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Location and scales of drag reduction in turbulent pipe flow with wall
oscillations at low Reynolds number
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Direct numerical simulations of turbulent pipe flow with transverse wall oscillation and
with no transverse wall oscillation are carried out at friction Reynolds numbers Reτ = 170,
360, and 720. The period and amplitude of the oscillation are selected to achieve high drag
reduction in this low Reynolds number range. The focus of the current study is to identify
the location and scales of motion most affected by drag reduction and how they impact drag
reduction effectiveness. To answer this question, the streamwise and azimuthal spectra of
relevant statistical quantities are analyzed with and without transverse wall oscillation. The
effect of wall oscillation is found to suppress the intermediate- and large-scale motions in
the buffer layer of the flow, while large-scale motions in the outer layer are enhanced.
Since higher Reynolds number flows support development of a growing range of large-
scale structures (both in length and height), it is suggested that their prevalence in the
energy spectra combined with their negative effect on drag reduction account for a reduced
effectiveness of wall oscillation as a drag reduction mechanism with increasing Reynolds
number in the actuation regime investigated.

DOI: 10.1103/PhysRevFluids.9.114601

I. INTRODUCTION

Reduction of skin friction drag in turbulent flows is a highly sought outcome of flow control
techniques for internal flows. Flow in pipes, with an immediate application to a pipeline transport,
is no exception, especially given that 100% of drag comes from skin friction in pipelines due
to the absence of other sources of drag [1,2]. Typical friction Reynolds numbers encountered in
applications attain the values of Reτ = 500–1000 in a long-distance pipeline carrying a light crude
oil, due to the high viscosity of crude oil [3]. This is a relatively low range of Reynolds numbers
(Reτ � 1000), especially considering that friction Reynolds numbers can reach one to two orders
of magnitude higher in applications related to a naval or an aircraft transport [4,5].

A transverse wall oscillation mechanism, wherein pipe or channel walls are oscillated trans-
versely to a mean flow, has been established as a promising drag reduction technique [6–9],
which, with some technological advances, can potentially be applied to pipeline applications [10].
Transverse wall oscillation, where the wall velocity changes in time but is kept constant in space, is
a special case of a more general drag reduction mechanism via streamwise traveling waves of trans-
verse wall velocity [11–13], which allows for net energy savings. Additionally, it was demonstrated
that similar effects of drag reduction can be achieved via spanwise forcing (e.g., with a Lorentz
force) [14], and a spanwise rotation [15]. It was recently shown, however, that in channel flows and
boundary layers, the effectiveness of these techniques diminishes with increasing Reynolds number
[12,13,16–19], even in the low Reynolds number regime (Reτ � 1000) [12,13,17]. The arguments
have been proposed explaining drag reduction, and its loss of effectiveness, via a Reynolds-number
independence of an upward shift of the mean velocity profile in the logarithmic region of the flow
[17,20,21]. On the other hand, it was established that a response of different scales of motions to a
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wall oscillation may play a role in this decrease of effectiveness [18,19,22]. The analysis of turbulent
scale modification by wall oscillation, however, has not been performed in pipes. Turbulent pipe
flow, with an obvious application to a pipeline transport, has some similarities, but also significant
differences with channel and boundary layer flows, e.g., in their bulk mean properties [23], spectral
characteristics, especially in the large wave numbers [24,25], and in the properties of the Stokes
layer of the oscillating wall [26].

The objective of the current study is twofold. First, it aims to establish, via direct numerical
simulation (DNS), whether a similar decrease of drag reduction effectiveness with an increase in
Reynolds number is observed in pipes with wall oscillation. Second, it intends to investigate the
wavelengths, sizes, and locations of eddies that contribute most to drag reduction and interpret this
information with respect to established conceptual models of turbulence [27–29]. The knowledge
of the affected length scales and their locations in the flow will be useful for analysis and design of
improved drag reduction methodologies. It will also be relevant for a development and verification
of reduced-order models of drag reduction [30,31].

In this study, three progressively higher Reynolds numbers are considered, Reτ = 170, 360, and
720. While DNSs of uncontrolled pipe flows with higher Reynolds numbers have been attempted
[32,33], we deliberately restrict ourselves to this relatively low Reynolds number regime for two
reasons. First, as mentioned above, this range is applicable to industrial oil pipeline applications.
Second, it will allow us to investigate when, where, and why the loss of effectiveness with Reynolds
number first originates, at least in the wall oscillation regime considered. In view of this, the current
study, rather than attempting to characterize a parametric change in drag reduction across a large
range of Reynolds numbers, aims to establish the mechanisms behind the origin of a reduced drag
reduction effectiveness, focusing on relatively low Reynolds numbers (up to Reτ = 720), where
small scales of turbulence still dominate over the large scales. We further note that while the number
of studies looking at wall oscillation effects in channel and boundary layers at higher Reynolds
number flows is steadily growing [18,19,22,34,35], the majority of investigations applied to wall-
oscillated pipe flows is still limited to Reτ � 170 (see, e.g., Refs. [36–40]), with the exception
of experimental studies by Choi and Graham [8] and by Ding et al. [41], where pipe flows up to
Reτ = 962 and Reτ = 6000, respectively, were considered; however, they only provided the drag
reduction values, with no evaluation of the structure of turbulence as a result of wall oscillation.

The paper is organized as follows. Section II documents the problem setup and the details of
the numerical methodology. Section III summarizes results, including the analysis of a spectral
contribution to turbulent kinetic energy, net turbulent force, and bulk mean velocity in pipe flows
with and without wall oscillation at three Reynolds numbers, Reτ = 170, 360, and 720. Section IV
presents conclusions.

II. PROBLEM SETUP

A. Geometry and flow parameters

In this study, a pipe flow with an azimuthally oscillated wall (WO case) is considered as a
prototypical configuration to achieve drag reduction, and compared to a standard pipe flow without
a wall oscillation (NWO case). The length of the pipe is specified as L = 24R, where R is the
radius of the pipe (see Fig. 1), following the previous DNS studies of turbulent pipe flows at high
Reynolds number [32,42]. The cylindrical coordinate system (x, r, θ ) represents streamwise, radial,
and azimuthal directions, respectively, with the unit vectors (�ex, �er, �eθ ) in each direction, and the
corresponding velocity vector is u = (ux, ur, uθ ).

We define the following notations for the globally averaged quantities. Angle brackets without
the indices will represent the quantities averaged over streamwise and azimuthal directions, and in
time:

〈 f 〉(r) = 〈 f (x, θ, r, t )〉x,θ,t . (1)

We define the friction Reynolds number, Reτ = uτR/ν, where uτ = √〈τw〉/ρ is the friction
velocity, 〈τw〉 is the mean wall shear stress, ρ is the density, and ν is the kinematic viscosity. The
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FIG. 1. Cylindrical coordinate system (x, r, θ ) represents streamwise, radial, and azimuthal directions,
respectively. R is the pipe radius, and L is the pipe length. For the case with no wall oscillation, wall velocity
is set to zero:Wwall (t ) = 0.

bulk Reynolds number is Rebulk = 2UbulkR/ν, where Ubulk is the bulk mean velocity. This study
considers three Reynolds numbers, Reτ = 170, 360, and 720, leading to six total cases investigated
(two cases—NWO and WO—per Reynolds number).

Viscous wall units are defined by introducing the friction velocity uτ , the viscous length scale,
lτ = ν/uτ , and the viscous timescale, tτ = ν/u2τ . Variables nondimensionalized with these parame-
ters are denoted by superscript +. The wall oscillation is achieved by specifying an azimuthal pipe
wall velocity as

W+
wall(t ) = W+

0 sin

(
2π

T+
0

t

)
, (2)

whereW+
0 = 10 is the amplitude, and T+

0 = 100 is the period of the wall oscillation, fixed across
all three Reynolds numbers. These values are chosen from a set of parametric studies [6–9] that
demonstrated high values of drag reduction within this parameter range at Reynolds numbers Reτ =
200–500, with the particular values of {W+

0 ,T+
0 } = {10, 100} studied in the works of Choi and

Graham [43] and Choi et al. [38]. This parameter regime was termed as an “inner-scaled actuation”
in some recent studies [34,35], owing to its aim to optimally interfere with the near-wall turbulent
cycle.

The governing equations in the current study are the incompressible Navier-Stokes equations:

∇ · u = 0, (3)

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p+ ν∇2u + 1

ρ
f, (4)

where u is the velocity, ν is the kinematic viscosity, ρ is the density, p is the pressure, and f is the
body force. In the current setup, the mean wall shear stress, 〈τw〉, and hence Reτ , are fixed between
the NWO and WO cases by imposing a streamwise body force, f = 2〈τw〉/Rex, which corresponds
to a constant mean pressure gradient that balances the wall shear stress [44]. Consequently, the drag
reduction which arises as a result of wall oscillation is manifested by an increase in Ubulk and a
concomitant increase in Rebulk. We can quantify the percent change in bulk mean velocity between
the NWO and WO flows as

�Ubulk = UbulkWO −UbulkNWO

UbulkNWO

× 100%. (5)
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TABLE I. Numerical grid parameters for the presented DNS studies. Nel denotes the number of elements.
Each element contains (N + 1)3 collocation GLL points, with N = 9 being the polynomial order. Ngp is the
total number of nonrepeated GLL points within each grid. NWO and WO cases utilize identical grids for each
Reτ . This mesh resolution is comparable with Refs. [42] and [32].

Reτ Nel Ngp �x+ min/max �r+ min/max �(rθ )+ min/max

170 36848 27M 3.5/14.05 0.1/1.6 0.67/2.75
360 238336 173M 2.9/11.90 0.15/2.5 0.81/3.3
720 860160 627M 3.3/13.6 0.22/4.18 1.3/5.4

The skin friction coefficient can be defined as

Cf = 2〈τw〉
ρU 2

bulk

, (6)

from which the skin friction drag reduction rate can be calculated as

DR = −CfWO −CfNWO

CfNWO

× 100%. (7)

We note that the pressure drag is identically zero in straight pipes (or channels) with smooth walls
with and without wall oscillation; therefore, we will refer to the skin friction drag reduction defined
in Eq. (7) as “drag reduction”. The results presented in Sec. III A will address the Reynolds number
dependence of drag reduction in pipe flows with wall oscillation.

B. Numerical methodology

Equations (3) and (4) are numerically solved via DNS using an open-source spectral element
solver Nek5000 [45,46]. The spectral element method (SEM) decomposes a computational domain
into a collection of elements and utilizes high-order basis functions within each element. In the
current implementation, the elementwise basis functions are formed by the tensor product of one-
dimensional Lagrange interpolating polynomials of order N associated with the Gauss-Lobatto-
Legendre (GLL) quadrature points [45,46].

Numerical grid parameters employed in the current study for the three different Reynolds
numbers are listed in Table I. All simulations were executed using ninth-order polynomials as basis
functions. Due to a tensor product form of the multidimensional basis functions, the numerical grid
in Nek5000 requires hexahedral elements, which are filled with nonuniformly distributed interior
GLL collocation points, clustered towards the element boundaries. When reporting resolution in
Table I, we indicate the minimum and maximum distances between the collocation points within
the element, with the effective (mean) grid spacing lying in between these two numbers. In the
radial direction, the elements are clustered towards the wall to achieve 4 gridpoints (not including
the wall) below y+ = 1 and 20 gridpoints below y+ = 10. The mean grid spacing of the current
DNS is compatible with the DNS guidelines proposed by Pirozolli et al. [32]. The temporal
integration scheme is an implicit second-order backward difference method for the viscous terms
and an explicit second-order extrapolation method for the nonlinear terms. The time step was
fixed at � t = Tosc/8000 to keep the Courant-Friedrichs-Lewy (CFL) number below 0.75. Periodic
boundary conditions were applied in a streamwise direction on both velocity and pressure. No-slip
boundary conditions were set up at the pipe wall, with uwall(t ) = (ux, ur, uθ ) = 0 in the NWO case,
and uwall(t ) = (ux, ur, uθ ) = (0, 0,Wwall(t )) in the WO case. Validation of Nek5000 as applied to a
DNS of turbulent pipe flows with and without wall oscillations can be found in Refs. [39,42,47,48].

For the lowest Reynolds number, Reτ = 170, simulations were started from the mean turbulent
pipe flow profile approximated by a one-seventh power law [49,50] with superimposed wavelike
perturbations [51]. Each subsequent higher Reynolds number case was initialized from a fully
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TABLE II. Computational parameters of a postprocessing grid for each Reynolds number. (Nx,Nr,Nθ )
correspond to the number of nodes employed in streamwise, radial, and azimuthal directions, respectively;
(λ+

xmin, λ
+
smin,wall) are the minimum streamwise and the minimum azimuthal wavelength at the wall computed

by the Fourier analysis.

Reτ Nx Nr Nθ λ+
xmin λ+

smin,wall

170 384 170 80 21.2 26.8
360 768 360 160 22.6 28.4
720 2048 720 320 15.6 24.4

developed lower Reynolds number case, mapped onto a corresponding finer grid. The WO cases
for each Reynolds number were initialized from fully developed NWO cases corresponding to the
same Reynolds number. In each case, we allowed for the simulations to reach a statistically steady
state (which was monitored through a time series of bulk mean velocity) and subsequently col-
lected statistics for additional 10000tτ . The time to solution for the largest Reynolds number was
approximately 800 wall-clock hours using 4096 processors on a KNL partition of the Stampede2
supercomputer at Texas Advanced Computing Center.

C. Postprocessing and notation

For turbulent flows that exhibit a temporal periodicity, the turbulent fluctuations (u′′
i ) of a random

variable are defined to be the deviations of its instantaneous value from its long-time mean (〈ui〉)
plus the periodically varying component of the mean (uφ

i ) as [52]

ui = 〈ui〉 + uφ
i + u′′

i . (8)

The periodically varying component uφ
i is defined as the phase mean minus the long-time

average:

uφ
i = 〈ui | φ〉 − 〈ui〉, φ = τ + nT0, τ ∈ [0,T0), n ∈ N, (9)

with T0 being the period of oscillation, n an integer number, and the notation 〈ui | φ〉 denoting a
conditional average given the phase.

Turbulent fluctuations in the current study will be reported as u′′
i for both theWO and NWO cases.

Note that for the NWO case, the turbulent fluctuation u′′
i thus defined is equal to a standard turbulent

fluctuation as obtained from Reynolds decomposition, u′
i = ui − 〈ui〉, but for the WO case, these

quantities are different. Fourier coefficients, spectra, and co-spectra in the streamwise and azimuthal
directions are calculated using parallel fast Fourier transform algorithms and presented as functions
of wavenumbers (kx, kθ ), or, equivalently, in terms of the wavelengths, λx = 2π/kx, λθ = 2π/kθ .
Since the wavelength λx has a dimension of length but λθ is simply an angular fraction, we also
define a dimensional azimuthal wavelength λs(r) = rλθ , where r is the local radial location of the
variable to be considered.

To perform spectral analysis, the DNS results are transformed from the unstructured SEM
grid onto a structured cylindrical grid using Lagrange polynomial interpolation of tenth order
(interpolation accuracy of N + 1 with N = 9 in the current work). The number of nodes (Nx, Nr ,
Nθ ) employed in the postprocessing grid for each Reynolds number is specified in Table II. Nx and
Nθ correspond to the number of terms carried in a Fourier analysis, which determines the smallest
wavelengths computed as a result of the Fourier analysis as documented in Table II. It can be seen
that the smallest computed wavelengths are above the DNS grid resolution, to avoid any spurious
oscillations potentially caused by interpolation from the DNS grid and underresolution.
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TABLE III. Bulk quantities and their percent change for the WO cases as compared to the NWO cases. In
the first three columns, the values in the brackets are presented as (NWO,WO). The percent increase in bulk
mean velocity, �Ubulk, is calculated according to Eq. (5), and the percent drag reduction, DR, as in Eq. (7).

Reτ U+
bulk Uc/Ubulk Cf ×103 �Ubulk (%) DR (%)

170 (14.4,17.1) (1.32,1.31) (9.6,6.8) 18.54 28.8
360 (16.2,18.8) (1.27,1.25) (7.6,5.6) 16.25 26.0
720 (18.0,20.5) (1.26,1.23) (6.2,4.7) 13.9 22.9

III. RESULTS

A. Drag reduction effectiveness reduces as Reynolds number increases

Table III presents the global quantities for the computed standard (NWO) and drag-reduced
(WO) cases, including bulk mean velocity (Ubulk), scaled centerline velocity (Uc/Ubulk), skin friction
coefficient (Cf ), and percent change in Ubulk and Cf with respect to the corresponding standard
(NWO) cases. The current DNS values are in good agreement with previous experimental and com-
putational data, both in terms of the friction factor (four times skin friction coefficient) [42,53–55]
and the drag reduction values. In particular, computed drag reduction rates [DR; see Eq. (7)] are
comparable with the reported values of 29.9% for channel flow at Reτ = 200 (DNS [38]), 34.9%
for pipe flow at Reτ = 150 (DNS [38]), and 23.0% for pipe flow at Reτ = 650 (experiments [8]) for
the same values of wall oscillation parameters {W+

0 ,T+
0 } = {10, 100}. We remark that at the lowest

Reynolds number, the flow is at the onset of transition, and the outcome of drag reduction, especially
whether the flow relaminarizes or not [36–38], may be sensitive to the details of the setup (constant
flow rate versus constant pressure gradient) and numerical method (the amount of numerical
dissipation in the code). From Table III, it is evident that the mechanism of drag reduction with
transverse wall oscillations becomes less effective as Reynolds number increases when targeting
inner scale actuation. Using a power-law fit, we find that our data obey the relation DR ∼ Re−γ

τ ,
with γ = 0.16. The value of the coefficient γ is within the range of the previously reported values
of γ in channels being anywhere between 0.1 and 0.4, depending on the actuation parameters
[12,13,16,17,56]. The current value of γ = 0.16 is slightly lower as compared to γ = 0.2 for a
channel with the wall oscillation at similar parameter values [12,16,56]. Although within the range
of uncertainty, this discrepancy may also exemplify the differences between pipe and channel flows.

It is generally accepted that drag reduction with transversely oscillated walls occurs due to an
interaction of turbulence with the so-called Stokes layer [37], which refers to a layer of nonzero
phase mean transverse velocity developed over an oscillating wall. For the current frequency of
wall oscillation, it can be shown that the Stokes layer thickness over a cylindrical pipe wall is equal
to the one obtained in a classical Stokes second problem. Here, we define the Stokes layer thickness
as the wall-normal location at which the amplitude of the azimuthal velocity reaches 1% of its wall
value, δSl = 4.6

√
T0 ν/π [44]. In wall units, this quantity is equal to δ+

Sl = 4.6
√
T+
0 /π ≈ 25 for the

chosen T+
0 = 100 across all three Reynolds numbers [26]. Note that this definition is different from

the Stokes penetration depth, δ+
Sp =

√
T+
0 /π [57], and the Stokes layer phase-matching thickness,

δ+
Sm =

√
4π T+

0 [37,58].
In describing turbulent statistics, we will be referring to different regions commonly identified

within the turbulent boundary layer [44,50], in addition to the Stokes layer, as summarized in
Table IV, where we use the notation y+ = y/lτ , with y = R − r. We will be using the asterisk to
denote the quantities scaled with the outer dimension, such that r
 = r/R and y
 = 1 − r/R.

B. Effect of Reynolds number on single point statistics

Figure 2(a) documents the change in the mean velocity as a result of transverse wall oscillation
for the three Reynolds numbers. The change is defined as � f = f (WO) − f (NWO), i.e., the
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TABLE IV. Regions within the turbulent boundary layer, including the Stokes
layer, referred to throughout this work. The inner layer is the composite of the
viscous, buffer, and logarithmic layers while the outer layer is the composite of
the logarithmic layer and the wake region of the flow [44,50].

Region Range

Viscous layer y+ � 5
Buffer layer 5 < y+ � 30
Stokes layer y+ � 25
Log layer 30 < y+ � 0.2Reτ

Wake region y+ > 0.2Reτ

quantity evaluated with transverse wall oscillation minus the quantity evaluated with no wall
oscillation. This convention will be maintained throughout the remainder of the work. For all three
Reynolds numbers the maximum change in mean velocity occurs around y+ ≈ 100. This location
happens to be in the top half of the logarithmic layer for the highest Reynolds number, above the
logarithmic layer for Reτ = 360, and approaching the centerline of the pipe for Reτ = 170. As the
Reynolds number increases, the peak change in the mean streamwise velocity reduces. It has been
proposed that the drag reduction scales with the upward vertical shift of the mean velocity profile in

FIG. 2. Change in the mean single point statistics of the flow. Olive green dotted line, Reτ = 170; orange
dashed line, Reτ = 360; black solid line, Reτ = 720. Circles indicate the location of the top of the logarithmic
layer (Table IV). The vertical red dotted line indicates the top of the Stokes layer; the vertical purple dotted
line is the top of the buffer layer. (a) Mean velocity, (b) Streamwise fluctuations, (c) Radial fluctuations and (d)
Shear stress.
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FIG. 3. Mean streamwise velociy profiles in logarithmic scale for (a) Reτ = 170, (b) Reτ = 360, and (c)
Reτ = 720. Black lines are NWO, and blue lines are WO. Red lines correspond to the least squares fit of the
logarithmic law used to determine the shift, �B = � 〈u+

x 〉. The location of the enlarged blue markers indicates
the top of the logarithmic layer with respect to each Reynolds number.

the logarithmic region of the flow [17,20,21]. Figure 3 plots the mean velocity profile in logarithmic
scale for the WO and NWO flows for the three Reynolds numbers. Considering the logarithmic law
of the wall,

〈u+
x 〉 = 1

k
ln y+ + B, (10)

the log-law shift,�B, can be measured directly from the shift in the 〈u+
x 〉 plots and is documented in

Table V. On the other hand, Gatti and Quadrio [17] proposed the following relationship for �B for
the constant pressure gradient flows (assuming that the log-law shift does not depend on Reynolds
number but only on the drag reduction rate):

�B =
√

2

CfNWO

[(1 − DR)−1/2 − 1], (11)

where CfNWO is the skin friction in the uncontrolled case, and DR [see Eq. (7)] is the drag reduction
rate. The values of �B calculated from Eq. (11) are also presented in Table V for comparison.

Consistent with the observations of Hurst et al. [13], the measured shift decreases with Reτ ,
but the amount of decrease is diminishing. Gatti and Quadrio [17] argue that the shift becomes
independent from the Reynolds number once the latter reaches a high enough value, and the
observed trend supports this argument. Futhermore, consistent with the analysis of Yao et al. [18],
the measured and estimated �B values agree well at higher Reynolds numbers (Reτ = 360, 720)
but deviate more significantly for the lowest one (Reτ = 170). This is, again, consistent with the
fact that the estimate (11) is only supposed to hold for high enough Reynolds numbers, when the
overlap region is well developed [17,18].

Figures 2(b)–2(d) subsequently document the change in the second-order statistics as a result of
the transverse wall oscillation. Wall oscillations suppress the streamwise turbulent kinetic energy
within the buffer layer for all three Reynolds numbers. Above the buffer layer, streamwise turbulent

TABLE V. The values of the log-law shift, �B, as measured from the velocity
profile plots in Fig. 3 (second column), and estimated from Eq. (11) by Gatti and
Quadrio [17] (third column).

Reτ �Bmes �Best

170 3.4 2.7
360 2.5 2.6
720 2.3 2.5
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FIG. 4. Premultiplied streamwise kinetic energy as a function of wall-normal location and stream-
wise wavelength, kx�uxux (λ

+
x , y+)/u2τ : [(a)–(c)] reference spectra (NWO); [(d)–(f)] change in spectra,

kx��uxux (λ
+
x , y+)/u2τ . From left to right: [(a), (d)] Reτ = 170, [(b), (e)] Reτ = 360, and [(c), (f)] Reτ = 720.

Axes in the figures scale with viscous units, whose bounds differ across Reynolds numbers.

kinetic energy is slightly increased. Radial turbulent kinetic energy changes are two orders of
magnitude smaller than the changes in the streamwise turbulent kinetic energy. Its trends in the
buffer and the logarithmic layer are the reverse of those of the streamwise turbulence kinetic energy.
The change in the Reynolds shear stress is one order of magnitude smaller than the change in the
streamwise kinetic energy. The result of wall oscillations is to suppress the Reynolds shear stress
through the top of the logarithmic layer for all three Reynolds numbers.

C. Scale analysis of the drag reduction

1. Turbulent kinetic energy

Figure 4 documents the premultiplied streamwise spectra of the streamwise kinetic energy in
the NWO and WO cases, as well as its change, as a result of wall oscillation. It is instructive to
interpret the results of the current spectral analysis in relation to a well-established paradigm of
hairpin vortices and hairpin vortex packets [28,59] in a turbulent flow. There is a body of literature
confirming the existence of such structures within the range of Reynolds numbers presented in the
current analysis [60–63]. According to a hairpin model [28,60]: (1) quasistreamwise vortices that
are formed in the buffer layer are correlated with the hairpin legs; (2) hairpins have the wavelength
λ+ ∼ O(102) and reside in the buffer and/or logarithmic layer; and (3) hairpin packets have the
wavelength λ+ ∼ O(103) and reside in the logarithmic layer. Figure 4 shows that wall oscillations
suppress the energy of the streamwise structures in the buffer layer having wavelengths in the range
300 � λ+

x � 10 000. These intermediate- to large-scale structures in the buffer layer correspond
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to the concatenation of hairpins and their packets [28,59], whose legs produce a signature of the
well-known streamwise streaks in the boundary layer [64]. The energy in the wavelengths of λ+

x �
300 in the buffer layer is enhanced; however, this effect is exaggerated in a plot of a premultiplied
spectra—the amplification is indeed quite subtle if plotted without premultiplication (not shown
here for brevity). The enhancement of energy in small scales can be due to a breakdown of streaks
into smaller structures as previously observed in wall-oscillated [65] and wall-rotated [15] pipe
flows. Another important observation is the enhancement of energy in large streamwise wavelengths
λ+
x > 5000 in and above the logarithmic layer of the flow. This amplification of large outer scales

in drag-reduced flows has also been observed with other drag reduction mechanisms [66–68] and
is hypothesized to be related to a reduction in large-scale bursts that can otherwise disrupt the
outer-layer structures [69]. It is worth noting that at the low Reynolds number (Reτ = 170) and
moderately low Reynolds number (Reτ = 360), these large outer-layer structures are restricted
by the vertical height of the container and their enhancement is less consequential. The chosen
domain size (L = 24R) is sufficient to capture the large-scale and the very-large-scale motions
[32,42], which are known to have lengths of ∼(2–3)R and ∼(8–16)R, respectively, in uncontrolled
flows [70]. Additionally, Coxe et al. [71] demonstrated a full decay of the autocorrelation function
between streamwise velocity fluctuations over the domain length in both NWO and WO flows.
However, Fig. 4 seems to indicate that the differences are observed in large scales of motion
throughout the entire domain length. It is important to point out that, while the energy in large scales
decays past a certain value, as commensurate with the previous studies [18,24,70], the difference
does not necessarily decay, due to a modulation of these scales by wall oscillation. The observed
differences, however, are about an order of magnitude smaller than the energy itself.

While scaling of turbulent quantities in plus units (as is done in the current paper) is typical
in the analysis of wall turbulence [25], to evaluate the effect of the increased bulk mean velocity
(therefore, total mean flow energy) in a drag-reduced flow in the current setup on the results of
the current analysis, Fig. 5 presents a comparison of the premultiplied streamwise kinetic energy
spectra at selected y+ locations when normalized in the inner units (with u2τ , default normalization)
and in the outer units (with U 2

bulk) for Reτ = 720. It can be seen that, when normalized with
U 2
bulk, the attenuation of small and intermediate scales of motions in a drag-reduced flow is even

more pronounced. However, the increase in energy in the large scales of motion in and above the
logarithmic layer is still evident, testifying that this increase is a feature of a turbulence modification
and not a consequence of the increased mean energy in the flow.

Wall oscillations also impact the azimuthal energy spectrum of streamwise velocity across
the Reynolds numbers (see Fig. 6). The energy in the azimuthal wavelengths associated with
the near-wall streak spacing, λ+

s ≈ 100–200, is reduced in the buffer layer (5 � y+ � 30). Since
streaks and quasistreamwise vortices are closely related, wall oscillation presumably weakens the
quasistreamwise near-wall vortices, thereby reducing their transport of streamwise momentum into
the streaks. As with the streamwise spectrum, the amplification of energy in large azimuthal scales
of motion (λs � 1000) is notable.

2. Net turbulent force

The net turbulent force per unit mass in the axial direction (henceforth referred to as the “net
turbulent force”) in a turbulent pipe flow is defined as

Fturb(r) = −1

r

d{r〈u′′
x u

′′
r 〉}

dr
. (12)

It arises from the momentum balance obtained via averaging the streamwise momentum equa-
tion along the homogeneous (streamwise and azimuthal directions) and in time as [70,72,73]〈

∂ux
∂t

〉
= −1

r

d{r〈u′′
x u

′′
r 〉}

dr
+ ν

r

d

dr

(
r
d

dr

)
〈ux〉 + 1

ρ
〈 fx〉 (13)

and has units of acceleration.
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FIG. 5. Premultiplied streamwise kinetic energy spectra normalized with inner units (u2τ , top row) and
outer units (U 2

bulk, bottom row) at selected wall-normal locations of [(a), (d)] y+ = 20, [(b), (e)] y+ = 100, and
[(c), (f)] y+ = 300 for Reτ = 720. Black solid lines are for NWO cases, and blue dashed lines are for WO
cases.

The net turbulent force determines the mean local acceleration or deceleration of the mean flow
due to the mean turbulent shear stresses. We find that the net mean turbulent force is a more useful
measure of the effect of turbulence than the Reynolds stresses. First, it is a vector, not a tensor.
Second, it succinctly describes all of the effects of turbulent Reynolds stresses on the mean flow.
Third, force is a more intuitive variable to interpret. For example, in steady pipe flow the net mean
force balances the contributions from the mean pressure gradient (−〈 fx〉) and the viscous stress.
At the location of the maximum mean Reynolds shear stress, where one might, at first blush, think
that the turbulence has the greatest effect on the mean flow, the net turbulent force is actually zero,
indicating no effect of turbulence at all at this value of y. Below the maximum Reynolds shear stress
the net mean turbulent force is positive, implying the mean turbulent flow is accelerated above the
corresponding laminar profile, thereby increasing the mean wall shear stress. Above the location of
the maximummean Reynolds shear stress, the net mean turbulent force retards the flow compared to
the laminar parabolic profile, thereby reducing bulk flow velocity. All these observations rest upon
the empirically observed mean shear stress profile.

Utilizing Parseval’s theorem, the net turbulent force can be decomposed into a sum of contribu-
tions from the streamwise and azimuthal Fourier modes as

F+
turb(r

+) = −
∑
kx

∑
kθ

1

r+
∂{r+ �uxur (kx, r

+, kθ )}
∂r+ , (14)

rescaled in wall units. Figure 7 shows the streamwise spectrum of the net turbulent force,
F+
turb(λ

+
x , y+), as a function of the wall-normal coordinate and the streamwise wavelength for the

NWO and WO cases at Reτ = 720. We remark that Fig. 7 agrees with the data presented by Wu
et al. [73] (see their Fig. 17) for the NWO pipe flow if replotted on a log-log scale (not shown
here for the sake of brevity). Consistent with previous observations [70,72,73], we find that the net

114601-11



COXE, PEET, AND ADRIAN

FIG. 6. Premultiplied streamwise kinetic energy as a function of wall-normal location and az-
imuthal wavelength, kθ�uxux (λ

+
s , y+)/u2τ : [(a)–(c)] reference spectra (NWO); [(d)–(f)] change in spectra,

kθ��uxux (λ
+
s , y+)/u2τ . From left to right: [(a), (d)] Reτ = 170, [(b), (e)] Reτ = 360, and [(c), (f)] Reτ = 720.

Axes in the figure scale with viscous units, whose bounds differ across Reynolds numbers.

FIG. 7. Premultiplied streamwise spectra of the net turbulent force, F+
turb(λ

+
x , y+), for Reτ = 720. (a) NWO

cases; (b) WO cases.
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FIG. 8. Filtered net turbulent force profile: (a) low-pass and (b) high-pass filtered net turbulent fore.
Squares indicate the location of the maximum net turbulent force, triangles indicate the location of the zero
net turbulent force, and circles indicate the top of the logarithmic layer as referenced in Table IV. Solid lines
correspond to NWO cases, and dashed lines correspond to WO cases.

force is positive across all the scales of motion λ+
x � 100 in the buffer layer (y+ < 20), amounting

to an acceleration of the mean flow from the corresponding laminar profile, and negative above it,
implying retardation. While the net turbulent force affects all scales of motion, the effect is larger
for large scales at all Reynolds numbers, consistent with the works of Refs. [70,73]. The impact of
the wall oscillations is to reduce this effect, diminishing both the acceleration of turbulent structures
near the wall and their deceleration in the outer layer. In general these changes are conducive to
drag reduction, since they keep the mean velocity profile closer to its laminar shape.

To separate the effects of large and small scales of motion on the net turbulent force, we apply a
Gaussian low-pass filter [59,70],

ĝl p f (kx ) = exp

(
− k2x
2σ 2

)
, (15)

with σ being the filter width, and kx the streamwise wavenumber. We set the filter width such that
the strength of the filter is at 50% of its peak at a filter cutoff location, kx,cutoff = 2π/λx,cutoff . This
gives the value of σ 2 = k2x,cutoff/(2 ln 2). The filter cutoff wavelength λ+

x,cutoff = 1000 is chosen to
separate the large and very large scales of motion from the small and intermediate scales [59,72]:
the scales smaller than the cutoff wavelength are attenuated by the low-pass filter. Conversely, its
high-pass-filter counterpart, ĝhp f (kx ) = 1 − ĝl p f (kx ), attenuates the scales with λ+

x � λ+
x,cutoff . We

apply both filters to the net turbulent force spectra. The filtered net turbulent force is defined as

F̃+
turb,{l p f ,hp f }(r

+) = −
∑
kx

∑
kθ

1

r+
∂
{
r+�uxur (kx, r, kθ )

}
∂r+ ĝ{l p f ,hp f }(kx ). (16)

The cumulative low-pass and high-pass filtered contributions are documented in Fig. 8. Additionally,
Table VI records the position of the zero net turbulent force for the total (unfiltered) and filtered
quantities for the NWO and WO cases, together with the difference between the NWO and WO
locations (�). We refer to the location of the zero net turbulent force based on the total (unfiltered)
quantities as y+

f 0.
Figure 8 shows that the wall oscillations significantly attenuate the magnitude of the low-pass

filtered net turbulent force while leaving its high-pass filtered counterpart relatively unchanged; i.e.,
the major effect of the net turbulent force modification is coming from relatively large scales of
motion (λ+

x > 1000). A considerable net force reduction in large scales (low-pass filtered contribu-
tion) is found all the way from the wall and throughout the top of the logarithmic layer of the flow.
Another important effect is the shift of both the maximum and the zero net force locations upwards
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TABLE VI. Wall-normal location of the zero net turbulent force in plus units for (NWO,WO) based on
unfiltered, low-pass filtered, and high-pass filtered quantities, along with the difference between the WO and
NWO locations (� = WO−NWO).

(NWO, WO, �) (NWO, WO, �) (NWO, WO, �)
Reτ unfiltered low-pass filtered high-pass filtered

170 (25.8, 31.1,5.3) (24.9, 38.0, 13.1) (45.3, 29.2, −16.1)
360 (31.7, 37.1,5.4) (30.1, 55.9, 25.8) (47.4, 29.9, −17.5)
720 (39.1, 44.8,5.7) (37.7, 110.1, 72.4) (46.7, 30.2, −16.5)

by wall oscillations, which is primarily seen in its low-pass filtered contribution. As can be judged
from Table VI, the major effect on the shift indeed comes from the large scales of motion, with the
small and intermediate scales (high-pass filtered) contributing less than 20% of the total shift. The
small and intermediate scales, shown in Fig. 8(b), promote a slightly higher acceleration of the mean
velocity profile near the wall and a slightly higher deceleration between the top of the buffer layer
and the top of the logarithmic layer in the WO case, the effect opposite to that of the large scales.
Above the logarithmic layer of the flow, large-scale net turbulent force is enhanced in the WO case
for the two highest Reynolds numbers, which is contrary to its reduction by the large scales in the
inner layer. This is consistent with a reduction of the normalized centerline velocityUc/Ubulk, despite
the growth of the bulk mean velocity Ubulk in the WO as compared to the NWO cases observed in
Table III across all Reynolds numbers: increased (negative) turbulent force in this region acts to
decelerate the large-scale structures more significantly in the center of the pipe flow with wall oscil-
lation. This effect indicates a decreased effectiveness of the drag reduction mechanism in the outer
layer. The centerline retardation increases with the Reynolds number, pointing once again towards
a reduced effectiveness of the current drag reduction mechanism at higher Reynolds numbers.

Figure 9 shows the spectral decomposition of the net turbulent force as a function of the azimuthal
wavelength at Reτ = 720. In the NWO cases, we observe a clear peak in the net turbulent force with
the azimuthal wavelength λ+

s ≈ 100, associated with the near-wall streak spacing, at the bottom of
the buffer layer (y+ ≈ 10). The effect of wall oscillations, as was already seen in the streamwise
spectra, is to diminish the magnitude of the net turbulent force as compared to the NWO case. We

FIG. 9. Premultiplied azimuthal spectra of the net turbulent force, F+
turb, (λ

+
s , y+), for Reτ = 720. (a) NWO

cases; (b) WO cases.
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FIG. 10. Budget of the net turbulent force through the velocity-vorticity correlations at Reτ = 720. From
(a)–(c), NWO, WO, and �. The lines with no marks denote the total net turbulent force; lines with squares
indicate the −〈u′′

θ
+
ω′′
r
+〉 term; lines with circles indicate the 〈u′′

r
+
ω′′

θ
+〉 term; and the lines with diamonds

indicate the −〈u′′
x
+u′′

r
+〉/r+ term. The top inset in each panel plots a zoom-in of the region of acceleration,

y+ < y+
f 0, while the bottom inset shows a zoom-in of the region of deceleration, y+ > y+

f 0. The bottom axis in
each panel also marks a location of y+

f 0. y
+
f 0 is taken from the NWO case. Dotted horizontal lines indicate the

zero value.

observe that the reduction in the net turbulent force comes from the intermediate to large azimuthal
scales of motion in the buffer layer (λ+

s > 100), whose acceleration is retarded as a result of wall
oscillations. The suppression of the net turbulent force in large streamwise and azimuthal scales
due to wall oscillations is consistent with the hypothesis that wall oscillations inhibit the growth of
the hairpin packets. The lack of growth in the large-scale structures forming the packets prevents
formation of the low-momentum zones [62], which leads to a higher bulk flow rate in the WO cases.

The budget of the net turbulent force describes the contribution of the velocity-vorticity correla-
tions to the turbulent force [74]. In cylindrical coordinates, such a decomposition applied to Eq. (12)
can be shown to be

Fturb(r)
+ = −〈u′′

θ

+
ω′′
r
+〉 + 〈u′′

r
+
ω′′

θ

+〉 − 〈u′′
x
+u′′

r
+〉

r+ . (17)

The first term on the right-hand side, −〈u′′
θ
+
ω′′
r
+〉, is the vortex stretching term [75,76]; the second

term, 〈u′′
r
+
ω′′

θ
+〉, is referred to as the advective vorticity transport; and the last term, −〈u′′

x
+u′′

r
+〉/r+,

arises due to a cylindrical geometry of the problem. This allows for a physical interpretation of the
effects causing the reduction in the net turbulent force.

Figure 10 shows the decomposition of the net turbulent force into its corresponding velocity-
vorticity components at Reτ = 720. It can be seen that the vortex stretching term, −〈u′′

θ
+
ω′′
r
+〉

[75,76], is the primary contributor to the flow acceleration (positive F+
turb) in both NWO and WO

flows. This term, however, is markedly reduced in the WO as compared to the NWO flows in the
region of y+ < 20, promoting reduction of the near-wall velocity gradient, while it is increased
in the buffer, logarithmic, and wake regions with wall oscillation. It was found that the amount
of reduction in the vortex stretching between WO and NWO cases diminishes with the Reynolds
number (not displayed here for brevity).

The second budget term, 〈u′′
r
+
ω′′

θ
+〉, the advective vorticity transport, has a smaller effect on the

net turbulent force as compared to the vortex stretching term, and in fact mostly acts to decelerate
the flow everywhere above y+ > 10. Its contribution to a difference between the NWO and WO
cases is also smaller as compared to the vortex stretching term, especially throughout the buffer
layer. However, this effect of decelerating the flow is beneficial to drag reduction below y f 0. This is
consistent with the drag reduction mechanism proposed by Choi and Clayton [65], who postulated
that the streamwise vorticity gets reoriented along the spanwise direction as a result of the Stokes
layer. This, in turn, creates positive spanwise vorticity in the near-wall region that acts to reduce
velocity gradient by decelerating the mean flow near the wall. It is interesting to note the overall
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effect of the pipe flow geometry (the third budget term, −〈u′′
x
+u′′

r
+〉/r+) to diminish F+

turb and thus to
decelerate the mean flow at all wall-normal locations. Its value is, however, significantly smaller than
that of the other two terms and it reduces with the Reynolds number (not displayed here for brevity).

3. Contribution to bulk mean velocity

The Fukagata-Iwamoto-Kasagi (FIK) identity relates the wall shear stress to a componentwise
contribution of different dynamical effects in a turbulent flow [77]. To assess the effect on drag
reduction in the current setup, where the wall shear stress is fixed but the volumetric flow rate is
allowed to vary, it is more appropriate to express the FIK identity in terms of the bulk mean velocity
[78,79]. Such an expression for the bulk mean velocity was derived for the nonoscillated pipe flow
as [77–79]

U+
bulk = Reτ

4
− Reτ

∫ 1

0
〈u′

x
+u′

r
+〉r
2dr
, (18)

where u′
i = ui − 〈ui〉 is a standard (Reynolds) turbulent fluctuation, and r
 = r/R is a radial co-

ordinate scaled with the outer units. There are two issues that arise with wall oscillation: (1) the
wall velocity boundary conditions are no longer zero, and (2) the fluctuating Reynolds stresses
〈u′

x
+u′

r
+〉 = 〈uφ+

x uφ+
r 〉 + 〈u′′

x
+u′′

r
+〉 now contain a phase-dependent component, 〈uφ+

x uφ+
r 〉, and an

uncorrelated turbulent fluctuating component, 〈u′′
x
+u′′

r
+〉, as per a triple decomposition with a tem-

porally periodic mean flow [52] [see Eq. (8)]. It is shown in Ref. [48] that (1) nonzero azimuthal wall
velocity does not alter expression (18), and (2) the contribution of a phase-dependent component,
〈uφ+

x uφ+
r 〉, to the Reynolds stress is negligible. The FIK identity for the wall-oscillated pipe flows

with a triple decomposition thus reads

U+
bulk = Reτ

4
− Reτ

∫ 1

0
〈u′′

x
+u′′

r
+〉r
2dr
. (19)

The first term in Eq. (19) corresponds to the laminar contribution to the bulk mean velocity (i.e., a
contribution from a corresponding parabolic flow profile which was to develop under the same mean
pressure gradient in a laminar flow), and the second term corresponds to the turbulent contribution.
Since laminar contribution scaled with Reτ is identical between the NWO and WO cases, we turn
our attention to the turbulent contribution. We can represent a turbulent contribution as a limiting
value of the cumulative distribution function evaluated at the pipe centerline r
 = 0 (y
 = 1) as

Ut,cum
bulk

+
(y
) = −Reτ

∫ 1

1−y


〈u′′
x
+u′′

r
+〉r
2dr
. (20)

Figure 11 shows the cumulative turbulent contribution to the bulk mean velocity, as well as
the spectra of the total turbulent contribution for the NWO and WO cases. From Fig. 11(b), one
can observe that the major increase in the bulk mean velocity in a controlled flow as compared to
the uncontrolled flow comes from the buffer and the logarithmic layer of the flow, with the peak
around the top of the logarithmic layer, and the cumulative contribution decreasing in the outer
layer. Figure 11(c) shows an increased contribution of large streamwise scales to the mean flow
retardation by turbulence with increasing Reynolds number, with the effect of wall oscillation to
suppress this retardation in the intermediate scales and to increase it in larger scales. Interestingly,
an azimuthal spectrum presented in Fig. 11(d) shows a clear peak in −Ut +

bulk at azimuthal scales
around λ+

s ≈ 1000 which increases with Reτ . These scales, representative of the hairpin packet
organization [28,80], contribute the most to the turbulent drag. An important result is that larger
scales of motion in WO flows act to increase drag. This explains the decreased effectiveness of
the wall oscillation mechanism (at least with the chosen oscillation parameters) at higher Reynolds
numbers: there are stronger large-scale motions that develop at higher Re, and they are the ones
which negatively effect drag reduction. Wall oscillation at the lowest Reynolds number, Reτ = 170,
seems to be very effective at reducing drag in azimuthal scales corresponding to the individual
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FIG. 11. Turbulent contribution to the bulk mean velocity. (a) Cumulative contribution, (b) change in
contribution, (c) contribution by streamwise wavelength (λ+

x ), and (d) contribution by azimuthal wavelength
(λ+

s,wall = λ+
s (R)). Olive green is Reτ = 170, orange is Reτ = 360, and black is Reτ = 720. [(a), (c), (d)] NWO,

solid lines, and WO, dashed lines (except in (b) which shows a change). Circles in (a) and (b) indicate the
location of the top of the logarithmic layer.

hairpins (λ+
s ≈ 100–200), perhaps because the Reynolds number is too low to effectively form larger

structures composed from the agglomeration of hairpins. Wall oscillation at the two higher Reynolds
numbers, Reτ = 360 and Reτ = 720, favorably affects a larger range of azimuthal wavenumbers
(100 � λ+

s � 700). Larger azimuthal scales, λ+
s > 1000, negatively contribute to drag reduction.

To characterize both the length scales and the wall-normal location of turbulent motions con-
tributing to drag reduction, Fig. 12 plots the streamwise and azimuthal spectra of the cumulative
turbulent contribution as a function of wall-normal coordinate at Reτ = 720. It can be seen that
the streamwise scales of motion with the wavelengths in the range 500 � λ+

x � 5000 contribute
to drag reduction (positive �Ut,cum

bulk
+
(λ+

x , y+)) all throughout the vertical extent of the pipe. It can
also be noted that larger wavelengths, while still acting to cumulatively reduce drag (increase bulk
flow rate) in the logarithmic layer, overtake and lead to a drag increase in the outer layer. This
effect is absent at the lowest Reynolds number, Reτ = 170, and is the strongest at the highest
Reynolds number, Reτ = 720 (not displayed here for brevity). For the azimuthal spectra, it is
observed that the azimuthal length scales in the range 50 � λ+

s � 500 act to reduce drag (increase
bulk flow rate) while larger structures increase drag (reduce bulk flow rate), essentially independent
of the wall-normal location. Interestingly, drag-reducing azimuthal scales organize themselves into
a fractal-like pattern (red “fingers”) visible in Fig. 12(b). A fractal-like pattern is consistent with the
attached-eddy hypothesis of the near-wall turbulence [27,81] and a hierarchy of hairpin structures
in a hairpin packet organization [28]; the fact that the drag-reducing motions adhere to this pattern
suggests a link between the drag reduction mechanisms and a weakening of the hairpin packets.

114601-17



COXE, PEET, AND ADRIAN

FIG. 12. Premultiplied change in the cumulative turbulent contribution spectra (normalized by the laminar
contribution) as a function of wall-normal location and the wavelength at Reτ = 720. (a) Streamwise spectrum,
� 4Ut,cum

bulk
+(λ+

x , y+)/Reτ ; (b) azimuthal spectrum, � 4Ut,cum
bulk

+(λ+
s , y+)/Reτ .

IV. CONCLUSIONS

The current study documents the results of direct numerical simulation of a turbulent pipe
flow with and without transverse wall oscillation for three Reynolds numbers, Reτ = 170, 360,
and 720. It is found that wall oscillation results in an increase of a flow rate by almost 20% and,
consequently, achieves a drag reduction of approximately 30% at the lowest Reynolds number;
however, this effect decreases as the Reynolds number increases. Single-point statistics, log-law
shift, one-dimensional spectra of streamwise kinetic energy, net turbulent force, and the turbulent
contribution to the bulk mean velocity are analyzed to explain this effect.

It is found that the primary effect of wall oscillation is to reduce the energy and the net turbulent
force in the intermediate to large streamwise and azimuthal scales of motion in the buffer layer of
the flow. To the contrary, energy is increased in the large-scale structures in the logarithmic layer and
the wake region. At the lowest Reynolds number, Reτ = 170, the inner layer extends through ≈65%
of the domain while it comprises ≈15% of the domain at Reτ = 720. Since the overall attenuation
of energetic structures is limited to the inner layer of the flow, a relatively larger portion of the flow
occupied by the outer layer and, hence, by the unattenuated large-scale structures as the Reynolds
number increases correlates with the reduced effectiveness of the wall oscillation in this parameter
regime. This effect is well illustrated by Fig. 8, where low-pass filtered and high-pass filtered net
turbulent force is plotted as a function of wall-normal coordinate. This figure shows that (a) most of
the net turbulent force attenuation as a result of wall oscillation comes from the effect of the scales of
λ+
x > 1000 (above the filter cutoff length) and (b) the reduction of the magnitude of the net turbulent

force is confined to the buffer layer and the logarithmic layer of the flow. The reduction of the
magnitude of the net turbulent force by wall oscillation results in a reduced flow acceleration in the
near-wall layer from a corresponding laminar profile and an increased acceleration in the logarithmic
layer as compared to the NWO cases, yielding a velocity profile which is less blunt and more
“laminar-like.” This is offset by an increase of the net turbulent force magnitude (promoting flow de-
celeration) above the logarithmic layer, leading to a lower ratio of the centerline velocity to the bulk
velocity in WO cases, which is further lowered with Reynolds number. From the velocity-vorticity
budget decomposition of the net turbulent force, it is observed that the reduction of the net turbulent
force mostly comes from a suppression of the vortex stretching within the Stokes layer of the flow
and its augmentation above the Stokes layer and below y+ ≈ 100. A reduced vortex stretching in
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the Stokes layer inhibits a mutual induction of the hairpin legs which, in turn, reduces the liftup of
the hairpins and formation of their necks, thus suppressing the hairpin autogeneration [82].

From superimposing the analysis of the streamwise and azimuthal spectra, together with the
wall-normal location of the affected length scales, one can deduce the shape of the structures
most affected by drag reduction. It can be seen that a significant energy reduction occurs at
streamwise scales at and slightly above λ+

x ≈ 1000 and at azimuthal scales at and slightly above
λ+
s ≈ 100, which corresponds to the scales of motion typically associated with the hairpin packets

[28,80]. Since streaks and quasistreamwise vortices are closely related, wall oscillation presumably
weakens the quasistreamwise near-wall vortices, thereby reducing their transport of streamwise
momentum into the streaks. This is consistent with the observations of Yao et al. [18], who reported a
suppression of Reynolds shear stresses at λ+

s < 400 in a turbulent channel flow with wall oscillation.
This points towards a suppression of hairpin packets by wall oscillation being one of the main
mechanisms of drag reduction in the “inner-scaled” actuation regime. It is hypothesized that the
autogeneration mechanism of turbulence [69,82,83] is suppressed by the wall oscillation in the
present pipe flow configuration, thus attenuating the formation and growth of the hairpin packets.
Interestingly, the shorter streamwise scales of motion, λ+

x < 500, are amplified, which may be due
to a breakdown of quasistreamwise vortices by wall oscillation that redistributes energy from larger
into smaller scales and ultimately hinders the ability of near-wall structures to regenerate [15,65].
Large streamwise scales, λ+

x > 5000, and large azimuthal scales, λ+
s > 1000, are also found to be

amplified by wall oscillation, both in the buffer layer and above.
A convincing evidence of the effect of different scales of motion on drag reduction comes from

the spectral analysis of the FIK identity [77], specifically, of the turbulent contribution to the bulk
mean velocity. To this end, Fig. 11 demonstrates a remarkable collapse of the difference in its spectra
between the NWO andWO cases across all three Reynolds numbers, showing that the drag reduction
is limited to the streamwise wavelengths of λ+

x < 5000 independent of the Reynolds number. The
wavelengths with λ+

x > 5000, exerting increasingly larger dominance, especially in the outer layer,
act to increase drag. This explains the observed reduction of effectiveness of wall oscillation as a
drag reduction mechanism in pipe flows with the increase in Reynolds number in the considered
parameter regime, which is optimized for controlling the near-wall cycle of turbulence [6,8,9,35].
Further studies are needed to establish whether the presented conclusions hold at larger Reynolds
numbers and at different wall oscillation parameter regimes. Additionally, the current work suggests
that even longer domain sizes might be required to properly capture the large scale and very large
scales of motions in wall-oscillated flows as compared to the nonoscillated ones, due to a potential
amplification of these scales by wall oscillation.
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