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Abstract

This paper introduces a novel theoretical framework for the analysis of vector-valued neu-
ral networks through the development of vector-valued variation spaces, a new class of
reproducing kernel Banach spaces. These spaces emerge from studying the regularization
e↵ect of weight decay in training networks with activation functions like the rectified linear
unit (ReLU). This framework o↵ers a deeper understanding of multi-output networks and
their function-space characteristics. A key contribution of this work is the development of a
representer theorem for the vector-valued variation spaces. This representer theorem estab-
lishes that shallow vector-valued neural networks are the solutions to data-fitting problems
over these infinite-dimensional spaces, where the network widths are bounded by the square
of the number of training data. This observation reveals that the norm associated with
these vector-valued variation spaces encourages the learning of features that are useful for
multiple tasks, shedding new light on multi-task learning with neural networks. Finally,
this paper develops a connection between weight-decay regularization and the multi-task
lasso problem. This connection leads to novel bounds for layer widths in deep networks
that depend on the intrinsic dimensions of the training data representations. This insight
not only deepens the understanding of the deep network architectural requirements, but
also yields a simple convex optimization method for deep neural network compression. The
performance of this compression procedure is evaluated on various architectures.
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École polytechnique fédérale de Lausanne. He is now with the University of California, San Diego.

c�2024 Joseph Shenouda, Rahul Parhi, Kangwook Lee, and Robert D. Nowak.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-0677.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-0677.html


Shenouda, Parhi, Lee, and Nowak

1. Introduction

The investigation of shallow scalar-valued (single-output) neural networks through the lens
of function spaces has been extensively developed. This line of work was pioneered by Barron
(1993); Kůrková and Sanguineti (2001, 2002); Mhaskar (2004); Barron et al. (2008); Bach
(2017), where those authors study the so-called variation spaces of shallow networks. On the
other hand, the investigation of vector-valued (multi-output) networks is far less developed.
To fill that gap, this paper develops a new framework to investigate the characteristics of
the functions learned by vector-valued networks. Since each layer of a deep neural network
(DNN) is itself a shallow vector-valued neural network, the proposed investigation is crucial
to provide insights into learning with deep neural networks.

The developed framework is based on a novel class of Banach spaces which are termed
vector-valued variation spaces. These spaces arise naturally from a precise characteriza-
tion of the function-space norm that is regularized by weight decay when training neural
networks with homogeneous activation functions, such as the rectified linear unit (ReLU).
The vector-valued variation spaces reduce to the classical, scalar-valued variation spaces in
the single-output setting. In the general vector-valued setting, these spaces exhibit several
intriguing properties that shed light on multi-task learning with neural networks as well as
the inductive bias of weight-decay regularization. These properties motivate a simple and
computationally e�cient method to compress pre-trained deep neural networks (DNNs).

1.1 Organization and Main Contributions

This paper is organized as follows. In Section 2 we review the e↵ect of weight-decay reg-
ularization in the training of DNNs with homogeneous activation functions. There, it is
revealed that weight-decay regularization is equivalent to a constrained form of multi-task
lasso regularization. This observation then naturally leads to a variation norm on the
space of vector-valued networks and their (appropriately taken) wide limits, which com-
prises the vector-valued variation space. These vector-valued variation spaces characterize
the functions generated by shallow vector-valued networks (or, equivalently, layers of deep
networks).

In Sections 3 and 4 we develop the vector-valued variation spaces and investigate some
of their properties. We show that the vector-valued variation spaces are “immune” to
the curse of dimensionality in the sense that any function in a vector-valued variation
space can be ✏-approximated (in L

2) by a vector-valued neural network whose width scales
as ✏

�1/2, which is independent of both the input and output dimensions. We show that
these spaces are reproducing kernel Banach spaces and prove a representer theorem. The
representer theorem shows that shallow vector-valued neural networks are solutions to data-
fitting problems over the infinite-dimensional vector-valued variation spaces. Furthermore,
it guarantees that the widths of these neural network solutions are bounded by the square
of the number of training data, irrespective of the input and output dimensions.

In Section 5 we show that the norm associated with the vector-valued variation spaces
(and hence weight decay in the case of homogeneous activation functions) promotes a re-
markable “neuron sharing” property of the solutions. This refers to the fact that the norm
encourages solutions in which each neuron contributes to every output function, as opposed
to networks in which disjoint sets of neurons are used to represent di↵erent output func-
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tions. This indicates how di↵erent outputs may influence each other in the training process.
It also provides a new viewpoint of multi-task learning with neural networks: Solutions are
encouraged to learn features that are useful for multiple tasks.

Finally, in Section 6 we show that weight-decay regularization in DNNs with homoge-
neous activation functions is tightly linked to a convex multi-task lasso problem. With this
link, we present new bounds on the su�cient widths of layers in DNNs that depend on
the intrinsic dimensions of learned data representations at each layer. This result is based
on a novel characterization of the sparsity of multi-task lasso solutions, which may be of
independent interest. Notably, if the dimensions (ranks of data representation matrices) are
low, then there exist layers whose widths are much narrower than the number of data while
still being optimal solutions. This leads to a principled approach to DNN compression.
This approach is computationally e�cient and can dramatically reduce layer widths with-
out the sacrifice of the learned representations, data-fitting error, or optimality (in terms
of the weight decay objective and the variation norm). We evaluate the performance of our
proposed compression approach on various architectures in Section 7.

2. Weight Decay and the Neural Balance Theorem

Let f✓ be a DNN with weights ✓ and let {(xi, yi)}Ni=1 be a dataset where each xi 2 Rd and
yi 2 RD. To fit the data, a common approach is to train the network using gradient descent
with weight decay. This corresponds to finding a solution to the optimization problem

min
✓

NX

i=1

L(yi, f✓(xi)) +
�

2
k✓k22, (1)

where L(·, ·) is a loss function that is lower semicontinuous in its second argument and
� > 0 is the regularization parameter (Hanson and Pratt, 1988). Contemporary neural
network architectures include a variety of di↵erent building blocks, but a commonality
among them is neurons with the ReLU activation function. A ReLU neuron is a map of the
form z 7! v(wTz)+ with z, w 2 Rdin , v 2 Rdout , and where (·)+ := max{0, ·} is the ReLU.

More generally, an activation function � : R ! R is said to be positively homogeneous
of degree one (or simply homogeneous) if, for any � > 0, �(�t) = ��(t) for all t 2 R. The
ReLU, leaky ReLU, absolute value, and linear activation functions satisfy this property. A
key observation in both theory (Grandvalet, 1998; Grandvalet and Canu, 1998; Neyshabur
et al., 2015; Parhi and Nowak, 2023b) and practice (Kunin et al., 2021, Figure 5) is that
in any solution to (1), the 2-norms of the input and output weights of each neuron with
a homogeneous activation function must be balanced. This phenomenon is summarized in
the neural balance theorem (NBT) (Yang et al., 2022; Parhi and Nowak, 2023b).

Theorem 1 (Neural Balance Theorem) Let f✓ be a DNN of any architecture such that
✓ minimizes (1). Then, the weights satisfy the following balance constraint: If w and v
denote the input and output weights of any neuron with a homogeneous activation function,
then kwk2 = kvk2.

While the NBT is a simple observation, it allows for an alternative perspective on
weight-decay regularization. Indeed, first consider the weight-decay regularized problem for
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a shallow vector-valued neural network whose activation function � : R ! R is homogeneous

min
{wk,vk}Kk=1

NX

i=1

L
 

yi,

KX

k=1

vk�(wT
k xi)

!
+

�

2

KX

k=1

kvkk22 + kwkk22, (2)

where vk 2 RD, wk 2 Rd+1 and x := [x 1]T 2 Rd+1 augments x to account for a bias term.
Observe that, by the NBT, any solution to this weight-decay regularized problem is always
a solution to the so-called path-norm regularized problem

min
{wk,vk}Kk=1

NX

i=1

L
 

yi,

KX

k=1

vk�(wT
k xi)

!
+ �

KX

k=1

kvkk2kwkk2. (3)

Furthermore, thanks to the homogeneity of �, any solution to (3) is always a solution to
the constrained problem

min
{wk,vk}Kk=1

NX

i=1

L
 

yi,

KX

k=1

vk�(wT
k xi)

!
+ �

KX

k=1

kvkk2 s.t. kwkk2 = 1, k = 1, . . . , K, (4)

upon “absorbing” the magnitude of the input weights into the output weights.1 Clearly,
any solution to (4) is always a solution to (3). Moreover, any solution to (3) is always a
solution to (2), after balancing the weights. Thus, the problems (2)–(4) should be viewed
as equivalent. In particular, the regularizer in (4) is the multi-task lasso regularizer which
is known to promote a kind of sparsity (Obozinski et al., 2006, 2010; Argyriou et al., 2008).
We also remark that the neural balance theorem and the equivalence between (2)–(4) holds
in the case of unregularized biases (cf. Parhi and Nowak, 2023b, pp. 65–66). Furthermore,
all of the results of this paper also hold in that setting as well. For notational convenience,
we focus on the regularized bias scenario (see also Remark 2).

The equivalence between (2)–(4) can then be extended to any layer in a deep neural
network with homogeneous activation functions (see Section 6.1). This “secret sparsity of
weight decay” has many remarkable implications on the understanding of DNNs trained
with weight decay (see Parhi and Nowak, 2023b, for more details). Furthermore, this
connection leads to a natural characterization of the function spaces of vector-valued neural
networks, which is developed in the next section.

3. Vector-Valued Variation Spaces

The regularization term
PK

k=1 kvkk2 in the optimization (4) may be viewed as the repre-
sentational cost of a network. We can adopt this as a measure of the cost of any shallow
network or layer in a DNN. Consider a shallow neural network or network layer of the form

x 7!
KX

k=1

vk�(wT
k x), x 2 Rd

, (5)

1. That is, by reparameterizing the weights of each neuron as (vk,wk)  (vkkwkk2,wk/kwkk2), k =
1, . . . ,K. Observe that this reparameterization does not change the overall function realized by the
neural network.
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with wk 2 Rd+1 such that kwkk2 = 1, and vk 2 RD, k = 1, . . . , K. If a function f can be
represented by a finite-width network, then its representational cost is

kfk := inf
{wk,vk}Kk=1

K2N

KX

k=1

kvkk2 s.t. f =

 
x 7!

KX

k=1

vk�(wT
k x)

!
. (6)

The inf arises due to the fact that there are many neural network representations of the
same function f . The inf selects the one with the lowest representational cost. The reader
can quickly verify that this quantity is a bona fide norm since it satisfies the following
properties.

1. Triangle Inequality: kf + gk  kfk + kgk.

2. Homogeneity: k↵fk = |↵|kfk for ↵ 2 R.

3. Positive Definiteness: kfk = 0 if and only if f = 0.

The space of all finite-norm neural network functions of the form (5) and their limits2 defines
a Banach space that we call a vector-valued variation space. These spaces, which capture
all functions that can be represented or approximated by neural networks with finite norms,
are developed in the sequel. We begin by reviewing past constructions of variation spaces
for scalar (single-output) networks.

3.1 Scalar-Valued Variation Spaces

In this subsection, we review the definition of the classical, scalar-valued variation spaces.
The results stated here can be found in the papers of Bengio et al. (2005); Bach (2017);
Parhi and Nowak (2021); Siegel and Xu (2023). The main idea is to consider shallow neural
networks with possibly continuously many neurons. These neural networks are parameter-
ized by a finite (Radon) measure. The scalar-valued variation space is the space of functions
that map Rd ! R

V�(Rd) :=

⇢
f(x) =

Z

Sd
�(wTx) d⌫(w) : x 2 Rd

, ⌫ 2 M(Sd)
�

, (7)

where Sd := {w 2 Rd+1 : kwk2 = 1} is the unit sphere, x := [x 1]T 2 Rd+1 augments x to
account for a bias term, and M(Sd) is the space of finite (Radon) measures. The measure
⌫ plays the role of the output weight of each neuron. Here, and in the rest of this paper,
the activation function � : R ! R will always be assumed to be continuous.

Since each function f 2 V�(Rd) is parameterized by a measure ⌫ 2 M(Sd), we introduce
the notation

f⌫(x) :=

Z

Sd
�(wTx) d⌫(w), x 2 Rd

. (8)

It is well-known that the space V�(Rd) is a Banach space when equipped with the norm

kfkV�(Rd) := inf
⌫2M(Sd)
f=f⌫

k⌫kM(Sd), (9)

2. These are weak⇤ limits as opposed to norm limits (cf., E et al., 2022).
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where k·kM(Sd) denotes the total variation norm in the sense of measures. If f is a finite-
width network, this norm is in fact equal to the norm defined (6), as shown in (12) below.

As in (6), the inf arises since the dictionary of neurons {x 7! �(wTx)}w2Sd is highly
redundant. Thus, there are many di↵erent representations for a given f 2 V�(Rd). By
choosing the representation with the smallest total variation norm, (9) defines a valid Ba-
nach norm on V�(Rd) (see, e.g., Siegel and Xu, 2023, Lemma 3). Here, we use the following
definition of k·kM(Sd)

k⌫kM(Sd) := sup
Sd=

Sn
i=1 Ai

n2N

nX

i=1

|⌫(Ai)|, (10)

where the sup is taken over all partitions of Sd (i.e., Ai\Aj = ? for i 6= j). This definition is
equal to the more conventional definitions based on the Jordan decomposition of a measure
or as a dual norm (Diestel and Uhl, 1977; Bredies and Holler, 2020). We use the definition
in (10) as an analogous definition will play an important role in the vector-valued case.

Consider a single neuron �v,w(x) := v�(wTx), x 2 Rd, where v 2 R and w 2 Sd. In
this scenario, it is clear that the inf in (9) is achieved by the one scaled Dirac measure v�w

(since any other combination of dictionary elements that represent a single neuron would
have a larger norm). Thus, if we have the shallow neural network

x 7!
KX

k=1

vk�(wT
k x), x 2 Rd

, (11)

where the input weights wk 2 Sd are all unique, it is known (cf., Bach, 2017, p. 6) that the
inf in (9) is achieved by

PK
k=1 vk�wk . Therefore,

�����x 7!
KX

k=1

vk�(wT
k x)

�����
V�(Rd)

=

�����

KX

k=1

vk�wk

�����
M(Sd)

=
KX

k=1

kvk�wkkM(Sd) =
KX

k=1

|vk|, (12)

where the second equality uses the fact that the Dirac measures have disjoint support and
the third equality follows from the property that ka�ukM(Sd) = |a|, where a 2 R and

u 2 Sd. The final quantity on the right above is the `
1-norm of all the output weights,

which is precisely the regularization term in (4). Furthermore, if the activation function
is homogeneous, then, by the NBT (Theorem 1), the regularization of this quantity is
equivalent to weight-decay regularization. Therefore, training a scalar-output shallow neural
network with weight decay penalizes the variation norm of the network.

Remark 2 To consider the unregularized bias scenario, the integral in (8) would instead
take the form of an integral combination of neurons of the form x 7! �(wTx + b), (w, b) 2
Sd�1 ⇥R, against the measure ⌫ 2 M(Sd�1 ⇥R). The precise details are discussed by Ongie
et al. (2020, Appendix B) in the case when � is the ReLU. In that case, the corresponding
variation space has an analytic description via the Radon transform (Ongie et al., 2020;
Parhi and Nowak, 2021). In this paper, we focus on the regularized bias scenario for nota-
tional convenience. As discussed in Section 2, all results presented in this paper hold in the
unregularized bias scenario.
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3.2 Vector-Valued Variation Spaces

The vector-valued variation space is the set of functions defined analogously to the scalar-
valued variation spaces:

V�(Rd;RD) :=

⇢
f(x) =

Z

Sd
�(wTx) d⌫(w) : x 2 Rd

,⌫ 2 M(Sd;RD)

�
, (13)

where ⌫ = (⌫1, . . . , ⌫D) is now a vector-valued measure (which takes values in RD as opposed
to R) and plays the role of the output weight vector of each neuron. Analogous to (10),
define the total variation norm of a measure ⌫ as

k⌫k2,M := sup
Sd=

Sn
i=1 Ai

n2N

nX

i=1

k⌫(Ai)k2 = sup
Sd=

Sn
i=1 Ai

n2N

nX

i=1

0

@
DX

j=1

|⌫j(Ai)|2
1

A
1/2

. (14)

The choice of norm in the above display is a common choice for the total variation norm of
a vector-valued measure. Furthermore, (M(Sd;RD), k·k2,M) is a Banach space. We refer
the reader to the monograph of Diestel and Uhl (1977) for a full treatment of vector-valued
measures and the accompanying results. This leads to a norm on functions of the form

f⌫(x) :=

Z

Sd
�(wTx) d⌫(w), x 2 Rd

, (15)

as
kfkV�(Rd;RD) := inf

⌫2M(Sd;RD)
f=f⌫

k⌫k2,M. (16)

To connect back to the optimization (4), consider a single vector-valued neuron �v,w(x) :=
v�(wTx), x 2 Rd, where v 2 RD and w 2 Sd. As in the scalar-valued scenario, the inf
is achieved by the measure v�w. This is a vector (in RD) multiplied by a scalar-valued
Dirac measure and is therefore a vector-valued measure in M(Sd;RD). Thus, as in the
scalar-valued case, for the shallow vector-valued neural network

x 7!
KX

k=1

vk�(wT
k x), x 2 Rd

, (17)

where the input weights wk 2 Sd are all unique, the inf in (16) is achieved by

KX

k=1

vk�wk . (18)

Writing vk = (vk,1, . . . , vk,D), a calculation reveals that

�����x 7!
KX

k=1

vk�(wT
k x)

�����
V�(Rd;RD)

=

�����

KX

k=1

vk�wk

�����
2,M

=
KX

k=1

kvk�wkk2,M =
KX

k=1

kvkk2, (19)
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where we used the property that ka�uk2,M = kak2, where a 2 RD and u 2 Sd (cf., Boyer
et al., 2019, Section 4.2.3). From (4), we see immediately see that this choice of norm on
M(Sd;RD) corresponds to weight-decay regularization when � is homogeneous.

We remark that several other norms have been previously proposed for vector-valued
networks/measures (see Parhi and Nowak, 2022; Korolev, 2022). These prior works essen-
tially treat each output separately. This type of norm is fundamentally di↵erent than the
one proposed in (16). Furthermore, these other norms do not correspond to weight-decay
regularization. These di↵erent norms and their relationships are discussed in Appendix A.

3.2.1 The Curse of Dimensionality

The space V�(Rd;RD) has intriguing approximation properties, which carry over from the
scalar-valued case (which are known). Let Q

d := [0, 1]d denote the unit cube in Rd and
define

V�(Qd;RD) := {f : Q
d ! RD : there exists g 2 V�(Rd;RD) such that g|Qd = f}. (20)

This space is a Banach space when equipped with the norm

kfkV�(Qd;RD) := inf
g2V�(Rd;RD)

g|Qd=f

kgkV�(Rd;RD). (21)

By restricting our attention to a bounded domain, we have the continuous embedding
V�(Qd;RD) ⇢ L

2(Rd;RD). For each f = (f1, . . . , fD) 2 V�(Qd;RD), we have, for j =
1, . . . , D, that fj 2 V�(Qd) (the scalar-valued variation space restricted to Q

d).
In the scalar-valued case, the Maurey–Jones–Barron lemma (Pisier, 1981; Jones, 1992;

Barron, 1993) says that, given fj 2 V�(Qd), there exists a K-term approximant

f
K
j (x) =

KX

k=1

vk,j�(wT
k,jx) (22)

with vk,j 2 R and wk,j 2 Sd such that

kfj � f
K
j kL2(Qd)  C0C�kfjkV�(Qd)K

�1/2
, (23)

where C0 > 0 is an absolute constant independent of d and

C� = sup
w2Sd

kx 7! �(wTx)kL2(Qd). (24)

This result is remarkable since it establishes that, for any function in V�(Qd), there exists
an approximant whose error decays at a rate independent of the input dimension d. Here,
we note that the constant C� depends on (essentially) the volume the domain Q

d since �

is continuous, and is therefore also independent of the input dimension d (since the volume
of Q

d is 1). This result has a straightforward extension to the vector-valued case. This
is summarized in the following theorem whose proof can be found in Appendix B, which
shows that any function in V�(Qd;RD) can be approximated in L

2 by a network of width K

with an error that decays at a rate K
�1/2, independent of the input and output dimensions

d and D.
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Theorem 3 Given f 2 V�(Qd;RD), there exists a K-term approximant of the form

fK(x) =
KX

k=1

vk�(wT
k x), x 2 Rd

, (25)

with vk 2 RD and wk 2 Sd such that

kf � fKkL2(Qd;RD)  C0C�D
3
2 kfkV�(Qd;RD)K

�1/2
, (26)

where C0 and C� are as above and the L
2(Qd;RD)-norm is specified by

kfkL2(Qd;RD) =

✓Z

Qd
kf(x)k22 dx

◆1/2

. (27)

Remark 4 Theorem 3 sets the stage for the investigation of dimension-free nonlinear min-
imax rates of estimation for multi-output neural networks. These results have recently been
carried out for single-output neural networks trained with weight decay by Parhi and Nowak
(2023a).

4. Representer Theorem for Vector-Valued Variation Spaces

The discussion above has shown that finite-width neural networks are e↵ective at approx-
imating functions in vector-valued variation spaces. This section considers the problem of
fitting data with functions in V�(Rd;RD). The main result here is a representer theorem
that shows that finite-width neural networks are solutions to such problems and bounds
the (su�cient) widths of networks in terms of the number of data points. This has an
important implication: The infinite-dimensional learning problem can be solved by training
a finite-width neural network, and increasing the width beyond the given bound will not
yield a smaller objective value.

Theorem 5 Let (x1, y1), . . . , (xN , yN ) 2 Rd ⇥RD be a finite dataset. Then, there exists a
solution to the variational problem

inf
f2V�(Rd;RD)

NX

i=1

L(yi, f(xi)) + �kfkV�(Rd;RD), � > 0, (28)

where the loss function L(·, ·) is lower semicontinuous in its second argument, which takes
the form

f
?(x) =

K0X

k=1

vk�(wT
k x), x 2 Rd

, (29)

where K0  min{N
2
, ND}. Here, vk 2 RD and wk 2 Sd.

The proof of Theorem 5 appears in Appendix C. What is remarkable here is the bound
K0  N

2. Indeed, for large D, this bound improves the bound of ND + 1 predicted by
Carathéodory’s theorem (Bredies et al., 2024). Note that Theorem 5 applies to a variation
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space based on any continuous activation function �. Furthermore, we mention again that
the result also holds in the unregularized bias scenario upon the appropriate modifications
discussed in Remark 2. If � is homogeneous, then the regularization is equivalent to weight
decay. The result of Theorem 5 also applies to the entire solution set to (28). Indeed, the
solution set to (28) is nonempty, convex, weak⇤ compact, and its extreme points take the
form of sparse vector-valued networks as in (29).

Corollary 6 Let L(·, ·) be lower semicontinuous in its second argument. Moreover, let
� : R ! R be any homogeneous activation function. Then, any solution to the neural
network training problem

min
{wk,vk}Kk=1

NX

i=1

L
 

yi,

KX

k=1

vk�(wT
k xi)

!
+

�

2

KX

k=1

kvkk22 + kwkk22, � > 0, (30)

is a solution to the variational problem (28), so long as K � min{N
2
, ND}.

Proof By Theorem 5, there always exists a solution to (28) that takes the form of a shallow
vector-valued neural network with less than min{N

2
, ND} neurons. Thus, a solution to (28)

must exist in the space of all shallow vector-valued neural networks with K � min{N
2
, ND}

neurons. By (19), any solution to

min
{wk,vk}Kk=1

NX

i=1

L
 

yi,

KX

k=1

vk�(wT
k xi)

!
+�

KX

k=1

kvkk2, s.t. kwkk2 = 1, k = 1, . . . , K, (31)

is a solution to (28). The result then follows by the equivalence between the problem in the
above display with (30) as discussed in Section 2.

Remark 7 The vector-valued variation space (V�(Rd;RD), k·kV�(Rd;RD)) is an example of a
reproducing kernel Banach space (RKBS) (Zhang et al., 2009; Lin et al., 2022). Indeed, this
can be readily deduced from the fact that the scalar-valued variation spaces are reproducing
kernel Banach spaces (Bartolucci et al., 2023; Spek et al., 2022).

4.1 A Representer Theorem for Deep Neural Networks

Theorem 5 can be extended to DNNs by using the techniques developed by Parhi and
Nowak (2022, Theorem 3.2). The extension is summarized in Theorem 8 and the proof can
be found in Appendix D.

Theorem 8 Let (x1, y1), . . . , (xN , yN ) 2 Rd0 ⇥ RdL be a finite dataset. Then, there exists
a solution to the variational problem

inf
f (1),··· ,f (L)

f (`)2V�(Rd`�1 ;Rd` )

NX

i=1

L(yi, f
(L) � · · · � f

(1)(xi)) + �

LX

`=1

kf
(`)kV�(Rd`�1 ;Rd` ), � > 0, (32)

10
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where the loss function L(·, ·) is lower semicontinuous in its second argument, which takes
the form

f
?(x) = A(L) � � � A(L�1) � · · · � � � A(1)(x) x 2 Rd

, (33)

where, for each layer ` = 1, . . . , L, the function A(`)(z) = V(`)z � b(`) is an a�ne mapping
with weight matrix V(`) 2 Rd`⇥d`�1 and bias vector b(`) 2 Rd`, where � applies the activation
function � : R ! R component-wise.

5. Neuron Sharing in Neural Network Solutions

This section describes a remarkable “neuron sharing” property of solutions to the weight
decay optimization objective (1) and the variational problem (28). This refers to the fact
that each neuron in a solution is encouraged to contribute to every output, as opposed to
networks in which di↵erent neurons are used to represent di↵erent output functions. This
indicates how di↵erent outputs may influence each other in the training process. It also
provides a new viewpoint for multi-task learning with neural networks: When the activation
function is homogeneous, weight decay encourages the learning of features that are useful
for multiple tasks/outputs.

The neuron sharing property arises from the definition of the V�(Rd;RD)-norm in (16).
In particular, the k·kV�(Rd;RD)-norm regularized problem

min
f2V�(Rd;RD)

 
J (f) :=

NX

i=1

L(yi, f(xi)) + �kfkV�(Rd;RD)

!
, � > 0, (34)

where (x1, y1), . . . , (xN , yN ) 2 Rd ⇥RD is any fixed dataset and L(·, ·) is lower semicontin-
uous in its second argument, favors solutions that share neurons. We quantify this explicitly
in Theorem 9.

Theorem 9 Let f be a finite-width vector-valued neural network with unique input weights
of the form

f(x) =
KX

k=1

vk�(wT
k x), x 2 Rd

, (35)

with kwkk2 = 1, k = 1, . . . , K. Then, there exists � > 0 (that depends on � and the data)
such that, if kw1 � w2k2 < � and these two neurons contribute exclusively to two disjoint
subsets of the outputs, then the neural network

bf(x) = f(x) � v1�(wT
1 x) + v1�(wT

2 x), (36)

which shares one neuron across both sets of outputs has a strictly smaller objective value,
i.e., J ( bf) < J (f).

Proof Since the input weights are all unit norm, Equation (34) reduces to

J (f) =
NX

i=1

L(yi, f(xi)) + �

KX

k=1

kvkk2. (37)

11
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Without loss of generality, suppose that the two neurons whose input weights are w1 and
w2 contribute to two disjoint subsets of the D outputs. In particular, the first neuron
contributes to the outputs in index set I1 ⇢ {1, . . . , D}, while the second contributes to
outputs in the index set I2 ⇢ {1, . . . , D}, where I1 \ I2 = ?. That is, v1 and v2 have
disjoint support. Define

✏ := �(kv1k2 + kv2k2 � kv1 + v2k2) > 0. (38)

Since the loss L is lower semicontinuous in its second argument, there exists �i > 0, such
that, if k bf(xi) � f(xi)k2 < �i, then

L(yi,
bf(xi)) � L(yi, f(xi)) < ✏/N, (39)

where we note that �i depends on ✏, N , and xi. By (36), we have that

k bf(xi) � f(xi)k2 = kv1�(wT
1 xi) � v1�(wT

2 xi)k2
= kv1k2|�(wT

1 xi) � �(wT
2 xi)|. (40)

The continuity of the activation function guarantees that there exists a �i > 0 (that depends
on �i/kv1k2) such that

kw1 � w2k2 < �i =) |�(wT
1 xi) � �(wT

2 xi)| < �i/kv1k2. (41)

Therefore, if kw1 � w2k2 < � := mini=1,...,N �i, then |�(wT
1 xi) � �(wT

2 xi)| < �i/kv1k2, for
any i = 1, . . . , N . Consequently, this implies that

 
NX

i=1

L(yi,
bf(xi)) � L(yi, f(xi))

!
< ✏ (42)

whenever kw1 � w2k2 < �. To complete the proof, observe that whenever kw1 � w2k2 < �,
we have that

J ( bf) � J (f) =

 
NX

i=1

L(yi,
bf(xi)) � L(yi, f(xi))

!
+ �

⇣
k bfkV�(Rd;RD) � kfkV�(Rd;RD)

⌘

=

 
NX

i=1

L(yi,
bf(xi)) � L(yi, f(xi))

!
+ � (kv1 + v2k2 � (kv1k2 + kv2k2))

< ✏ + � (kv1 + v2k2 � (kv1k2 + kv2k2))
= 0. (43)

Thus, if two neurons have su�ciently close input weights, removing one and having the
other one be shared strictly decreases the objective in (34).

Note that by sharing neurons bf always has a strictly smaller V�(Rd;RD)-norm than f .
Indeed, we have that

k bfkV�(Rd;RD) � kfkV�(Rd;RD) = kv1 + v2k2 � (kv1k2 + kv2k2) < 0, (44)

12
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where the equality follows from the fact that the only neurons that are di↵erent between
the two functions are the ones with input weights w1 and w2 and the inequality follows
from the triangle inequality (which is strict since v1 and v2 have disjoint support).

Theorem 9 along with the discussion in Section 2 shows that, when the activation
function � is homogeneous, vector-valued neural networks trained with weight decay are
encouraged to share neurons. Trained networks that exhibit neuron sharing are important in
multi-task learning problems, e.g., multi-class classification, where components of the labels
could have some relationships or correlations. Therefore, the neuron sharing phenomenon
exhibited by solutions to weight decay regularized problems provides some explanation
towards its e�cacy when used for classification tasks. We illustrate the types of architectures
that are favored by weight decay regularization in Figure 1. We also verify this numerically
in Section 7.1.
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Figure 1: Three neural networks with di↵erent weight-sparsity patterns. The input weights
are normalized to lie on the sphere and the components of the output weights
are all O(1). In the case of homogeneous activation functions, weight decay
minimizes the V�(Rd;RD) norm and therefore favors the right-most architecture.
This architecture exhibits both neuron sparsity and neuron sharing. Each output
depends on the same few neurons. This observation also gives insight into the
regularity of the optimal functions: They favor functions that only vary in a
few directions across all outputs. This is in contrast with the middle network
where each output has variation in a small number of directions, but this set of
directions can be di↵erent for each output.
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6. Data-Dependent Width Bounds and DNN Compression

In this section, we complement our previous analysis of the vector-valued variation spaces.
We use the NBT (Theorem 1) to refine the number of neurons predicted by the representer
theorems (Theorems 5 and 8). In particular, these new bounds are data dependent and
improve previous results that have been reported in the literature (e.g., Jacot et al., 2022,
Proposition 7). Furthermore, these bounds are applicable to all layers with homogeneous
activation functions within any DNN.

We use the NBT, to relate the weights that minimize the weight decay objective with
minimizers of a convex multi-task lasso problem. This convex problem is data dependent
and is based on the learned representations of the training data. We use this reduction
to derive bounds on the widths of DNNs trained with weight decay (Theorem 10). A by-
product of our analysis are, to the best of our knowledge, the first sparsity bounds for the
(convex) multitask lasso problem (Theorem 11). This result may be of independent interest.
This investigation also motivates the proposal of a new principled and computationally
e�cient procedure to compress pre-trained DNNs (Section 7.3).

6.1 Width Bounds

Let f✓ be a DNN that minimizes (1). Consider any layer of this DNN that has homogeneous
activation functions and suppose that it has a width of K neurons. Let 'i denote the
learned feature representation of the ith training example xi that is input to this layer.
Furthermore, let {wk}Kk=1 and {vk}Kk=1 denote the input and output weights of this layer,
respectively. Then, the output features learned by this layer are given by

 i :=
KX

k=1

vk �(wT
k 'i), i = 1, . . . , N, (45)

where we recall that 'i augments a 1 to 'i to account for a bias term. Thanks to the
homogeneity of �, we can write

 i :=
KX

k=1

evk �( ewT
k 'i), i = 1, . . . , N, (46)

where ewk := wk/kwkk2 and evk := vkkwkk2. Let �k,i := �( ewT
k 'i). Consequently, let

�i = (�1,i, . . . , �K,i) 2 RK
, i = 1, . . . , N, (47)

denote the post-activation features.
A corollary to the representer theorem (Theorem 5) is that there exists an optimal

representation of this layer with  N
2 neurons. This is often a loose upper bound, especially

when the learned features are highly structured. In Theorem 10 we present data-dependent
bounds on the widths of DNN layers based on the intrinsic dimensions (ranks) of the learned
data representations.

Theorem 10 Let (x1, y1), . . . , (xN , yN ) be any finite dataset and let L(·, ·) be any loss
function that is lower semicontinuous in its second argument. Furthermore, let f✓ be a
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DNN that solves

min
✓

NX

i=1

L(yi, f✓(xi)) +
�

2
k✓k22. (48)

Consider any layer of f✓ with homogeneous activation functions and let {�i}Ni=1 and { i}Ni=1
denote the learned post-activation and output features defined according to (47) and (46),
respectively. If

r� = dim span{�i}Ni=1

r = dim span{ i}Ni=1 (49)

denotes the dimensions of the subspaces spanned by the learned features, then there exists
an equivalent representation of the DNN (in the sense that it still minimizes (48)) where
this layer has at most r� r  N

2 neurons. Furthermore, the equivalent representation can
be found by solving a convex multi-task lasso problem.

Proof Given the learned post-activation and output features {�i}Ni=1 and { i}Ni=1 of the
training examples {xi}Ni=1 from one layer of the DNN f✓ with homogeneous activation func-
tions, observe that, by the NBT (Theorem 1), {evk}Kk=1 (as defined in (46)) must minimize

min
{vk}Kk=1

KX

k=1

kvkk2 s.t.  i =
KX

k=1

vk�k,i, i = 1, · · · , N. (50)

Therefore, if we replace {evk}Kk=1 with any solution to (50) and rebalance the weights, the
new DNN would still minimize (48).

To complete the proof, we observe that (50) is a convex multi-task lasso problem. As
we shall prove in Theorem 11 in Section 6.2 below, there exists a solution to that multi-task
lasso problem with at most r� r nonzero vectors. By a dimension-counting argument we
always have the bound r� r  N

2. Finally, observe that we can always find the compressed
representation by solving the convex multi-task lasso problem. Thanks to the NBT, upon re-
balancing the weights into and out of this layer, the compressed DNN still minimizes (48).

Note that this result is not restricted to only one layer in a DNN. Indeed, it can be
applied in a layer-wise manner. Thus, this result provides bounds on the widths of any
layer in a DNN with homogeneous activation functions. This result also improved previous
results that have appeared in the literature since it is data dependent. Furthermore, our
generic bound of N

2 also improves the recent bound of N(N + 1) of Jacot et al. (2022,
Proposition 7).

Our data-dependent bounds are particularly relevant since it has been observed em-
pirically that the subspaces spanned by learned features are often low-dimensional (Nar
et al., 2019; Wale↵e and Rekatsinas, 2022; Feng et al., 2022; Huh et al., 2023; Kwon et al.,
2024; Yaras et al., 2024). These empirical observations have also been backed by the-
oretical arguments (Papyan et al., 2020; Le and Jegelka, 2022). Therefore, we see that
Theorem 10 motivates the design of a principled and computationally e�cient procedure to
compress pre-trained DNNs. This procedure proceeds in a layer-by-layer manner and solves
the convex multi-task lasso problem (50). We empirically evaluate the performance of this
compression procedure in Section 7.3 on various architectures.
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6.2 Sparsity of Solutions to the Multi-Task Lasso Problem

The main ingredients of the proof of Theorem 10 were (i) a reduction to the convex multi-
task lasso problem (ii) the invocation of the sparsity bounds on the multi-task lasso problem,
which we derive in this section. We consider the multi-task lasso problem as formulated
by Obozinski et al. (2006, 2010); Argyriou et al. (2008); Obozinski et al. (2011). This
problem has also been studied in the context of inverse problems with multiple measurement
vectors (Cotter et al., 2005; Chen and Huo, 2006; Sun et al., 2009; Bajwa et al., 2015). Our
result on the sparsity of multi-task lasso minimizers appears in Theorem 11. This result is
new, to the best of our knowledge, and may be of independent interest. The proof can be
found in Appendix E.

Theorem 11 Consider the multi-task lasso problem

min
V=[v1,··· ,vK ]

KX

k=1

kvkk2 s.t.  = V�, (51)

where  2 RD⇥N and � 2 RK⇥N are matrices with ranks r� and r , respectively. Assume
that the row space of  is contained in the row space of �, which implies a solution exists.
For any K > 0 there exists a solution with at most r�r nonzero columns. Furthermore,
there exists  such that no solution has fewer than r� nonzero columns.

Unlike the traditional lasso problem, which seeks a sparse solution in an unstructured
manner, the multi-task lasso seeks a structured sparsity. In this setting, each column of
V is associated with a block. This block will either be entirely zero or (typically) entirely
nonzero. Since each column of V corresponds to a feature, this implies that each feature
is used in either all prediction tasks or none. The proof utilizes a generalized version of
Carathéodory’s theorem along with the fact that for any solution V, the dimension of the
column space must be r .

The intuition behind the upper and lower bounds in Theorem 11 is as follows. If every
row of  can be synthesized using the same r� rows in �, while still minimizing the
objective, then the lower bound is achieved. On the other hand, if the minimum can be
achieved by having r linearly independent rows in  synthesized by di↵erent subsets of
r� rows in �, then the upper bound is met. Our numerical experiments in Section 7.2
demonstrate that the minimum number of nonzero columns in any solution may range
between the upper and lower bounds depending on precise structure of  and �.

Remark 12 The lower bound follows from the following observation. If a solution exists
with fewer than r� nonzero columns, then all the rows of  belong one of the (finitely many)
lower dimensional subspaces in the row space of � spanned by certain subsets its rows. But
collectively, these subspaces do not contain all points in the row space of �, and so there
are infinitely many points that cannot be represented with fewer than r� rows of �.

Remark 13 Observe that when D = 1, (51) reduces to the classical lasso problem. In that
case, the sparsity of solutions to the classical lasso has been investigated by Rosset et al.
(2004); Tibshirani (2013).
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7. Experiments

In this section we present three numerical experiments that validate our theory and demon-
strate its utility in practice. Our first experiment demonstrates that weight decay encourages
neuron sharing. Our second experiment validates the bound presented for the multi-task
lasso problem in Theorem 11. Our third experiment compresses layers for pre-trained VGG-
19 (Simonyan and Zisserman, 2014; Wang et al., 2021) and AlexNet (Krizhevsky et al., 2017)
models via the multi-task lasso convex optimization problem as in Theorem 10. In particu-
lar, we show that this principled compression approach preserves the training loss, accuracy,
and weight decay objective of the model.3

7.1 Neuron Sharing Simulation

To demonstrate that weight decay encourages neuron sharing we train three vector-valued
shallow ReLU neural networks to fit a synthetic two-dimensional dataset. The dataset
consists of 50 samples where the features are two-dimensional vectors drawn i.i.d. from a
multivariate normal distribution. The labels are three-dimensional and generated by passing
the feature vectors through a randomly initialized ReLU neural network with five neurons.

All networks were initialized with one hundred and fifty neurons. The first network
was trained with weight decay regularization. The second network was trained with `

1

regularization. The third network was trained with no regularization. We used full batch
gradient descent with the Adam optimizer. We used a learning rate of 2 ⇥ 10�3 for two
million iterations. The regularization parameter was � = 10�6 for weight decay and � =
10�9 for `

1-regularization. We chose � to be as large as possible such that the networks
interpolate the data.

In Figure 2 we plot the locations of the neurons contributing to each output of the
trained network. Thanks to the homogeneity of the ReLU, after training, we normalize the
input weights to be unit norm by absorbing the magnitude into the output weight. This
reparameterization does not change the overall function mapping. This allows us to express
each input weight as wk = (cos ✓k, sin ✓k) with a bias bk 2 R. In other words, we can plot
each neuron x 7! �(wT

k x + bk) with the two-dimensional coordinate (✓k, bk).

In Figure 2, we show the (✓k, bk) pairs for every active neuron in the trained network.
Our results show that, when regularizing with weight decay, the learned network is not
only sparser (in terms of the number of active neurons), but also exhibits strong neuron
sharing. In contrast with `

1-regularization there is not much neuron sparsity or neuron
sharing. Finally, we see that no regularization results in a very dense network where all
neurons are active. To generate the plots, we deem a neuron active if the `

1-norm of the
output weight is greater than 10�3. At the end of training we had 5 neurons active for
weight decay regularization, 85 neurons active for `

1-regularization and 130 neurons active
with no regularization.

3. The code to reproduce our experiments can be found at https://github.com/joeshenouda/
vv-spaces-nn-width. We follow the reproduciblity guidance of Shenouda and Bajwa (2023).
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Figure 2: We trained a three output two-dimensional ReLU neural network of the form
f(x) =

PK
k=1 vk�(wT

k x + bk) with weight decay, `
1-regularization, and no reg-

ularization. Let f1, f2 and f3 denote the first, second, and third components
of the outputs. We plot the locations of each active neurons under the (✓k, bk)-
parameterization. The size of the circles indicate the magnitude of the corre-
sponding output weight vector. We see that in the case of weight decay, we have
very few active neurons. Furthermore, those neurons that remain are shared
across all outputs.
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Figure 3: Distribution of the number of active columns for the solutions to the multi-task
lasso problem on randomly generated matrices of varying sizes. The horizontal
axis is the number of nonzero columns in the optimal V and the vertical axis is
the frequency. We ran this experiment for 100 randomly generated matrices. In
all cases r� = N and r = D so by Theorem 11 we expect N  bK  ND. The
shaded region indicates our theoretical bounds. The wide gap suggests that our
upper bound can be sharpened.

7.2 Multi-Task Lasso Experiments

We solve the multi-task lasso problem in Theorem 11 on randomly generated matrices �
and using CVXPy (Diamond and Boyd, 2016). Our experiments illustrate that, while our
bounds hold, the exact number of nonzero columns depends on the data itself. In Figure 3
we show histograms for the distribution of nonzero columns over 100 randomly generated
pairs of � and  .

In Figure 4 we perform a similar set of experiments but alter the underlying rank of
�. This validates our bound showing that the sparsity of the solution can be much lower
depending on the rank. We again see that the distribution is dependent on the data. We
note that, however, we never achieve our upper bound which may indicate that our bounds
can be further sharpened.

To demonstrate that the sparsest solutions to the multi-task lasso problem Theorem 11
depends on the data matrices � and  we also ran a small-scale experiment similar to
Figure 4 and Figure 3. However, in the next set of experiments, we exhaustively searched
over all 2K sparsity patterns that the solution may have. We arrive at the same conclusion
as we did before: The sparsest solution can lie anywhere within our bound. This is depicted
in Figure 5.

7.3 Compression of Pre-Trained DNNs

We compress DNNs pre-trained on the CIFAR-10 dataset based on the principled approach
outlined in Section 6. The first model we consider is a pre-trained VGG-19 architecture
trained with weight decay.4 This model consists of various convolutional and batch-norm

4. We use the pre-trained VGG-19 model from https://github.com/hwang595/Pufferfish.
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Figure 4: Distribution of the number of active columns for the solutions to the multi-task
lasso problem on randomly generated matrices with � of various rank. The hor-
izontal axis is the number of nonzero columns in the optimal V and the vertical
axis is the frequency. We ran this experiment for 100 randomly generated ma-
trices, in all cases D = 10, N = 20 and K = 200. By Theorem 11 we expect
r�  bK  r� · r . The shaded region indicates our theoretical bounds.
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Figure 5: Distribution of number of nonzero columns for the solutions to the multi-task
lasso problem. We ran this experiment over 1000 randomly generated matrices
� and  . The horizontal axis is the number of nonzero columns in the optimal
V where each bin is left-inclusive corresponding to a single integer. The vertical
axis is the frequency. We see that the sparsest solution is dependent on the data
and can vary between our bounds. The area between the two shaded regions
indicate our theoretical bounds. The gap indicates that our upper bound can be
sharpened.

layers followed by a fully-connected ReLU layer that contains 512 neurons. We run our
compression procedure on this ReLU layer.

The output of this ReLU layer is the output of the entire network. There are 10 outputs
that correspond to the 10 classes of CIFAR-10. Therefore,  2 R10⇥N with r  10. The
post-activation feature matrix � 2 R512⇥N has an approximate rank of 10. We approximate
the rank following the same procedure of Huh et al. (2023, Appendix D): We threshold the
singular values at a value of 10�3.

Thus, Theorem 10 suggests that there exists an alternative optimal representation with
no more than 100 neurons in this layer that can be found by solving a convex multi-task
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lasso problem. We validate this by minimizing5 a regularized version of the constrained
multi-task lasso problem

min
{vk}

1

ND
kV�� k22 + �

KX

k=1

kvkk2, (52)

with � = 3 ⇥ 10�3.

The second model we consider is a pre-trained AlexNet architecture trained with weight
decay.6 We use this mode to illustrate how we can compress multiple layers in a DNN in
a layer-by-layer fashion. This model has multiple convolutional layers followed by three
fully connected ReLU layers with 9216, 4096, and 4096 neurons, respectively. We run our
compression procedure on these ReLU layers.

For the first fully-connected layer we found that r ⇡ 69 and r� ⇡ 225. For the second
fully-connected layer we found that r ⇡ 56 and r� ⇡ 69. For the last fully-connected layer
we found that r  10 and r� ⇡ 56. The approximate ranks were again computed with a
threshold of 10�3 on the singular values. Theorem 10 suggestions that we can significantly
compress the last two layers. For the first and second fully-connected layers we solve (52)
with � = 10�6. For the last fully-connected layer we used � = 10�3.

The results for the compression of both VGG-19 and AlexNet can be found in Table 1.
Observe that there is almost no change in the training loss or the sum of squared weights
of the model. The minor discrepancies between the original models and the compressed
models are due to the fact that we solve the regularized problem (52).

Table 1: Compression results for various layers of VGG-19 and AlexNet models pre-trained
on the CIFAR-10 dataset. FC stands for fully connected.

Width Train Loss (Test Acc.) k✓k2

2

Original New Original New Original New

VGG-19 (last layer) 512 99 0.0002 (93.91%) 0.0002 (93.90%) 3823.41 3816.70

AlexNet (last layer) 4096 555 0.2203 (72.17%) 0.2201 (72.14%) 1141.50 961.46

AlexNet (penultimate layer) 4096 2369 0.2203 (72.17%) 0.2158 (72.16%) 1141.50 1137.65

AlexNet (first FC layer) 9216 8208 0.2203 (72.17%) 0.2190 (72.18%) 1141.50 1137.33

AlexNet (last 3 layers) (4096,4096,9216) (555,2369,8208) 0.2203 (72.17%) 0.21521(72.13%) 1141.50 956.5

8. Related Work

In this section, we highlight some related works and discuss how our work fits into the
current literature.

5. We minimize the objective with proximal gradient methods.
6. We trained this model ourselves based on the implementation in https://github.com/rasbt/

deeplearning-models.
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8.1 Variation Spaces and Representer Theorems for Neural Networks

Understanding neural networks by studying their associated variation space has been ex-
plored in the past (Barron, 1993; Kůrková and Sanguineti, 2001; Mhaskar, 2004; Bach,
2017). Representer theorems that show that finite-width shallow networks are solutions to
data-fitting problems posed over these spaces have also been developed (Parhi and Nowak,
2021). These results have been extended to a wide variety of activation functions (Parhi and
Nowak, 2020), more general settings (Korolev, 2022; Bartolucci et al., 2023; Spek et al., 2022;
Wang et al., 2024b), as well as deep networks (Parhi and Nowak, 2022; Bartolucci et al.,
2024; Wang et al., 2024a). The variation norm has also shown practical benefits in learning
sparse neural networks (Yang et al., 2022) and implicit neural representations (Shenouda
et al., 2024).

It is important to note that these prior works primarily investigate scalar-output neural
networks or simple Cartesian product constructions to account for multiple outputs. As we
saw in Section 3.2 (see also Appendix A), the vector-valued setting brings unique di�culties
in the choice of the norm associated with the variation space, and many choices do not always
coincide with regularizers used in practice such as weight decay. While we note that there
has been work devoted to the investigation of vector-valued RKBSs for multi-task learning
(see Zhang and Zhang (2013) and references therein), we are the first to study and propose
the V�(Rd;RD) space and norm. Furthermore, our new representer theorem (Theorem 5)
improves many results in the representer theorem literature since the number of neurons
does not depend on the output dimension (see Bredies et al. (2024) for more details on the
output-dimension dependence).

8.2 Weight Decay and Sparsity

Numerous works have observed that weight decay is biased towards solutions with fewer
neurons (Savarese et al., 2019; Parhi and Nowak, 2021; Yang et al., 2022). Empirically, Yang
et al. (2022) have shown that training DNNs with weight decay for many iterations induces
neuron-wise sparsity on the trained network. Furthermore, Parhi and Nowak (2022); Jacot
et al. (2022) provide bounds on the widths for DNNs that solve the weight decay objective.
Our bounds improve upon the ones presented in both of these works. In particular, we
develop the first data-dependent bounds. Moreover, our setting is also more general: Our
theory holds for any DNN architecture that has homogeneous activation functions.

Recently, the works of Ergen and Pilanci (2021); Mishkin et al. (2022) have shown
that training shallow ReLU neural networks with weight decay can be recast as a (very
large) convex program. Their reformulation reveals that weight decay induces a sparsity-
promoting regularizer. A similar observation was developed for the vector-valued case by
Sahiner et al. (2021).

8.3 Low-Rank Features

It has been observed that DNNs are biased toward learning low-rank features. Theoretical
evidence for this phenomenon has been developed by Du et al. (2018); Ji and Telgarsky
(2019); Radhakrishnan et al. (2021); Le and Jegelka (2022); Mousavi-Hosseini et al. (2023).
This has also been observed empirically in Nar et al. (2019); Wale↵e and Rekatsinas (2022);
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Feng et al. (2022); Huh et al. (2023); Kwon et al. (2024); Yaras et al. (2024). We highlight
that some works such as Wale↵e and Rekatsinas (2022); Kwon et al. (2024) use this insight to
develop specialized algorithms that compress models during training. In contrast, our theory
and experiments indicate that narrower networks can be found regardless of the training
procedure by solving a simple convex multi-task lasso. Moreover, Theorem 10 guarantees
that the compressed network has the same sum of squared weights and minimizes the same
objective as the original network.

9. Conclusion

In this work we proposed the V�(Rd;RD) function space which gives insights in the inductive
bias of vector-valued neural networks. This is a critical step towards understanding DNNs,
the theory of which significantly lags behind that of shallow neural networks. We proved
a new representer theorem for this space showing that finite-width vector-valued neural
networks are solutions to the data-fitting problem over this space. For DNNs with homo-
geneous activation functions we developed a novel connection between training DNNs with
weight decay and multi-task lasso to prove the sharpest known bounds on network widths.
This result motivated the design of a principled and computationally e�cient procedure to
compress pre-trained DNNs. Finally, we presented some experimental results showing the
validity and practical utility of our theory.
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Appendix A. Di↵erent Norms on Vector-Valued Measures

In this appendix, we will discuss di↵erent choices of norms one can equip the space of vector-
valued measures M(⌦;RD), where ⌦ is any locally compact Hausdor↵ space. Eventually,
we will show in Lemma 14 that these choices are equivalent Banach norms, though only
one choice (the one proposed in Section 3.2) corresponds to weight-decay regularization in
neural networks with homogeneous activation functions.

23



Shenouda, Parhi, Lee, and Nowak

By viewing M(⌦;RD) as the D-fold Cartesian product⇥D
j=1 M(⌦), a näıve choice of

norm would be the mixed norm

k⌫kM,p :=

0

@
DX

j=1

k⌫jkpM(⌦)

1

A
1/p

=

0

B@
DX

j=1

0

B@ sup
⌦=

Sn
i=1 Ai

n2N

nX

i=1

|⌫j(Ai)|

1

CA

p1

CA

1/p

, (53)

with p � 1 and ⌫ = (⌫1, . . . , ⌫D) where each ⌫j 2 M(⌦), j = 1, . . . , D. In this scenario,
it is clear that M(⌦;RD) is a Banach space when equipeed with the norm k·kM,p, p � 1.
Alternatively, one could consider the norm

k⌫kp,M := sup
⌦=

Sn
i=1 Ai

n2N

nX

i=1

k⌫(Ai)kp = sup
⌦=

Sn
i=1 Ai

n2N

nX

i=1

0

@
DX

j=1

|⌫j(Ai)|p
1

A
1/p

, (54)

with p � 1. We have that (M(⌦;RD), k·kp,M) is also Banach space (cf. Diestel and Uhl,
1977, pg. 29). When ⌦ = Sd and p = 2, this coincides with (14). The next lemma shows
that all of these norms are actually equivalent Banach norms.

Lemma 14 Let ⌦ be any locally compact Hausdor↵ space. The norms k·kp,M, p � 1, and
k·kM,q, q � 1 are all equivalent Banach norms for M(⌦;RD).

Proof We first observe that for any p, q � 1, the norms k·kM,p and k·kM,q are equivalent
by the equivalence of p-norms in finite dimensions. Similarly, for any p, q � 1, the norms
k·kp,M and k·kq,M are equivalent. Thus, it su�ces to show that k·kM,p and k·kq,M are
equivalent for some p, q � 1. We have for any ⌫ 2 M(⌦;RD)

k⌫kM,1 =
DX

j=1

k⌫jkM(⌦)

=
DX

j=1

sup
⌦=

Sn
i=1 Ai

n2N

nX

i=1

|⌫j(Ai)|

� sup
⌦=

Sn
i=1 Ai

n2N

DX

j=1

nX

i=1

|⌫j(Ai)|

= sup
⌦=

Sn
i=1 Ai

n2N

nX

i=1

DX

j=1

|⌫j(Ai)|

= sup
⌦=

Sn
i=1 Ai

n2N

nX

i=1

k⌫(Ai)k1 = k⌫k1,M. (55)
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For the reverse inequality, observe that

k⌫k1,M = sup
⌦=

Sn
i=1 Ai

n2N

nX

i=1

DX

j=1

|⌫j(Ai)|

� sup
⌦=

Sn
i=1 Ai

n2N

nX

i=1

|⌫j0(Ai)|

= k⌫j0kM(⌦)

� 1

D

DX

j=1

k⌫jkM(⌦)

=
1

D
k⌫kM,1, (56)

where j0 := arg maxj2[D]k⌫jkM(⌦). Therefore, we have that

k⌫k1,M  k⌫kM,1  Dk⌫k1,M, (57)

which proves the lemma.

Remark 15 While the norms may be equivalent, only the k·k2,M-norm corresponds to
weight-decay regularization as shown in Section 3.2. The use of some of these other norms
have been explored in the literature. For example, Parhi and Nowak (2022) define a similar
vector-valued variation space for ReLU networks with the k·kM,1-norm, which does not
correspond to weight-decay regularization.

A.1 Connection to the Total Variation of Function

The total variation of a measure is di↵erent than the total variation of a function, but the
ideas are tightly linked. In the univariate case, consider a Radon measure µ 2 M(R) and
suppose there exists a function gµ : R ! R such that

Z

R
f(x) dµ(x) =

Z

R
f(x) dgµ(x), (58)

where f is any bounded continuous function and the integral on the right-hand side is a
Riemann–Stieltjes integral. If gµ is di↵erentiable and its derivative, denoted by g

0
µ, is in

L
1(R), then we have the equality

kµkM(R) = kg
0
µkL1(R). (59)

The quantity on the right-hand side is referred to as the total variation of the function gµ.
Furthermore, if gµ is not di↵erentiable in the classical sense, its distributional derivative
can be identified with the Radon measure µ, i.e., g

0
µ = µ, where equality is understood in

M(R). In this case, kg
0
µkM(R) = kµkM(R) is the total variation of the function gµ.
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This correspondence extends to higher dimensions. If the vector measure µ = rg for
some function g : Rd ! R, then the norm we are using kµk2,M = krgk2,M, is the isotropic
total variation of g. On the other hand, the norm kµk1,M = krgk1,M corresponds to the
anisotropic total variation of g. These two notions of total variation in multiple dimensions
are often used in image processing.

The isotropic total variation is equivalently specified by in the dual form

TViso(g) = sup
'2D(Rd;Rd)

k'kL1(Rd;Rd)=1

Z

Rd
g(x) div'(x) dx, (60)

where

k'kL1(Rd;Rd) := ess sup
x2Rd

k'(x)k2, (61)

and D(Rd;Rd) denotes the space of infinitely di↵erentiable compactly supported functions
mapping Rd ! Rd. We refer the reader to the book of Evans and Gariepy (2015) for more
details about the total variation of a function.

Appendix B. Proof of Theorem 3

Proof First notice that for any f = (f1, . . . , fD) 2 L
2(Rd;RD) we have that

kfk2L2(Qd;RD) =

Z

Qd
kf(x)k22 dx

=

Z

Qd

DX

j=1

|fj(x)|2 dx

=
DX

j=1

Z

Qd
|fj(x)|2 dx

=
DX

j=1

kfjk2L2(Qd). (62)

For any f 2 V�(Qd;RD) we have that

DX

j=1

kfjk2V�(Qd) 

0

@
DX

j=1

kfjkV�(Qd)

1

A
2

. (63)
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Next,

DX

j=1

kfjkV�(Qd) =
DX

j=1

inf
⌫j2M(Sd)
fj=f⌫j

k⌫jkM(Sd)

 inf
⌫2M(Sd;RD)

f=f⌫

DX

j=1

k⌫jkM(Sd)

= inf
⌫2M(Sd;RD)

f=f⌫

k⌫kM,1

 D
3
2 inf
⌫2M(Sd;RD)

f=f⌫

k⌫k2,M = D
3
2 kfkV�(Qd;RD), (64)

where the equalities of the form fj = f⌫j or f = f⌫ are understood as a function of x 2 Q
d.

The fourth line follows from (57) combined with the inequality between k · k1 and k · k2.
To prove the claim, given any f 2 V�(Qd;RD), we construct a K-term approximant

f
K
j for each component fj , j = 1, . . . , D, as in (23). We then construct the vector-valued

function fDK = (fK
1 , . . . , f

K
D ) which has, at most, DK terms. This approximant satisfies

kf � fDKk2L2(Qd;RD) =
DX

j=1

kfj � f
K
j k2L2(Qd)


DX

j=1

C
2
0C

2
�kfjk2V�(Qd)K

�1

 C
2
0C

2
�K

�1
DX

j=1

kfjk2V�(Qd)

 C
2
0C

2
�K

�1

0

@
DX

j=1

kfjkV�(Qd)

1

A
2

 C
2
0C

2
�D

3kfk2V�(Qd;RD)K
�1

. (65)

Therefore,

kf � fDKkL2(Qd;RD)  C0C�D
3
2 kfkV�(Qd;RD)K

�1/2
, (66)

which proves the theorem.

Appendix C. Proof of Theorem 5

Proof From the definition of the V�(Rd;RD)-norm (16), it follows from a standard argu-
ment (e.g., Bartolucci et al., 2023, Proposition 3.7) that the problem in (28) is equivalent
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to the problem

inf
⌫2M(Sd;RD)

NX

i=1

L
✓

yi,

Z

Sd
�(wTxi) d⌫(w)

◆
+ �k⌫k2,M (67)

in the sense that their infimal values are the same and if ⌫? is a solution to (67), then

f⌫?(x) =

Z

Sd
�(wTxi) d⌫?(w) (68)

is a solution to (28). We now proceed in four steps to prove the theorem.

Step (i): Existence of solutions to (67). Define

J (⌫) :=
NX

i=1

L
✓

yi,

Z

Sd
�(wTxi) d⌫(w)

◆
+ �k⌫k2,M. (69)

Given an arbitrary ⌫0 2 M(Sd;RD), let C0 := J (⌫0). Then, we can transform (67) into
the constrained problem

inf
⌫2M(Sd;RD)

J (⌫) s.t. k⌫k2,M  C0/�. (70)

This transformation is valid since any measure that does not satisfy the constraint will have
an objective value strictly larger than ⌫0 and therefore will not be in the solution set. Next,
we note that we can write

J (⌫) =
NX

i=1

L(yi, Hi{⌫}) + �k⌫k2,M (71)

where

Hi{⌫} :=

2

64
h⌫, hi,ji

...
h⌫, hi,Di

3

75 2 RD (72)

with hi,j(w) := �(wTxi)ej , where ej 2 RD is the jth canonical unit vector.
Note that � : R ! R is continuous by assumption. Therefore, we readily observe

that hi,j 2 C(Sd;RD), the space of continuous functions on Sd taking values in RD. In
(72), h·, ·i denotes the duality pairing7 between C(Sd;RD) and M(Sd;RD). Thus, for
i = 1, . . . , N , Hi is component-wise weak⇤ continuous on M(Sd;RD). Since L(·, ·) is lower
semicontinuous in its second argument combined with the fact that every norm is weak⇤

continuous on its corresponding Banach space, we have that J is weak⇤ continuous on
M(Sd;RD). By the Banach–Alaoglu theorem (Rudin, 1991, Chapter 3), the constraint set
of (70) is weak⇤ compact. Thus, (70) is the minimization of a weak⇤ continuous functional
over a weak⇤ compact set. By the Weierstrass extreme value theorem on general topological
spaces (Kurdila and Zabarankin, 2006, Chapter 5), there exists a solution to (70) (and
subsequently of (67)).

7. The continuous dual of C(Sd;RD) can be identified with M(Sd;RD) by Singer’s representation theo-
rem (Singer, 1957, 1959) (see also Hensgen, 1996; Bredies and Holler, 2020).
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Step (ii): Recasting (67) as an interpolation problem. Let e⌫ be a (not necessarily
unique) solution to (67), which is guaranteed to exist by the previous argumentation. For
i = 1, . . . , D, define

zi = Hi{e⌫} 2 RD
. (73)

Then, e⌫ must satisfy

e⌫ 2 arg min
⌫2M(Sd;RD)

k⌫k2,M s.t. Hi{⌫} = zi, i = 1, . . . , N. (74)

To see this, we note that if this were not the case, it would contradict the optimality of e⌫.
This reduction implies that any solution to the interpolation problem (74) will also be a
solution to (67).

Step (iii): The form of the solution. We can rewrite the interpolation problem as

min
⌫2M(Sd;RD)

k⌫k2,M s.t. h⌫, hi,ji = zi,j , i = 1, . . . , N and j = 1, . . . , D. (75)

This is the vector-valued analogue of the classical (Radon) measure recovery problem with
ND weak⇤ continuous measurements (cf., Zuhovickĭı, 1948). By the abstract representer
theorems of Boyer et al. (2019); Bredies and Carioni (2020); Unser (2021), there always
exists a solution to (75) that takes the form

⌫? =
KX

k=1

ckek (76)

with K  ND, ck 2 R \ {0} where for k = 1, . . . , k, ek is an extreme point of the unit
regularization ball

B := {⌫ 2 M(Sd;RD) : k⌫k2,M  1}. (77)

From Werner (1984, Theorem 2), the extreme points of B take the form a�w with a 2 RD,
kak2 = 1, and w 2 Sd. Thus, we can write

⌫? =
KX

k=1

ckak�wk (78)

with ak 2 RD and wk 2 Sd. By the equivalence between (67) and (28), we find that there
exists a solution to (28) that takes the form

bf(x) =

bKX

k=1

bvk�( bwT
k x), x 2 Rd

, (79)

where bK  ND, bvk := ckak 2 RD and bwk 2 Sd.
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Step (iv): Sharpening the sparsity bound. Step (iii) establishes that there exists an
optimal solution with bK  ND neurons. Thus, we can apply the same argumentation as in
the proof of Theorem 10 to find another solution where the number of neurons is bounded
by the product of the rank of the labels Y 2 RD⇥N with the rank of the post-activation

feature matrix � 2 R bK⇥N . From the dimensions of these matrices, we see that the product
of the ranks is  N

2. Therefore, there exists a solution to (28) that takes the form

f
?(x) =

K0X

k=1

vk�(wT
k x), x 2 Rd

, (80)

where K0  N
2, vk 2 RD and wk 2 Sd. Thus, we can always find a solution to (28) with

min{N
2
, ND} neurons improving upon the bound of ND + 1 predicted by Carathéodory’s

theorem.

Appendix D. Proof of Theorem 8

Proof Given f = f
(L) � · · · � f

(1) such that f
(`) 2 V�(Rd`�1 ,Rd`), ` = 1, · · · , L, let the

functional J denote the objective value of the optimization problem, i.e.,

J (f) := J (f (L)
, . . . , f

(1)) :=
NX

i=1

L(yi, f(xi)) + �

LX

`=1

kf
(`)kV�(Rd`�1 ;Rd` ). (81)

Next, following the same approach in the proof of Theorem 5, for an arbitrary g = g
(L)�· · ·�

g
(1), where g

(`) 2 V�(Rd`�1 ,Rd`), ` = 1, · · · , L, we define its objective value as C := J (g).
The unconstrained problem (32) can then be transformed into the equivalent constrained
problem

inf
f (`)2V�(Rd`�1 ;Rd` )

`=1,··· ,L
f=f (L)�···�f (1)

J (f) s.t. kf
(`)kV�(Rd`�1 ;Rd` )  C/�, ` = 1, · · · , L. (82)

This transformation is valid since any collection of functions f
(`), ` = 1, . . . , L, that do not

satisfy the constraints would result in an objective value that is strictly larger than that of
g, and would therefore not be in the solution set.

For any f0 = f
(L)
0 � · · · � f

(1)
0 , where f

(`) 2 V�(Rd`�1 ;Rd`), ` = 1, · · · , L, we will show

that, for any fixed è2 {1, . . . , L}, the map f
(è)
0 7! J (f0) is weak⇤ lower semicontinuous on

V�(Rdè�1 ;Rdè). First, observe that the map f
(è)
0 7! f0(x0), for any x0 2 Rd, is component-

wise weak⇤ continuous on V�(Rdè�1 ;Rdè). Indeed, this follows since for any x0 2 Rd the
point evaluation operator

ex0 : f 7! f(x0) =

2

64
f1(x0)

...
fD(x0)

3

75 (83)
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is component-wise weak⇤ continuous by Lemma 2.9 of Parhi and Nowak (2022) combined

with the equivalence of norms in Lemma 14. Thus, since f
(è)
0 7! f

(L)
0 � · · · � f

(1)
0 (x0) is made

up of compositions of component-wise continuous and component-wise weak⇤ continuous
functions. it is therefore itself component-wise weak⇤ continuous on V�(Rdè�1 ;Rdè). There-

fore, the map (f (1)
0 , · · · , f

(L)
0 ) 7! J (f0) is weak⇤ lower semicontinuous on V�(Rdè�1 ;Rdè).

Finally, by the Banach–Alaoglu theorem (Rudin, 1991, Chapter 3), the feasible set in (82)
is weak⇤ compact. Therefore there exists a solution to (82), and thus (32), by the Weier-
strass extreme value theorem on general topological spaces (Kurdila and Zabarankin, 2006,
Chapter 5).

To complete the proof, let ef = ef (L) � · · · � ef (1) be any solution to (32). By applying ef
to each data point xi, i = 1, · · · , N , we can recursively compute the intermediate vectors
zi,` 2 Rd` as follows:

• Initialize zi,0 := xi.

• For each ` = 1, · · · , L, recursively update zi,` := ef `(zi,`�1).

The solution ef must satisfy

ef (`) 2 arg min
f2V�(Rd`�1 ;Rd` )

kfkV�(Rd`�1 ;Rd` ) s.t. f(zi,`�1) = zi,`, i = 1, · · · , N, (84)

for ` = 1, · · · , L (since otherwise, it would contradict the optimality of ef). By Theorem 5,
there always exists a solution to (84) that takes the form of a shallow vector-valued neural
network. Hence, there always exists a solution to (32) of the form in (33).

Appendix E. Proof of Theorem 11

Our proof relies extensively on Carathéodory’s theorem (Clarke, 2013, Proposition 2.6)
which we first state here.

Theorem 16 (Carathéodory’s theorem) Let S be a subset of a normed vector space
with finite dimension R. Then every point x 2 Conv(S), the convex hull of S, can be
represented by a convex combination of at most R + 1 points from S.

Proof [Proof of Theorem 11] The constraint  = V� can be satisfied if and only if the
row space of  is contained in the row space of �. This assumption, and the fact that the
objective is continuous and coercive, implies a solution exists. Suppose that V is a solution
to our problem. Then we will show that there exists a (possibly di↵erent) solution bV with
no more than r�r nonzero columns.

Let col(V) and col( ) denote the column space of V and  respectively. We first show
that col(V) = col( ). Let V = A + B, where A 2 col( ) and B 2 col( )?, the subspace
orthogonal to col( ). Then,

KX

k=1

kvkk2 =
KX

k=1

q
kak22 + kbk22. (85)
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Let Pcol( ) be the orthogonal projection onto col( ). We can then express the constraint
as  = Pcol( ) = Pcol( )(A + B)� = A�. Thus the solution must have B = 0,
since anything nonzero would increase the objective without contributing to the constraint.
Therefore, col(V) = col( ) and rank(V) = rank( ). Now observe that we can also express
the constraint as a sum of outer products,

 =
KX

k=1

vk�
T
k (86)

where vk are the columns of V and �T
k are the rows of �. Let Mk = vk�T

k . Since the vk

belong to an r dimensional subspace and the �k belong to an r� dimensional subspace,
the Mk all belong to a subspace of dimension at most r�r . For ease of notation we let
R = r�r . Now, define the optimal objective value � =

PK
k=1 kvkk2 and ↵k = kvkk2/� so

that
PK

k=1 ↵k = 1. We can then write  as

 =
KX

k=1

↵k

✓
1

↵k
Mk

◆
=

KX

k=1

↵k
fMk. (87)

This shows that  is in the convex hull of matrices fMk with dimension at most R.
Carathéodory’s theorem implies that we can represent  by a convex combination of a
subset {fMj}j2J where J ⇢ {1, · · · , K} and |J |  R + 1. Thus we can represent  with no
more than R + 1 nonzero columns vectors in the solution

 =
X

j2J
�j
fMj =

X

j2J
�j

✓
1

↵j
vj�

T
j

◆
. (88)

Now to show that a solution exists with no more than R nonzero columns we study the
KKT conditions and apply Carathéodory’s theorem a second time. Assume that |J | = R+1
and define evj = 1

↵j
vj . Thus  is in the convex hull of

�
evj�

T
j

 
j2J . (89)

Each matrix evj�T
j belongs to a subspace of dimension at most R, therefore, any matrix in

this set can be expressed as a linear combination of the others

evi�
T
i =

X

j2J ;j 6=i

cjevj�
T
j . (90)

By the subgradient optimality conditions, we will prove that we must have
P

j2J ;j 6=i cj = 1.

This in turn implies that the set of matrices {evj�T
j }j2J are not only linearly dependent but

they also span an R � 1 dimensional a�ne space (i.e., an R � 1 dimensional hyperplane not
including the origin (Rockafellar, 1970)). We can then apply Carathéodory’s again to show
that a convex combination of R matrices from this set su�ces to satisfy the constraint.

The Lagrangian of our optimization problem (51) is

L(V,⌫1,⌫2) =
KX

k=1

kvkk2 + ⌫T1 ( � V�)⌫2 (91)
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with Lagrange multipliers ⌫1 2 RD and ⌫2 2 RN . By the KKT conditions, any solution
must satisfy

0 2 @VL, (92)

0 = r⌫1,⌫2L. (93)

Now for our original solution V we have,

@VL = @

 
KX

k=1

kvkk2

!
� ⌫1(�⌫2)T = 0 (94)

r⌫1,⌫2L =  � V� = 0. (95)

Note we have no restriction of ⌫1 and ⌫2. Then for any j 2 J (the nonzero columns of V)
the jth column of the subgradient of our objective is

@V

 
KX

k=1

kvkk2

!

j

=
vj

kvjk2
. (96)

Therefore, by (94) for the jth column of the subgradient we have

@

 
KX

k=1

kvkk2

!

j

= ⌫1⌫
T
2 �j =) vj

kvjk2
= ⌫1⌫

T
2 �j (97)

where �j 2 RN⇥1 is the jth row of �. Now consider the ith column of (94) and right-
multiply both sides by evT

i to obtain

vievT
i

kvik2
= ⌫1⌫

T
2 �ievT

i . (98)

By the linear dependence of the matrices {evj�T
j }j2J for any i 2 J we have �ievT

i =P
j2J ;j 6=i cj�jevT

j for some constants cj , substituting this in we get

vievT
i

kvik2
= ⌫1⌫

T
2

X

j2J ;j 6=i

cj�jevT
j

=
X

j2J :j 6=i

cj⌫1⌫
T
2 �jevT

j

=
X

j2J ;j 6=i

cj
vjevT

j

kvjk2
, (99)

where the final equality follows from (97). Since evj = 1
↵j

vj = �
kvjk2 vj plugging this in on

both sides and cancelling out � we have

vivT
i

kvik22
=

X

j2J ;j 6=i

cj
vjvT

j

kvjk22
. (100)
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Taking the trace of the left and right hand sides reveals
X

j 6=i

cj = 1. (101)

Therefore any �ievT
i is in the a�ne hull of the other matrices and thus the matrices

{evj�T
j }j2J form an a�ne set of dimension R � 1 (Rockafellar, 1970). This implies that

the matrices do not just span an R subspace but rather an R � 1 dimensional hyperplane
that does not pass through the origin. Thus, the vector space corresponding to this set of
matrices has dimension R�1. By applying Carathéodory’s theorem again we can represent
the constraint as a convex combination of just R nonzero vectors

 =
X

j2J 0

b�jevj�
T
j =

X

j2J 0

v⇤
j�

T
j , (102)

where v⇤
j := b�jevj , J

0 ⇢ {1, · · · , K} and |J 0|  R = r�r . The coe�cients b�j are nonneg-
ative and sum to 1. Finally, it remains to show that this new representation of  has the
same objective value as the original solution, indeed we have

X

j2J 0

kv⇤
j k2 =

X

j2J 0

b�j

↵j
kvjk2 =

X

j2J 0

� b�j = � (103)

where we recall that � is the objective value obtained by our original assumed solution.
The lower bound follows solely from the constraint. First we note that for any  we

always need at least r nonzero columns in the solution V. If this were not the case we
would have rank(V) < r and therefore rank( )  min{rank(V), r�} < r contradicting
the fact that rank( ) = r .

Now for any � the number of subspaces spanned by p < r� of the rows of � is at most
✓

K

1

◆
+

✓
K

2

◆
+ · · · +

✓
K

r� � 1

◆
. (104)

The union of these subspaces has Lebesgue measure zero in the row(�). Therefore, there
exist uncountably many points in row(�) that cannot be represented with fewer than r�

columns of �.
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Soo Min Kwon, Zekai Zhang, Dogyoon Song, Laura Balzano, and Qing Qu. E�cient low-
dimensional compression of overparameterized models. In International Conference on
Artificial Intelligence and Statistics, pages 1009–1017. PMLR, 2024.
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