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Abstract. We construct uniformly bounded solutions of the equation divu = f for arbitrary data f in

the critical spaces Ld(Ω), where Ω is a domain of Rd. This question was addressed by Bourgain &

Brezis, [BB2003], who proved that although the problem has a uniformly bounded solution, it is critical

in the sense that there exists no linear solution operator for general Ld-data. We first discuss the validity

of this existence result under weaker conditions than f ∈ Ld(Ω), and then focus our work on constructive

processes for such uniformly bounded solutions. In the d = 2 case, we present a direct one-step explicit

construction, which generalizes for d > 2 to a (d−1)-step construction based on induction. An explicit

construction is proposed for compactly supported data in L2,∞(Ω) in the d = 2 case. We also present

constructive approaches based on optimization of a certain loss functional adapted to the problem. This

approach provides a two-step construction in the d = 2 case. This optimization is used as the building

block of a hierarchical multistep process introduced in [Tad2014] that converges to a solution in more

general situations.
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1. Introduction

Let Y denote a Banach space of functions defined on a d-dimensional domain Ω ¢ Rd, where

d ⩾ 2. We are concerned with the existence and construction of uniformly bounded solutions u to the

equation,

(1.1) divu = f ,

whenever f ∈ Y . Namely, we ask whether there exists a µ > 0 such that for every f ∈ Y there exists a

solution u = (u1, . . . ,ud) ∈ L∞(Ω) to (1.1) such that

(1.2) ∥u∥L∞ ⩽ µ∥ f ∥Y .

Here for a vector valued function v = (v1, . . . ,vd) such that each vi belongs to a function space X, we

use the simpler notation v ∈ X and ∥v∥X instead of Xd. We say the space Y is admissible if for all

f ∈ Y , (1.1) admits a solution such that (1.2) holds.

There exists of course infinitely many solutions to (1.1) since as soon as one exists, we can add to it

a null divergence function, for example a constant. The most natural candidate for a solution u when

given f is to solve Laplace’s equation with data f and then to take u as the gradient of the solution.

More precisely, we introduce

È(x) = ∇ϕ(x) =
Cd

|x|d
x, x ∈ Rd,

where ϕ is the fundamental solution of the Laplacian on Rd, and define the so-called Helmholtz

solution as

u(x) = uHel(x) =

∫

Ω

f (x)È(x− y)dy = f̃ ∗È(x),

where f̃ (x) = f (x) for x ∈Ω and f̃ (x) = 0 when x <Ω. Note that uHel depends linearly on f . When Ω

is a bounded domain, it is readily seen that uHel is a uniformly bounded solution of (1.1) for f ∈ Lp(Ω)

whenever p > d, and therefore the spaces Y = Lp, p > d are all admissible.

The question of whether Y = Ld is admissible was addressed in the seminal work of Bourgain &

Brezis [BB2003]. Their work studies the particular case where Ω = Td is the d-dimensional torus,

which leads to assume in addition that
∫
Td f = 0. They proved that the problem (1.1) is critical in

the sense that it admits bounded solutions, but there is no linear solution operator from Y to L∞. In

particular, one cannot invoke the Helmholtz solution. We say a space Y is critical if it is admissible

but there is no linear mapping taking f ∈ Y into a solution u ∈ L∞ of (1.2).

The main interest of the present paper is two-fold. We first ask which of the classical function

spaces Y are admissible. Secondly, we are interested in explicit constructions of solutions to the

Bourgain-Brezis problem. In particular, can we explicitly construct nonlinear mappings solving (1.2)

when Y is critical. In section 2 we discuss theoretical aspects of the problem. We recall certain known

results of Meyer which show that for Ω = Rd, the space G of all f that admit a solution u ∈ L∞ to

(1.2) is the dual space W
1,1
hom

which is defined as the closure of the smooth test functions for the total

variation. Therefore, any admissible space Y must be a subspace of G. In particular, Y is admissible

if and only if W
1,1
hom

embeds into Y∗. In particular, we show that not only is Ld admissible but also the

larger space weak-Ld, i.e. Ld,∞(Ω), is admissible, as well as even weaker Morrey spaces.

In section 3, we present explicit constructions of bounded solutions for certain critical admissible

spaces Y . We give a one step formula in the d = 2 case with L2-data, and we treat the case d > 2

with Ld-data by a (d−1)-step construction based on induction. We end this section by a construction

for L2,∞-data in the case d = 2 assuming in addition compact support. The reader may find these

constructions interesting for their own sake. In section 4, we propose variational-based approaches



CONSTRUCTIONS OF BOUNDED SOLUTIONS OF divu = f IN CRITICAL SPACES 3

for the constructions of bounded solutions. In the case d = 2, this approach delivers the solution in two

steps. More generally, we use this optimization as the building block of a hierarchical decomposition

that was used in [Tad2014] to construct solutions to the Bourgain-Brezis with Ld data by a limiting

process. We use this multi-step hierarchical approach to construct solutions for more general data.

2. Theory

2.1. Existence of bounded solutions for Ld-data. Let Ω ¢ Rd. The space

G =G(Ω) := { f = div (u) : u ∈ L∞(Ω)},

of distributions u whose divergence is uniformly bounded has been studied in various contexts, in

particular image processing and nonlinear PDE’s.

As noted in [Mey2002], for the case Ω=Rd, the space G(Rd) is the dual of the homogeneous space

W
1,1
hom

(Rd). The latter is defined as is the completion of the space of test functionsD(Rd) for the total

variation, which defines a norm on this space.

Let us recall that the total variation of v ∈ BV(Ω) is defined as

|v|TV := sup
w

∫

Ω

vdivw,

where the supremum is taken over all w = (w1, . . . ,wd) ∈ D(Ω) such that ∥w∥L∞ = supx∈Ω |w(x)|2 ⩽ 1.

An equivalent quantity is defined in terms of finite difference:

|v|TV ∼ sup
h>0

h−1 sup
|y|⩽h

∥v− v(· − y)∥L1(Ωh),

where Ωh := {x ∈Ω : dist(x,∂Ω) > h}. When ∇v ∈ L1, in particular when v ∈W
1,1
hom

, one simply has

|v|TV = ∥∇v∥L1 .

Let us stress that W
1,1
hom

(Rd) is strictly smaller than BV(Rd).

Therefore, every f in a function space Y of locally integrable functions defined on Rd admits the

representation f = divu with a uniformly bounded u satisfying the bound (1.2) if and only if for any

test function g ∈ D(Rd) one has

(2.1)
∣∣∣∣
∫

Rd

f g
∣∣∣∣ ⩽ µ∥ f ∥Y |g|TV .

Note that this is equivalent to the condition that

(2.2)
∣∣∣∣
∫

E

f
∣∣∣∣ ⩽ µ∥ f ∥Yper(E),

for all open sets E of finite perimeter. Indeed the above is obtained from (2.1) by taking g = φϵ ∗ÇE

where φϵ is a mollifier and letting ϵ→ 0. But from the coarea formula

(2.3) |g|TV =

∫ +∞

−∞

per(Et)dt, Et := {x : g(x) > t},

see [EG1992], it also implies (2.1) for any g ∈ D(Rd). Note that here, the perimeter per(E) coincides

with the Hausdorff measure Hd−1(∂E) only for sufficiently nice sets (for example with Jordan do-

mains with rectifiable boundaries). More generally it should be be defined as |ÇE |TV or equivalently

asHd−1(∂E∗) where ∂E∗ is the so-called reduced boundary as introduced by de Giorgi.
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Remark 2.1. The co-area formula also shows that (2.2) actually implies the validity of (2.1) for any

g ∈ BV(Rd). Therefore any f ∈G that is in addition locally integrable is also an element of the dual

of BV . We give further in Remark 2.6 an example of a distribution that belongs to G but are not in the

dual of BV .

For Y = Ld(Rd), the validity of (2.1) is ensured by the Sobolev embedding of BV(Rd) into Ld′(Rd)

where 1
d
+ 1

d′
= 1. Since for a general domain Ω, we can trivially extend any f ∈ Ld(Ω) by 0 to obtain

a function of Ld(Rd) with the same norm, this implies that Y = Ld(Ω) is admissible.

In [BB2003], the same result is given in the periodic context, where Ω = Td is the d-dimensional

torus. In this case, Y = Ld(Ω) is modified into

Y = Ld
#(Td) =

{
f ∈ Ld(Td) :

∫

Ω

f = 0

}

As shown in Proposition 2 therein, there exists no linear solution operator f ∈ Ld
#
(Td) 7→ u ∈ L∞(Td).

Indeed, restricting attention to the simpler case of the two-dimensional torus, if K : L2
#
(T2) 7→ L∞(T2)

would be such a linear solution operator so that div K = I is the identity, then so is

K̃ :=

∫

y∈T2

Ä−yKÄydy,

which averages K over all 2D translations Äy. Now K̃ is translation invariant and it has a symbol,

Λ(n) := (¼1(n),¼2(n)) such that K̃(ein·x) = Λ(n)ein·x. Since K̃ is assumed to boundedly map L2 to L∞,

one should have (Λ(n))n∈Z2 ∈ ℓ2(Z2). However, since div K̃ = div K = I, that is n ·Λ(n) = 1, this implies

|Λ(n)|
2
⩾

1

|n|
2

which is a contradiction to (Λ(n))n∈Z2 ∈ ℓ2(Z2).

The lack of linearity is attributed to the general fact that the problem of solving Lu = f with u ∈ X

is critical if Ker(L) has no complement in X [BB2007, Aji2009]. This is the case of div in L∞. One

of the main themes in [BB2003] is the existence of solution with further W1,d-regularity, similar to

the Helmholtz solution uHel that cannot be ensured to be uniformly bounded since it depends linearly

on f .

2.2. Existence of solutions for Ld,∞ data. One first observation is that the Bourgain-Brezis problem

has also a positive answer for the larger Lorentz space Y = Ld,∞(Ω). Recall that a measurable function

f is in Ld,∞(Ω) if and only if |{x ∈ Ω : | f (x)| > t}| ⩽ Cdt−d, t > 0, and the smallest C for which this

holds is its Ld,∞(Ω) norm.

Theorem 2.2. There exists a constant µ = µd such that for any f ∈ Ld,∞(Ω), there exists u ∈ L∞(Ω)

satisfying

(2.4) divu = f , ∥u∥L∞ ⩽ µ∥ f ∥Ld,∞(Ω).

Proof. By definition of Y = Ld,∞(Ω), one has for any f ∈ Y and measurable E,
∫

E

| f | =

∫

t>0

|{x ∈ E : | f (x)| > t}|dt ⩽

∫

t>0

min{|E|,∥ f ∥d
Ld,∞t−d}dt ⩽

d

d−1
∥ f ∥Ld,∞ |E|

d−1
d .

Therefore (2.2) follows by application of the isoperimetric inequality with µd =
d

d−1
Kd where Kd is

the isoperimetry constant [Fed1969, 3.2.43]. □
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Remark 2.3. An equivalent proof consists in establishing that BV(Rd) has continuous embedding in

the dual Lorentz space Y∗ = Ld′,1(Rd), that is

(2.5) ∥g∥Ld′,1(Rd) ⩽ ´d |g|TV .

This readily follows by using the expression of the Ld,1(Rd) norm through the distribution function

∥g∥Ld′,1(Rd) = d′

∞∫

0

|{x ∈Ω : |g(x)| > t}|
d−1

d dt,

see e.g. [BC2011], and invoking the co-area formula and isoperimetric inequality to bound this quan-

tity by the total variation of g.

Remark 2.4. The property assering that
∫

E

| f | ⩽C|E|
d−1

d

holds for all measurable sets E is actually equivalent to the membership of f in Ld,∞(Ω). The smallest

C for which this is valid gives an equivalent norm for Ld,∞. We shall use this norm in going forward

in this paper.

2.3. Beyond Ld,∞. What is the largest Banach space Y of Borel measures µ which can be expressed

as divergences of uniformly bounded u? Placing ourselves in Ω = Rd, we know that such a Y should

be embedded in G(Rd) the dual of W
1,1
hom

(Rd), that is, for all µ ∈ Y and g ∈W
1,1
hom

(Rd) one has

(2.6)

∫

Rd

gdµ ⩽ µ∥dµ∥Y |g|TV .

Using the co-area formula, this is ensured in particular if

(2.7) |µ(E)| ⩽ µ∥µ∥Yper(E)

for all sets E ¢ Rd of finite perimeter.

Let us introduce the linear space of measures S d(Rd) that satisfy the condition

(2.8) |µ|(B) ⩽CRd−1, R > 0,

for all balls B or radius R, equipped with the norm

(2.9) ∥µ∥S d := supR1−d |µ|(B),

where the supremum is taken over all balls B. For a general domain Ω, we define S d(Ω) in a similar

manner, replacing B by B∩Ω, and observe that any measure in this space has its extension by 0

contained in S d(Rd) with a smaller or equal norm.

In dimension d = 2, for positive measures, the condition µ(B) ⩽CR was introduced and studied by

Guy David for Dirac measures on a curve Γ. He proved that this condition is equivalent to the Ahlfors

regularity of Γ and to the boundedness of the Cauchy integral operator acting on L2(Γ,µ).

A distinction should be made between S d(Ω) and the Morrey space Md(Ω) that consists of all

locally integrable f such that, for all ball B of radius R,

(2.10)

∫

B∩Ω

| f | ⩽CRd−1,
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with norm defined in a similar manner. This space is included in S d(Ω) with equal norm when µ is of

the form f dx, but the inclusion is strict: consider for example µ to be the Dirac measure on a segment

of the plane in the case d = 2. In view of Remark 2.4, we have

Ld,∞ ¢ Md ¢ S d,

and these inclusions are strict. The following result that follows the arguments from [Mey2002] and

[PT2017], shows that the Bourgain-Brezis problem has also a positive answer for Y = Md(Ω) and

Y = S d(Ω).

Theorem 2.5. There exists a constant µ = µd such that the following holds. For any f ∈ Md(Ω), there

exists u ∈ L∞(Ω) satisfying

(2.11) divu = f , ∥u∥L∞ ⩽ µ∥ f ∥Md .

For any µ ∈ S d(Ω), there exists u ∈ L∞(Ω) satisfying

(2.12) divu = µ, ∥u∥L∞ ⩽ µ∥µ∥S d .

Proof. Without loss of generality we work on Ω = Rd. As a first step, we use the boxing inequality

[PT2008, Theorem 2.11] that states that any open set E ¢ Rd of finite perimeter can be covered by

balls B j of radius R j such that

(2.13)
∑

j

Rd−1
j ⩽Cper(E),

where the constant C depends only on d. This shows that for any f ∈ Md(Rd), we have
∫

E

| f |dx ⩽C∥ f ∥Md per(E).

which implies (2.2) and therefore proving (2.11).

Similarly, for any µ ∈ S d(Rd), we have

|µ|(E) ⩽C∥µ∥S d per(E).

For any test function g ∈ D(Rd), we write g = g+−g− and
∣∣∣∣
∫

Rd

gdµ
∣∣∣∣ ⩽

∫

Rd

g+d|µ|+

∫

Rd

g−d|µ|.

For the first term, we have
∫

Rd

g+d|µ| =

∫ ∞

0

|µ|(Et)dt ⩽C∥µ∥S d

∫ ∞

0

per(Et)

where Et := {x : g(x) > t}. With a similar treatment of the second term and using the co-area formula,

we reach ∣∣∣∣
∫

Rd

gdµ
∣∣∣∣ ⩽C∥µ∥S d |g|TV

which shows that µ belongs to the space G(Rd) and thereby proves (2.12). □

Remark 2.6. We stress that, in contrast to the functions of Md(Rd), the measures of S d(Rd) belong to

G(Rd) but not to the dual of BV(Rd). This is due to the fact that the trace of a BV function on a d−1

dimensional surface could be meaningless. For example if µ is the Dirac measure on a segment of the

2d plane, we cannot apply it to the BV function g = ÇQ where Q is a square that admits this segment

as one of its side.
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Remark 2.7. As pointed out in [Mey2002] in the case d = 2, a positive measure belongs to G(Rd)

if and only if it belongs to S d(Rd). Indeed, on the one hand the above result shows that S d(Rd) is

contained in G(Rd). On the other hand, if µ is a positive measure that is contained in G(Rd) then to

any ball B = B(x0,R) we associate the W1,1 function

g(x) =max

{
0,2−

|x− x0|

R

}

Since µ is positive and belongs to G(Rd), and since g is positive and larger than 1 on B, we find that

µ(B) ⩽

∫
gdµ ⩽C|g|TV .

On the other hand, it is easily checked that |g|TV ⩽ CdRd−1 where Cd only depend of d, therefore

proving that µ ∈ S d(Rd).

3. Explicit constructions of bounded solutions

3.1. A one-step explicit construction for L2-data. What follows is probably the simplest and most

instructive construction of bounded solutions to the Bourgain-Brezis problem (1.1), at least in the

d =-case with Y = L2(Ω). Again, without loss of generality we will work on Ω = R2.

For any (x,y) ∈ R2 and any fixed f ∈ L2(R2), we define

(3.1) V2(x) :=

∫ +∞

−∞

| f (x,y)|2 dy, H2(y) :=

∫ +∞

−∞

| f (x,y)|2 dx

and

(3.2) ³(x,y) :=
V(x)

H(y)+V(x)
, ´(x,y) :=

H(y)

H(y)+V(x)
.

We then consider the splitting f = f1+ f2 where

(3.3) f1(x,y) := ³(x,y) f (x,y), and f2(x,y) := ´(x,y) f (x,y),

and we define

(3.4) u1(x,y) :=

∫ x

−∞

f1(s,y)ds and u2(x,y) :=

∫ y

−∞

f2(x, t)dt

Therefore u = (u1,u2) satisfies divu = f1+ f2 = f and it remains to check that u is uniformly bounded.

Let us bound |u1(x,y)| for any arbitrary but fixed (x,y) ∈ R2. If H(y) = 0, then obviously u1(x,y) = 0

for all x so we assume H(y) , 0. Then, for any x we have

|u1(x,y)| ⩽

∫ ∞

−∞

| f1(s,y)|ds ⩽

∫ ∞

−∞

| f (s,y)|
V(s)

H(y)
ds

⩽ H(y)−1

(∫ ∞

−∞

| f (s,y)|2 ds

)1/2 (∫ ∞

−∞

V(s)2 ds

)1/2

=

(∫ ∞

−∞

V(s)2 ds

)1/2

= ∥ f ∥L2(R2).

In a similar way, we obtain the bound ∥u2∥L∞ ⩽ ∥ f ∥L2(R2), and so u is a bounded solution to the

Bourgain-Brezis problem for f .
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Remark 3.1. The above splitting of f into f1 and f2 is designed to ensure that the univariate primitive

u1 and u2 are uniformly bounded. An interesting variant consists in taking

(3.5) f1(x,y) := f (x,y)Ç{H(y)⩽V(x)} and f2(x,y) := f (x,y)Ç{V(x)<H(y)}

for which it is easily checked that the solution u also has each component u1 and u2 uniformly bounded

by ∥ f ∥L2 . The extra feature of this choice is that f1 and f2 have disjoint supports. As we discuss next,

in the more general d-dimensional case with Y = Ld(Rd), it is possible to explicitly construct a splitting

f = f1+ · · ·+ fd also with disjoint supports and such that the univariate primitive u j of f j with respect

to x j are uniformly bounded.

3.2. A (d− 1)-step explicit construction for Ld-data. We now consider the general d-dimensional

case with data f ∈ Ld(Rd) . Given any such f , we construct d pairwise disjoint sets Ω j = Ω j( f ) with

R
d =

⋃d
j=1
Ω j, so that the functions f j := fÇΩ j

satisfy f = f1+ · · ·+ fd as well as

(3.6)

∫

R

| f j(x1, . . . , x j−1, s, x j+1, . . . , xd)|ds ⩽ ∥ f ∥Ld(Rd), j = 1, . . . ,d.

In turn the functions

(3.7) u j(x1, . . . , xd) :=

∫ x j

−∞

f j(x1, . . . , x j−1, s, x j+1, . . . , xd)ds, j = 1, . . . ,d,

satisfy ∥u j∥L∞(Rd) ⩽ ∥ f ∥Ld(Rd). Hence, u = (u1, . . . ,ud) is a solution to (1.1) with ∥u∥L∞(Rd) ⩽ ∥ f ∥Ld(Rd).

The construction proceeds by induction on d. When d = 1, given any f ∈ L1(R), we define Ω1 = R

in which case the above claim is obvious. We assume we have shown how to construct such sets

Ω1(g). . . . ,Ωd−1(g) whenever g ∈ Ld−1(Rd−1) and give the construction of Ω1( f ), . . . ,Ωd( f ) whenever

f ∈ Ld(Rd). Without loss of generality, we can assume ∥ f ∥Ld(Rd) = 1.

We write any vector x ∈ Rd as (x1,y) where y = (x2, . . . , xd) ∈ Rd−1 and define the thresholds

t(y)d−1 :=

∫

R

| f (x1,y)|ddx1, y ∈ Rd−1.

Let

(3.8) Ω1 := Ω1( f ) := {x = (x1,y) ∈ Rd : | f (x1,y)| ⩾ Ä(y)},

and Ω′
1

be its complement in Rd. We define

(3.9) f1 := fÇΩ1
and g := f − f1 = fÇΩ′

1
.

This determines u1 and for any x = (x1,y) ∈ Rd, we have

∫

R

| f1(s,y)|ds ⩽

∫

R

| f (s,y)|

(
| f (s,y)|

t(y)

)d−1

ds = t(y)1−d

∫

R

| f (s,y)|dds = 1.

This shows that (3.6) holds for f1 and ∥u1∥L∞(R) ⩽ 1 as desired.

We proceed to construct the set Ω2, . . . ,Ωd. For any fixed x1 ∈ R, we consider the function g(x1,y)

as a function of y ∈ Rd−1. We have

(3.10)

∫

Rd−1

|g(x1,y)|d−1dy ⩽

∫

Rd−1

t(y)d−1dy = ∥ f ∥d
Ld(Rd)

= 1.

From the induction hypothesis, we can apply our construction to g(x1, ·) which is a function of d−1

variables y = (y2, . . . ,yd). This gives d−1 disjoint sets Ω j(x1) for j = 2, . . . ,d whose union is Rd−1 and
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for which the above results are valid. Therefore g(x1, ·). is split into functions g j(x1, ·) = g(x1, ·)ÇΩ j(x1)

which satisfy

(3.11)

∫

R

|g j(x1,y2, . . . ,y j−1, s,y j+1, . . . ,yd)|ds ⩽ 1, j = 2, . . . ,d.

We now define

Ω j = Ω j( f ) := {(x1,y)) : x1 ∈ R, y ∈Ω j(x1)}, j = 2, . . . ,d.

This completes the definition of the sets Ω j and the functions f j and u j. We are left to check (3.6) for

j , 1. Since f j(x1,y) = g j(x1,y), it suffices to write
∫

R

| f j(x1, . . . , x j−1, s, x j+1, . . . , xd)|ds =

∫

R

|g j(x1,y2, . . . ,y j−1, s,y j+1, . . . ,yd−1)|ds ⩽ 1,

This establishes the properties we want of our construction for d dimensions.

3.3. A constructive decomposition for L2,∞. We know from the theoretical results of §2, that the

space Y = Ld,∞(Ω) is admissible whenever Ω ¢ Rd is measurable. In this section, for any Ä > 1 and

any bounded measurable set Ω ¢ R2, we give an algorithm that takes any f ∈ L2,∞(Ω) and constructs

a solution u to (1.1) such that ∥u∥L∞ ⩽ Ä∥ f ∥L2,∞ .

We fix Ω and f in going forward. We assume without loss of generality that Ω = [−R,R]2, for

some R > 0 and ∥ f ∥L2,∞(Ω) = 1. We define f to be zero outside of Ω. We construct a disjoint splitting

Ω = Ω1∪Ω2 and f j := fÇΩ j
, j = 1,2, and take

(3.12) u1(x,y) :=

∫ x

−∞

f1(s,y)ds, u2(x,y) :=

∫ y

−∞

f2(x, s)ds.

Thus div (u) = f when u := (u1,u2), and the only issue will be to show that

(3.13)

∫ ∞

−∞

| f1(s,y)|ds ⩽ Ä,

∫ ∞

−∞

| f2(x, s)|ds ⩽ Ä,

for all x,y ∈ R.

Let us first note that f ∈ L1(R2) and

(3.14) M := ∥ f ∥L1(R2) =

∫

Ω

| f | ⩽ |Ω|1/2,

where we used Remark 2.4. We define the horizontal line LH(y) := {(x,y) : x ∈ [−R,R]} at level y

and the vertical line LV(x) := {(x,y) : y ∈ [−R,R]} at level x. For any measurable function g that is

supported on Ω, we define the energies

(3.15) EH(g,y) :=

∫

LH(y)

|g(x,y)|dx, y ∈ [−R,R], EV(g, x) :=

∫

LV (x)

|g(x,y)|dy, x ∈ [−R,R],

which may be infinite.

Here is the first step of our construction. Let A := {y ∈ [−R,R] : EH( f ,y)⩽ Ä} and A′ := {y ∈ [−R,R] :

EH( f ,y) > Ä} and

ΩH := {(x,y) ∈ R2 : EH( f ,y) ⩽ Ä} =
⋃

y∈A

LH(y).

We define f1 := f on ΩH and f2 := 0 on ΩH . Notice that we have

(3.16)

∫ x

−∞

| f1(s,y)|ds ⩽ Ä, y ∈ A.

This means that (3.13) is satisfied for y ∈ A.
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We proceed to the second step of our construction. Let B := {x ∈ [−R,R] : EV( f , x) ⩽ Ä} and

B′ := {x ∈ [−R,R] : EV( f , x) > Ä} and

ΩV := {(x,y) ∈Ω : EV( f , x) ⩽ Ä} =
⋃

x∈B

LV(x).

We define f2 = f on ΩV \ΩH and f1 is defined to be zero on this set. We have

(3.17)

∫ y

−∞

| f2(x, s)|ds ⩽ Ä, x ∈ B.

Thus far, we have defined f1 and f2 on ΩH ∪ΩV . Let Ω′ := Ω \ (ΩH ∪ΩV). The important thing to

notice is that Ω′ is gotten from Ω by removing horizontal and vertical strips. The following lemma

shows that we have removed a significant portion of Ω in this construction.

Lemma 1. The measure of Ω′ satisfies

(3.18) |Ω′| ⩽ Ä−2|Ω|.

Proof: To prove this claim, we observe that

Ω′ := {(x,y) ∈Ω : EH( f ,y) ⩾ Ä and EV( f , x) ⩾ Ä} = A′×B′.

Let a := |A′| and b := |B′| be the univariate Lebesgue measure of these sets. Then, we have

(3.19) aÄ ⩽

∫

Ω

| f (x,y)dxdy ⩽ |Ω|1/2.

A similar argument gives bÄ ⩽ |Ω|1/2. Hence, we have

(3.20) |Ω′| = ab ⩽ Ä−2|Ω|,

which proves the lemma. □

After applying the first step of our construction, we have defined f1 and f2 outside of Ω′. Let

Ω1 := Ω′ and let us repeat our construction for the set Ω1 in place of Ω. This gives a new set Ω2 :=

[Ω1]′ ¢ Ω1 and thereby give the definitions of f1, f2 outside of Ω2. The new residual set Ω2 satisfies

|Ω2| ⩽ Ä−2|Ω1| ⩽ Ä−4|Ω|. Iterating this procedure gives in the limit a definition of f1 and f2 on all of Ω

except for a set of measure zero. One easily checks that (3.13) holds. For example to check this for

f1, we note that if f1 is defined to be nonzero on on a line LH(y) then at the (first) step k where it is

defined to be nonzero it is completely defined on this line and (3.13) holds on this line.

We leave as an open problem the construction of decompositions with the above properties for the

general case f ∈ Ld,∞(Rd) with d ⩾ 2.

4. Variational-based constructions

4.1. Minimization problems. One natural way of approaching bounded solutions to (1.1) for data

f ∈ Y(Ω) is to consider the minimization of functionals of the form

(4.1) V(u) =V¼(u) = ∥u∥L∞ +¼∥ f −divu∥
p

Y

for some fixed p ⩾ 1. Indeed, one intuition is that if a uniformly bounded solution to (1.1) exists, the

minimizer ofV¼ should tend to the solution u of (1.1) with minimal L∞ norm as ¼→∞.

We shall first see that in the case of Y = L2 and p = 2, it is possible to avoid letting ¼→∞ through

a two-step constructive approach. We then discuss more general situations where we can construct

a uniformly bounded solution u by a hierarchical decompositions based on iterated minimizations of

the above functional.
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Before going further let us observe that the existence of a minimizer for V can be derived by the

elementary arguments under a mild assumption on the space Y .

Lemma 2. Assume that Y = Z′ is a dual space of distribution, so that

∥v∥Y :=max{ïv,φðY,Z : φ ∈ D(Ω), ∥φ∥Z ⩽ 1},

then there exists a minimizer u1 ofV

Proof. Consider a minimizing sequence un, therefore such that ∥un∥L∞ and ∥divun∥Y are are uniformly

bounded. Then, up to a subsequence extraction, we have the following properties :

(i) Both ∥ f −divun∥L2 and ∥un∥L∞ have limits A and B such that A+¼B is the infimum ofV.

(ii) un converges in the L∞ weak-∗ sense to some u1 ∈ L∞.

(iii) divun converges in the Y weak-∗ sense to the (weak) divergence divu1 ∈ L2.

From this and the properties of weak lower semi-continuity of norms, it readily follows that u1 is a

minimizer ofV. □

Existence is therefore ensured for reflexive spaces Y such as Ld(Ω) in the d-dimensional case, but

also for Y = Ld,∞ which we have seen earlier to be an admissible choice for the existence of uniformly

bounded property. We stress that uniqueness of minimizers, is in general not ensured, however in the

case where Y is strictly convex, such as Ld, we find that div (u1) is unique.

Note that the minimization ofV may be computationally intensive, depending on the form of the Y

norm. In the particular case of Y = Ld, it can be computed by solving relatively simple Euler-Lagrange

equations, see [TT2011].

4.2. A two-step approach for L2-data. Consider the case of a domain Ω ¢ R2 and Y = L2(Ω). With

the choise p = 2, the functional of interest is therefore

(4.2) V(u) = ∥u∥L∞ +¼∥ f −divu∥2
L2

An interesting property of the minimizers is given by the following.

Lemma 3. Fix ¼ > 0 and let r¼ = f −divu¼ be the residual of the equation (1.1) for a minimizer u¼ of

(4.2). Then r¼ belongs to BV(Ω) with

(4.3) |r¼|TV ⩽
1

2¼
.

Proof. For any z ∈ D(Ω) and ϵ > 0, we have

V(u¼) = ∥u¼∥L∞ +¼∥ f −divu¼∥
2
L2 ⩽ ∥u¼+ ϵz∥L∞ +¼∥ f −div (u¼+ ϵz)∥2

L2

⩽ ∥u¼∥L∞ + ϵ∥z∥L∞ +¼∥r¼∥
2
L2 −2¼ϵ

∫

Ω

r¼divz+o(ϵ).

= V(u¼)+ ϵ∥z∥L∞ −2¼ϵ

∫

Ω

r¼divz+o(ϵ)

and by letting ϵ ³ 0 we find that

(4.4)

∫

Ω

r¼divz ⩽
1

2¼
∥z∥L∞ ,

for all z ∈ D(Ω), which shows that r¼ ∈ BV(Ω) with bound (4.3) for its total variation. □
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Note that we also have the trivial bounds

(4.5) ∥r¼∥L2 ⩽ ∥ f ∥L2 and ∥u∥L∞ ⩽ ¼∥ f ∥
2
L2 ,

by comparingV(u¼) withV(0). However Lemma 3 shows a “regularization effect” f ∈ L2 7→ r¼ ∈ BV .

As noted in Remark 2.3, the space BV has a continuous embedding in the Lorentz space L2,1 which

is strictly smaller than L2.

This effect leads us to a direct construction of a bounded solution. Without loss of generality, we

again work on Ω = R2, and denote by u1 the minimizer and r1 = f −divu1 the residual, when taking

the particular value ¼ := ∥ f ∥−1
L2 . Using both (4.3) and (2.5), we have on the one hand

(4.6) ∥r1∥L2,1 ⩽ ´2|r1|TV ⩽
´2

2¼
=
´2

2
∥ f ∥L2;

and on the other hand

(4.7) ∥u1∥L∞ ⩽ ∥ f ∥L2 ,

in view of the second bound in (4.5). We then write r1 = divu2, where

(4.8) u2 := È∗ r1 =
1

2Ã

x

|x|2
∗ r1,

is the Helmoltz solution for the data r1. Since È ∈ L2,∞ and r1 ∈ L2,1, it is readily seen that u2 is

uniformly bounded by

(4.9) ∥u2∥L∞ ⩽ ∥È∥L2,∞∥r1∥L2,1 ⩽C∥ f ∥L2 , C :=
´2

2
∥È∥L2,∞ .

Thus we end up with

(4.10) u2step := u1+u2,

as a two-step construction of a uniformly bounded solution to (1.1) which satisfies (1.2) with µ= 1+C.

Remark 4.1. A similar regularization effect takes place in the d > 2 case for data f ∈ Ld

f ∈ Ld(Ω) 7→ r1 ∈ Ld,d−1(Ω).

However, since È ∈ Ld,∞, this is not enough to derive a similar two-step construction by applying the

Helmoltz solver to the residual. Instead, this will be addressed by the multi-step construction in the

next section below.

Figure 4.1, quoted from [TT2011, Section 6], shows the two-step solution of the example due to

L. Nirenberg, [BB2003, Remark 7], which demonstrates the unboundedness of ∥uHel∥L∞ solved for

u ∈ L2
#
([−1,1]2) with periodic boundary conditions, given by

(4.11) f = ∆v v(x1, x2) := x1| log |x||1/3·(|x|), ·(r) = Ç(−1,1)e
− 1

1−r2 .

In this case, Helmholtz solution, uHel = ∇V , has a fractional logarithmic growth at the origin, which

should be contrasted with the hounded two-step constructed solution shown in figure 4.1. Table 4.1

reports that the ratio between N ×N grid discretization of ∥uN
2step
∥L∞ and ∥ f N∥L2 remains bounded

when N is large, in contrast to the computed solution of Helmholtz.
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Figure 4.1. Solution of Bourgain-Brezis problem with 2D data in (4.11).

Helmholtz solution, uHel (top), vs. two-step solution, u2step (bottom).

The N ×N grid 50×50 100×100 200×200 400×400 800×800

∥u1,N
Hel
∥L∞

∥ f N∥L2

0.2295 0.2422 0.2540 0.2650 0.2752

∥u1,N
2step
∥L∞

∥ f N∥L2

0.2096 0.2128 0.2144 0.2151 0.2154

Table 4.1. L∞ norm of numerical solutions for different grids: Helmholtz vs. the two-

step solution of (4.11) for different grids.

4.3. Hierarchical constructions for data in Fréchet differentiable spaces. We now work with

general data f ∈ Y(Rd). In this section, we use a hierarchical approach to construct uniformly bounded

solution, under the assumption that the Y norm is Frechet differentiable.

Assumption (Fréchet differentiablity). The Y-norm is Fréchet differentiable, namely — there exists

ϕ : Y → Y′ such that

(4.12) ∥v+ ϵw∥Y = ∥v∥Y + ϵïϕ(v),wð+o(ϵ) for all v,w ∈ Y, v , 0.

As an immediate consequence of this assumption, for any p > 1, the application v 7→ ∥v∥
p

Y
is also

Fréchet differentiable and its derivative is given by

ϕp(v) := p∥v∥
p−1

Y
ϕ(v).
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As we discuss further, spaces admitting Fréchet differentiable norms are for example Y = Ld as well

as Y = Ld,q when 1 < q <∞, but not Y = Ld,∞.

Let us now consider for a p > 1 the general functional V¼ of (4.1), assuming as before that Y is

a dual space. In the sequel we use the following two results which makes use of ϕp. The first is the

generalization of Lemma 3 that shows a regularization effect, now on ϕp(r¼) where r¼ = f −divu¼ is

the residual.

Lemma 4. If u¼ ∈ L∞ is a minimizer of (4.1) with residual r¼ = f −divu¼ ∈ Y then

(4.13) |ϕp(r¼)|TV ⩽
1

¼
.

Proof. For any test function z ∈ D(Ω), we have

V¼(u¼) = ∥u¼∥L∞ +¼∥ f −divu¼∥
p

Y
⩽ ∥u¼+ ϵz∥L∞ +¼∥ f −div (u¼+ ϵz)∥

p

Y

⩽ ∥u¼∥L∞ + |ϵ | · ∥z∥L∞ +¼∥r¼∥
p

Y
−¼ϵ

〈
ϕp(r¼),divz

〉
+o(ϵ).

= V¼(u¼)+ |ϵ | · ∥z∥L∞ −¼ϵ
〈
ϕp(r¼),divz

〉
+o(ϵ),

and by letting ϵ ³ 0 we find |ϕp(r¼)|TV = sup
0,z∈D(Ω)

∫
Ω
ϕp(r¼)divz

∥z∥L∞
⩽

1

¼
. □

Remark 4.2. Note that when ¼ < 1
|ϕp( f )|TV

, we then have a trivial minimizer u¼ = 0 and r¼ = f . Lemma

4 is relevant when ¼ is large enough

(4.14) ¼ >
1

|ϕp( f )|TV
.

Then u¼ , 0, and (4.13) asserts the BV regularity of ϕp(r¼). In fact, for large enough ¼, one has the

equality |ϕp(r¼)|TV = 1/¼, and the minimizer is characterized as an exteremal pair in the sense that
∫

divu¼r¼ = |u¼|∞|r¼|TV ,

see [Mey2002, Theorem 3],[Tad2014, Lemma A.3].

We also need a second priori estimate which will be useful as a closure bound for the iterative

procedure of hierarchical construction described below.

Lemma 5. Assume that Y has a Fréchet differentiable norm and that BV is embedded in Y′ in the

sense that

(4.15) ∥v∥Y′ ⩽ ´|v|TV , v ∈ BV(Rd).

Then, the following a priori bound holds

(4.16) ∥v∥
p−1

Y
⩽ ¸|ϕp(v)|TV , v ∈ Y,

with ¸ = ´/p.

Proof. Fixing v ∈ Y and comparing the first order terms in

(1+ ϵ)p∥v∥
p

Y
= ∥v+ ϵv∥

p

Y
= ∥v∥

p

Y
+ ϵïϕp(v),vð+o(ϵ),

implies p∥v∥
p

Y
= ïϕp(v),vð. Therefore

p∥v∥
p

Y
⩽ ∥ϕp(v)∥Y′∥v∥Y ⩽ ´|ϕp(v)|TV∥v∥Y ,

which yields (4.16). □
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Following [Tad2014], we fix the value p = 2 and for a given sequence (¼ j) j⩾1, we define iteratively

u j as the minimizer of

(4.17) V j(u) = ∥u∥L∞ +¼ j∥r j−1−divu∥2Y ,

and r j = r j−1−divu j. The following result shows that, with a proper choice of ¼ j, the sum of the u j

admits a limit which is our desired uniformly bounded solution to (1.1).

Theorem 4.3. Consider a Fréchet differentiable space Y such that (4.15) holds and set ¼ j = ¼12 j−1,

where ¼1 :=
2¸
∥ f ∥Y

. Then, for any given f ∈ Y, the sum of the u j converges in L∞ to a limit u =
∑∞

j=1 u j

which is solution to (1.1) and satisfies

(4.18) ∥u∥L∞ ⩽ 2´∥ f ∥Y .

Proof. Comparing u j with the 0 solution, we find that

∥u j∥L∞ ⩽V j(0) = ¼ j∥r j−1∥
2
Y ,

and in particular

∥u1∥L∞ ⩽ ¼1∥ f ∥
2
Y .

On the other hand, combining the closure bound (4.16) and the regulatization bound (4.13), we find

that

(4.19) ∥r j−1∥Y ⩽ ¸|ϕ2(r j−1)|TV ⩽
¸

¼ j−1
.

Therefore, for j ⩾ 2

∥u j∥L∞ ⩽ ¸
2
¼ j

¼2
j−1

=
8¸2

¼1
2− j

and
∑∞

j=1 u j thus converges to a uniformly bounded limit with

∥u∥L∞ ⩽ ¼1∥ f ∥
2
Y +

4¸2

¼1
= 4¸∥ f ∥Y = 2´∥ f ∥Y ,

where we have used the chosen value of ¼1. In addition, a telescoping sum of r j = r j−1−divu j yields

f = div (
∑ j

k=1
uk)+ r j and the residual r j tends to 0 in Y . This proves that div (u) = f . □

Remark 4.4. Theorem 4.3 extends the hierarchical construction of Bourgain-Brezis problem in [Tad2014]

for Y = Ld-data with p = d. In fact, the choice of the parameter p > 1 need not be tied to Y , which led

to the simpler choice of p = 2 in (4.17).

Remark 4.5. The closure (4.16) implies that our choice of ¼1 is admissible in the sense that (4.14)

holds,

¼1 =
2¸

∥ f ∥Y
⩾

2¸

¸|ϕ2( f )|TV
>

1

|ϕ2( f )|TV
.

In other words — already the first variational iteration produces a non-trivial minimizer, u1 , 0. In

fact, one can underestimate ¼1 < ´/∥ f ∥Y in case ´ in (4.15) is not accessible, and yet the variational

iterations become effective after the first log(´) iterations with zero minimizers.

Example 4.6. Inspired by [Mey2002], we demonstrate the hierarchical constriction of theorem 4.3

in the two-dimensional example of f = ³ÇR, where ³ is a fixed constant and ÇR is the characteristic
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function of the ball of radius R. Of course, in this case of BV function we can simply solve u =

∇∆−1 f = ³
x

2
ÇR. The minimization with ¼ > 1/(4Ã³) yields

f = divu¼+ r¼, u¼ = (³−´)∇∆−1ÇR = (³−´)
x

2
ÇR and r¼ = ´ÇR with ´ :=

1

4Ã¼
.

This is verified by checking that |r¼|TV = ´2ÃR = 1
2¼

, and the extremal property (see remark 4.2),
∫

divu¼r¼ = (³−´)
R

4¼
= |u¼|∞|r¼|TV , |u¼|∞ = (³−´)

R

2
.

Iterating we find (for ³ > 8Ã)

f =

∞∑

j=1

u j, u j =



(
³−

1

8Ã

) x

2
ÇR j = 1,

1

4Ã2 j

x

2
ÇR, j ⩾ 2.

The above theorem can be used to construct uniformly bounded solutions to (1.1) for data f in

Lorentz spaces Y = Ld,q(Rd) when 1 < q <∞. Indeed, since Ld,q is reflexive, they qualify as Asplund

spaces with Fréchet differentiable norm, see [Asp1968] or [Phe1993, thm 2.12]. Except for the case

q = d corresponding to the space Y = Ld, the Fréchet derivative of the Ld,q does not have a simple

explicit form, however we note that this is not required for defining the hierarchical solution. Other

applications of hierarchical constructions in inverse problems that arise in image processing can be

found in [MNR2019].

In contrast, the space Y = Ld,∞(Rd) does not have a Fréchet differentiable norm, as seen by the

following counter-example due Luc Tatar, [Tar2011]. The purpose is to show that there exists f ,g and

³ > 0 such that

(4.20) ∥ f + ϵg∥
p

Lp,∞ ⩾ ∥ f ∥
p

Lp,∞ +³|ϵ |

proving that ∥·∥
p

Lp,∞ is not Fréchet — not even Gateaux differentiable. To this end one restrict attention

to the unit interval (0,1). Set f (x) := x
− 1

p and

g(x) :=

∞∑

k=0

(−1)k2
k
p1Ik(x), Ik = (2−(k+1),2−k).

The second rearrangement of f is given by f ∗∗(t) =
p

p−1
t
− 1

p , 0 < t < 1. Since |g(x)| ⩽ f (x) it follows

that F := f + ϵg ⩾ 0 for |ϵ | < 1, and hence

∥ f + ϵg∥Lp,∞ ⩾ t
1
p F∗∗(t) = t

−1+ 1
p

∫ t

0

F∗(s)ds

⩾ t
−1+ 1

p

∫ t

0

F(s)ds = t
−1+ 1

p

∫ t

0

f ∗(s)ds+ ϵt
−1+ 1

p

∫ t

0

g(s)ds

= ∥ f ∥Lp,∞ + ϵt
−1+ 1

p

∫ t

0

g(s)ds for all t < 1.

(4.21)

It remains to lower bound the term on the right. We compute
∫

Ik

g(s)ds = (−1)k2
k
p |Ik| = (−1)kÄk, Ä := 2

−1+ 1
p < 1.
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It follows that

∫ 2−k

0

g(s)ds =
(−1)kÄk

1+Ä
implying that ϵt

−1+ 1
p

∫ t

0

g(s)ds | t=2−k =
(−1)kϵ

1+Ä
, and (4.20) fol-

lows from (4.21) at t = 2−k with (−1)kϵ > 0 and ³ = 1/(1+Ä).

4.4. A hierarchical construction for general data. Finally, we work with general data f ∈ Y(Ω) for

some Ω ∈ Rd, without making assumption on the Fréchet differentiability of the Y norm, but instead

taking as a prior assumption that Y is a space such that uniformly bounded solution to (1.1) exist with

the bound (1.2) for some µ > 0.

We also assuming that Y is a dual space so that there exists a minimizer to the functional F having

the general form (4.1). Here we use the exponent p = 1 so that

(4.22) V(u) =V¼(u) = ∥u∥L∞ +¼∥divu− f ∥Y

For a value of ¼ to be fixed later, we denote by u1 is the minimizer and r1 = f −divu1 the residual. In

addition to the trivial bound

(4.23) ∥r1∥Y ⩽ ∥ f ∥Y and ∥u1∥L∞ ⩽ ¼∥ f ∥Y ,

that are obtained by comparison ofV(u1) andV(0), we can also compareV(u1) withV(u) where u

is a solution to (1.1) satisfying the bound (1.2). It follows that

(4.24) ¼∥r1∥Y ⩽ ∥u j∥L∞ ⩽ µ∥ f ∥Y .

Therefore, taking ¼ > µ, we obtain a contraction property

(4.25) ∥r1∥Y ⩽ Ä∥ f ∥Y ,

with Ä = µ/¼ < 1.

This suggests a hierarchical construction that was proposed in a more general context in [Tad2014]:

with this fixed value of ¼, we define iteratively u j as the minimizer of

(4.26) V j(u) = ∥u∥L∞ +¼∥r j−1−divu∥Y ,

and r j = r j−1−divu j. By recursive application of the above contraction principle, it follows that

(4.27) ∥r j∥Y ⩽ Ä∥r j−1∥Y ⩽ · · · ⩽ Ä
j∥ f ∥Y .

as well as

(4.28) ∥u j∥ ⩽ µ∥r j−1∥Y ⩽ µÄ
j−1∥ f ∥Y .

From this it follows that the hierarchical construction

(4.29) u1+u2+ · · ·+u j+ · · · ,

converges to a uniformly bounded u that satisfies the equation (1.1) and the bound

(4.30) ∥u∥L∞ ⩽
µ

1−Ä
∥ f ∥Y .
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