


sensor observation. For instance, Gaussian Mixture Models

(GMM) [15]–[17] have been proposed as a generative model

to encode 3D occupancy map. The GMM approach encodes

the 3D data as a mixture of Gaussian densities to represent

the occupied and free spaces around the robot.

Gaussian Process (GP) has been proven to be an excellent

framework to model spatial phenomena or features in a

continuous domain [18]–[21]. Unfortunately, the standard

GP has a cubic time complexity and this results in very

limited scalability to large datasets. Methods for reducing the

computing burdens of GPs have been previously investigated.

For example, GP regressions can be done in a real-time

fashion where the problem can be estimated locally with

local data [22]. Sparse GPs (SGPs) [23]–[26] tackle the com-

putational complexity of the normal GP through leveraging

the Bayesian rule with a sequential construction of the most

relevant subset of the data.

We propose a new probabilistic pointcloud compression

approach which is based on the VSGP [2] and inspired by

the GMM approach. While the GMM shares the accumulated

sensory information as a set of accumulated Gaussian den-

sities which are sampled and used as an occupancy map of

the environment, in contrast, the proposed approach relies on

sharing of immediate sensor observation to be reconstructed

on the other side of the communication channel for further

processing based on the required task (e.g. 3D mapping,

object recognition, tracking, etc). This proposed VSGP-based

approach offers a few advantages over the recent GMM

approach: while the GMM approach uses two 3D GMMs

to fit the occupied and free points [15]–[17], our approach

uses only one 2D VSGP to fit all the occupancy surface,

including both the occupied and free points. The primary

reason that our approach uses one VSGP instead of two is

that we are using the variance calculated by the VSGP at each

sampled point during the reconstruction process to decide if

it belongs to the occupied or the free space. Therefore, the

proposed approach results in a more compact representation

of the sensor observation, which requires less memory than

the GMM approach and, as a consequence, leads to a lower

communication rate.

III. BACKGROUND

GP is a non-parametric model described by a mean function

m(x), and a co-variance function (kernel) k(x,x′), where x ∈
R

d is the GP input [27]:

f (x)∼ GP
(
m(x),k

(
x,x′

))
. (1)

By training the GP on a data set D = {(xi,yi)}
n−1
i=0 with

n training inputs and their corresponding scalar outputs

(observations) y = {yi}
n−1
i=0 , the output y∗ for any new query

x∗ can be estimated using the GP prediction equation:

p(y∗|y) =N(y∗|my(x
∗),ky(x

∗
,x∗)+σ2

n ), (2)

where my(x) and ky(x,x
′) are the posterior mean and co-

variance functions, and σ2
n is the noise variance [2]. The GP

prediction equation depends on the values of the hyperpa-

rameters (Θ,σ2
n ) where Θ is the kernel parameters.

Various approximation methods have been proposed in the

literature to mitigate the computational complexity of a full

GP, which is O(n3) for n training data points. These approx-

imation methods consider only m input points ( inducing

points Xm) to represent the entire training data [27], where

their corresponding values of the underlying function f (x)
are called the inducing variables fm. By replacing the entire

data set with only the m inducing points, the computational

complexity is reduced to O(nm2). Titsias [2] proposed a

variational learning framework to jointly estimate the kernel

hyperparameters and the inducing points by approximating

the true exact posterior of a GP p( f |y) with a variational

posterior distribution q( f , fm),

q( f , fm) = p( f | fm)φ( fm), (3)

where φ( fm) is the free variational Gaussian distribution, and

p( f | fm) is the conditional GP prior. The Kullback-Leibler

(KL) divergence is used to describe the discrepancy between

the approximated and the true posteriors. Minimizing the KL

divergence between the approximated and the true posteri-

ors KL[q( f , fm)||p( f |y,Θ)] is equivalent to maximizing the

variational lower bound of the true log marginal likelihood:

FV (Xm) = log
[
N
(
y | 0,σ2I +Qnn

)]
−

1

2σ2
Tr(K̃),

Qnn = KnmK−1
mmKmn,

K̃ = Cov(f | fm) = Knn −KnmK−1
mmKmn,

(4)

where FV (Xm) is the variational objective function, Tr(K̃) is a

regularization trace term, Knn is the original n×n co-variance

matrix, Kmm is m×m co-variance matrix on the inducing

inputs, Knm is n×m cross-covariance matrix between training

and inducing points, and Knm = KT
mn. More details on VSGP

can be found in Titsias’s work [2].

IV. METHODOLOGY

The proposed approach exploits the VSGP as a generative

model to encode 3D pointcloud. The VSGP is selected

among different approximation approaches of GP due to the

following reasons: i) The variational approximation distin-

guishes between the inducing points Xm (as a variational

parameter) and the kernel hyperparameters (Θ,σn). ii) The

regularization term Tr(K̃) in the variational objective func-

tion (Eq. (4)) regularizes the hyperparameters to avoid over-

fitting of the data. iii) The variational approximation offers

a discrete optimization scheme for selecting the inducing

inputs Xm from the original data3.

A. VSGP as a generative model for the occupancy surface

Inspired by [15], we project the occupied points observed

by a ranging sensor, e.g., LiDAR, onto a circular surface

around the sensor origin with a predefined radius roc. This

surface is called occupancy surface, see Fig. 3. In our

approach, the sensor observation is defined in the spherical

coordinate system, where any observed point is described by

the tuple (θi,αi,ri) which represents the azimuth, elevation,

and radius values, respectively. Also, any pointcloud data

can be converted from the cartesian coordinates (xi,yi,zi)

3For more information about the inducing point selection, check [2]
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