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Abstract—This paper presents a framework to represent
high-fidelity pointcloud sensor observations for efficient com-
munication and storage. The proposed approach exploits Sparse
Gaussian Process to encode pointcloud into a compact form.
Our approach represents both the free space and the occupied
space using only one model (one 2D Sparse Gaussian Process)
instead of the existing two-model framework (two 3D Gaussian
Mixture Models). We achieve this by proposing a variance-
based sampling technique that effectively discriminates between
the free and occupied space. The new representation requires
less memory footprint and can be transmitted across limited-
bandwidth communication channels. The framework is exten-
sively evaluated in simulation and it is also demonstrated using
a real mobile robot equipped with a 3D LiDAR. Our method
results in a 70~100 times reduction in the communication rate
compared to sending the raw pointcloud. We have provided a
demonstration video' and open-sourced our code 2.

I. INTRODUCTION

With the rapid advancement of LiDAR technology, we
now can build maps with remarkably high resolution. For
example, each full scan of an only 16-channel 3D LiDAR
can give us 57600 points in the pointcloud that represents
the surrounding obstacles. However, a price for using the
high resolution LiDAR is the computation, storage, and com-
munication costs when mapping the environments. While
one might be able to upgrade the computation and storage
by using a high performance computer system, the com-
munication usually becomes a bottleneck due to the low
communication bandwidth available. In practice, the low
bandwidth communication is considered as a major challenge
for many robotics applications such as occupancy mapping
of underwater and subterranean environments (caves, tunnels,
mines, etc), search-and-rescue missions in disaster scenarios
with a degraded communication infrastructure, and planetary
exploration missions [1]. The low bandwidth can prevent
a robot from real-time sharing its sensor observations, and
this can significantly degrade the system responsiveness if
the robot needs to follow or interact with external control
or supervision platforms. This work tackles the problem
of sharing high-fidelity 3D pointcloud through a limited
bandwidth communication channel.

The system we consider consists of a robot (the scout)
equipped with a LiDAR and a communication apparatus, and
deployed in a low-bandwidth environment. The scout sends
the observations that it acquires to a base for building the
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Fig. 1: System Overview.
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Fig. 2: (a) Gazebo simulated mine tunnel; (b) Original pointcloud
generated by a VLP16 LiDAR in red, and reconstructed pointcloud
from the VSGP model in white; (d) Occupancy Map generated by
OctoMap from the reconstructed pointcloud.

occupancy map of the environment, see Fig. 1. Our approach
exploits the Variational Sparse Gaussian Process (VSGP) [2]
as a generative model to represent the pointcloud in a
compact form. This lightweight representation is transmitted
through low-bandwidth communication to the base where the
original pointcloud is reconstructed. Extensive evaluations
reveal that our approach results in a 70~100 times reduction
in the memory as well as the communication rate required to
transmit pointcloud data. For example, Fig. 2a shows a scene
of a simulated mine tunnel, where its raw pointcloud (shown
in red, Fig. 2b) requires around 750 KB of memory. Our
approach is able to represent the same observation using only
6 KB of memory and transmit through limited-bandwidth
communication. On the receiver side of the communication
channel, the compact representation is used to reconstruct
the original pointcloud (reconstructed pointcloud shown in
white, Fig. 2b). An occupancy map of the scene can be built
using the reconstructed pointcloud, see Fig. 2c.

II. RELATED WORK

Pointcloud compression algorithms have been investigated
in recent years to cope with the demands to store and
communicate the high-precision 3D points [3]. For example,
the space partitioning trees approaches that exploit the 3D
correlation between pointcloud points are widely used to
compress the pointcloud data [4]-[9]. Recently, deep learning
based approaches were also proposed to leverage data and
learn or encode the pointcloud compression [10]-[14]. Dif-
ferent from these frameworks, the probabilistic approaches
exploit the compactness of the distributions to compress 3D
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sensor observation. For instance, Gaussian Mixture Models
(GMM) [15]-[17] have been proposed as a generative model
to encode 3D occupancy map. The GMM approach encodes
the 3D data as a mixture of Gaussian densities to represent
the occupied and free spaces around the robot.

Gaussian Process (GP) has been proven to be an excellent
framework to model spatial phenomena or features in a
continuous domain [18]-[21]. Unfortunately, the standard
GP has a cubic time complexity and this results in very
limited scalability to large datasets. Methods for reducing the
computing burdens of GPs have been previously investigated.
For example, GP regressions can be done in a real-time
fashion where the problem can be estimated locally with
local data [22]. Sparse GPs (SGPs) [23]-[26] tackle the com-
putational complexity of the normal GP through leveraging
the Bayesian rule with a sequential construction of the most
relevant subset of the data.

We propose a new probabilistic pointcloud compression
approach which is based on the VSGP [2] and inspired by
the GMM approach. While the GMM shares the accumulated
sensory information as a set of accumulated Gaussian den-
sities which are sampled and used as an occupancy map of
the environment, in contrast, the proposed approach relies on
sharing of immediate sensor observation to be reconstructed
on the other side of the communication channel for further
processing based on the required task (e.g. 3D mapping,
object recognition, tracking, etc). This proposed VSGP-based
approach offers a few advantages over the recent GMM
approach: while the GMM approach uses two 3D GMMs
to fit the occupied and free points [15]-[17], our approach
uses only one 2D VSGP to fit all the occupancy surface,
including both the occupied and free points. The primary
reason that our approach uses one VSGP instead of two is
that we are using the variance calculated by the VSGP at each
sampled point during the reconstruction process to decide if
it belongs to the occupied or the free space. Therefore, the
proposed approach results in a more compact representation
of the sensor observation, which requires less memory than
the GMM approach and, as a consequence, leads to a lower
communication rate.

III. BACKGROUND

GP is a non-parametric model described by a mean function
m(x), and a co-variance function (kernel) k(x,x’), where x €
R4 is the GP input [27]:

f(x) ~ GP (m(x),k (x,x')). (1)

By training the GP on a data set D = {(x;,y;)}/ with

n training inputs and their corresponding scalar outputs
(observations) y = {yi};’;(}, the output y* for any new query
x* can be estimated using the GP prediction equation:

PO ly) = N my (), ky (X", x7) + 07), 2)
where my(x) and ky(x,x’) are the posterior mean and co-
variance functions, and an is the noise variance [2]. The GP
prediction equation depends on the values of the hyperpa-
rameters (®,02) where © is the kernel parameters.

Various approximation methods have been proposed in the

literature to mitigate the computational complexity of a full
GP, which is O(n?) for n training data points. These approx-
imation methods consider only m input points ( inducing
points X)) to represent the entire training data [27], where
their corresponding values of the underlying function f(x)
are called the inducing variables f,,. By replacing the entire
data set with only the m inducing points, the computational
complexity is reduced to O(nm?). Titsias [2] proposed a
variational learning framework to jointly estimate the kernel
hyperparameters and the inducing points by approximating
the true exact posterior of a GP p(f|y) with a variational
posterior distribution g(f, fin),

q(fs fm) = P 1fm) @ (fin), 3)
where ¢ (f;,) is the free variational Gaussian distribution, and
p(f|fm) is the conditional GP prior. The Kullback-Leibler
(KLL) divergence is used to describe the discrepancy between
the approximated and the true posteriors. Minimizing the KL
divergence between the approximated and the true posteri-
ors KL[q(f, f)||p(f]y,®)] is equivalent to maximizing the
variational lower bound of the true log marginal likelihood:

1 ~
FV (Xm) = IOg [N (y | 07 0-21+ an)} - r‘_zTr(K%
an = Kan;;maKmna (4)

K = Cov (t| £,,) = Kun — KumK; Ko,

where Fy (X,,) is the variational objective function, Tr(K) is a
regularization trace term, K, is the original n X n co-variance
matrix, K, iS m X m co-variance matrix on the inducing
inputs, K, is n X m cross-covariance matrix between training
and inducing points, and K, = K,Zn. More details on VSGP
can be found in Titsias’s work [2].

IV. METHODOLOGY

The proposed approach exploits the VSGP as a generative
model to encode 3D pointcloud. The VSGP is selected
among different approximation approaches of GP due to the
following reasons: i) The variational approximation distin-
guishes between the inducing points X, (as a variational
parameter) and the kernel hyperparameters (©,0,). ii) The
regularization term Tr(K) in the variational objective func-
tion (Eq. (4)) regularizes the hyperparameters to avoid over-
fitting of the data. iii) The variational approximation offers
a discrete optimization scheme for selecting the inducing
inputs X,, from the original data’.

A. VSGP as a generative model for the occupancy surface

Inspired by [15], we project the occupied points observed
by a ranging sensor, e.g., LiDAR, onto a circular surface
around the sensor origin with a predefined radius r,.. This
surface is called occupancy surface, see Fig. 3. In our
approach, the sensor observation is defined in the spherical
coordinate system, where any observed point is described by
the tuple (6;,0;,7;) which represents the azimuth, elevation,
and radius values, respectively. Also, any pointcloud data
can be converted from the cartesian coordinates (x;,y;,z;)

3For more information about the inducing point selection, check [2]
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to the spherical coordinates (6;,a;,r;) using the following
equations:

ri=\F+y 427, 6 =tan"'(yi,x;), o =cos ' (z/r).
4)
All observed points that lie on or outside the circular
occupancy surface (with a radius r; > r,) are neglected
and considered as free space. The rest of the points that
are inside the circular surface (with a radius r; < r,.) are
projected on the occupancy surface and called the occupied
points. Therefore, the occupancy surface radius r, acts as the
maximum range of the sensor. Each occupied point x; on the
surface is defined by two attributes: the azimuth and elevation
angles x; = (6;, ), and assigned an occupancy value f(X;)
that is a function of the point radius r;. The probability of
occupancy f(x;) at each point on the occupancy surface is
modeled by a VSGP:
F(x) ~V8GP (m(x),k (x,x')) . (6)
Considering noisy measurements, we add a white noise €
to the occupancy function f(x), so the observed occupancy
is described as y; = f(x;) + & where € follows a Gaussian
distribution N (0,07). The final model of the occupancy
surface is a 2D VSGP where the input is the azimuth and
elevation angles, X = {(0,a)}"_,, and the corresponding
output is the expected occupancy y = {oc;}}_ ;. The three
main components of the final VSGP are:

1) Zero-Mean Function m(x) There are different formulas
to describe the relationship between the occupancy of a
point f(x;) on the occupancy surface and its radius r; [15].
For example, one candidate is f(x;) = 1/r; where r; is
bounded by the minimum and the maximum range of the
SeNSOr Fpin < i < I'max = Foc, Where 1y, > 0. Our approach
relates the occupancy of a point f(x;) to its radius r; by the
following equation f(X;) = roc — r;. This mapping between
the occupancy and the radius of a point is compatible with
the previous assumption that the occupancy surface radius
roc represents the maximum range of the sensor. Moreover,
this mapping is encoded in our VSGP model as a zero-mean
function m(x) = 0 that sets the occupancy value of the non-
observed points to zero. This mapping behavior mimics the
mechanism of the LiDAR itself.

2) Rational Quadratic (RQ) Kernel The RQ kernel is
selected because a GP prior with an RQ kernel is expected
to have functions that vary across different length scales.
This quality of the RQ kernel copes with the nature of the
occupancy surface, specifically in unstructured environments
where a range of diverse length scales is required, i.e.,

n oo =)\
kRQ (X,X) =0 1+ R @)

2002
where 62 is the signal variance, [ is the length-scale, and «
sets the relative weighting of large and small scale variations.

The RQ kernel is more expressive in terms of modeling the
occupancy surface than the most commonly used Squared
Exponential (SE) kernel. This can be reasoned by the fact
that the RQ kernel (when « and [/ > 0) is equivalent to

(@) (b) ©

Fig. 3: (a) Simulated scene of a robot in a tunnel (black); (b)
The occupancy surface generated from the original pointcloud,
where warmer colors reflect smaller f(x;) values (less occupancy);
(c) The inner surface represents the original occupancy surface
(same as in b), and the middle surface represents the reconstructed
occupancy surface using the VSGP model. The outer grey-coded
surface represents the variance associated with each point on the
reconstructed occupancy surface where brighter colors reflect high
uncertainty. Raw pointcloud is shown in red in (b) and (c).

a scale mixture of SE kernels with mixed characteristic
length-scales [27]. In practice, we take into account the
LiDAR’s resolution along both the azimuth and elevation
axes to initiate different length-scales along the azimuth and
elevation axes, respectively.

3) Inducing Points Selection The variational learning
framework proposed in [2] jointly optimizes the variational
parameters (inducing points) and the hyperparameters (®, )
through a variational Expectation-Maximization (EM) algo-
rithm. In general, the original discrete optimization frame-
work [2] suggests having an incremental set of the inducing
points, so that during the Expectation step (E-step) a point
from the input data is added to the inducing points set to
maximize the variational objective function Fy (4) and mini-
mize the KIL divergence between the true and approximated
posteriors KL[g(f)||p(f]y,®)]. Then the hyperparameters
are updated during the Maximization step (M-step).

The projection of the observed points on the circular
surface leads to a limited input domain for the VSGP. In
our case, the azimuth and the elevation axes are limited
to (—x to m) and (—15° to 15°), respectively. The limited
input domain is used to initiate a fixed number of inducing
points at evenly distributed locations on the occupied part of
the occupancy surface. In this way, a different combination
of the points is selected at each E-step to maximize the
variational objective function Fy and minimize the KL
divergence. Then the hyperparameters are updated during the
M-step. The number of the inducing points m is chosen to
compromise the computational and memory complexity on
one side and the accuracy of the reconstructed pointcloud
on the other side. More inducing points result in higher
computations complexity O(nm?), larger memory to store
the encoded observation, and higher bandwidth to transfer
it. However, more inducing points increase the accuracy of
the reconstructed pointcloud. We chose m = 500 to keep
the average deviation between the reconstructed pointcloud
and the original pointcloud under 15 cm, see Section V-
A2. After the training phase on the scout side is completed,
the selected inducing points are combined together with the
hyperparameters values of the VSGP and are transmitted
from the scout to the base.
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B. Variance-based sampling

On the base side, the inducing points and the values of
the hyperparameters, which are received from the scout,
are used to reconstruct the original occupancy surface. The
reconstruction is done through a GP configured with the
same kernel (RQ) and likelihood (Gaussian) as the VSGP
on the scout side. The base GP is trained on the inducing
points and has a computation complexity of O(m®) where
m is the number of the inducing points, so we refer it as
a sparse GP (SGP) and refer the reconstructed occupancy
surface as the SGP occupancy surface. A grid of query points
X* = {(6;,0;)}X , with the same resolution of the LiDAR
along the azimuth and the elevation axes is generated to
reconstruct the original pointcloud from the SGP occupancy
surface — we refer to the reconstructed pointcloud as the SGP
pointcloud. If up-sampling of the pointcloud is required for
any reason, a query grid with higher resolution can be used
for the reconstruction process. The SGP occupancy model
is used to predict the occupancy f(x;) of each point x; of
the query grid X*. The occupancy is converted back to the
spherical radius r; = r,. — f(x;) to restore the 3D spherical
coordinates of each point.

One advantage of the GP and its variants over other
modeling techniques is the uncertainty (variance) associated
with the predicted value at any query point. Considering
the VSGP model of the occupancy surface on the scout
side, the variance associated with the occupied points is low
compared to the variance related to the free points. Selecting
the inducing points X, as a set from the original occupied
points maintains low-variance values for the occupied part of
the reconstructed SGP occupancy surface on the base side.
Therefore, the variance value associated with any point on
the reconstructed SGP occupancy surface is used to predict
if that point belongs to the occupied or the free part of the
occupancy surface, see Fig. 4. We use a variance threshold
Vin as a judging criterion. In fact, the variance related to
the occupancy surface is different from one observation to
another, and it is affected by both the number of observed
(occupied) points and their distribution over the occupancy
surface. Therefore, we chose the variance threshold V;, as
a variable that changes with the distribution of the variance
over the occupied and free parts of the occupancy surface.
Vi, is defined as a linear combination of the variance mean
v, and standard deviation vy, over the surface, i.e., Vi, =
Ky % vy + K g % vgqg where K, and K,z are tuning parameters.
K,, and Ky, are tuned by first setting Vi, = v, (K, =1,
Kq = 0), then we increase K; and decrease K, gradually
till we get the values that give the highest accuracy for the
reconstructed SGP pointcloud (considering a fixed number of
inducing points). Our sampling-based approach is capable
of discriminating between the free points that most likely
belong to the free part of the SGP occupancy surface and
the occupied points that belong to the the occupied part of
the SGP occupancy surface. After removing the free part
of the SGP occupancy surface, the Cartesian coordinates of
the occupied points are calculated using the inverse form of

Fig. 4: Variance-based sampling. (a) Simulated scene of the en-
trance of a tunnel; (b) The original (inner), reconstructed (middle),
and variance (outer) surfaces. It also shows the reconstructed
pointcloud (in white) through reconstructing from all points (free
and occupied) of the occupancy surface. (c) Reconstructed SGP
pointcloud after removing all points that most likely belong to the
free part of the occupancy surface. Raw pointcloud is shown in red
in (b) and (c).

Eq. (5) to restore the original point cloud, see Fig. 4c.
V. EXPERIMENTAL DESIGN AND RESULTS

The proposed approach is implemented in Python3 on top of
GPflow-v2 [28] under ROS framework [29]. Both real-time
simulation and real-time demonstration were considered to
evaluate the proposed approach. In both the simulation and
the hardware experiments, a VLP-16 LiDAR was used with a
maximum range of 10m, a frequency of 4Hz, and a resolution
of (0.1°,2°) along the azimuth and the elevation axis, respec-
tively. This configuration results in a maximum pointcloud
size of 57600 points. The query grid, which is used to sample
the SGP occupancy surface on the base side, has the same
resolution as the VLP-16 LiDAR. A 3D occupancy grid map
with a resolution of Scm is generated from the reconstructed
SGP pointcloud through Octomap [30].

We investigate the performance of our framework and
compare it with the GMM approach [15]-[17]. While the
GMM approach tackles the occupancy mapping problem as
a whole, our approach focuses on compressing sensor obser-
vations through limited-bandwidth communication channels.
To be able to compare the two approaches, we implemented
the GMM approach in such a way that it is used to encode
one sensor observation at a time instead of generating an
entire occupancy map. We compared our approach with two
versions of the GMM approach: i) A CPU-based implemen-
tation of GMM that follows the same guidelines of [15].
ii) An upgraded GPU-based implementation of GMM. We
implemented the GPU-GMM to have a fair computation
comparison with our VSGP approach which runs on GPU.

A. Simulation Experiments

1) Simulation Setup: The simulation setup consists of
two machines that communicate to each other over WiFi:
The first machine, where the scout and the environment
are simulated, is a 64-GB RAM Intel® Core™ i7 PC (
NUCI1) equipped with 6-GB Geforce RTX2060 GPU. The
second machine, which acts as the base, is a 32-GB RAM
Intel® Core™ i7 Laptop (Alienware) equipped with 8-GB
Geforce RTX2080 GPU. Both are connected using a 2.4
GHz WiFi router. The network flow is monitored using the
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ifstat tool to evaluate the communication performance. The
mine tunnel of the cpr_inspection environment, developed by
ClearPath robotics, is used as our simulation environment.
This environment is selected because it represents one of
the targeted low-bandwidth subterranean environments. The
mine tunnel part of the environment fits in a rectangular
with an approximated area of 30 x 65m>. The tunnel length
is around 135m, where the ground elevation and the tunnel
height are different from one place to another. The ClearPath
Jackal robot is used as the scout. The proposed approach
was evaluated through 20 real-time simulation trials. In each
trial, the robot starts at the beginning of the cave and follows
a predefined path along the mine using way-point-based
navigation.

2) Simulation Results We evaluate the performance of our
approach based on the reduction in the memory and the com-
munication rate required to transmit the sensor observations
between the scout and the base. The VSGP representation
requires only 1514 floating points (FP) to represent the entire
pointcloud (3 FP for each inducing point (3x500) + 6 FP for
robot pose + 6 FP for the hyperparameters). This value is
less than the memory needed by the GMM approach which
requires ~ 2000 FP (10 FP for each component (10x200)
distributed as 6 FP for covariance + 3 FP for mean + 1
FP for weight) [15]. We send the robot pose to the base
because our approach encodes the observation relative to the
robot body frame, while the GMM approach first transforms
the observation from the robot body frame to a global
frame using the robot’s current pose, then sends the encoded
Gaussians densities with respect to the global frame.

To quantify the accuracy of the reconstructed SGP point-
cloud, we use the Root Mean Square Deviation (RMSD)
between the radius predicted by our approach and the actual
radius of each point on the occupancy surface.

®)

where N is the size of the pointcloud, #; is the actual radius
at (6;,;), and #; is the estimated radius value at the same
point. Fig. 5a shows the mean and the standard deviation of
the RMSD for each predicted point over 110 observations
(each observation has around 10K to 50K points). Also,
Fig. 5a implicitly reflects the memory required by VSGP and
GMM to store one observation, as described before that the
memory required to store one observation can be calculated
by multiplying the number of inducing points (bottom Xx-axis)
by 3 and multiplying the number of components (top x-axis)
by 10. We match pairs of the VSGP and GMM models (in
terms of the number of inducing points and components)
based on the memory requirement and the accuracy of the
reconstructed pointcloud (reflected by the RMSD) for each
pair, see table I. For example, 500-inducing points VSGP
results in an average RMSD value for each point of 9 cm
with a standard deviation of 10 cm. This corresponds to an
average RMSD of 11 cm with a standard deviation of 25 cm
for a 200-components GMM.
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Fig. 5: Performance comparisons. (a) shows the RMSD between
the reconstructed and the original pointcloud for VSGP(vs #induc-
ing points) and GMM(vs #components); (b) illustrates the training
time against the pointcloud size (considering 500-inducing points
VSGP, and equivalently, 200-components GMM); (c) represents
the training time versus the #VSGP-inducing points and #GMM-
components; (d) shows the prediction time versus the #VSGP-
inducing points and #GMM-components.

TABLE I: VSGP vs GMM(ind: inducing, cps: components)

VSGP GMM

# Memory | RMSD # Memory | RMSD
ind ~FPs ~cm cps ~FPs ~cm
200 600 20422 50 500 27+50
300 900 14+£15 || 100 1000 16135
400 1200 12+14 || 150 1500 13431
500 1500 9+10 200 2000 11£29
600 1800 9+10 250 2500 11+£30

Now we analyze the results in Fig. 5. Fig. 5a shows the
RMSD values associated with VSGP have a smaller standard
deviation than the GMM’s. It also shows that increasing the
number of the VSGP-inducing points (bottom x-axis) or the
number of the GMM-components (top x-axis) will result in
smaller RMSD (higher accuracy).

An intensive evaluation of the training and the prediction
phases is presented in Figs. 5b-5d. The reduction in the
training time versus the reduction in the size of the raw
pointcloud is presented in Fig. 5b, where 0% removal percent
means a pointcloud size of 57.6K points. Fig. 5c shows
the increase in training time versus the number of inducing
points and the number of components. We compare the
training time of the VSGP, the GMM-CPU (considering the
default configuration of the GMM approach used in [15]),
and the GMM-GPU implementation. The results show that
our approach outperforms both the CPU and GPU imple-
mentation of the GMM approach in terms of training time.
Fig. 5d presents the variation of the prediction time of the
VSGP versus the number of the inducing points, where the
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Fig. 6: (a) Simulated mine environment; (b) Octomap of the mine
generated from the original pointcloud; (c) Octomap generated
from the reconstructed SGP pointcloud; (d) Communication rate
and accumulated data sent from the scout to the base for sending
raw pointcloud PCL(1750KB/S, 840MB), GMM data(25.8KB/S,
12.4MB), and VSGP data(18.2KB/S, 8.7MB). The y-axis is plotted
in log-scale.

values shown in the figure represent the time required to
predict the occupancy value associated with all the points of
the grid query x (57600 points).

Fig. 5d indicates that for a matching pair of GMM and
VSGP (Table I), GMM has a less sampling time than
the paired VSGP. However, the pointcloud reconstruction
process of the VSGP is more convenient than the GMM
approach because a fundamental difference between sam-
pling the VSGP and the GMM is that: when we sample
from a GMM, we get a sample (from a distribution) with
random values (6,0, 7y), so we do not have control over
the location of the sample on the occupancy surface (6, o).
In contrast, for the VSGP approach, we predict the radius
value ry for a certain point on the occupancy surface defined
by (65, 0y). So, we have control over the point location on
the occupancy surface. While constructing the 3D octomap
of the tunnel environment using the scout-base scheme, the
average communication rate was 1750 KB/S, 25.8 KB/S,
and 18.2 KB/S for sending raw point clouds, GMM encoded
data, and VSGP encoded data respectively, see Fig. 6d. The
accumulated data sent through the network is reduced from
840 MB for sending raw pointcloud to 12.4 MB in case
of GMM and 8.7 MB in case of VSGP. This indicates a
compression ratio of ~ 96 (840/8.7 ~ 1750/18.2).

B. Hardware Experiment

A Jackal mobile robot, equipped with a VLP-16 LiDAR
and the NUCII PC, was used as the scout, while the
Alienware laptop was used as the base. The demonstration
was conducted in an indoor environment, where the VSGP-
encoded pointcloud data was sent from the scout to the
base to generate a 3D Octomap [30] of the building from
the SGP reconstructed pointcloud in real-time, see Fig. 7.

(b)

10
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T T T T
0 25 50 75 100 125 150 175
Time [S]
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Fig. 7: Indoor demonstration. (a) Octomap of the laboratory
building generated from the original pointcloud. (b) Octomap
generated from the reconstructed SGP pointcloud. (c) Reduction
in the communication rate and the accumulated data sent from the
scout to the base, where log-scale is used for y-axis. PCL represents
the raw pointcloud.

Rate |[KB/S|

= PCL
— VSGP

Data |KB|

Fig. 7c shows the reduction in the communication rate for
the hardware experiment. The communication rate dropped
from around 560 KB for transmitting raw pointcloud to
around 8 KB for transmitting the encoded VSGP (this ratio
is equivalent to 70 times smaller rate). The communication
rate of the hardware experiment is low compared to the
simulation experiment because the LiDAR resolution was
halved during the hardware experiment. The total amount
of data transmitted at the end of each trial was around 100
MB for sending raw pointcloud and only around 1.4 MB for
sending the VSGP encoded observation.

VI. CONCLUSION

In this paper, we introduce a lightweight representation
for the 3D pointcloud using the VSGP. This representation
allows high-fidelity observations to be efficiently stored
and transmitted through limited-bandwidth communication
channels. Based on the results of the simulation and hardware
experiments, our approach results in around 70-100 times
smaller size representation of the sensor observation. This
compact representation can facilitate many of the robotics
applications which are limited by the communication band-
width such as subterranean and underwater exploration,
search and rescue missions, and planetary exploration. In
addition, our approach can also be beneficial in the context
of multi-robot collaboration where a number of robots are
required to share high-volume information (3D pointcloud)
through low-bandwidth channels.
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