficulty of training deep feedforward neural
networks, Proceedings of the thirteenth international conference on artificial intelligence and statistics,
JMLR Workshop and Conference Proceedings, 2010, pp. 249–256.

[27] Pierre Grisvard, Elliptic problems in nonsmooth domains, SIAM, 2011.

[28] Guergana and Przemyslaw Wojtaszczyk, Limitations on approximation by deep and shallow neural
networks, Journal of Machine Learning Research 24 (2023), no. 353, 1–38.

[29] , Lipschitz widths, Constructive Approximation 57 (2023), 759–805.

[30] , Neural networks: deep, shallow, or in between?, arXiv:2310.07190 (2023).

[31] Houstis Hadjidimos, A., J. E., Rice, and E. Vavalis, Analysis of iterative line spline collocation methods
for elliptic partial differential equations, SIAM J. MAtrix Analysis and Applications 21 (2000), no. 2.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, Proceedings of the IEEE international conference
on computer vision, 2015, pp. 1026–1034.

[33] , Deep residual learning for image recognition, Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[34] E. Houslis, J. Rice, and E. Vavalis, Spline-collocation methods/or elliptic partial differential equations,
Advances in Compo Methodsfor PDE’s. Vol. V, R. Vichnevetsky, R. S. Stepleman (Editors), 1984.

46

[35] David Jerison and Carlos E Kenig, The inhomogeneous dirichlet problem in lipschitz domains, Journal
of functional analysis 130 (1995), no. 1, 161–219.

[36] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang,
Physics-informed machine learning, Nature Reviews Physics 3 (2021), no. 6, 422–440.

[37] Alena Kopaničáková, Hardik Kothari, George E Karniadakis, and Rolf Krause, Enhancing training of
physics-informed neural networks using domain decomposition–based preconditioning strategies, SIAM
Journal on Scientific Computing (2024), S46–S67.

[38] David Krieg, Erich Novak, and Mathias Sonnleitner, Recovery of Sobolev functions restricted to iid
sampling, Mathematics of Computation 91 (2022), no. 338, 2715–2738.

[39] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis, Artificial neural networks for solving ordinary
and partial differential equations, IEEE transactions on neural networks 9 (1998), no. 5, 987–1000.

[40] Isaac E Lagaris, Aristidis C Likas, and Dimitris G Papageorgiou, Neural-network methods for boundary
value problems with irregular boundaries, IEEE Transactions on Neural Networks 11 (2000), no. 5,
1041–1049.

[41] Jianfeng Lu and Yulong Lu, A priori generalization error analysis of two-layer neural networks for solv-
ing high dimensional schrödinger eigenvalue problems, Communications of the American Mathematical
Society 2 (2022), no. 1, 1–21.

[42] Yulong Lu, Jianfeng Lu, and Min Wang, A priori generalization analysis of the deep ritz method for
solving high dimensional elliptic partial differential equations, Conference on learning theory, PMLR,
2021, pp. 3196–3241.

[43] Zhiping Mao, Ameya D Jagtap, and George Em Karniadakis, Physics-informed neural networks for
high-speed flows, Computer Methods in Applied Mechanics and Engineering 360 (2020), 112789.

[44] Levi D McClenny and Ulisses M Braga-Neto, Self-adaptive physics-informed neural networks, Journal
of Computational Physics 474 (2023), 111722.

[45] Siddhartha Mishra and Roberto Molinaro, Estimates on the generalization error of physics-informed
neural networks for approximating PDEs, IMA Journal of Numerical Analysis 43 (2023), no. 1, 1–43.

[46] Dorina Mitrea, Marius Mitrea, and Lixin Yan, Boundary value problems for the laplacian in convex and
semiconvex domains, Journal of Functional Analysis 258 (2010), no. 8, 2507–2585.

[47] Johannes Müller and Marius Zeinhofer, Error estimates for the deep ritz method with boundary penalty,
Mathematical and Scientific Machine Learning, PMLR, 2022, pp. 215–230.

[48] , Achieving high accuracy with PINNs via energy natural gradient descent, International Confer-
ence on Machine Learning, PMLR, 2023, pp. 25471–25485.

[49] Erich Novak and Hans Triebel, Function spaces in lipschitz domains and optimal rates of convergence
for sampling, Constructive approximation 23 (2006), 325–350.

[50] Maziar Raissi, Paris Perdikaris, and George E Karniadakis, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial differential
equations, Journal of Computational physics 378 (2019), 686–707.

[51] Thomas Sauer and Yuan Xu, A case study in multivariate Lagrange interpolation, Approximation The-
ory, Wavelets and Applications 454 (1995), 443–452.

[52] Zuowei Shen, Haizhao Yang, and Shijun Zhang, Optimal approximation rate of ReLU networks in terms
of width and depth, Journal de Mathématiques Pures et Appliquées 157 (2022), 101–135.

47

[53] Y. Shin, D. Jerome, and G. Karniadakis, On the convergence of physics informed neural networks for
linear second-order elliptic and parabolic type PDEs, Commun. Comput. Phys. 28 (2020), no. 5, 2042–
2074.

[54] Yeonjong Shin, Zhongqiang Zhang, and George Em Karniadakis, Error estimates of residual minimiza-
tion using neural networks for linear PDEs, Journal of Machine Learning for Modeling and Computing
4 (2023), no. 4.

[55] Jonathan W Siegel, Optimal approximation rates for deep ReLU neural networks on Sobolev and Besov
spaces, Journal of Machine Learning Research 24 (2023), no. 357, 1–52.

[56] JonathanW Siegel, Qingguo Hong, Xianlin Jin, Wenrui Hao, and Jinchao Xu, Greedy training algorithms
for neural networks and applications to PDEs, Journal of Computational Physics 484 (2023), 112084.

[57] E. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, 1970.

[58] Kejun Tang, Xiaoliang Wan, and Chao Yang, Das-pinns: A deep adaptive sampling method for solving
high-dimensional partial differential equations, Journal of Computational Physics 476 (2023), 111868.

[59] Jan Vyb́ıral, Sampling numbers and function spaces, Journal of Complexity 23 (2007), no. 4-6, 773–792.

[60] E Weinan and Bing Yu, The deep Ritz method: A deep learning-based numerical algorithm for solving
variational problems, Communications in Mathematics and Statistics 6 (2018), no. 1.

[61] Jinchao Xu, Finite neuron method and convergence analysis, Communications in Computational Physics
28 (2020), no. 5, 1707–1745.

[62] Yahong Yang, Yue Wu, Haizhao Yang, and Yang Xiang, Nearly optimal approximation rates for deep
super RELU networks on Sobolev spaces, arXiv preprint arXiv:2310.10766 (2023).

[63] Yahong Yang, Haizhao Yang, and Yang Xiang, Nearly optimal VC-dimension and pseudo-dimension
bounds for deep neural network derivatives, Advances in Neural Information Processing Systems 36
(2024).

[64] Dmitry Yarotsky, Optimal approximation of continuous functions by very deep ReLU networks, Confer-
ence on learning theory, PMLR, 2018, pp. 639–649.

[65] Marius Zeinhofer, Rami Masri, and Kent-André Mardal, A unified framework for the error analysis of
physics-informed neural networks, arXiv preprint arXiv:2311.00529 (2023).

[66] Shiheng Zhang, Jiahao Zhang, Jie Shen, and Guang Lin, An element-wise RSAV algorithm for uncon-
strained optimization problems, arXiv preprint arXiv:2309.04013 (2023).

Andrea Bonito, Department of Mathematics, Texas A&M University, College Station, TX 77843, email:
bonito@tamu.edu.

Ronald DeVore, Department of Mathematics, Texas A&M University, College Station, TX 77843, email:
rdevore@tamu.edu.

Guergana Petrova, Department of Mathematics, Texas A&M University, College Station, TX 77843, email:
gpetrova@tamu.edu.

Jonathan W. Siegel, Department of Mathematics, Texas A&M University, College Station, TX 77843, email:
jwsiegel@tamu.edu.

48

	Introduction
	Numerical methods for solving (1.1)
	Collocation methods and PINNs
	Overview of this paper

	Besov spaces
	The Sobolev spaces Hs()
	 Piecewise polynomial approximation and interpolation

	Optimal recovery
	Optimal recovery of f
	Optimal recovery of g
	Optimal recovery of u
	Final observations on optimal recovery

	Numerical algorithms based on linear approximation
	Using FEMs or AFEMs
	Reduced models

	Numerical methods based on optimization
	Discretizing norms
	A discrete L norm
	Discrete H1/2() norms

	A discrete loss function with error control
	A numerical optimal recovery algorithm
	CPINNs
	Numerical Illustrations
	Practical Algorithm
	Results

	Concluding Remarks
	Appendix
	Local approximation by polynomials
	Polynomial norms and inequalities
	Besov spaces and piecewise polynomial approximation
	Piecewise polynomial approximation in L()
	Proof of Theorem 2.3

	Polynomial interpolation
	Proof of Theorem 2.1
	Proof of Theorem 2.2

	The proofs of the Theorems on optimal recovery
	The proof of Theorem 3.1
	The proof of Theorem 3.2
	Proof of Theorem 3.3

	The proof of Theorem 7.2 in the case d=2

