

# A note on best $n$ -term approximation for generalized Wiener classes

Ronald DeVore, Guergana Petrova, Przemysław Wojtaszczyk

June 26, 2024

## Abstract

We determine the best  $n$ -term approximation of generalized Wiener model classes in a Hilbert space  $H$ . This theory is then applied to several special cases.

## 1 Introduction

One of the main themes in approximation theory is to prove theorems on how well functions can be approximated in a Banach space norm  $\|\cdot\|_X$  by methods of linear or nonlinear approximation. The present paper is exclusively concerned with approximation in a separable Hilbert space  $H$  equipped with norm  $\|\cdot\|$ , induced by a scalar product  $\langle \cdot, \cdot \rangle$ . Let  $\mathcal{D} := \{\phi_i, i \in \mathbb{N}\}$  be an orthonormal basis for  $H$ . This means that any function  $f \in H$  has the unique representation

$$f = \sum_{j=1}^{\infty} f_j \phi_j, \quad \text{where} \quad \|f\|^2 = \sum_{j=1}^{\infty} |f_j|^2.$$

We are concerned with  $n$  term approximation of the elements  $f \in H$ . We denote by  $\Sigma_n := \{S = \sum_{j \in \Lambda} c_j e_j : \Lambda \subset \mathbb{N}, |\Lambda| = n\}$  and let

$$\sigma_n(f) := \inf_{S \in \Sigma_n} \|f - S\|, \quad n \geq 1,$$

be the *error of  $n$ -term approximation* of  $f$ . Given any  $f \in H$ , a best  $n$ -term approximation  $S_n$  of  $f$  is given by

$$S_n = S_n(f) := \sum_{j \in \Lambda_n} f_j \phi_j,$$

where  $\Lambda_n := \Lambda_n(f)$  is a set of  $n$  indices  $j$  for which  $|f_j| \geq |f_i|$  whenever  $j \in \Lambda$  and  $i \notin \Lambda$ . Even though the set  $\Lambda_n(f)$  is not uniquely defined because of possible ties in terms of the size of the absolute values of the coefficients  $f_j$ , the error of approximation  $\sigma_n(f)$  is uniquely defined.

We are interested in model classes  $K \subset H$  that are given by imposing conditions on the coefficients  $(f_j)$  of  $f$ . For such sets  $K$ , we define

$$\sigma_n(K) := \sup_{f \in K} \sigma_n(f) \tag{1.1}$$

and we are interested in the asymptotic decay of  $\sigma_n(K) \rightarrow 0$  as  $n \rightarrow \infty$ .

Since we are only considering the approximation to take place in  $H$ , in going further it is sufficient to consider only the case

$$H = \ell_2 := \left\{ \mathbf{x} = (x_1, x_2, \dots, ) : \|x\|_{\ell_2}^2 := \sum_{j=1}^{\infty} |x_j|^2 < \infty \right\}.$$

A classical result in this case is the following. Let  $0 < p < 2$ , and consider the unit ball in  $\ell_p$ ,

$$K = U(\ell_p) := \left\{ \mathbf{x} = (x_1, x_2, \dots, ) : \|x\|_{\ell_p}^p := \sum_{j=1}^{\infty} |x_j|^p \leq 1 \right\} \subset \ell_2.$$

It is known in this case that

$$\sigma_n(U(\ell_p)) \asymp n^{-1/p+1/2}, \quad n \rightarrow \infty, \quad (1.2)$$

with absolute constants in the equivalency<sup>1</sup>. This result is attributed to Stechkin [9].

Other results of the above type have been frequently obtained in the literature. To describe a general setting, let

$$\mathbf{w} := (w_j)_{j \in \mathbb{N}}, \quad 1 \leq w_1 \leq w_2 \leq \dots,$$

be a monotonically nondecreasing sequence of positive weights. We consider the weighted  $\ell_p$  space  $\ell_p(\mathbf{w})$  defined as the set of all real valued sequences  $\mathbf{x} \in \ell_2$  such that

$$\ell_p(\mathbf{w}) := \{ \mathbf{x} \in \ell_2 : \| \mathbf{x} \|_{\ell_p(\mathbf{w})} < \infty \}, \quad 0 < p \leq \infty,$$

where

$$\| \mathbf{x} \|_{\ell_p(\mathbf{w})} := \begin{cases} \left[ \sum_{j=1}^{\infty} |w_j x_j|^p \right]^{1/p}, & 0 < p < \infty, \\ \sup_j |w_j x_j|, & p = \infty. \end{cases} \quad (1.3)$$

We denote by  $U(\ell_p(\mathbf{w}))$  the unit ball of this class

$$U(\ell_p(\mathbf{w})) := \{ \mathbf{x} \in \ell_p(\mathbf{w}) : \| \mathbf{x} \|_{\ell_p(\mathbf{w})} \leq 1 \}$$

and derive the rate of the error  $\sigma_n(U_p(\mathbf{w}))$ , see Theorem 2.2. It can happen that  $\sigma_n(U_p(\mathbf{w}))$  is infinite for all  $n$ . Also, note that the class  $\ell_p(\mathbf{w})$  is different from the classical weighted sequence spaces since the weights in the  $\ell_p(\mathbf{w})$  norm are raised to a power. The problem considered here has been investigated in the context of best  $n$ -term approximation of diagonal operators in the general case of approximation in  $\ell_q$ . The works of Stepanets, see [6, 7, 8], determine the rate of  $\sigma_n(U(\ell_p(\mathbf{w})))_{\ell_q}$  for general  $0 < q \leq \infty$  under the restriction  $\lim_{k \rightarrow \infty} w_k = \infty$ . Recently, in [4], based on results from [1], the condition on the sequence  $\mathbf{w}$  in the case  $0 < p < q$  has been removed, see Theorem 2.1(i). The case  $q < p < \infty$  has also been considered, but under additional assumptions on the weight sequence  $\mathbf{w}$ , see Theorem 2.1(ii). In this paper, we consider only the case  $q = 2$  and provide a simple, different unified approach for finding the rate of  $\sigma_n(U(\ell_p(\mathbf{w})))_{\ell_2}$  for all  $0 < p \leq \infty$  with no restriction on the weight  $\mathbf{w}$ .

---

<sup>1</sup>We use the notation  $A \asymp B$  when there are absolute constants  $C_1, C_2 > 0$  such that we have  $C_1 B \leq A \leq C_2 B$

We then go on to apply our result in the case of several special weights

$$w_j = j^\alpha (1 + \log j)^\beta, \quad j \in \mathbb{N},$$

provided  $\alpha > 0$ ,  $\beta \in \mathbb{R}$ , or  $\alpha = 0$ ,  $\beta \geq 0$ . We show in Corollary 3.1 that when  $\alpha = 0$ ,  $\beta \geq 0$ ,

$$\sigma_n(U(\ell_p(\mathbf{w}))) \asymp n^{-(1/p-1/2)} [\log n]^{-\beta}, \quad n > 1, \quad 0 < p < 2.$$

In the case  $\alpha = \beta = 0$ , this recovers Stechkin's result (1.2). In Corollary 3.2, we consider the case  $\alpha > 0$ ,  $\beta \in \mathbb{R}$ ,  $0 < p \leq \infty$  and show that

$$U(\ell_p(\mathbf{w})) \asymp n^{-(\alpha+1/p-1/2)} [\log n]^{-\beta}, \quad n > 1, \quad \alpha + 1/p - 1/2 > 0.$$

We call  $\ell_p(\mathbf{w})$  a *generalized Wiener class* in analogy with the definition of Wiener spaces in Fourier analysis when  $H = L_2([0, 1])$  and  $\phi_j$  is the Fourier basis. Our results have some overlap with the study of Wiener classes in the Fourier setting, that is, when  $\mathcal{D}$  is the Fourier basis  $\mathcal{F}$ . When considering the specific case of Fourier basis, our results, which are restricted to approximation in Hilbert spaces, are valid for  $L_2$ . Several results in the literature consider the approximation of Wiener classes in  $L_q$  when the basis is the Fourier basis  $\mathcal{F}$ . For example, the case  $\alpha > 1/2$ ,  $\beta = 0$ , and  $p = 1$  has been analyzed in [2] and upper bounds for the error in  $L_\infty$ , have been obtained for the Wiener spaces with  $\mathcal{D}$  being the  $d$ -dimensional Fourier basis  $\mathcal{F}^d$ , see Lemma 4.3(i). Recently, these results have been improved in [3], where matching up to logarithm lower and upper bounds for multidimensional Wiener spaces with  $\mathcal{D} = \mathcal{F}^d$  are given for the case  $\beta = 0$ ,  $\alpha > 0$ ,  $0 < p \leq 1$ , see Corollary 4.3 in [3], and  $\beta = 0$ ,  $\alpha > 1 - 1/p$ ,  $1 < p \leq q$ , all when the error is measured in  $L_q$ ,  $2 \leq q \leq \infty$ , see Theorem 4.5 in [3]. In particular, when the dimension  $d = 1$  and the error is measured in the Hilbert space norm (i.e.  $q = 2$ ), the results from [3] give the rate  $\sigma_n(U_p(\mathbf{w}, \mathcal{F}))_{L_2} \asymp n^{-(\alpha+1/p-1/2)}$ , provided

$$\alpha > 0, \quad 0 < p \leq 1, \quad \text{or} \quad \alpha > 1 - 1/p, \quad 1 < p \leq 2.$$

This latter result is a special case of our analysis.

## 2 Best $n$ term approximation for $U(\ell_p(\mathbf{w}))$

In going forward, we assume  $H = \ell_2$  with its canonical basis  $e_j$ ,  $j \in \mathbb{N}$ . Before presenting our main theorem, let us introduce the decreasing rearrangement

$$\mathbf{x}^* = (x_j^*)_{j \in \mathbb{N}}$$

of the absolute values of the coordinates  $x_j$  of a sequence  $\mathbf{x} = (x_j)_{j \in \mathbb{N}}$  that is an element of the sequence space  $\mathbf{c}_0$  (consisting of all sequences whose elements converge to 0). Namely, we have that  $x_1^*$  is the largest of the numbers  $|x_j|$ ,  $j \in \mathbb{N}$ , then  $x_2^*$  is the next largest, and so on. It follows that

$$x_1^* \geq x_2^* \geq \dots,$$

and  $\|\mathbf{x}\|_{\ell_p} = \|\mathbf{x}^*\|_{\ell_p}$  for all  $0 < p \leq \infty$ . For each  $n \geq 1$  and  $\mathbf{x} \in \ell_2$ , we have that

$$\sigma_n(\mathbf{x}) = \left[ \sum_{j>n} [x_j^*]^2 \right]^{1/2}, \quad (2.1)$$

where  $\sigma_n(\mathbf{x})$  is the error of  $n$ -term approximation of  $\mathbf{x}$  in the  $\ell_2$  norm. In order to prove our main result, we will need the following lemma.

**Lemma 2.1.** *If  $\mathbf{x} \in \ell_p(\mathbf{w})$ , then  $\mathbf{x}^* \in \ell_p(\mathbf{w})$ ,  $\sigma_n(\mathbf{x}) = \sigma_n(\mathbf{x}^*)$ , and*

$$\|\mathbf{x}^*\|_{\ell_p(\mathbf{w})} \leq \|\mathbf{x}\|_{\ell_p(\mathbf{w})}. \quad (2.2)$$

*Proof.* It follows directly from the definitions of  $\sigma_n$  and  $\mathbf{x}^*$  that  $\sigma_n(\mathbf{x}) = \sigma_n(\mathbf{x}^*)$ . Let the sequence  $\mathbf{x} = (x_1, x_2, \dots)$  be in  $\ell_p(\mathbf{w})$ . We can assume that all  $x_j$  are non-negative since changing the signs of its entries does not effect neither its rearrangement nor its  $\ell_p(\mathbf{w})$  norm. We shall first construct sequences  $\mathbf{y}^{(m)} = (y_1^{(m)}, y_2^{(m)}, \dots)$ ,  $m = 0, 1, \dots$ , such that each  $\mathbf{y}^{(m+1)}$  is gotten by swapping the positions of two of the entries in  $\mathbf{y}^{(m)}$  with the indices of these entries each larger than  $m$ . Also, the first  $m$  entries of  $\mathbf{y}^{(m)}$  satisfy

$$y_j^{(m)} = x_j^*, \quad j = 1, \dots, m.$$

Indeed, we start with  $\mathbf{y}^0 = \mathbf{x}$ . Assuming that  $\mathbf{y}^{(m)}$  has been defined, we let  $j > m$  be the smallest index larger than  $m$  such that  $y_j^{(m)}$  is the largest of the entries  $y_k^{(m)}$ ,  $k > m$ . We swap the entries with positions  $m+1$  and  $j$  to create the sequence  $\mathbf{y}^{(m+1)}$  from  $\mathbf{y}^{(m)}$ . We have for  $m = 0, 1, 2, \dots$ ,

$$\|\mathbf{y}^{(m+1)}\|_{\ell_p(\mathbf{w})} \leq \|\mathbf{y}^{(m)}\|_{\ell_p(\mathbf{w})} \leq \dots \leq \|\mathbf{y}^{(0)}\|_{\ell_p(\mathbf{w})} = \|\mathbf{x}\|_{\ell_p(\mathbf{w})},$$

because the weights in  $\mathbf{w}$  are non-decreasing. Note that for every  $m$

$$\sum_{j=1}^m [w_j x_j^*]^p = \sum_{j=1}^m [w_j y_j^{(m)}]^p \leq \|\mathbf{y}^{(m)}\|_{\ell_p(\mathbf{w})}^p \leq \|\mathbf{x}\|_{\ell_p(\mathbf{w})}^p,$$

and therefore

$$\|\mathbf{x}^*\|_{\ell_p(\mathbf{w})} \leq \|\mathbf{x}\|_{\ell_p(\mathbf{w})},$$

which completes the proof.  $\blacksquare$

Now we are ready to determine the rate of  $\sigma_n(U(\ell_p(\mathbf{w})))$  for all  $n$  and all weight sequences  $\mathbf{w}$ . We fix  $\mathbf{w}$ ,  $n$ , and  $0 < p < \infty$ . From the sequence  $\mathbf{w}$ , we define the numbers

$$W_m := [w_1^p + w_2^p + \dots + w_m^p]^{1/p}, \quad m \geq 1. \quad (2.3)$$

Then the following theorem holds

**Theorem 2.2.** *For any  $0 < p < \infty$  and  $\mathbf{w}$ , we have*

$$\max_{m \geq n} (m-n)[W_m]^{-2} \leq \sigma_n^2(U(\ell_p(\mathbf{w}))) \leq \max_{m \geq n} (m-n+1)[W_m]^{-2}, \quad (2.4)$$

and for  $p = \infty$  we have that

$$\sigma_n^2(U(\ell_\infty(\mathbf{w}))) \asymp \sum_{j=n+1}^{\infty} w_j^{-2}.$$

*Proof.* We fix,  $n, p, \mathbf{w}$ . For every sequence  $\mathbf{x} \in U(\ell_p(\mathbf{w}))$ , we consider its decreasing rearrangement  $\mathbf{x}^*$ , which according to Lemma 2.1 is also an element of the unit ball and has the same  $n$ -term

approximation. We next construct a new sequence  $\tilde{\mathbf{x}}$  from  $\mathbf{x}^*$  by making its first  $n$  entries equal to  $x_n^*$  and not touching the rest of the sequence, that is,

$$\tilde{x}_j = \begin{cases} x_n^*, & j = 1, \dots, n, \\ x_j^*, & j > n. \end{cases}$$

Note that because the sequence  $\mathbf{x}^*$  is nonincreasing and the weights are nondecreasing, we have

$$\|\tilde{\mathbf{x}}\|_{\ell_p(\mathbf{w})} \leq \|\mathbf{x}^*\|_{\ell_p(\mathbf{w})} \leq 1, \quad \text{and} \quad \sigma_n(\tilde{\mathbf{x}}) = \sigma_n(\mathbf{x}^*) = \sigma_n(\mathbf{x}).$$

Let us denote by  $b := x_n^*$  and notice that  $\sum_{j=1}^n w_j^p \tilde{x}_j^p = W_n^p b^p$ . We have

$$\sigma_n(\mathbf{x}) = \sigma_n(\tilde{\mathbf{x}}) = \sum_{j=n+1}^{\infty} [\tilde{x}_j]^2 = \sum_{j=n+1}^{\infty} [x_j^*]^2.$$

We are now interested in how to change the tail of  $\tilde{\mathbf{x}}$ , that is, how to change the  $x_j^*$ 's with  $j > n$  to new quantities  $y_j$ ,  $j > n$  so that we maximize the  $n$ -term approximation  $\sigma_n^2(\mathbf{y}) = \sum_{j=n+1}^{\infty} [y_j]^2$ , under the restrictions  $b = x_n^* \geq y_{n+1} \geq \dots$  and

$$\sum_{j=n+1}^{\infty} w_j^p y_j^p \leq 1 - W_n^p b^p =: S. \quad (2.5)$$

Notice that an investment of  $w_j^p y_j^p$  towards  $S$  gives a return  $y_j^2$  at coordinate  $j$ . Since the  $w_j$  are non-decreasing, to maximize  $\sigma_n(\mathbf{y})$ , it is best to invest as much as we can for  $j = n+1, j = n+2$ , and so on. So, the sequence which will maximize  $\sigma_n^2(\mathbf{y})$  has to have  $y_j = b$ ,  $j = n+1, \dots$  until we have used up our capital  $S$ . In other words, given that our sequence  $\mathbf{y}$  has first  $n$  coordinates  $b$ , then to maximize  $\sigma_n(\mathbf{y})$  we should take  $\mathbf{y} = (b, b, \dots, b, c, 0, 0, \dots) \in U(\ell_p(\mathbf{w}))$ , where  $0 \leq c < b$ . The membership in the unit ball of  $\ell_p(\mathbf{w})$  requires that

$$b^p \sum_{j=1}^m w_j^p + c^p w_{m+1}^p \leq 1 \quad \Rightarrow \quad b^p [W_m]^p \leq 1$$

and

$$\sigma_n^2(\mathbf{y}) = (m-n)b^2 + c^2 < (m-n+1)b^2 \leq (m-n+1)[W_m]^{-2}.$$

Therefore, we have

$$\sigma_n^2(U(\ell_p(\mathbf{w}))) \leq \sup_{m \geq n} (m-n+1)W_m^{-2}.$$

Next, consider the special sequence  $\mathbf{s}^{(m)}$  with entries  $s_j^{(m)}$  given by

$$\mathbf{s}_j^{(m)} = \begin{cases} W_m^{-1}, & j = 1, \dots, m, \\ 0, & j > m. \end{cases}$$

Clearly  $\mathbf{s}^{(m)} \in U(\ell_p(\mathbf{w}))$  for all  $m$  and

$$\sigma_n^2(\mathbf{s}^{(m)}) = (m-n)[W_m]^{-2}, \quad m > n.$$

Such sequences provides the lower bound in the case  $1 < p < \infty$ , and thus (2.4) is proven.

In the case  $p = \infty$ , we have that the entries  $x_j$  of a sequence  $\mathbf{x} \in \ell_\infty(\mathbf{w})$  satisfy

$$|x_j| \leq \|\mathbf{x}\|_{\ell_\infty(\mathbf{w})} w_j^{-1} \quad \Rightarrow \quad \sigma_n^2(\mathbf{x}) \leq \left[ \sum_{j=n+1}^{\infty} w_j^{-2} \right] \|\mathbf{x}\|_{\ell_\infty(\mathbf{w})}.$$

On the other hand, for the sequence

$$\mathbf{w}^{-1} := (w_1^{-1}, w_2^{-1}, \dots) \in U(\ell_\infty(\mathbf{w})),$$

we have that  $\sigma_n^2(\mathbf{w}^{-1}) = \sum_{j=n+1}^{\infty} w_j^{-2}$ , and the proof is completed.  $\blacksquare$

### 3 Special cases of sequence spaces

In this section, we discuss several special cases of sequences  $\mathbf{w}$  that are used in the definition of the classical Wiener spaces, see [3, 5] and the references therein.

**Corollary 3.1.** *Consider the classes  $\ell_p(\mathbf{w})$  with  $w_j := (1 + \log j)^\beta$ ,  $\beta \geq 0$ ,  $0 < p < 2$ . Then we have*

$$\sigma_n(U(\ell_p(\mathbf{w}))) \asymp m^{-(1/p-1/2)} [\log m]^{-\beta}.$$

*Proof.* Let us start by calculating the  $W_m$ ,

$$W_m^p = \sum_{j=1}^m w_j^p = \sum_{j=1}^m (1 + \log j)^{\beta p} \geq \frac{m}{2} (1 + \log(m/2))^{\beta p}.$$

But we also have  $W_m^p \leq m(1 + \log m)^{\beta p}$ , so for  $m$  sufficiently big we get

$$W_m \asymp m^{1/p} [\log m]^\beta. \quad (3.1)$$

Using this in Theorem 2.2 gives that

$$\sigma_n(U(\ell_p(\mathbf{w}))) \asymp n^{1/2-1/p} [\log n]^{-\beta},$$

provided  $0 < p < 2$ .  $\blacksquare$

**Corollary 3.2.** *Consider the classes  $\ell_p(\mathbf{w})$ ,  $0 < p \leq \infty$ , with*

$$w_j := \max_{1 \leq i \leq j} i^\alpha \log(i+1)^\beta, \quad j \in \mathbb{N}.$$

*with  $\alpha > 0$ ,  $\beta \in \mathbb{R}$ . Then we have*

$$\sigma_n(U(\ell_p(\mathbf{w}))) \asymp n^{-(\alpha+1/p-1/2)} [\log(n+1)]^{-\beta},$$

*provided  $\alpha + 1/p - 1/2 > 0$ .*

*Proof.* **Case  $0 < p < \infty$ :** Let us observe that for any  $\delta > 0$  and  $\gamma \in \mathbb{R}$ , the function  $\varphi(x) := x^\delta \log(x+1)^\gamma$ , is an increasing function on  $[c, \infty)$ , if  $c = c(\delta, \gamma)$  is sufficiently large. Therefore, we have that

$$W_m^p = \sum_{j=1}^m j^{\alpha p} \log(j+1)^{\beta p} \asymp m^{\alpha p+1} \log(m+1)^{\beta p}, \quad m \geq M,$$

provided  $M$  is sufficiently large. This gives

$$W_m \asymp m^{\alpha+1/p} \log(m+1)^\beta, \quad m \geq M. \quad (3.2)$$

Theorem 2.2 now gives that

$$\sigma_n(U(\ell_p(\mathbf{w}))) \asymp n^{1/2-\alpha-1/p} [\log(n+1)]^{-\beta},$$

for  $n$  sufficiently large as desired.

**Case  $p = \infty$ :** In this case we have the restriction that  $2\alpha > 1$ . According to Theorem 2.2, we have that

$$\sigma_n^2(U(\ell_\infty(\mathbf{w}))) \asymp \sum_{j=n+1}^{\infty} j^{-2\alpha} [\log(j+1)]^{-2\beta} \asymp n^{-2\alpha+1} \log(n+1)^{-2\beta}.$$

■

**Remark 3.3.** Note that when  $\beta = 0$ , the ranges of  $\alpha$  and  $p$  in Corollary 3.2 are

$$\alpha > 0, \quad 0 < p \leq 2 \quad \text{or} \quad \alpha > 1/2 - 1/p > 0, \quad 2 \leq p \leq \infty.$$

**Acknowledgment:** This work was supported by the NSF Grant DMS 2134077 and the ONR Contract N00014-20-1-278. We would like to thank V. K. Nguyen for pointing out to us several valuable references.

## References

- [1] Gao F., *Exact value of the  $n$ -term approximation of a diagonal operator*, J. Approx. Theory, **162** (2010), 646–652.
- [2] Jahn T., Ullrich T., and Voigtlaender F., *Sampling numbers of smoothness classes via  $\ell^1$ -minimization*. Journal of Complexity, **79** (2023).
- [3] Moeller M., *Gelfand numbers and best  $m$ -term trigonometric approximation for weighted mixed Wiener classes in  $L_2$* , Master Thesis, <https://www-user.tu-chemnitz.de/~momoe/MA.pdf>.
- [4] Nguyen V.D., Nguyen V.K., *Best  $n$ -term approximation of the diagonal operators and application to function spaces with mixed smoothness*, Analysis Math., **48** (2022) 1127–1152.
- [5] Nguyen V.D., Nguyen V.K., W. Sickel, W.,  *$s$ -numbers of embeddings of weighted Wiener algebras*. Journal of Approximation Theory, **279** (2022).

- [6] Stepanets A. I., Approximation characteristics of the space  $S_\varphi^p$  in different metrics, Ukrainian Math. J., **53** (2001), 1340–1374.
- [7] Stepanets A. I., Methods of Approximation Theory, VSP (Leiden, Boston, 2005).
- [8] Stepanets A. I., Problems of approximation theory in linear spaces, Ukrainian Math. J., **58** (2006), 54–102.
- [9] Temlyakov V., Approximation of functions with bounded mixed derivatives. Trudy Mat. Inst. Steklov, **178**, 3–113 (1986).