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Abstract. Unsupervised domain adaptive semantic segmentation (UDA-
SS) aims to train a model on the source domain data (e.g., synthetic)
and adapt the model to predict target domain data (e.g. real-world)
without accessing target annotation data. Most existing UDA-SS meth-
ods only focus on inter-domain knowledge to mitigate the data-shift
problem. However, learning the inherent structure of the images and
exploring the intrinsic pixel distribution of both domains are ignored;
which prevents the UDA-SS methods from producing satisfactory per-
formance like the supervised learning. Moreover, incorporating contex-
tual knowledge is also often overlooked. Considering these issues, in this
work, we propose a UDA-SS framework that learns both intra-domain
and context-aware knowledge. To learn the intra-domain knowledge, we
incorporate contrastive loss in both domains, which pulls pixels of sim-
ilar classes together and pushes the rest away, facilitating intra-image-
pixel-wise correlations. To learn context-aware knowledge, we modify
the mixing technique by leveraging contextual dependency among the
classes to learn context-aware knowledge. Moreover, we adapt the Mask
Image Modeling (MIM) technique to properly use context clues for ro-
bust visual recognition, using limited information about the masked im-
ages. Comprehensive experiments validate that our proposed method
improves the state-of-the-art UDA-SS methods by a margin of 0.51%
mIoU and 0.54% mIoU in the adaptation of GTA-V→Cityscapes and
Synthia→Cityscapes, respectively. We open-source our C2DA code. Code
link: github.com/Masrur02/C-Squared-DA

Keywords: Domain adaptation, semantic segmentation, visual naviga-
tion

1 INTRODUCTION

Deep segmentation models trained by existing datasets [1–3] are not always suf-
ficient to segment accurately in novel and difficult environments. Most impor-
tantly when it comes to the case of different domains, for example, simulation-
real, day-night, summer-fall, and so on, it is difficult to boost the model to be
generalized in unseen data of other domains because there is a non-trivial do-
main shift between the trained data and the data to be predicted. Unsupervised
Domain Adaptation (UDA) is an effective framework for solving the problem of
limited annotated data and the problem of domain shift in semantic segmen-
tation. In UDA, a model is trained to transfer the knowledge in the annotated
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segmentation map of the entire image along with the masked-out parts. In this
way, the model is compelled to utilize the contexts to identify the masked-out
areas. We mask out different patches throughout the training, ensuring robust
learning of the context clues. Moreover, in this work, we do not confine the pro-
posed framework to only adapting in urban scenes rather we perform the domain
adaptation in forest scenes as well.

Finally, we deploy our UDA framework in a robotic vehicle to navigate it in
a forest environment. The necessity of applying domain adaptation in robotics
is strong because robots can be deployed in a wide range of environments. Fig. 1
shows an example of the difference between the training source data and target
deployment data. The available training data only contains images collected
from a summer forest, while the deployment task desires the robot to operate in
a fall forest that exhibits a drastically changed visual appearance, thus leading
to a non-trivial domain shift. Our comprehensive evaluations across well-known
datasets reveal that our UDA framework outperforms the current state-of-the-
art (SOTA) models under the same settings.

2 RELATED WORKS

Unsupervised Domain Adaptation: In UDA a deep learning model is trained
on annotated source data to predict on label-scarce target domain data. Over
the years, UDA has been employed in almost all branches of computer vision
including classification [10], segmentation [5], object detection [11] due to its
ability to solve domain gaps. Mainstream UDA methods are mainly grouped
into two categories: adversarial training [12] and self-training [13]. Adversarial
training focuses on learning domain-invariant knowledge through the alignment
of features from the source domain with those of the target domain. It mitigates
the domain gaps by using entropy minimization [14], correlation alignment [15],
etc. Adversarial learning focuses on aligning features between two domains on
a global scale rather than aligning features at the class level and leads to a
negative transfer problem during semantic segmentation tasks. As a result, the
training process becomes unstable and yields suboptimal performance. On the
other hand, self-training adapts a student-teacher [5] framework to tackle the
data shift problem which is typical in UDA. In this strategy, pseudo-labels are
generated by a teacher model trained on the source domain data. Later, the
student model is trained on the target images by leveraging those pseudo-labels
as ground truth data. However, due to significant differences in data distribu-
tions between the two domains, pseudo-labels inherently possess noise. To create
reliable pseudo-labels, strategies utilized often include adopting pseudo labels
with high confidence [16], learning from the future [17], employing uncertainty-
aware pseudo labeling [18], and so on. Other applied strategies to increase the
robustness of UDA methods are utilizing consistency regularization [19], domain-
mixup [20], multi-resolution inputs [13], etc.

Contrastive Learning: Contrastive learning is one of the notable meth-
ods for learning discriminative feature representations. It learns the inherent
structure of the images by contrasting positive data pairs against the negative
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data pairs. For recognizing positive and negative pairs, computing Euclidean
distance [21] and cosine similarity [22] between features are the widely adopted
methods. Along with the classification, contrastive learning has also been utilized
in semantic segmentation tasks [23]. As semantic segmentation is a pixel-level
classification task, pixels from the same classes are considered as positive pairs
and the rest are considered as negative pairs. So, contrastive learning in semantic
segmentation tries to pull the pixels of the same classes together while pushing
away the rest of the pixels. In addition, to pixel-wise contrastive learning, recent
studies have also explored other forms of contrastive learning for segmentation
tasks, such as prototype-wise [23] and distribution-wise [24] approaches. Con-
trastive learning can be performed in both supervised [25] and self-supervised [26]
manners. Recently UDA methods are also exploring contrastive loss for its ability
to learn the feature representations [27].

Masked-based Learning: Masked language modeling has reshaped the
field of natural language processing (NLP) [28] by masking the tokens of in-
put sequences. Recently, masking-based learning has demonstrated itself in the
name of Masked Image Modeling (MIM) as a competitive challenger for self-
supervised learning in computer vision [29, 30]. In MIM, the models are ex-
pected to reconstruct various features including VAE features [31], HOG fea-
tures [32], or color information [33] of the masked image patches. For masking
the patches researchers have explored different techniques, for example, random-
patch masking [32], block-wise masking [29], attention-guided masking [34], etc.
Starting from the context encoder approach [35], MIM has also been explored
on the modern vision transformers [29, 30]. Most of the MIM works are based
on transformer-decoder and reconstruction techniques. Relevant to these works,
a recent study SimMiM [36] utilized a linear head-based approach, and [37]
performed MIM without reconstruction however. Recently, MIM has also been
explored for UDA tasks in [8] for its capability to learn contextual relations.

3 Methodology

To explain the overall method of our work, we first provide preliminary knowl-
edge of the UDA methods in Sect. 3.1. Then we provide the general structure of
our proposed model in Sect. 3.2. In Sect. 3.5, we discuss the technique of gener-
ating masked images and learning from context clues. In Sect. 3.3, we discuss the
technique for obtaining intra-domain knowledge. Finally, in Sect. 3.4 we describe
the context-aware mixing scheme for reducing the domain shift.

3.1 Preliminaries of UDA-SS

We consider a source domain S and a target domain T in space x×y, where
x, y denote the input space and label space, respectively. In the source do-
main, we have Ns images with labels (xS={xs

i}
Ns

i=1, y
S={ysi }

Ns

i=1) that belongs
to C categories, while for the target domain, we only have access to Nt images
xT={xt

j}
Nt

j=1. A neural network consisting of a feature extractor gθ and a segmen-
tation head hcls is used as the adaptation model. The model is first trained on
the source domain data xS with labels yS . Therefore segmentation loss function
for the source domain becomes
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3.2 Model Framework

We build our proposed UDA framework by using the teacher-student framework
(see Fig. 2). The architecture of the teacher model is the same as the student
model, and both utilize a pre-trained SegFormer transformer. Each iteration
consists of four stages. At the beginning of each iteration, we update the teacher
model’s weight by using an Exponential Moving Average (EMA), to ensure that
the teacher model remains in sync with the student model. In the first stage,
we train the student model with the source data and source label. After that, in
the second stage, we use the teacher model to predict the target domain images
and generate pseudo-labels without backpropagation. In the third stage, we use
a cross-domain mix module (described in Sect. 3.4) to generate a new image pair
(xmix, ymix) from both domains and train the student model again. Hence, Eq.
(2) gets updated as:

LT
CE = −E[pmix

j log hcls (gθ(x
mix
j ))], (4)

where pmix
j is scalar value from the probability vector of the mixed label ymix

j ,

pmix
j is already one-hot encoded as we use copy-paste based mixing strategy.

Finally, in the fourth stage, we mask out random patches from the target domain
images (described in Sect. 3.5) and generate the masked images xma={xma

j }Nt

j=1.
Then we train the student model again on the masked images supervised by the
pseudo-labels ȳtj . Based on the training of mixing and masking, the adaptation
objective of our model is:

min
θ,φ

LS
CE(θ, φ) + LT

CE(θ, φ) + Lma
CE(θ, φ), (5)

where Lma
CE is the masked loss.

3.3 Learning Inherent Structure

The adopted segmentation losses do not consider learning the inherent context
within the images, which is important for local-focused segmentation tasks. So,
to learn the intra-domain knowledge, we opt to utilize pixel-wise contrastive
learning. Specifically, along with the classification head hcls, we use a projection
head hproj that generates an embedding space es=hprojgθ(x) of the pixels. Con-
trastive learning facilitates learning the correlation between the labeled pixels
by pulling the positive pairs of pixels together and pushing the negative pairs of
pixels away. Considering the pixels of the same class C as positive pairs and the
other pixels in x as negative pairs, contrastive loss Lpix can be derived as

Lpix = −
∑

C(i)=C(j)

log
d(esi, esj)∑Npix

k=1 d(esi, esk)
, (6)

where Npix is the total number of pixels, esi is the feature map of ith pixel
in the embedding space, and d denotes the similarity between the pixel fea-
tures which can be measured using metrics like Euclidean distance or cosine
similarity. In particular, we utilize the exponential form of cosine similarity
d(esi, esj) = exp(s(esi, esj)/τ), where s represents the cosine similarity between
two-pixel features esi and esj , and τ is the temperature parameter. The temper-
ature parameter τ modulates the distribution sharpness of similarities. Effective
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implementation involves careful sampling of positive and negative pairs to ensure
balanced training, efficient design of the embedding space to capture meaningful
pixel relationships, and appropriate regularization techniques to prevent overfit-
ting. As shown in Fig. 2, after applying the contrastive loss, the feature space is
guided to pull the pixels from the same class together and push the other away.
This leads to a desirable property of intra-class compactness and inter-class sep-
arability ultimately enhancing segmentation performance by embedding richer
contextual relationships.

3.4 Context-aware Mixing

Exploiting contextual knowledge is another important concept for mitigating
the domain shift in UDA as both the source domain and target domain share
similar semantic contexts. Domain shift refers to the discrepancy between the
data distributions of the source and target domains, which can hinder model
performance when applied to the target domain. By leveraging these shared
semantic contexts, we create more meaningful training examples that help the
model generalize better across domains. We use mixed images to calculate the
target domain loss instead of the pseudo-labels as the mixture efficiently guides
the model to learn from the supervision signals of both domains. According to
ClassMix [9], we first randomly choose and copy 50% of the classes from the
source ground truth yS and then we paste them over the pseudo-label ȳT to
generate mixed label ymix. Similarly, we also paste the same class areas of xS

over the xT to generate mixed image xmix. To be specific, we generate a mask,
M, by selecting random classes, and then apply this mask to the images from
both domains, blending them to generate the mixed images. Formally,

xmix = M ⊗ xS + (1−M)⊗ xT

ymix = M ⊗ yS + (1−M)⊗ ȳT .
(7)

However, in this way, the cross-domain mixture module overlooks the shared

(a) Source Image (b) Target Image (c) ClassMix (d) Prior-guided Mix

Fig. 3: Illustration of the contextual advantage of the Prior-guided classmix over the
conventional classmix.

context across the domains. For example, in both the source and target domains,
the rider class is always associated with either bicycle or motorcycle. Moreover,
the traffic light is always beside the pole and so on. However, conventional mixing
methods overlook this relationship due to random selection, copying the rider
class without including the bicycle or motorcycle class, thereby resulting in un-
realistic mixing. There are a few other classes that also share similar semantic
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contexts according to the Cityscapes coarse annotation [1]. So, we modify the
ClassMix in the name of Prior-Guided ClassMix by using the coarse categories
(e.g. object, vehicle) as the guidance in our work, to identify the classes with
contextual relationships and copy these classes together from the source domain
to paste at target domain images. Fig. 3 demonstrates how the Prior-Guided
ClassMix uses contextual relation to generate realistic mixed images.

Given the list of randomly chosen class list c from the source ground truth
yS , we check if each class K∈c, is also in the coarse category list l or not. If it is
then we append the semantically related classes K̄ of the current class K in the
list c. Then we use the updated c to modify the mask M and generate mixed
images using this modified mask M. By maintaining contextual relationships in
the mixed images, our method creates more realistic and representative training
examples. This helps the model learn features that are invariant to domain shift,
thereby reducing the discrepancy between the source and target domains and
improving the model’s performance on the target domain.

3.5 Masking Module

A masking module withholds local information from target images, encouraging
the learning of context relations for robust recognition of classes with similar
appearances by randomly masking out patches of target domain images. For
masking out the random patches from target domain images, we generate a
random mask M from a uniform distribution

Mpa+1:(p+1)a,qb+1:(q+1)a = [u > t] with u ∼ R(0, 1), (8)

where the superscript of M indicates the specific region of the image from rows
pa+1 to (p+1)a and columns qb+1 to (q+1)b. Here, a denotes the patch size,
and t represents the mask ratio. The indices p and q range from 0 to W

a
− 1,

where W is the width of the image. The Height H is not shown explicitly here
because the mask is applied in a symmetric manner across both the width and
height of the image. Later we perform element-wise multiplication between the
M and target image xt

j . Specifically,
xma
j = M⊗ xt

j . (9)
The student model is then retrained on masked images using pseudo-labels ȳtj
to predict masked target images yma. In this way, the model can only access
limited information from the unmasked regions of the target images, making the
prediction more difficult. Hence, the model is forced to learn from the remaining
context clues to reconstruct the pseudo-label ȳtj

yma
j = hcls(gθ(x

ma
j )). (10)

As the pseudo-labels guide the model to generate masked target prediction, the
masked loss Lma

CE can be formulated as:
Lma
CE = −E[p̄tj log hcls (gθ(x

ma
j ))]. (11)

4 Experiments

4.1 Evaluation Setup

Datasets:We have tested our model in five datasets. (1) GTA-V is a simulation
dataset collected in the city environment. The dataset consists of 24,966 syn-
thetic images with a resolution of 1914×1052. The dataset has annotated labels
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for 33 classes. (2) Synthia dataset is another city-like simulation dataset. This
dataset consists of 9400 images with a resolution of 1280×760. (3) Cityscapes

dataset has 2975 training images and 500 validation images. All the images
have been collected from European cities. (4) RUGD is an off-road dataset to
improve robot navigation in unstructured environments. The dataset has 7453
labeled images containing 24 semantic categories and eight unique terrain types.
(5) MESH dataset is another forest dataset consisting of 2612 training and
58 validation images. We have performed two sim2real applications—from GTA
V→cityscapes dataset, Synthia→cityscapes dataset, and one forset adaptation
from RUGD→MESH dataset. We have employed mean Intersection over Union
(mIoU) as the performance metric for city adaptations and have utilized qualita-
tive results to gauge the performance of forest adaptations, as the MESH dataset
lacks available ground truths. Adaptations have been evaluated in the validation
sets of Cityscapes and MESH datasets.
Implementation Details:We have based our UDA method on the self-training
framework in recent SOTA work MIC [8]. We used a batch size of 1 and set a
crop size of 952 due to limited GPU memory.

4.2 Comparison

We compare our proposed UDA framework with the baseline method MIC in
both quantitative and qualitative manner. Besides the baseline, we perform a
quantitative comparison with other SOTA methods as well. First, we show the
quantitative comparison of GTA V→Cityscapes adaptation in Table 1. The

Table 1: Quantitative comparison for the adaptation of GTA-V → Cityscapes with
SOTA methods including FDA [38], PIT [39], IAST [40], DACS [41], CorDA [42],
ProDA [43], IDA [44], DAFormer [5], HRDA [13], MIC [8]. The teal and purple show
the best and second-best results respectively.

Class FDA PIT IAST DACS CorDA ProDA IDA DAFormer HRDA MIC C2DA (Ours)

Road 92.5 87.5 93.8 89.9 94.7 87.8 95.4 95.7 96.59 97.13 97.57

S.Walk 53.3 43.4 57.8 39.7 63.1 56.0 72.0 70.2 74.32 77.8 79.5

Build 82.4 78.8 85.1 87.9 87.6 79.7 87.8 89.4 89.06 90.17 90.69

Wall 26.5 31.2 39.5 30.7 30.7 46.3 49.9 53.5 56.55 57.27 57.69

Fence 27.6 30.2 26.7 39.5 40.6 44.8 36.6 48.1 39.61 53.58 52.91

Pole 36.4 36.3 26.2 38.5 40.2 45.6 40.6 49.6 50.92 51.48 53.99

T. Light 40.6 39.9 43.1 46.4 47.8 53.5 46.8 55.8 59.05 58.51 58.31
Sign 38.9 42.0 34.7 52.8 51.6 53.5 50.4 59.4 58.1 50.45 65.17

Veg 82.3 79.2 84.9 88.0 87.6 88.6 88.3 89.9 90.41 90.51 91.03

Terrian 39.8 37.1 32.9 44.0 47.0 45.2 45.2 47.9 49.7 49.22 49.35

Sky 78.0 79.3 88.0 88.8 89.7 82.1 92.1 92.5 94.12 94.68 93.87
Person 62.6 65.4 62.6 67.2 66.7 70.7 74.2 72.2 76.3 76.6 77.78

Rider 34.4 37.5 29.0 35.8 35.9 39.2 50.4 44.7 49.39 52.17 51.76

Car 84.9 83.2 87.3 84.5 90.2 88.8 92.8 92.3 93.43 93.85 93.99

Truck 34.1 46.0 39.2 45.7 48.9 45.5 79.2 74.5 82.45 82.56 81.28
Bus 53.1 45.6 49.6 50.2 57.5 59.4 81.8 78.2 68.48 86.76 85.95

Train 16.9 25.7 23.2 0.0 0.0 1.0 53.8 65.1 1.87 76.83 67.99

MC 27.7 23.5 34.7 27.3 39.8 48.9 61.4 55.9 61.94 62.65 61.94

Bike 46.4 49.9 39.6 34.0 56.0 56.4 64.5 61.8 66.95 67.23 68.5

mIoU 50.45 50.6 51.5 52.1 56.6 57.5 66.5 68.3 66.3 72.08 72.59

table shows that our model outperforms all the SOTA methods in terms of mIoU.
Our method also wins over the baseline by a margin of 0.51% mIoU. Our model
shows a superior performance in 10 out of 19 classes including challenging classes
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Fig. 5: Qualitative Results for the adaptation of RUGD → MESH.

Table 3: Comparison of different learning components. PG stands for Prior-Guided.

Component mIoU δMIC δOUR

PG ClassMix+Contrastive learning 69.08 -3 -3.51
Masking+Contrastive learning 70.54 -1.54 -2.05
Masking+PG ClassMix 72.41 0.33 -0.18
Masking+PG ClassMix+Contrastive learning 72.59 0.51 0

module, and a masking module. We evaluate the necessity of each of these mod-
ules by ablating that module. Our complete framework achieves 72.59 mIoU,
which is 0.51% higher than the baseline MIC. However, the performance of our
framework drops to 69.08 (see Table 3), if we remove the masking module which
demonstrates the heavy influence of learning from context relations using masked
images. Replacing the Prior-Guided Classmix technique with the original Class-
Mix in our work, our method obtains a mIoU of 70.54, which is still far from
the result of our complete framework, implying that generating realistic mixed
images helps our model to perform better. We also evaluate the effectiveness of
the contrastive learning strategy by removing it from our framework. We observe
our model achieves 72.41 mIoU without contrastive learning. From the result, we
can conclude that the effect of contrastive learning is not as high as the mask-
ing module and the Prior-Guided ClassMix, however still this module helps to
increase the result by a mIoU of 0.18.

Prior-Guided ClassMix Variations In our framework, we modify the Class-
Mix technique by utilizing the prior knowledge from the coarse categories of the
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Cityscapes dataset. However, we do not consider all the coarse groups together
in one experiment as the excessive use of prior knowledge can hamper the per-
formance of our proposed UDA framework. We run several experiments with
different combinations of the coarse categories. Table 4 shows the influence of
the different combinations of coarse categories. Compared to our baseline MIC,
we only obtain lower results when we use the combination of Flat (road, side-
walk) and Nature (vegetation, terrain) coarse categories. The reason behind this
performance drop can be the discrepancy between the spatial relations of these
two coarse categories. The best performance is achieved for the combination of
Construction (building, wall, fence) and Nature coarse categories. From our ob-
servation, this combination is giving us the best result, because along with the
intra-coarse category relation, it has an inter-coarse category relation as well. In
particular, building is always near the vegetation and the fence or wall is always
near the terrain. So, this combination produces the most realistic mixing of the
images.

Table 4: Comparison of Different Combinations of the Coarse Categories.
Combinations mIoU δMIC δOUR

Flat, Nature 71.46 -0.62 -1.13
Objects, Human-Vehicle 72.43 0.35 -0.16
Construction, Nature 72.59 0.51 0

Contrastive learning Variations In the UDA framework, we adapt con-
trastive learning to learn the inherent structures of the images. In the proposed
work, we utilize the student model for supervised learning in three types of im-
ages, e.g., source domain images, mixed images, and masked target images. So,
we have applied contrastive loss in all these three stages. However, to show the
influence of learning intra-domain knowledge we perform several experiments by
applying the contrastive loss in different ways. Table 5 shows the quantitative
results for the usage of contrastive loss in our work. From Table 5, it can be seen
that the result gradually increases if we consider multiple stages for learning the
intra-domain knowledge. However, the combination of Source domain+Mixing
is better than the combination of Source domain+Masking.

Table 5: Comparison of Different Combinations of the Contrastive Loss.
Combinations mIoU δMIC δOUR

Source domain 69.58 -2.5 -3.01
Source Domain+ Masking 70.43 -1.65 -2.16
Source domain+Mixing 71.4 -0.68 -1.19
Source domain+Mixing+ Masking 72.59 0.51 0

4.4 Navigation Missions

We combine our proposed C2DA model (trained with RUGD→MESH setup)
with POVNav planner [46] to show the effectiveness of our model in real-world
deployment. We examine the behavior of our navigation system in two different
forest scenarios (see Fig. 6), where the first scenario consists of grass and trees
and the second scenario consists of mulch and trees.
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Fig. 6: Navigation behavior in the forest environment. The first two rows show
the scenario 1 and the last two rows show the scenario 2. We show the third-
person view, segmentation result, navigable image result, and the planning result
from the left column to the right column respectively.

During the navigation, the image resolution is set to 640×480 pixels. We
deploy the navigation stack on a Husky robot with an NVIDIA GeForce RTX
2060 GPU. Our proposed C2DA takes 0.54 seconds to perform pure segmen-
tation. As a complete perception system requires some other processing rather
than segmentation, our whole process takes around 0.60 seconds. We set the lin-
ear velocity of the vehicle as 0.3m/s and set the path length for the two scenarios
as 15m and 9m respectively. Though the navigation speed was slow, our method
shows expected behavior by avoiding the non-navigable classes and reaching the
goal. This demonstrates that our proposed C2DA model is capable of performing
navigation tasks in unstructured environments.

5 CONCLUSIONS

We present a model named C2DA to improve unsupervised domain adaptive
semantic segmentation. Our approach is a self-training framework that explores
both the inherent structures of the images and the contextual clues of the target
domain images. To achieve this, we incorporate contrastive loss along with tra-
ditional cross-entropy loss. Furthermore, we modify the ClassMix technique by
leveraging the contextual dependency of the classes and applying the masking
technique to the target domain images to ensure context-aware learning. Evalua-
tion of benchmark datasets demonstrates that our model outperforms the SOTA
by a slight margin. Moreover, we deployed our framework in a robotic vehicle to
navigate in unstructured environments.
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