


but are limited by weather due to visual dependency. Re-

cent navigation strategies merge geometric and visual data,

employing end-to-end learning to analyze commands and

trajectories across terrains [13], [15], but struggle with 3D

terrain complexity due to the high cost of data analysis.

Other methods use global maps to integrate semantic and

geometric costs into a combined navigable space [10], [30].

In contrast, we propose a local mapless navigation approach

that integrates visual and geometric navigable spaces using

two local SGP models.

II. METHODOLOGY

We propose a new framework that combines the geometry

and the semantics of the robot’s surroundings to identify

the navigable spaces around the robot. Briefly, the output

of the RGBD camera and LiDAR are processed in a par-

allel way where the RGB image is segmented by labeling

each pixel with a unique class (grass, tree, asphalt, etc),

and the pointcloud is represented by an occupancy surface

around the robot. Consequentially, the segmented image is

converted into a binary navigability image (navigable and

non-navigable pixels) based on a defined set of navigable

classes. The navigability is then projected on the camera’s

depth pointcloud which is represented as a Visual SGP model

(V-SGP) to find the (visual) navigable spaces in front of

the robot. On the other hand, the occupancy surface is

represented by a Geometry SGP model (G-SGP) to assess

the free and occupied spaces and to identify the (geometric)

navigable space around the robot. The visual-based and the

geometry-based navigable spaces are coupled to calculate a

more accurate navigable space, based on which the Local

Navigation Points (LNPs) are generated to drive the robot to

its destination, see Fig. 1.

A. Geometry Navigable Space: The G-SGP Model

The LiDAR’s pointcloud, Pl = {(xi,yi,zi)}
nl
i=1, is converted

to the occupancy surface, Sg, representation [31], where each

(geometry) point, pgi
, on Sg is defined by its azimuth, αi,

and elevation, βi, angles, and given an occupancy value, Ωi,

equals to the difference between the surface radius, ρg, and

the point radius, ρi, as follows Ωi = ρg − ρi. The surface

regions with projected points represent the occupied space

of Sg. In contrast, other regions with no points represent the

free space of Sg, see Fig. 2b. The ng projected points on

Sg form the geometric data set Dg =
{(

pgi
,Ωi

)}ng

i=1
, where

pgi
= (αi,βi), and Ωi is the occupancy of pgi

. Subsequently,

the geometric data set Dg is employed to train a 2D varia-

tional SGP (G-SGP), to model the probability of occupancy,

fg(pgi
), over Sg as follows:

fg(pg)∼ SGPg

(

mg(pg),kg

(

pg,pg
′
))

,

kg

(

pg,pg
′
)

= σ2
1

(

1+
(pg −pg

′)2

2α1ℓ
2
1

)−α1

,
(1)

where mg(pg) is the zero mean function, and kg (pg,pg
′) is

a Rational Quadratics (RQ) kernel with a length-scale ℓ1,

a signal variance σ2
1 , and a relative weighting factor α1. A

Gaussian noise εg is added to the predicted occupancy to

reflect the measurement noise. The probability of occupancy

Ω
∗
g for any query point pg

∗ on Sg is calculated by the GP

prediction as follows,

pg(Ω
∗
g|ΩΩΩg) =Ng(Ω

∗
g|mΩΩΩggg

(ppp∗ggg),kΩΩΩggg
(ppp∗ggg, ppp∗ggg)+σ2

ng
),

mΩΩΩggg
(pppggg) = Kpppgggng

(

σ2
gn

I +Kngng

)−1
ΩΩΩggg,

kΩΩΩggg

(

pppggg,pg
′
)

= k
(

pppggg, ppp′ggg
)

−Kpgng

(

σ2
ng

I +Kngng

)−1

Kng ppp′ggg
,

(2)

where mΩΩΩggg
(pppggg) and kΩΩΩggg

(

pppggg, ppp′ggg
)

are the posterior mean and

covariance functions [29], Kngng is ng×ng co-variance matrix

of the inputs, Kpgng is ng-dimensional row vector of kernel

function values between pppggg and the inputs, and Kng pg =
KT

pgng
. We leverage the variational SGP approach [29] to

estimate the kernel hyperparameters Θ and to select the

inducing points Xm, more details about the implementation

of the G-SGP model can be found in our previous work [31].

Fig. 2c shows the predicted occupancy µg on predicted

occupancy surface Sµg , where the prediction uncertainty σg

is shown as the variance surface Sσg in Fig. 2d. Regarding

the accuracy of the SGP occupancy model, the reconstructed

pointcloud from a G-SGP model with 400 inducing points

has an average error of 12 cm [31].

The variance surface Sσg discriminates efficiently between

the free space (white regions with a variance higher than a

threshold Vgth
) and the occupied space (dark regions with

a variance less than Vgth
) around the robot [32], [33], and

reflects the terrain elevation (the boundary between free and

occupied space) in the local observation [34]. Therefore, Sσg

is used to define a set of geometrical-feasible LNPs (G-

LNPs) around the robot in the free space that are considered

navigable based on the robot’s maximum roll and pitch

angles. G-LNPs are the lowest free points on the variance

surface whose elevation angles are bounded by the safe ele-

vations that the robot can climb, (βmins and βmaxs ); G-LNPs=
(αi,β j∗) | −π < αi < π}; where βmins < β ∗

j < βmaxs .

Formally, a G-LNP is defined as glnpi
= (αi,βi,ρi), where

αi defines the direction of glnpi
with respect to the robot

heading, βi is the elevation of glnpi
with respect to the

robot, and ρi is the distance between glnpi
and the robot

predicted by the G-SGP model; ρ̂i = ρg−Ω̂i, where Ω̂i = µgi

and (µgi
,σgi

) = SGPg((αi,βi)). The Cartesian coordinates

of glnpi
within the global world frame W are derived as

(xw
i ,y

w
i ,z

wi) = W TR · (xR
i ,y

R
i ,z

Ri), where W TR represents the

robot’s localization. The coordinates (xR
i ,y

R
i ,z

Ri) denote the

position of glnpi in the robot frame R, calculated from its

spherical coordinates (αi,βi,ρi).

B. Visual Navigable Space: V-SGP Model

The RGB image contains crucial information contributing

to obstacle identification, which may not be revealed through

LiDAR sensing (geometry-navigable space). The semantic

image Iseg and the associated class labels Icls can be obtained

by Iseg, Icls = g(Irgb,Θ) where g(.) represents any existing

image segmentation model with parameter Θ, see Fig. 3c.

In this paper we use the mask2former segmentation model

[9]. Utilizing our domain knowledge regarding the physical











IV. CONCLUSION

We present the Visual Geometry Combined Spaces (VG-

SGP) model along with a corresponding navigation strategy

(VG-Nav) designed to adeptly guide a robot to its desti-

nation. This method leverages the environment analysis of

two separate SGP models, G-SGP and V-SGP, to pinpoint

areas that are navigable based on both visual and geometric

characteristics in the robot’s surrounding environment. By

integrating visual and geometric information, our approach

facilitates more reliable and adaptive navigation. Simulation

and real-world experiments demonstrate that our VG-SGP

model and its integrated navigation strategy outperform sys-

tems reliant solely on either visual or geometric navigation

algorithms, showcasing superior adaptive behavoir required

for accomplishing flexible tasks.
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