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tations on fishing seasons, and the utilization of catch quotas have been considered [1,3], but there has

been a continual push towards incorporating techniques that address these issues in an optimal way [2].

Optimal control theory has been a significant mathematical tool for fishery management, and one

of the key findings obtained from control theory is in how the locations of the marine reserves (regions

where fishing is prohibited) can be advantageously placed. Early applications of optimal harvesting

problems over metapopulations [4–7] indicate that marine reserves used for fishery management can

have economic benefits, which was contrary to what prior works [8, 9] suggest. As emphasized in [10,

11], investigating harvesting strategies and their effects on marine populations relies on constructing

spatially dependent models. Since then, optimal control theory has been applied to spatially explicit

fishery models [1, 3, 12–17], and the beauty behind such problems is that marine reserves are not

imposed a priori but can arise if the optimal harvesting strategy possesses regions where the control is

zero. Investigations of such problems provide further evidence that the incorporation of no harvesting

regions for prolonged periods of times can be used to improve economic quantities like the yield

[3, 12, 14–16], rent [13], and discounted net profit value [1, 17].

While optimal control theory is fundamental to the development of optimal fishery management

strategies and in ascertaining the effects of harvesting on marine populations, some works [1, 3, 12,

14, 15, 18] have raised concerns about whether or not the optimal control obtained can be realistically

administered. Depending on the structure of the optimal control, one may have to resort to developing

a method for finding an alternative suboptimal harvesting strategy that is implementable.

In [18], Demir and Lenhart investigated a system of ordinary differential equations (ODEs) repre-

senting a food chain model of Black Sea anchovies, and they used optimal control theory to find a

seasonal harvesting strategy that maximizes the discounted net profit value. The optimal control con-

tained a rapid decline of harvesting followed by a rapid increase in harvesting during each season. To

relax this behavior, Demir and Lenhart suggested an alternative harvesting strategy that is piecewise

constant where the jump discontinuity occurs in the middle of the harvesting season, and the corre-

sponding net profit value was close to the true optimal value. In their extension of the problem to

a spatially explicit model [1], they compared the optimal harvesting strategy generated with a con-

stant harvesting strategy. In [3], Kelly, Xing, and Lenhart used a parabolic partial differential equation

(PDE) to model the population density of the stock to be harvested over a multidimensional spatial and

temporal domain. Logistic growth and movement through diffusion and advection were considered

within the model. Their control problem aimed to find a spatiotemporal harvesting distribution that

maximizes the discounted yield. Kelly et al. emphasized that the feasibility of implementing each of

the optimal harvesting strategies that they found numerically is up for debate. To alleviate these con-

cerns, they constructed approximations of the optimal control in some of their simulations by having

the control be constant in space or in both space and time. Some of the associated yields were very

close to the optimal yield, while others (under certain parameter conditions) deviated from the optimal

yield by as much as 5%.

Another situation related to the topic of realistic implementation is in the case in which the optimal

control problem is linear in the control. Harvesting problems aimed at maximizing the yield, like the

ones presented in [3, 12, 14–16], are of this form. Solutions to such problems can have regions in

which the control is constant with values being the bounded constraints assumed on the control, and

the control is said to be bang-bang on those regions. Such regions are easy to interpret and implement.

However, it is also possible that the control may possess a singular arc. In problems in which the state
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equations are a system of ODEs, the singular case occurs if there is a subset of the domain for which the

partial derivative of the Hamiltonian with respect to the control is zero and that set has nonzero measure

[19]. One major concern associated with the presence of a singular arc is the possibility of Fuller’s

phenomenon. Fuller’s phenomenon, or chattering, is the phenomenon in which the optimal control

possesses a singular arc that cannot be concatenated with the bang-bang arcs without prompting infinite

oscillations over a finite region [19,20]. In such instances, one cannot realistically employ a chattering

control, and an alternative strategy must be considered. What is even more challenging is that some

numerical techniques are prone to generating oscillatory numerical artifacts when a singular arc is

present regardless of whether or not that control truly chatters (see [37, Section 9.1] for a discussion

on problems numerical solvers have with singular controls).

This leads us to a discussion of a harvesting problem that was originally presented by Neubert

in [12]. On the surface, this problem looks innocent. It consists of just one state equation, which is a

second order differential equation with Dirichlet boundary conditions, and it has only two parameters.

In [12], Neubert was able to characterize the singular case, and on the singular region, both the control

and the population density of the stock are constant. However, when he numerically solved the problem

with parameters set to where a singular arc was present, wild oscillations were found near the boundary

of the singular region. He attributed these oscillations to chattering, but the local and intrinsic order of

the singular control are such that standard methods for determining whether or not chattering occurs,

like the theorem of conjugation [20, 21] and the junction theorem [22], cannot be applied. These

issues potentially carried over to the following works [14, 15] where the optimal control problem is

extended to PDE versions of Neubert’s spatially explicit model. Ding and Lenhart [14] prevented

chattering from arising by adding an H1
0

norm penalty term to the objective to minimize variation of the

control. Consequently, the admissible control set was restricted to where the control is differentiable,

and variational inequalities were needed in solving the problem. In all of Joshi, Herrera, and Lenhart’s

simulations, no singular control was found; however, they do mention in [15, Section 5] that they

were unable to obtain numerical solutions to the optimal control problem when the habitat size and

final time were large. They also mentioned that questions pertaining to whether or not the singular

control appears in finite time and whether the presence of a singular arc produces chattering within

their problem remains open.

In this paper, we revisit Neubert’s problem [12] to study the following two questions: 1) How do we

numerically assess whether or not a problem presents chattering in cases when we cannot analytically

prove such a phenomenon? and 2) When an optimal control has regions that are difficult to implement,

how can we systematically find alternative strategies that are realistically implementable and near

optimal? Although the first question does not apply to all harvesting problems, fishery managers

should be concerned about the second. In further analyzing Neubert’s harvesting problem, we develop

a strategy that seeks to answer the first question, which results in a procedure for answering the second.

Our methods involve using an extended version of the SPA [23]. The SPA is a technique in which one

numerically solves an optimal control problem by optimizing the objective with respect to the switches

of the control rather than the control itself. For the original presentation of SPA, we direct the reader to

our prior work [24] which also surveys other switch point-based methods for solving singular and bang-

bang problems. In using SPA for the harvesting problem, we solve the problem with a preset number of

switches, and we study the corresponding yields of the controls when the number of switches near the

singular region is increased. In our numerical experiments, we obtain strong empirical evidence that
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the harvesting problem chatters, and we find three alternative harvesting strategies with fewer switches

that are both realistic to implement and near optimal.

This paper is organized as follows. In Section 2, we present Neubert’s harvesting problem [12]

and summarize the analysis of the spatially explicit model and the characterization of the optimal

control. Within this section, we also discuss the topic of the order of the singular arc for the harvesting

problem and what this means with regard to chattering. In Section 3, we discuss the general idea of the

extended version of SPA, and we discuss the assumptions needed in order to apply SPA. Implementing

SPA requires a feedback form of the control and a good initial guess of the location of the switches.

In Section 4, we describe how we obtained the feedback forms that we tested, and we present our

numerical results that led to our conclusion that the control does chatter. We also approximate the

maximum harvesting yield and the location of the singular region from the chattering control through

Aitken’s extrapolation. In the last section, we summarize our results and give the conclusion.

2. Background on the harvesting problem

In this section, we present the harvesting problem which was investigated in Neubert [12]. We

also discuss some key results that were discussed in Ding and Lenhart’s extension [14] to the spa-

tially explicit model that is used in the harvesting problem. We then summarize analysis pertaining

to characterizing the optimal harvesting strategy and the singular case solution to an equivalent opti-

mal control problem. The methods used in these analyses follow directly from what was presented

in [12, Appendix]. We also discuss specific issues related to chattering and implementation to further

motivate our interest in this problem.

In [12], Neubert uses the Schaefer harvest model (see [25] or [26]) and Fisher’s equation (see [27])

to construct a spatially explicit model with harvesting. The partial differential equation presented

measures the rate of change of the population density of the stock at a given location, which depends

on logistic growth, movement through diffusion, and harvesting. Neubert takes the spatial domain to

be a line segment of dimensionless length ℓ. Dirichlet boundary conditions are applied to represent

the scenario of fish immediately dying if they come into contact with the boundary of the habitat. He

constructs an optimal control problem over the PDE model with the objective functional measuring

the harvesting yield. Through this construction, a marine reserve can only arise if the optimal control

possesses a region for which the control is zero. He then simplifies the original optimal control problem

by assuming that the stock is at equilibrium and by rescaling the variables to reduce the number of

parameters used. The state equation then becomes the following spatially dependent second-order

differential equation:

d2u(x)

dx2
= −u(x)(1 − u(x)) + h(x)u(x), u(0) = 0, u(ℓ) = 0. (2.1)

Here, the state variable u : [0, ℓ] → R represents the population density of the fish relative to the

carrying capacity, x is the spatial variable, and h is a harvesting control. The fishery management

problem presented in [12] maximizes

J(h) =

ℓ
∫

0

h(x)u(x)dx, (2.2)
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over all harvesting strategies h ∈ U subject to the state equation (2.1) where

U = {h ∈ L2([0, ℓ]) : 0 ≤ h(x) ≤ hmax} (2.3)

and hmax ≥ 1 is the maximum harvesting rate. Note that if h(x) = hmax for all x ∈ [0, ℓ] with hmax ≥ 1,

then the stock is driven to extinction.

2.1. Uniqueness and boundedness of the state and the existence of the optimal control

One observation worth noting is that for any control, h, the state equation (2.1) has a trivial solution

(u(x) = 0 for x ∈ [0, ℓ]). In analyzing the problem, we choose our state variable to be the nontrivial

non-negative solution of the state system, where u is positive in (0, ℓ). In [14], Ding and Lenhart used

prior works ( [28–30]) pertaining to investigations of an optimal control problem on a diffusive elliptic

Volterra-Lotka-type equation to prove existence and uniqueness of a positive solution to an extended

version of the spatially explicit model, where the extended model is defined over a multidimensional

spatial domain that is bounded in Rn with boundary C1, and their results can be applied to (2.1).

Additionally, they used an extension of the maximum principle applied to weak solutions [31] to show

that 0 ≤ u(x) ≤ 1. Moreoever, they showed the existence of an optimal control which maximizes

the objective (2.2) subject to the constraint (2.3). Our problem (2.1) is a special case of their results

corresponding to n = 1.

2.2. The problem in Mayer form

For simplifying discussions on applying the switch point algorithm to the harvesting problem (2.1)–

(2.2), we consider a minimization problem that is equivalent to the original problem and rewrite the

minimization problem into the Mayer form [32]. The equivalent minimization problem minimizes

−J(h) over all admissible control strategies subject to the state equation (2.1). What makes the mini-

mization problem equivalent to problem (2.1)–(2.2) is that the control pair (u∗(x), h∗(x)) that minimizes

−J is the control pair that maximizes the yield.

We rewrite the state equations used for the equivalent minimization problem as a system of two

first-order differential equations by letting y1(x) = u(x) and y2(x) = ẏ1(x). The minimization problem

is then

min {−J(h)} = −
∫ ℓ

0
h(x)y1(x)dx subject to

dy1

dx
= y2(x),

dy2

dx
= −y1(x)(1 − y1(x)) + h(x)y1(x),

h(x) ∈ U(x), y1(0) = 0, y1(ℓ) = 0,

(2.4)

where U(x) = {h(x) ∈ R : 0 ≤ h(x) ≤ hmax}. We re-express the above problem in Mayer form by

introducing a new state y3(x) where

y3(x) = −

∫ x

0

h(σ)y1(σ)dσ (2.5)

for all x ∈ [0, ℓ]. The associated state equation is

dy3

dx
= −h(x)y1(x), with y3(0) = 0. (2.6)
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We define the objective given in (2.4) as C : R3 → R, where C(y(ℓ)) = y3(ℓ). Then we denote y(x) =

[y1(x), y2(x), y3(x)]⊤ and define f : R3 × R→ R3 as

f (y(x), h(x)) = [y2(x),−y1(x)(1 − y1(x)) + h(x)y1(x),−h(x)y1(x)]⊤ (2.7)

where f (y(x), h(x)) is a column vector representing the right-hand side dynamics of the state equations

given in (2.4) and (2.6). The problem in Mayer form is

min C(y(ℓ)) = y3(ℓ) subject to ẏ(x) = f (y(x), h(x)), h(x) ∈ U(x),

y1(0) = 0, y1(ℓ) = 0, y3(0) = 0.
(2.8)

2.3. Characterizing the optimal control and the singular case

We summarize a characterization of the optimal control of the Mayer harvesting problem (2.8) and

an analysis of the singular case solution. The procedures used here align with what is illustrated in

Neubert’s analysis of problem (2.1)–(2.2) (see [12, Appendix]).

We define the adjoint variables λ(x) = [λ1(x), λ2(x), λ3(x)] : [0, ℓ] → R3, which produce a row

vector. The costate associated with (2.8) satisfies the linear differential equation

λ̇(x) = −λ(x)∇y f (y(x), h(x)), λ2(0) = 0, λ2(ℓ) = 0, λ3(ℓ) = 1, (2.9)

where ∇y f denotes the Jacobian of the state dynamics (2.7) with respect to y. Since y3 does not appear

explicitly in f , λ̇3(x) = 0 for all x ∈ [0, ℓ]. Moreover, λ3(x) = 1 for all x ∈ [0, ℓ] by the terminal

condition. By explicitly computing ∇y f and using λ3(x) = 1, we rewrite the remaining two adjoint

equations in (2.9) as

λ̇1(x) = h(x) + (1 − h(x) − 2y1(x))λ2(x),

λ̇2(x) = −λ1(x), and λ2(0) = λ2(ℓ) = 0.
(2.10)

The Hamiltonian to problem (2.8) is

H(y(x), h(x), λ(x)) = λ(x) f (y(x), h(x)), (2.11)

which can be rewritten as

H(y(x), h(x), λ(x)) = [y1(x)(λ2(x) − 1)]h(x) + λ1(x)y2(x) − λ2(x)y1(x)(1 − y1(x)). (2.12)

Under the assumptions of the Pontryagin minimum principle, a local optimal pair (y∗(x), h∗(x)) of (2.8)

and the associated costate λ∗(x) have the property that

H(y∗(x), h∗(x), λ∗(x)) = inf{H(y(x), h, λ∗(x)) : h ∈ U(x)}

for almost every x ∈ [0, ℓ]. Since h ∈ U, it is necessary that the following holds

h∗(x) =



























0, if ψ(y∗(x), h∗(x), λ∗(x)) > 0

singular, if ψ(y∗(x), h∗(x), λ∗(x)) = 0

hmax, if ψ(y∗(x), h∗(x), λ∗(x)) < 0

(2.13)
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where ψ(·) is the switching function

ψ(y(x), h(x), λ(x)) =
∂H

∂h
(y(x), h(x), λ(x)) = y1(x)(λ2(x) − 1). (2.14)

The following theorem describes the singular case solution and both the local and intrinsic order of

the singular control.

Theorem 2.1. If the optimal solution to problem (2.8) has a singular region V (that is, V ⊂ [0, ℓ] with

nonzero measure such that ψ vanishes identically on V), then the optimal control, state, and adjoints

are as follows:

h∗(x) = 0.5, y∗1(x) = 0.5, y∗2(x) = 0, λ∗1(x) = 0, λ∗2(x) = 1, ∀x ∈ V. (2.15)

Moreover, the intrinsic order of the singular arc is q = 1, and the local order of the singular arc is

p = 2. Additionally, the intrinsic order version of the generalized Legendre-Clebsch condition (GLC)

[22, Theorem 2.4] holds trivially on V, and the local order version of the strengthened GLC [22,

Theorem 2.7] holds on V.

Proof. Equation (2.15) can be verified by using techniques demonstrated in Neubert [12, Appendix],

which involves computing multiple higher-order derivatives of ψ(·) up until the fourth order, setting

those derivatives and ψ to zero on region V , and solving for the control, states, and costates. Regarding

the derivatives of the switching function for the Mayer problem, we have the following:

dψ

dx
= −y1λ1 + y2(λ2 − 1), (2.16)

d2ψ

dx2
= −2y2λ1 + y1[1 − 2λ2 − y1(1 − 3λ2)] + 2ψh, (2.17)

d3ψ

dx3
= (4 − 5y1)y1λ1 + y2[1 − 4λ2 − 2y1(1 − 5λ2)] + 4

dψ

dx
h, (2.18)

d4ψ

dx4
= −y1(1 + 20y2λ1 − 8λ2) + 3y2

1(1 − 9λ2) − 2y3
1(1 − 10λ2), (2.19)

+ 2y2[4λ1 − y2(1 − 5λ2)] +

[

5y1 − 7y2
1 + 15y2

1λ2 − 8y1λ2 + 4
dψ2

dx2

]

h.

The second derivative of ψ has h appear explicitly, but the coefficient of h in the second derivative of ψ

is 2ψ, which vanishes on V . The singular control is of intrinsic order q = 1, and the intrinsic order of

the GLC [22, Theorem 2.4] is trivially satisfied on V since

(−1)q

{(

∂

∂h

) (

d2q

dx2q

)

ψ

}

= 0.

The fourth derivative of ψ depends explicitly on h. Using the formulas (2.15) and the fact that the

second derivative of ψ vanishes on V , we have

(−1)p

{(

∂

∂h

) (

d2p

dx2p

)

ψ

}

=
1

2
> 0.

Thus, the singular control is of local order p = 2, and the local order version of the strengthened

GLC [22, Theorem 2.7] also holds on V . □
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What cannot be solved explicitly is the expressions for y, λ1, and λ2 on the nonsingular regions.

Also, the locations of the switches can only be approximated numerically. A switch of a control

variable is a location within the domain of the control for which the qualitative behavior of the control

changes, and these behavioral changes are based upon the sign of the switching function. That is,

switches are the x-values for which h∗ changes from one nonsingular arc (h∗(x) = hmax) to another

nonsingular arc (h∗(x) = 0) or for which h∗ changes from a singular arc to a nonsingular arc (or vice

versa).

2.4. Discussion on chattering

When an optimal control possesses a singular arc, one should investigate if the optimal control

chatters. In practice, one uses the junction theorem (see McDanell and Powers’ [33]) to determine if the

optimal control with a singular arc does not chatter, and one uses the theorem of conjugation [20,21] to

determine if it chatters. Neither theorems are applicable for problem (2.8) due to the local and intrinsic

order of the singular arc.

As mentioned by Lewis in [22], the junction theorem relies on the order of the singular arc, and

there is some ambiguity in the usage of the word “order”. If by “order” in the junction theorem, one

means intrinsic order, then the theorem is not applicable in the case where the GLC conditions are

only trivially satisfied, which is the case for problem (2.8). Moreover, if by “order” we mean local

order, then the junction theorem is no longer true. He supports the latter statement by presenting a

problem for which the local order version of the theorem fails. One of the hypotheses of the theorem

of conjugation is that the singular arc is of intrinsic order 2 or an arbitrary even intrinsic order. The

order of the singular arc for the harvesting problem is q = 1, and, thus, we cannot apply this theorem.

There is another analytical technique for proving chattering which involves converting the Hamilto-

nian system to the semiconical form (see [20, Section 1.3]). In [12], Neubert uses this approach in his

analysis of chattering for the harvesting problem; however, the complementary functions for ensuring

nondegeneracy of the Jacobi matrix mapping are not given. Hence, an analytic proof of chattering for

problem (2.8) is an open problem. We investigate numerically whether this problem chatters by apply-

ing a SPA. Using SPA fixes the number of switches being assumed on the control, so oscillations of

the control are predetermined and not a product of numerical artifacts. If we observe a trend in which

a control with more oscillations near the singular arc produces an increase in the yield, then we have

empirical evidence in favor of chattering, and we find near optimal harvesting strategies.

3. The switch point algorithm

We begin by discussing the general idea of the SPA which is applied to optimal control problems

whose solutions are either singular, bang-bang, or concatenations of bang-bang and singular arcs. We

modify the notation that is used in our original presentations of SPA [24] and the extended SPA [23] to

best describe how SPA can be applied to the harvesting problem (2.8).

The switch point algorithm is a method to numerically solve an optimal control problem by reducing

the problem to an optimization over the switches. In [24], formulas are derived for the derivative of the

objective with respect to the switches so that gradient-based optimization techniques can be applied.

The control problems investigated in [24] concern state equations having initial conditions. In [34], it

is shown that SPA also applies to the harvesting problem, while in [23], this extension is given for a
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general class of boundary-value problems. Our discussion utilizes the setup given in [23] with a focus

on the harvesting problem.

The general fixed terminal time control problem studied in [23] is of the form

min C(y(ℓ)) subject to ẏ(x) = f (y(x), h(x)), h ∈ U(x),

yI(0) = bI , yE(ℓ) = bE,
(3.1)

where y : [0, ℓ] → Rn is absolutely continuous, h : [0, ℓ] → Rm is essentially bounded, C : Rn →

R, f : Rn × Rm → Rn, U(x) is a closed and bounded set for each x ∈ [0, ℓ], I and E are subsets

of {1, 2, . . . , n}, yI denotes the components of y associated with indices i ∈ I, and yE denotes the

components of y associated with indices j ∈ E. The vectors bI and bE are given initial and terminal

values for the states. In [23], it is assumed |I|+ |E| = n (here | · | denotes the cardinality of the set). The

harvesting problem (2.8) is of form (3.1) where n = 3, m = 1, f is given in (2.7), I = {1, 3}, E = {1},

bI = [0, 0]⊤, and bE = 0.

For simplicity of discussion, let us assume that the optimal control h∗ to problem (3.1) has one

switch s∗. The optimal control h∗(x) is of the following feedback form with s = s∗:

h(x) =















φ0(y(x), x), ∀x ∈ (0, s),

φ1(y(x), x), ∀x ∈ (s, ℓ),

for some functions φ0 and φ1 defined on a larger interval containing (0, s) and (s, ℓ), respectively.

The feedback functions used for representing the control in the harvesting problem (2.8) are constant

functions where ϕi ∈ {0, hmax, 0.5}.

For SPA, problem (3.1) is solved by optimizing over the choice of s. Define F0(y, x) :=

f (y,φ0(y, x)), F1(y, x) := f (y,φ1(y, x)), and

F(y, x) :=

{

F0(y, x) for all x ∈ [0, s),

F1(y, x) for all x ∈ (s, ℓ].

We replace problem (3.1) by

min
s∈(0,ℓ)

C(y(ℓ)) subject to ẏ(x) = F(y(x), x), yI(0) = bI , yE(ℓ) = bE. (3.2)

In [23], we derive a formula for the partial derivative of the cost with respect to s, and this formula

allows us to utilize gradient-based methods to find s∗. Let C(s) denote the objective in (3.2) which

depends on s. Under a smoothness assumption on each Fi and invertibility assumptions for submatrices

of the related fundamental matrices, we can generate a formula for finding the partial derivative of the

cost with respect to s. This formula depends on the Hamiltonian where we find the difference between

the value of the Hamiltonian when the control is φ0(y, x) at x = s and the value of the Hamiltonian

when the control is φ1(y, x) at x = s. The formula for the partial derivative of the cost with respect to

the switch is
∂C

∂s
(s) = H0(y(s), λ(s), s) − H1(y(s), λ(s), s), (3.3)

where Hi(y, λ, x) = λ f (y,φi(x)) with i ∈ {0, 1} is the Hamiltonian, and the row vector λ : [0, ℓ]→ Rn is

the adjoint vector, which is the solution to the linear differential equation:

λ̇(x) = −λ(x)∇yF(y(x), x), x ∈ [0, ℓ], λJ(0) = 0, λK(ℓ) = ∇KC(y(ℓ)). (3.4)
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Here, J and K denote the complements of I and E, respectively, and ∇KC is a row vector whose k-th

component (with k ∈ K) is the partial derivative of C with respect to yk. In the context of the harvesting

problem (2.8), J = {2}, K = {2, 3}, and ∇KC = [0 1], which matches the initial and terminal conditions

used in (2.9).

3.1. Assumptions for formula (3.3)

We now discuss the specific assumptions used in obtaining (3.3). The first assumption is a dynamics

smoothness assumption:

Assumption 1. (Dynamics smoothness) For r > 0, define the tubes

T0 = {(Y, x) : x ∈ [0, s + r] and Y ∈ Br(y(x))},

T1 = {(Y, x) : x ∈ [s − r, ℓ] and Y ∈ Br(y(x))},

where Br(c) = {ŷ ∈ Rn : ∥ŷ − c∥ ≤ r}. It is assumed that on T j, j = 0, 1, F j is continuously differ-

entiable, while F j(Y, x) is Lipschitz continuously differentiable in Y, uniformly in x, with Lipschitz

constant L.

In showing that the Lipschitz condition in the dynamics smoothness assumption holds for prob-

lems of form (3.1) and rewritten as (3.2), one can first show that the feedback forms φ0(y(x), x) and

φ1(y(x), x) are Lipschitz continuous in y over its respective domains in x. It follows that on T j,

j ∈ {0, 1}, F j is Lipschitz continuously differentiable in Y if both f and ∇y f are Lipschitz contin-

uous in (y, h). For the harvesting problem, it follows from (2.13) and Theorem 2.1 that the optimal

feedback control h∗(x) is 0, 1/2, and hmax when ψ(y∗(x), h∗(x), λ∗(x)) is positive, 0, and negative, re-

spectively. Hence, in the particular case hmax = 1 that we consider in the experiments, there are three

distinct φi functions, the constant functions 0, 1/2, and 1. Since the state y lies on [0, 1], dynamic

smoothness holds if f and ∇y f are Lipschitz continuous in (y, h). In Appendix 5, we utilize [34] to

show that this Lipschitz continuity property holds for problem (2.8).

In addition, we have two invertibility assumptions for submatrices of related fundamental matrices

that are used for generating (3.3). The first fundamental matrixΦ : [0, ℓ]→ Rn×n is associated with the

state dynamics:

Φ̇(x) = ∇yF(y(x), x)Φ(x), Φ(0) = I, (3.5)

where I is the n× n identity matrix. Formula (3.3) relies on the assumption thatΦEJ(ℓ) is invertible. In

the case of the harvesting problem (2.8), ΦEJ(ℓ) = Φ12(ℓ) is a scalar, which is the (1,2) entry of Φ(ℓ).

In this case, the assumption simplifies to Φ12(ℓ) , 0.

The second fundamental matrix Ψ is associated with the costate equation (3.4):

Ψ̇(x) = −Ψ(x)∇yF(y(x), x), Ψ(0) = I. (3.6)

Formula (3.3) relies on the assumption that ΨIK(ℓ) is invertible. For the harvesting problem (2.8),

submatrix ΨIK(ℓ) is a 2 × 2 matrix, where the (i, j) entry of Ψ(ℓ) is an entry of ΨIK(ℓ) for i ∈ I = {1, 3}

and j ∈ K = {2, 3}. Since F is independent of y3 in the harvesting problem, the last column of

∇yF(y(x), x) is zero. Hence, the derivative of the last column of Ψ is zero, which implies that the
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last column of Ψ is the last column of the identity matrix, and the last column of ΨIK(ℓ) is [0 1]⊤.

Consequently, ΨIK is a lower triangular matrix which is invertible if and only if Ψ12(ℓ) , 0. In

summary, for the harvesting problem, the formula (3.3) requires that the (1, 2) matrix elements ofΦ(ℓ)

and Ψ(ℓ) are nonzero.

We then arrive at the following theorem.

Theorem 3.1. [23, Theorem 5.1] If Assumption 1 holds, the objective C is continuously differentiable,

and both submatrices ΦEJ(ℓ) and ΨKI(ℓ) are invertible, then the formula for ∂C
∂s

given in (3.3) holds.

The two invertibility assumptions in Theorem 3.1 are key for both the gradient formula (3.3) and

for numerical optimization of the switch point in (3.2). In order to optimize the objective over the

switch point, we need to consider different choices for s. A change in s to improve the objective

values requires an update in the solution y to the boundary-value problem in (3.2). This update can be

accomplished using both Newton’s method and the fundamental matrix (3.5). Recall that the solution

Φ of (3.5) satisfies

Φi j(ℓ) =
∂yi(ℓ)

∂z j

,

where y is the solution to the initial-value problem

ẏ(x) = F(y(x), x), y(0) = z.

Now, let us consider the initial-value problem

ẏ = F(y(x), x), yI(0) = bI , yJ(0) = θ. (3.7)

One way to satisfy the boundary-value problem (3.2) is to choose θ so that yE(ℓ) = bE. Numerically, θ

can be computed using the Newton iteration

θk+1 = θk − (Φk
EJ)−1(yk

E(ℓ) − bE), (3.8)

where yk is the solution of (3.7) associated with θ = θk andΦk
EJ is the EJ submatrix of the fundamental

matrix Φ in (3.5) associated with y = yk. Thus, the same fundamental matrix that appears in Theo-

rem 3.1 also appears in Newton’s method when we update the solution of the boundary-value problem

(3.2) after a change in the switch point s.

The formula for the derivative of the objective with respect to s, formula (3.3), also involves the

solution λ to the differential equation in (3.4). The solution to this differential equation can be expressed

in terms of the fundamental matrix Ψ in (3.6): λ(ℓ) = λ(0)Ψ(ℓ). Since λJ(0) = 0 by the boundary

conditions given in (3.4), it follows that

[λE(ℓ), λK(ℓ)] = λI(0) [ΨIE(ℓ) | ΨIK(ℓ)] .

Again, by the boundary conditions in (3.4), we have λK(ℓ) = ∇KC(y(ℓ)), which yields

λI(0) = λK(ℓ)ΨIK(ℓ)−1 = ∇KC(y(ℓ))ΨIK(ℓ)−1 (3.9)

when the submatrix ΨIK(ℓ) is invertible.
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In summary, when optimizing a switch in the harvesting problem, we can at the same time check that

the invertibility assumptions of Theorem 3.1 are satisfied, update y to satisfy the boundary condition

yE(ℓ) = 0, and evaluate the derivative of the objective with respect to the switch point. More precisely,

after an optimization algorithm adjusts a switch point to improve the objective value, Newton’s method

and the fundamental matrixΦ can be used to iteratively update the state y so as to satisfy the boundary

condition yE(ℓ) = 0 using algorithm (3.8). Using the updated y together with λK(ℓ) = ∇KC(y(ℓ)) and

Ψ(ℓ), we can use (3.9) to evaluate λI(0). Finally, the known initial condition λ(0) and the fundamental

matrix values Ψ(s) yield λ(s) = λ(0)Ψ(s) and the derivative of the objective with respect to the switch

point from (3.3).

3.2. Generalizing formula (3.3)

As mentioned in [23], we can generalize these results to an arbitrary number of switches. Let

0 < s1 < s2 < · · · < sN < ℓ be a collection of switch points and define s0 = 0 and sN+1 = ℓ. Assuming

that the boundary condition yE(ℓ) = bE is satsified, the gradient of the objective is evaluated by fixing

all the switch points but one, say si, and evaluating the derivative with respect to si. Hence, by cycling

through all of the switch points, it is possible to evaluate the entire gradient vector. This gradient can

be evaluated using just one integration of the state equation and the fundamental matrix Ψ. Note that

these integrations need to be done interval by interval, from si up to si+1 for i = 0 up to i = N, since

the control has a different feedback form h(x) = φi(y(x), x) on each interval. We first integrate the

state equation and the fundamental matrix Ψ across each interval until reaching y(ℓ) while storing the

states, controls, and fundamental matrices at the ends of each interval [si, si+1]. Using (3.9), we can

evaluate λI(0), and then use Ψ to evaluate the costate at the end of each interval [si, si+1], which yields

the partial derivative of the objective with respect to each switch point using (3.3).

Let us define

F(y, x) := f (y, ϕi(y, x)), x ∈ (si, si+1), 0 ≤ i ≤ N,

where s = [s1, . . . , sN] is an N vector whose components are the switches, while s0 = 0 and sN+1 = ℓ.

With this notation, the generalization of (3.2) is

min
s

C(y(ℓ)) subject to ẏ(x) = F(y(x), x), yI(0) = bI , yE(ℓ) = bE. (3.10)

Let C(s) denote the objective in (3.10) parameterized by the switches si, 1 ≤ i ≤ N. In [23], the

formula
∂C

∂si

(s) = Hi−1(y(si), λ(si), si) − Hi(y(si), λ(si), si), 1 ≤ i ≤ N (3.11)

is obtained under the same smoothness assumption and invertibility assumptions for submatrices of

related fundamental matrices where Hi(y, λ, x) = λ f (y,φi(x)) and λ solves (3.4).

4. Applying SPA to the harvesting problem

We use SPA to obtain some empirical evidence in determining whether or not the harvesting prob-

lem (2.8) chatters when hmax = 1 and ℓ = 10, where such settings produce a singular region. The

harvesting problem (2.8) is recast as (3.10) where the control is allowed N switches and the objec-

tive is optimized with respect to those switches. We utilize formula (3.11) to compute the gradient of
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the objective, and we use the Polyhedral Active Set Algorithm (PASA) [35, 36] to solve (3.10). Let

s0 = [s0
1
, s0

2
, . . . , s0

N
] be our starting guess for the switches, and let h0 be the initial control with a pre-

determined feedback form and with switches s0. Then, let sk be the kth approximation of the switches

and update the switches sk+1 by using PASA to solve the following subproblem:

min
s∈Ŝ k

C(y(ℓ)) subject to ẏ(x) = F(y(x), x), yI(0) = bI , yE(ℓ) = 0, (4.1)

where bI = [0, 0]⊤, I = {1, 3}, E = 1, δ > 0 is a small number, and

Ŝ k = {s ∈ RN : si ∈ [sk
i − δ, s

k
i + δ] for i = 1, . . . ,N}.

Problem (4.1) is similar to problem (3.10) but with an added constraint si ∈ [sk
i
− δ, sk

i
+ δ]. This

constraint is added since the updates to y after a change in s is accomplished using Newton’s method,

which is locally convergent. To prevent divergence, we need to require small changes in the switch

points. In each iteration, we update the box constraints, [sk
i
− δ, sk

i
+ δ], to where the constraints are

centered about the previous iterate. We repeat this procedure until sk+1
i

lies in the interior of [sk
i
−δ, sk

i
+δ]

for all i = 1, . . . ,N, which yields a local solution to problem (3.10).

When solving (4.1), we use the MATLAB ODE solver ode45 to solve the initial value problem:

ẏ(x) = F(y(x), x), yI(0) = bI(0), yJ(0) = θ

For all uses of ode45, the maximum step size is set to 10−2, and both the absolute and relative error

tolerances are 10−10.

We perform multiple experiments where we numerically solve (3.10) with N = 4, 6, 8, and 10

switches and with the control being of a particular feedback form. The control form we investigate,

hN,sing, is a concatenation of bang-bang and singular arcs with the singular arc located in the center of

the habitat. The other control form we investigate is a bang-bang control that has N = 6 switches,

which we denote as h6,bang. Table 1 indicates the regions of maximum harvesting or no harvesting

for each control being analyzed, and these regions are represented as open intervals whose endpoints

are either a switch si or the boundary of the habitat (0 or ℓ). The vector of switches obtained by

solving (3.10) when h is of feedback form hN,sing is denoted as s∗ = [s∗
1
, . . . , s∗N], and h∗N,sing is the

resulting control. We use the same notation when it comes to h6,bang. Since problem (3.10) restricts

the admissible control set to controls of a specific form, further tests are performed to determine if

h∗N,sing optimizes the yield over all possible strategies. One test that we consider is to determine if each

control satisfies Pontryagin’s minimum principle by studying the graph of the switching function. We

also investigate the changes in the yields as we increase N.

4.1. Motivation behind the feedback forms

As suggested in [24], we can use total variation (TV) regularization prior to using SPA to generate

a feedback form of the optimal control. As demonstrated in our prior work [37], oscillatory numerical

artifacts arising from a non-chattering singular control problem can be tuned by adding a regulariza-

tion term that measures some tuning parameter ρ multiplied by the total variation of the control to the

cost functional. Caponigro et al. [38] also illustrates that one can apply TV regularization to chatter-

ing control problems, in which case the regularized control obtained is a non-oscillatory quasi-optimal
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Table 1. The feedback forms descriptions. Here, hN,sing denotes a harvesting strategy with

N switches, s1, . . . , sN , and a singular arc in the central region of the habitat, and h6,bang is a

bang-bang harvesting strategy with 6 switches. The table describes the intervals for which

the control has maximum harvesting, no harvesting, or singular harvesting applied.

Control N h(x) = hmax h(x) = 0 h(x) = 1/2

h4,sing 4 (0, s1), (s4, ℓ) (s1, s2), (s3, s4) (s2, s3)

h6,sing 6 (0, s1), (s2, s3), (s1, s2), (s3, s4)

(s4, s5), (s6, ℓ) (s5, s6)

h8,sing 8 (0, s1), (s2, s3), (s1, s2), (s3, s4), (s4, s5)

(s6, s7), (s8, ℓ) (s5, s6), (s7, s8)

h10,sing 10 (0, s1), (s2, s3), (s1, s2), (s3, s4), (s5, s6)

(s4, s5), (s6, s7), (s7, s8), (s9, s10)

(s8, s9),(s10, ℓ)

h6,bang 6 (0, s1), (s2, s3), (s1, s2), (s3, s4), None

(s4, s5), (s6, ℓ) (s5, s6)

control. This means that the control is not optimal, but as the tuning parameter ρ approaches zero,

the resulting regularized cost value approaches the true cost value. In our prior work [34], we apply

TV regularization to the harvesting problem (2.4) for varying values of the tuning parameter. From

our simulations, we find two control forms, namely h4,sing and h6,sing (see Table 1), that are potential

candidates of the structure of the optimal harvesting strategy. It is worth mentioning that both regular-

ized controls possess some numerical artifacts on the singular region in that the control did not equal

1/2 throughout the singular region but was approximately 1/2, and this had some effects on how the

resulting state y1 appeared along the singular region. Additionally, due to the discretization process of

the problem, the approximation of the switches are mesh point values that were used in partitioning the

habitat. With SPA, we fix the values of the control as being 0, 1/2, or hmax, so the numerical artifacts

arising from the TV regularization approach are no longer present, and we use the switches obtained

from TV regularization as our initial guess of the switches.

We discuss later in the results section how the sign of the switching function corresponding to

h∗
4,sing

and h∗
6,sing

along the singular region are used to determine that neither control is optimal and how

the switching function can be used to construct more control forms to investigate, which led to our

investigation of control forms h8,sing, h6,bang, and h10,sing (see Table 1). The feedback form h8,sing is a

modification of h∗
6,sing

where a switch is added to the left and right of the singular region. The added

switches lead to the introduction of two marine reserves that are directly adjacent to the singular region.

We use the switches from h∗
6,sing

as our starting guess for six of the eight switches of h8,sing, and for the

initial guess of the two remaining switches, which correspond to the boundary of its singular region,

we take the boundary of h∗
6,sing

’s singular arc and perturb those boundary points by 0.05. Similarly,

h10,sing takes the control form h∗
8,sing

and adds a switch to the left and right of the singular region which

leads to the introduction of two regions of maximum harvesting near the singular arc. Our interest in

analyzing these forms is to investigate a potential trend where increasing the switches near the singular

region results in an increase in the harvesting yield. Such a trend provides some empirical evidence

that the optimal harvesting strategy requires infinite switches near the singular region.
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Additionally, we consider a control form that is bang-bang with 6 switches, h6,bang. The beauty

behind the harvesting problem (2.8) is that the singular control is constant and is a value easily imple-

mentable, namely 1/2. Such a solution may be realistic if we consider half of the maximum harvesting

rate (hmax = 1) based upon resources. For example, the number of boats or fishermen assigned to

fish over the singular region could be half of the number of boats or fishermen that are assigned to

the regions in which maximum harvesting is applied. However, not all singular control problems have

a singular case solution that is easy to administer. We want to address this concern by investigating

whether or not a bang-bang control could be used as an alternative. Theoretically, such a control pro-

duces a smaller yield, but we can numerically determine if the resulting harvesting yield is comparable

to the yields produced by other control forms. We obtain the control form h6,bang by removing the sin-

gular arc obtained from h∗
6,sing

and replacing it with a marine reserve. The starting guess of the switches

to h6,bang came from taking the switches of h∗
6,sing

and perturbing the values of those switches by ±0.04

to where the corresponding state solution y1 is non-trivial and positive.

4.2. Results

The solution to the harvesting problem for the control geometries summarized in Table 1 was com-

puted using the algorithm (4.1). Plots of the optimal solutions are shown in Figures 1 and 2, while

Table 2 shows the numerical values for the switches and the yields*. The computing tolerance for

the optimization code PASA was 10−10 to ensure accurate estimates for the yield associated with each

control geometry. In the first column of Table 2, we also provide the choice for δ in Ŝ k that ensured

small changes in the switch points and convergence of the Newton iterations used to satisfy the bound-

ary conditions. As the number of switch points increased, the optimization problem became more ill

conditioned, and a smaller δ was needed. As mentioned previously, the optimal solution h∗ to problem

(2.8) minimizes the objective C(h∗) = y3(ℓ) or equivalently maximizes the yield −C(h∗), and the con-

trol should align with Pontryagin’s minimum principle. If Pontryagin’s minimum principle is violated,

then the computed solution is not locally optimal, and the objective value can be improved by intro-

ducing another pair of switch points. We use the signs of the resulting switching function ψ(x) along

the bang-bang and singular regions to investigate whether or not the minimum principle holds. Since

PASA’s error tolerance is 10−10, we deduce a violation in the minimum principle if |ψ(x)| > 10−10 over

the singular region.

The resulting control h∗
4,sing

(solid) and associated state variable y1(x) (dash-dot) obtained from using

SPA are given in Subfigure 1a and the resulting values of the switches are given in the h∗
4,sing

row of

Table 2. In Figure 1(b), a plot of the associated switching function ψ(x) is provided. Observe that ψ(x)

is negative over the singular region with values on the order of 10−3. This allows us to conclude that

the control h∗
4,sing

is not optimal.

The behavior of the resulting state variable y1(x) near the boundary of the singular arc plays a large

role as to why h∗
4,sing

is not optimal. Observe from Subfigure 1a that y1(x) ≈ 0.5 on the singular region,

but near switches s∗
2

and s∗
3
, y1(x) is greater than 0.5. While SPA allows us to force the control to

remain constant along the singular region, we cannot force the state to remain constant. In numerically

solving for the state, the solver is trying to maintain a differentiable solution of y1(x) at switches s2

and s3. We support this claim by discussing how the harvesting strategy influences the curvature of the

state and refer back to state equation (2.1) since y1(x) corresponds to state variable u. In Subsection

*Simulations pertaining to these results can be found at https://github.com/srnatkins/SPA Applied to Harvesting Problem.
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Figure 1. SPA figures. Subfigures on the left display controls h∗
4,sing

, h∗
6,sing

, and h∗
6,bang

(solid) and the corresponding state solution y1 (dash-dot). Subfigures on the right display the

resulting switching functions (solid). The dashed vertical lines indicate the location of the

switches, and the dashed horizontal line is the x-axis.
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(a) h∗
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(b) ψ(·): h∗
8,sing

(c) h∗
10,sing

(x), y1(x)

0 2 4 6 8 10
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

(d) ψ(x): h∗
10,sing

Figure 2. SPA figures. Subfigures on the left display controls h∗
8,sing

and h∗
10,sing

(solid) and

the corresponding state solution y1 (dash-dot). Subfigures on the right display the resulting

switching functions (solid). The dashed vertical lines indicate the location of the switches,

and the dashed horizontal line is the x-axis.
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Table 2. SPA results for the switch points and y2,0 when using SPA.

Control Approximation of s∗ y2,0 Yield

h∗
4,sing

s∗
1
= 1.7512696799, s∗

2
= 2.8452286095, 0.1920 1.698843336151754

(δ = ℓ/500) s∗
3
= 7.1547713905, s∗

4
= 8.2487303201

h∗
6,sing

s∗
1
= 1.7681217620, s∗

2
= 3.1031032353, 0.1921 1.699045959129143

(δ = ℓ/100) s∗
3
= 3.3572666849, s∗

4
= 6.6427333198,

s∗
5
= 6.8968967667, s∗

6
= 8.2318782379

h∗
8,sing

s∗
1
= 1.7681480532, s∗

2
= 3.1089635960, 0.1921 1.699046237076018

(δ = ℓ/1000) s∗
3
= 3.4303513894, s∗

4
= 3.4913858407,

s∗
5
= 6.5086141557, s∗

6
= 6.5696486171,

s∗
7
= 6.8910364122, s∗

8
= 8.2318519486

h∗
10,sing

s∗
1
= 1.7681480778, s∗

2
= 3.1089697537, 0.1921 1.699046237341582

(δ = ℓ/1000) s∗
3
= 3.4320634903, s∗

4
= 3.5095474821,

s∗
5
= 3.5243066990, s∗

6
= 6.4756934667,

s∗
7
= 6.4904526164, s∗

8
= 6.5679365256,

s∗
9
= 6.8910302468, s∗

10
= 8.2318519223

h∗
6,bang

s∗
1
= 1.8251262424, s∗

2
= 3.4154683223, 0.1900 1.696795559077949

(δ = ℓ/1200) s∗
3
= 4.5009455005, s∗

4
= 5.4990545033,

s∗
5
= 6.5845316795, s∗

6
= 8.1748737582

2.1, the population density of the stock is bounded above by one. Then, based upon the second order

state equation (2.1), we have the following conditions:

ÿ1(x) = y2
1 − y1 < 0 wherever h(x) = 0, and

ÿ1(x) = y2
1 > 0 wherever h(x) = 1.

Consequently, we have that y1 is concave down on regions where h is zero and concave up on regions

where h is hmax = 1. These are significant conditions when considering the locations where a singular

and non-singular arc are concatenated. Based on the structure of h∗
4,sing

, state variable y1 should switch

from concave down to constant at x = s2. Additionally, y1 should switch from constant to concave

down at s3. In order for y1 to remain differentiable at x = si for i ∈ {2, 3}, y1(x) should have a local

maximum value of 0.5 at x = si, which is not occurring here even after using SPA to improve the

switches.

Figure 1(c),(d) display the control h∗
6,sing

, the state variable y1(x), and the switching function ψ(x).

The resulting switches are given in the h∗
6,sing

row of Table 2. The table also indicates that the harvesting

yield obtained when administering h∗
6,sing

is larger than the yield corresponding to h∗
4,sing

. Observe in

Figure 1(d), marine reserves are bordered by regions of maximum harvesting. In analyzing Figure

1(d) , ψ(x) seems to lie on the x-axis on the singular region; however, ψ(x) also appears to be lying

along the x-axis on other regions. Over the intervals (s∗
2
, s∗

3
) and (s∗

4
, s∗

5
), h∗

6,sing
(x) = hmax, so by the

Pontryagin’s minimum principle, the switching function should be negative. Figure 3(a) displays the

switching function over intervals (s∗
2
, s∗

3
), (s∗

3
, s∗

4
), and (s∗

4
, s∗

5
). On (s∗

2
, s∗

3
) and (s∗

4
, s∗

5
), the switching

function is below the x-axis, but on the singular region, (s∗
3
, s∗

4
), ψ(x) is positive with its values on the

order of 10−5. Hence, we deduce that h∗
6,sing

is not optimal. The sign of the switching function along
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Figure 3. Switching functions. Each subfigure presents the switching function corresponding

to control h∗
6,sing

(left), h∗
8,sing

(middle), and h∗
10,sing

(right) near the singular region to illustrate

that each control violates Pontryagin’s minimum principle. Note, however, that the magni-

tude of the violation decreases by the factor 0.01 when the number of switch points increases

by 2.

the singular region is influential in our consideration for h8,sing and h6,bang. Based upon Pontragin’s

minimum principle, h∗
6,sing

should have had a marine reserve instead of a singular arc on (s∗
3
, s∗

4
). With

this in mind, we investigate what happens when we take the switches and structure of h∗
6,sing

, add a

marine reserve to both sides of the boundary of the singular region (h8,sing), and use SPA to improve

those switches to see the resulting switching function is closer to zero along the singular arc. We also

consider taking the switches and structure of h∗
6,sing

, but reassign the singular arc as being a marine

reserve (ie h6,bang) and use SPA to improve those switches.

Figure 2(a) displays h∗
8,sing

(solid) and the corresponding state y1 (dash-dot). The values of the

switches are given in Table 2. Observe also in the last column of the table that administering h∗
8,sing

resulted in a larger yield in comparison to implementing h∗
4,sing

and h∗
6,sing

. This illustrates a potential

trend that increasing the number of switches along the singular region may result in a larger yield.

In Figure 2(b), we see that the switching function ψ(x) associated with h∗
8,sing

appears to lie on the

x-axis on the singular region, (s∗
4
, s∗

5
), but the switching function also appears to lie on the x-axis on the

non-singular regions (s∗
2
, s∗

3
), (s∗

3
, s∗

4
), (s∗

5
, s∗

6
), and (s∗

6
, s∗

7
). In Figure 3(b), we provide a picture of the

switching function that is zoomed-in over the interval (s3, s6). On the regions corresponding to marine

reserves, (s∗
3
, s∗

4
) and (s∗

5
, s∗

6
), the switching function lies above the x-axis with the order of magnitude

being 10−7. Regarding the singular region, the switching function is negative with order of magnitude

between 10−7 and 10−6. The switching function corresponding to h∗
8,sing

is much closer to zero over the

singular region in comparison to the switching function obtained from h∗
6,sing

and h∗
4,sing

; however, we

conclude that h∗
8,sing

is not optimal since ψ(x) does not meet the expected error tolerance.

In the h∗
10,sing

row of Table 2, we have the resulting switches and the harvesting yield found when

applying SPA. Its yield is greater than the yields corresponding to h∗
8,sing

, so this trend of the harvesting

yield increasing as we increase the number of switches near the singular region continues. In Figure

2(c), the switching function corresponding to h∗
10,sing

is given. The switching function does appear to

lie along the x-axis over the interval (s3, s8), but in looking at a zoomed-in picture of the switching

function in Figure 3(c), we see that the switching function is positive over the singular region with an

order of magnitude 10−8. Consequently, the control presented in Figure 2(d) is not locally optimal.
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Each time we add another pair of switch points to the control, the violation in the Pontryagin minimum

principle decreases by about a factor of 0.01, while the yield improvement is about 0.001 times the

improvement associated with the prior new pair of switch points.

We find the trend of an increase in switches leading to a larger harvesting yield as being empirical

evidence in favor of the claim that the optimal harvesting strategy is chattering. Unfortunately, we

cannot further test this trend for the case in which the control has 12, 14, or 16 switches because this

pushes the limits of the optimization solver that we are using. Observe also in Figure 2(d) that the

marine reserves near the singular arc (located on intervals (s3, s4) and (s7, s8)) are quite small and that

the regions of maximum harvesting to the left and the right of the singular region (intervals (s4, s5) and

(s6, s7)) are even smaller. In using the approximated switches displayed in row h∗
10,sing

of Table 2, we

have that the lengths of the marine reserves located on interval (s3, s4) and of the marine reserve located

on interval (s7, s8) are both approximately 0.0775 units, and the lengths of the maximum harvesting

regions to the left and right of the singular region are both approximately 0.0148 units. This behavior

is very reminiscent of chattering in that the length of these bang-bang regions taper to where an infinite

number of switches are present over a finite region. Although the h∗
10,sing

control corresponds to a higher

harvesting yield, these small regions near the singular arc do raise some concern when thinking about

implementation of such controls. The same could be said for h∗
8,sing

.

We use SPA to improve the switches of our h6,bang control. In Figures 1(e),(f), we provide a plot of

the resulting h∗
6,bang

control and of the corresponding switching function, and in Table 2, we provide

the resulting switches. The sign of the switching function is positive in regions where the switching

function should be negative, namely intervals (s2, s3) and (s4, s5). Also, on interval (s3, s4) and on parts

of intervals (s1, s2) and (s5, s6), the sign of the switching function does not align with Pontryagin’s

minimum principle. Based upon Pontryagin’s minimum principle, the h∗
6,bang

is not locally optimal,

which is to be expected since we are ignoring the singular case. In Table 2, we see that the harvesting

yield that is generated by the h∗
6,bang

control is less than the harvesting yields corresponding to all of

the singular control strategies that we observed, but we do find the corresponding yield to be close in

value to the other yields.

Our results plead a very strong numerical case that chattering does occur for this problem when the

habitat length is set to 10 units and when hmax = 1. In this section, we use our numerical results to

extrapolate the location of the singular region and the corresponding objective functional value. We

take the boundaries of the singular regions of harvesting strategies h∗
4,sing

, h∗
6,sing

, h∗
8,sing

, and h∗
10,sing

and

apply Aitken’s extrapolation to approximate the boundary of the singular region of the locally optimal

harvesting strategy. The boundary points of the locally optimal control’s singular region give us an idea

of where chattering occurs for the locally optimal control since chattering is generated by an inability to

concatenate a nonsingular subarc and a singular subarc without prompting infinite oscillations. In Table

3, we have that the singular region of the locally optimal control is near the interval (3.535, 6.465).

Similarly, we take the resulting harvesting yields obtained from applying h∗
4,sing

, h∗
6,sing

, h∗
8,sing

, and

h∗
10,sing

and apply Aitken’s extrapolation to approximate the maximum harvesting yield. In Table 3, the

maximum harvesting yield for an infinite number of switches is estimated to be 1.699046237. Thus,

the 6-switch yield matches the optimal yield for an infinite number of switches when both are rounded

to 7 digits.

In comparing the extrapolating harvesting yield with the yields generated by the other investigated

control strategies (see Table 2), we see that the harvesting strategies generated via SPA are formidable
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Table 3. Extrapolation of the chattering control. Aitken’s extrapolation is used to approx-

imate the boundary of the singular region corresponding to the chattering control and the

optimal harvesting yield. The sequence Ln (Rn) denotes of the left (right) boundary point of

the singular region from the resulting controls h∗
4,sing

, h∗
6,sing

, h∗
8,sing

, and h∗
10,sing

. The sequence

of extrapolated values of the left (right) boundary points of the singular region is denoted as

L∗n (R∗n). Similarly, Cn denotes the sequence of the harvesting yields obtained by the resulting

controls, h∗
4,sing

, h∗
6,sing

, h∗
8,sing

, and h∗
10,sing

, and C∗n denotes the sequence of extrapolated values

of the yield.

n Ln L∗n Rn

1 2.845228609553643 7.154771390531903

2 3.357266684882776 3.538983214252184 6.642733319818394

3 3.491385840739382 3.535016196498648 6.508614155688456

4 3.524306699035758 6.475693466679342

n R∗n Cn C∗n
1 1.698843336151754

2 6.461016774680116 1.699045959129143 1.699046237457814

3 6.464984098148435 1.699046237076018 1.699046237341836

4 1.699046237341582

alternatives to the chattering control that produces similar yields. While h∗
8,sing

and h∗
10,sing

produce

higher harvesting yields in comparison to the other alternative strategies, it may be difficult to admin-

ister such controls when considering the lengths of the non-singular regions bordering the singular arc.

In choosing which alternative strategy to implement, we find h∗
4,sing

, h∗
6,sing

, and h∗
6,bang

to be the best

candidates. Of those three candidates, h∗
6,sing

produces the largest yield. One reason why h∗
6,sing

per-

forms better than h∗
4,sing

is that the structure of h∗
6,sing

results in having each marine reserve be bordered

by regions of maximum harvesting. Observe in Figure 1(c) that the density of the stock is at higher

levels along the marine reserves (s∗
1
, s∗

2
) and (s∗

5
, s6∗). Naturally, one would want to harvest to the left

and right of these reserves as more fish will be swimming in and out of the no-take regions. Control

h∗
6,bang

also has its marine reserves surrounded by regions of maximum harvesting, but observe in Fig-

ure 1(e) that the structure of the bang-bang strategy causes the population density to oscillate between

varying levels. That is, the marine reserves are useful in maintaining the fish population, but the size

of the maximum harvesting regions to the left and right of the reserve impacts the marine reserve’s

effectiveness in increasing the population density. However, the population density corresponding to

h∗
6,sing

given in 1c stays predominately close to 0.5 near (s∗
2
, s∗

5
) because of the singular harvesting region

being so large.

While the aim of the harvesting problem is to choose a harvesting strategy that maximizes the

yield, one could consider other factors in choosing between alternative strategies. For example, one

could choose an alternative strategy based upon simplicity of implementation or based upon which

of the three strategies is the least costly. One could argue that either h∗
4,sing

or h∗
6,bang

are the simplest

of the three in that h∗
4,sing

has fewer switches but h∗
6,bang

has no singular region. In the last column

of Table 4, we compute
∫ ℓ

0
wh(x)dx, where w is a weight parameter, to measure the cost per unit of

effort. Such an integral was used in [14], but Ding and Lenhart also considered another integral term
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Table 4. Characteristics of the optimized feedback forms. Columns 2–4 account for the total

percentages of the habitat being assigned as a marine reserve (2nd column), a maximum har-

vesting region (3rd column), or a singular region (4th column) that each harvesting strategy

produces. The 5th column computes the integral
∫ ℓ

0
wh(x)dx, where w is a weight parameter,

which represents the cost of administering the control. Since each control is a piecewise

constant function whose switches are given in Table 2, we can compute
∫ ℓ

0
h(x)dx directly,

and we round the answer to the fourth decimal place. The last column computes
∫ ℓ

0
u(x)dx

to measure the total number of fish remaining in the habitat.

Control Marine Reserve Maximum Harvesting Singular Region
∫ ℓ

0
wh(x)dx

∫ ℓ

0
u(x)dx

h∗
4,sing

21.9% 35.0% 43.1% 5.6573w 15.2013

h∗
6,sing

26.7% 40.4% 32.9% 5.6873w 15.1713

h∗
8,sing

28.0% 41.8% 30.2% 5.6876w 15.1735

h∗
10,sing

28.4% 42.1% 29.5% 5.6877w 15.1734

h∗
6,bang

41.8% 58.2% 0% 5.8212w 15.1515

to represent the rate at which the wages paid rises as more labor is employed. Control strategy h∗
4,sing

is the cheapest control strategy while h∗
6,bang

is the most costly. In Table 4, we observe that h∗
6,bang

produces significantly larger marine reserves but also larger regions of maximum harvesting, which

results in fewer fish remaining in the habitat. In taking these things into consideration, h∗
6,bang

does

extensively lower the densities throughout the ecosystem, but h∗
6,sing

shows that replacing the central

region with a reduced rate of harvesting (through using a singular arc) produces a better yield and is a

cheaper strategy to implement. In comparing the number of fish that were not caught, h∗
4,sing

allows for

more fish to remain in the habitat even though this strategy resulted in a habitat with the lowest total

percentage of marine reserves. One could view h∗
4,sing

as being ecologically beneficial in that more fish

are being preserved within the ecosystem; however, one could view this as a disadvantage in that the

yield could be improved if the strategy was adjusted to where the population density could have been

lowered (as indicated based upon the results associated with h∗
6,sing

, h∗
8,sing

, and h∗
10,sing

).

5. Conclusions

We numerically investigated a harvesting problem to illustrate that a SPA can be used to find al-

ternative control strategies with fewer switches in problems that potentially chatter. These alternative

solutions can be used to obtain empirical evidence for determining chattering when standard methods

like the theorem of conjugation or the junction theorem are inapplicable. Additionally, Aitken’s ex-

trapolation can be used to approximate the optimal value and boundary of the singular region to the

chattering control, which can be a crude approximation of the locations of the chattering regions.

When selecting the “best” alternative control strategies, one may have to find a trade off between a

control with fewer switches and a control that yields a value closer to the optimal value. In using the

switch point algorithm to analyze the harvesting problem, we conclude that three of the control forms

investigated were the best alternative strategies. The first candidate is a control with four switches

and a singular arc located at the center of the habitat, which is the alternative harvesting strategy that

Neubert recommended in his analysis of the harvesting problem [12]. The second control form also has
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a singular region at the center of the habitat but has six switches. The third control form is a bang-bang

control with six switches. Of these three, the control with six switches and a singular arc produces

the largest yield. In choosing an alternative strategy for a chattering control problem, one could take

other features beyond simplicity of implementation into consideration, but those features depend on

the context of the problem. For example, in our analysis of the harvesting problem, the alternative

harvesting strategy with 4 switches was not only simple to implement but also a cheaper control that

produced higher density levels of the uncaught fish within the ecosystem. These features, though,

come at the expense of obtaining a lower harvesting yield. If the implementation of the singular arc

is up for debate, one can also use SPA to produce an alternative control with no singular arc. For the

harvesting problem that we investigated, the resulting harvesting yield corresponding to the bang-bang

alternative strategy was lower in comparison to the yields produced by controls with singular regions.

In comparing the cost of implementing the control, the bang-bang control was also the most expensive

strategy.

A future research direction involves applying SPA to optimal control problems whose state dynam-

ics are systems of partial differential equations. Such extensions are of great importance with regard

to constructing more accurate fishery models that depend on both time and space. In our example, we

follow Neubert’s suggestion of reducing a PDE system to an ODE system by studying the model at

a steady state [12], but if the spatial domain is multidimensional, like the one presented in Ding and

Lenhart [14], such reductions lead to analysis of an optimal control problem over a PDE. One direction

we are considering in applying SPA to PDE problems is to first use standard numerical techniques

to obtain a spatially and temporally dependent control. If implementation of such a control is up for

debate, we follow the suggestions used in [3] and [1] to construct approximations of the control by

making it constant in space and/or time (reducing the dimension of the domain of the control). We

then can use SPA to improve these approximations.
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Appendix

Verifying the Lipschitz assumptions

In our prior work [34, Chapter 4], we derived the same formula (3.3) for the harvesting problem

(2.8). In this derivation, we took advantage of the characterization of the optimal control being piece-

wise constant which led to a simplification of the dynamics smoothness assumption (1) to where we

only needed f , given in (2.7), to be Lipschitz continuous in (y, h) and ∇y f to be Lipschitz continuous in

y. The derivation presented in our prior work also holds if we assume ∇y f to be Lipschitz continuous

in (y, h). Below, we verify that the harvesting problem (2.8) satisfies these assumptions. Note that the

derivation presented in [34, Chapter 4] also relied on assumptions corresponding to the invertiblity of

multiple submatrices relating to some fundamental matrices. We also assumed that the adjoint equa-

tions (2.9) had a solution, which corresponds to a similar assumption that is presented in [23, Theorem

5.1].

Theorem A.1. The function f defined in (2.7) is Lipschitz continuous.

Proof. Let (y, h) and (ỹ, h̃) be arbitrarily chosen. We take the 1-norm of the difference between f (y, h)

and f (ỹ, h̃):

∥

∥

∥ f (y, h) − f (ỹ, h̃)
∥

∥

∥

1
= |y2 − ỹ2| + |ỹ1(1 − ỹ1) − y1(1 − y1) + hy1 − h̃ỹ1| + |h̃ỹ1 − hy1|

≤ |y2 − ỹ2| + |ỹ1 − y1| + |y
2
1 − ỹ2

1| + |hy1 − h̃ỹ1| + |h̃ỹ1 − hy1|

≤ |y2 − ỹ2| + |ỹ1 − y1| + |y
2
1 − y1ỹ1 + y1ỹ1 − ỹ2

1| + 2|h̃ỹ1 − hy1|

≤ |y2 − ỹ2| + (1 + |y1| + |ỹ1|)|y1 − ỹ1| + 2|h̃ỹ1 − hỹ1 + hỹ1 − hy1|

≤ (1 + |y1| + |ỹ1|)|y1 − ỹ1| + |y2 − ỹ2| + 2|ỹ1||h̃ − h| + 2|h||ỹ1 − y1|

≤ (1 + |y1| + |ỹ1| + 2|h|)|y1 − ỹ1| + |y2 − ỹ2| + 2|ỹ1||h − h̃|

≤ (1 + |y1| + 2|ỹ1| + 2|h|)|y1 − ỹ1| + |y2 − ỹ2| + 2|ỹ1||h − h̃|.
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