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ABSTRACT

In-situ curing assisted additive manufacturing (AM) of thermoset composites
received numerous attentions and accurate prediction of the degree of cure (DOC)
in thermosets is essential to online tailor process parameters for controlling the
resultant quality and performance. Traditional methods for measuring DOC, such as
Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA),
and Dielectric Analysis (DEA), are destructive or invasive, and difficult for a online
test. In this paper, we present a data-driven approach to predicting DOC using
machine learning. Our approach overcomes the limitations of traditional methods by
considering localized variations, adapting to complex curing kinetics, and directly
predicting DOC. We compare two machine learning algorithms: support vector
classifier (SVC) and random forest, using a small dataset. SVC achieved an accuracy
of 81%, a precision of 0.86, and a recall of 0.81, while random forest achieved
an accuracy of 78%, a precision of 0.83, and a recall of 0.78. This demonstrates
the feasibility of data-driven DOC prediction in AM, paving the way for enhanced
manufacturing processes.

Keywords: Additive manufacturing, in situ curing, degree of cure, machine
learning, quality control, material design

21



1. INTRODUCTION

In the in-situ curing assisted additive manufacturing
(AM) processes, such as direct ink writing (DIW),
accurate degree of cure (DOC) prediction is vital for
optimizing the printing process, ensuring print- ability,
achieving desired mechanical properties, maintaining
dimensional stability, and to obtain overall quality
products. This is because the DOC can vary throughout
the build volume, depending on factors such as the
print speed, temperature, and layer thickness. It also
guides post-processing steps such as post-curing. The
level of curing indicates the extent of polymerization
in the polymer material. Generally, a higher level of
curing is beneficial for enhancing the mechanical
characteristics of the composite.[1] However, accurate
prediction faces challenges due to the nonlinearity
of chemical reactions, limited access to the curing
zone for real-time monitoring, process variability,
and the interplay between material properties, ink
deposition, and curing conditions [2]. The curing
process is influenced by several factors, including
the material properties, the print parameters, and the
ambient environment. As a result, it is difficult to
develop a single model that can accurately predict the
DOC for all AM processes and materials. Despite the
challenges, accurate DOC prediction is important for
several reasons. First, it can help to ensure that the
final product meets the desired properties. Second, it
can help to avoid defects, such as voids and cracks
[1]. Third, it can help to optimize the print parameters,
such as the print speed and temperature.

Various cure monitoring techniques are available for
composites, with Differential Scanning Calorimetry
(DSC) and Dynamic Mechanical Analysis (DMA)
being the most used methods. In a dynamic heating
DSC experiment [3], it is possible to determine the
instantaneous glass transition temperature (Tgmom)
and the residual heat generated during the cross-
linking reaction. Dynamic heating refers to a non-
isothermal ramp temperature program. The degree of
cure can be assessed by correlating the residual heat
in a partially cured sample with the total heat of cure
in a fully cured sample. However, the DSC method
has a disadvantage when dealing with partially cured
materials, as the endothermic step at the glass
transition often overlaps with the residual exothermic
peak, making separation challenging [4]. Additionally,
at higher degrees of cure, the residual heat is low,
resulting in imprecise calculations of the degree of
cure. DSC is also not suitable when dealing with large
number of samples and volatile samples [5].

Dynamic Mechanical Analysis (DMA) is an often-
employed technique for assessing curing progression
and cure condition [6], [7]. The cross-linking reaction
causes distinctive changes in mechanical properties,
which DMA uses to provide useful information on
the status of cure. It is capable of reliably analyzing
materials with a high degree of cure and can quickly
detect the glass transition. DMA is known for its
sensitivity in measuring subtle transitions in polymers
and is often the preferred method for determining
the glass transition temperature (Tg) in highly cross-
linked thermosetting resins, as other methods like DSC
and Thermomechanical Analysis (TMA) may lack
sufficient sensitivity [8]. While DSC and DMA offer
valuable insights into parameters such as Tg, onset of
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cure, heat of cure, maximum rate of cure, completion
of cure, and degree of cure, they do have limitations.
These methods are destructive and can only be applied
on a laboratory scale [9].

To address these limitations and minimize disruption
to the manufacturing process, non- invasive and non-
destructive methods are sought after. It is crucial that
such methods provide real-time information about the
cure reaction. One such method is Dielectric Analysis
(DEA), which is widely used. The most common
dielectric measurement system utilizes a parallel plate
capacitor or an interdigital capacitor (IDC). However,
a drawback of this method is that the dielectric sensors
need to be embedded within the fabrics, which has
been reported to adversely affect the mechanical
performance of the parts [5].

Having completed a comprehensive literature review
on the current approaches utilized for degree of cure
prediction, it becomes apparent that the field is ripe
for a paradigm shift towards the utilization of machine
learning techniques. While the reviewed methods
made significant contributions to understanding
and determining the degree of cure, they are often
limited by certain constraints. Traditional approaches
rely on explicit mathematical models that require
extensive empirical data and assumptions about the
underlying curing mechanisms [10]. Additionally,
these methods may struggle to capture complex
nonlinear relationships and intricate patterns present
in the curing process. Moreover, these methods are
usually limited to in-lab setups hence are not feasible
at an industrial production and processing level [9].
And finally, they greatly slow manufacturing times,
and in some cases, damage the part [9]. In contrast,
machine learning offers a data-driven alternative
that can automatically extract valuable insights from
large datasets without explicitly defined equations or
assumptions. By transitioning to machine learning,
researchers can leverage its ability to uncover hidden
patterns, handle high-dimensional data, and adapt to
nonlinearities, ultimately leading to more accurate and
robust degree of cure predictions [11].

In this study, a predictive model was developed to
predict the degree of cure. Firstly, different algorithms
were compared and analyzed to check which performed
the best. The impact of different factors on the
accuracy of the model, such as the type of data used,
and the complexity of the model, were also analyzed.
The rest of the paper is organized into the following
parts: Section 2 introduces the background knowledge
of data driven machine learning models. Section 3
discusses the experimental setup and data collection.
Section 4 contains the analysis and interpretation of
the results. The paper closes with some conclusions
and future directions in the last section

2. DATA DRIVEN MODELS
2.1 RANDOM FOREST

Random Forest (RF) is a powerful ensemble learning
algorithm utilized in this study. It involves constructing
numerous independent regression trees [12-14]. To
obtain the ideal split at each node, the following
objective function must be solved:
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The new training set is obtained by the following
equation and the new tree is obtained which is trained
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Let y, represent the response variable of the ith sample
X, whereJ ranges from 1 to p (p being the number of (4)
sphttlng variables). The cutting point is denoted as
S. When the best split is performed, it results in two
regions R (j,s)={X | X, <s} and R, (j,s)= {X | X>s} The XGBoost algorithm incorporates several

Here, X, represents the jth sphttlng variable. The
average of y, values withinregion R (j,s).c2=ave(y, |x
€ R, (j,s) ) is denoted as cl= ave(y |X e R, (, s) ),
while R, (J,s).c2=ave(y, |X € R, (j, s) )represents the
average of y, values within' reglon R.(j,s).

The process continues until the defined terminal
condition has been met.

2.2 SVC

In support vector following optimization problem is
solved [16,17]
Minimize 1 -
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In this context, the parameter C (> 0) determines
the balance between the smoothness of the function,
f(x)= w, |— X +b-| and the extent to which deviations
beyond € are permitted. To make the data separable,
kernel functions are employed to transform the data
into higher-dimensional space. [17,18].

2.3 XGB

XGBoost (Extreme Gradient Boosting) is a powerful
engineering algorithm inspired by the Gradient
Boosting Decision Tree (GBDT) algorithm, which
was originally developed by Dr. Chen Tiangi from the
University of Washington [19]. The core idea behind
the GBDT algorithm is to guide the learning process
of each tree in the direction of gradient descent. The
learning process is given below:

For the model Fm(x) under the current iteration
number of round m, it can be expressed as:

n

Fu) = Fy () + argmin. ) Toss(yi ey () + f)) Fpea 0 )

i1

F_(m-1) (x)is the model obtained by m-1 iteration,
f(x) is the minimized loss function and xi,yi

are training samples.

The algorithm further improves the loss function by
gradient descent method and the vector moves towards
the negative gradient direction of the loss function, it
is shown below:
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engineering optimizations based on the traditional
GBDT algorithm. These optimizations include
Integration of a regularization term, Second-order
Taylor expansion, and Sample and feature subsampling.
These engineering optimizations implemented in
XGBoost aim to enhance the algorithm’s performance,
robustness, and generalization ability, making it a
highly effective tool for various applications.
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3. EXPERIMENTAL SETUP AND DATA
COLLECTION

3.1 3D PRINTING

The micro-powder reactants were prepared by mixing
powders of Ti, Si, and graphite in a molar ratio of 3:1:2.
Specifically, the mixing of powders was performed in
ethanol suspension in an ultrasonication bath for 1 h
followed by mechanically stirring for 1 h. To remove
the ethanol, the suspension was then dried at 85 °C
under mild mechanical stirring overnight until ethanol
content was not detectable with differential scanning
calorimetry. The feedstock was then extruded using
a 3D Potter model Micro 10 printer equipped with a
1mm nozzle, controlled digitally (Fig. 2a) . For the
UV in-situ curing 3D printing process, an Omnicure
S2000 device from Excelitas technologies, featuring
two-way light guides, was utilized. To ensure accurate
power delivery, the radiometer recorded the various
power levels directed towards the sample, which were
subsequently calibrated based on the distance between
the output portal and the target. The various printing
parameters used are given below as Table 1.:

Table 1: Process Parameters used for DIW printing

Process Parameters
UV Power (W/cm2) |19, 18,17,16,15,14,13,12
20,40,60,80,100,120,140,160,180

Scan Speed(mm/
min)

O
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3.2 DATA COLLECTION

Thermal analysis was conducted using a Differential
Scanning Calorimeter (DSC) (Q20, TA Instruments)
equipped with a CFL-50 cooling system. The DSC
analysis involved the use of samples weighing between
50-60mg, which were placed in aluminum hermetic
DSC pans and sealed. A programmed heating curve
was applied, starting from 40 °C and reaching 350
°C at a heating rate of 5 °C/min for dynamic DSC
scanning. The reaction enthalpy was determined by
calculating the total area of heat flow after baseline
correction. Additionally, the degree of cure and the rate
of the degree of cure were evaluated in an isothermal
scanning experiment , specifically at temperatures
ranging from 125 to 145 °C. In Fig 3a, the first peak
at 168.97°C represents an initial exothermic reaction
or curing stage, while the second peak at 265.51°C
indicates a secondary reaction or further curing process
at a higher temperature. Together, these peaks highlight
distinct stages of the exothermic curing or reaction
process. To analyze temperature variations, an infrared
(IR) camera (FLIR A325sc) was employed to capture
the temperature profile during the printing process.
The recorded IR images were then processed to extract
the maximum temperature within the region of interest
(ROI) for the printed sample.

(a) (b)

Figure 2: Photothermal induced in-situ curing. (a) Picture
showing UV Ray curing process of the resin. (b) Detailed
schematic of the 3D printer. (c) 3D printed sample

3.3 DATA PREPARATION AND MODEL
TRAINING STRATEGY

In this study, a dataset consisting of 63 data points
was utilized. The dataset comprised three features,
namely Power, Speed, and Temperature, and one target
variable, which represented the degree of cure. To
assess the performance of the machine learning models,
the dataset was split into training and testing subsets,
with a ratio of (20-33)% allocated for testing purposes.
To ensure reliable model evaluation, the k-fold cross-
validation technique was employed for validation.
During the training phase, various machine learning
algorithms were utilized, and grid search cross-
validation was conducted to explore different
combinations of training parameters. This process
enabled the evaluation of multiple models and facilitated
the selection of the best-performing model for each
algorithm. The performance of the selected models was
then compared. To assess the models’ performance, the
testing dataset, which was not involved in the training
process, was employed. For classification problem,
the degree of cure values was categorized into three
distinct categories: “low cured” (values less than 0.4),
“moderate cured” (values ranging from 0.4 to 0.6), and
“high cured” (values greater than 0.6).
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Figure 3: (a). DSC measurements Sample 1
exothermic heat curves at a rate of 5 °C/min,(b)infrared
(IR) image analysis of sample while it’s being cured

3.4 EVALUATION METRICS

In this study both regression and classification methods
were examined. For regression, several evaluation
metrics were employed

3.4.1 MEAN SQUARED ERROR (MSE)

MSE is a commonly used metric to measure the average
squared difference between the predicted values and
the actual values. It provides a quantitative measure
of the overall accuracy of a regression model [23-25].

m
MSE = 1Z(X ¥,)2
_m.l 15 1
i=

Xi is the predicted ith value and the Yi element is the
actual ith value.

3.4.1 COEFFICIENT OF DETERMINATION(R?)

R-squared is a statistical measure that represents the
proportion of the variance in the dependent variable
(target variable) that is predictable from the independent
variables (features) in a regression model [26-28].

RZ=1-— ?ll(Xi_Yi)z

(Y = ¥)?

Xi is the predicted ith value and the Yi element is the
actual ith value. And is the mean of true values.

3.4.1 MEAN ABSOLUTE PERCENTAGE
ERROR (MAPE)

It calculates the average percentage difference between
the predicted values and the actual values, relative to
the actual values. MAPE provides an understanding of
the magnitude of the prediction errors in relation to the
actual values [29-30].

m
1

MAPE = —Z
m

i=1
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3.4.4 CLASSIFICATION METRICS

Precision, recall, and f-score are commonly employed
as evaluation metrics in multi-class classification
scenarios [31-33]. In the context of a multi-class
problem with class Ci, where i ranges from 1 to I, these
metrics can be computed using values derived from the
confusion matrix, including true positives (tp), true
negatives (tn), false negatives (fn), and false positives
(fp). Accuracy provides an estimate of the proportion of
correctly predicted instances overall, offering a general
assessment of classification performance. Precision
focuses on the true positive predictions. And evaluates
the model’s ability to accurately identify positives.
Conversely, recall measures the false negatives and
assesses the model’s capability to correctly classify
instances belonging to a certain class. The F1 score
is the harmonic mean of precision and recall, striking
a balance between the two metrics and disregarding
the true negative (tn) count. In this study, the “macro-
averaging” strategy is utilized, which assigns equal
weight to each class, ensuring an unbiased evaluation
across all classes [34].

t

L 1—T—’i
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Precision = —T fpl ©
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4. RESULTS AND DISCUSSION

The study involved gathering data from the experiment,
resulting in a dataset consisting of 63 samples. Each
data set included the experimental conditions (features).
Since machine learning models necessitate a significant
volume of data, caution was exercised regarding the

feasibility of employing advanced techniques such as
neural networks [35-38]. As a result, two algorithms,
namely RF, and SVC [39-40] were chosen, which
are suitable for smaller datasets. With the goal of
predicting the degree of cure, three regression models
were built. The results obtained during the training and
testing stages of the proposed method are shown below.
The examination of the three key visualizations, namely
Spearman’s coefficient, feature importance, and class
distribution, was initiated. Figure 4 presented these
visualizations, which provided valuable insights into
the relationships between variables, the significance
of features, and the distribution of classes within the
dataset. In particular, the first image, 4(a), displayed
Spearman’s coefficient, which depicted the correlation
between different variables in the dataset. Spearman’s
coefficient was utilized to measure the strength and
direction of monotonic relationships between variables,
without assuming linearity [41-42][44]. The second
image, 4(b), showcased feature importance, offering a
comprehensive understanding of the contribution made
by each feature towards the prediction task [43]. The
computation of the feature importance score involved
the utilization of tree-based models, such as Random
Forest. Lastly, the third image, 4(c), portrayed class
distribution, illustrating the distribution of classes or
categories within the dataset. The visualization of class
distribution enabled the gaining of insights into the
balance or imbalance of classes, which could influence
model training and evaluation.

The correlation values provide insights into the
relationships between the features (temperature,
speed, and power) and the target variable (cure). The
temperature feature demonstrates a positive correlation
coefficient of 0.45, indicating a moderately strong
positive relationship with the cure. This suggests that
as the temperature increases, there is a tendency for the
curetoalsoincrease. On the other hand, the speed feature
exhibits a negative correlation coefficient of -0.44,
suggesting a moderately strong negative relationship
with the cure. This implies that as the speed increases,
the cure tends to decrease. Interestingly, the power
feature shows a weak positive correlation coefficient of
0.079, indicating a minimal relationship with the cure.
Moving on to the feature importance scores, which
provide insights into the relative importance of each
feature in predicting the cure. The temperature feature
emerges as the most influential feature with a score of
0.53, indicating its strong impact on the prediction of

Table 2:Statistical analysis of all the parameters involved in machine learning model of
degree of cure prediction

Statistics Parameters

Power Speed Temperature Cure
Count 63 63 63 63
Mean 81.76 95.23 219.86 0.418
Standard Deviation 9.93 48.68 90.47 0.161
Min 67 20 62.2 0.089
25% 75 60 135.59 0.313
50% 79 100 218.2 0.431
75% 90.5 140 297.15 0.534
Max 98 200 360.14 0.989
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Figure 4 (a) Spearman’s rank correlation relationship between input and

Feature ranking, (c) Class distribution.

the cure. The speed feature follows with a score of 0.35,
indicating a considerable contribution to the prediction
task. Lastly, the power feature demonstrates the lowest
importance score of 0.12, implying a relatively minor
influence on the prediction of the cure. Figure 4 (c)
shows that the dataset is imbalanced, with moderately
cured having higher instances of 34, low cured class
with 24 instances and highly cured with 5 instances.
Presence of such imbalanced dataset requires modifying
the algorithm and choosing the appropriate evaluation
metrics.

Random Forest Regressor and XGB reg was built and
evaluated. The parameter for the model are given below:

Table 3: Hyperparameters for Regression models

Features

Parameters XGB REg RF Reg
n_estimators 9 80
max_sample - -
max_depth 5 5
max_feature - 1
colsmaple_ 1 -
bylevel

colsmaple_bytree | 0.7597 -
learning_rate 0.3513 -
Base_estimator - -
min_samples_ - 2
split

min_child_weight | 0.36957 -
subsample 0.9586 -
reg_alpha 0.335 -
reg_lambda 0.1123 -
min_samples_leaf | - 3
random_state 5 5

R2, MSE and MAPE evaluation metrics were used to
assess the performance of the model on the test data (20-
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33% of the dataset). The scatter plot and the obtained
values are given in Table 4,

Table 4: Model’s evaluation on Test data
Model MSE R2 MAPE
XGB Reg 0.00384 0.56 4.3%
RF Reg 0.004 0.53 5%

Starting with the coefficient of determination (RA2),
which provides an indication of how well the models
capture the variance in the test data, we obtained values
of 0.56 and 0.53 for the XGB Regressor, and Random
Forest Regressor, respectively. These values suggest
that the models explain approximately 56% to 53% of
the variance in the test data. Moving on to the mean
squared error (MSE), which measures the average
squared difference between the predicted and actual
values, we obtained values of 0.00384 and 0.004 for
the XGB Regressor, and Random Forest Regressor,
respectively. The lower the MSE, the better the model’s
predictive accuracy. In this case, all three models
demonstrate relatively low MSE values, suggesting that
they can make accurate predictions with minimal error.
Additionally, we evaluated the mean absolute percentage
error (MAPE) to assess the models’ performance in
terms of relative errors. The XGB Regressor achieved a
MAPE of 4.3%, and Random Forest Regressor achieved
MAPE values of 5%, respectively. The MAPE indicates
the average percentage deviation of the predictions
from the actual values. Lower MAPE values indicate
a higher level of accuracy. In this case, the XGB
Regressor exhibits the lowest MAPE, followed by and
Random Forest Regressor. This suggests that the XGB
Regressor model outperforms the other two models
in terms of minimizing relative prediction errors. The
XGB Regressor is a gradient boosting algorithm that
combines the strengths of decision trees and gradient
descent optimization. It is known for its ability to
handle small datasets effectively. With its ensemble
of weak learners, it can learn complex relationships
and adapt to the data’s non-linear nature. Given the
limited dataset size, the XGB Regressor’s capability to
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Figure 5 : Scatter Plots of Training data and Testing data for degree of cure prediction yield by (a) Bagging

Regressor, (b) XGB Regressor, (c) ) RF Regressor

In the context of additive manufacturing (AM), the
accurate prediction of the degree of cure held utmost
importance in this study. However, it became evident
from the results that the regression models fell short
of expectations and failed to accurately predict the
degree of cure values. The authors hypothesized
that the reduced accuracy of the regression models
could be attributed to the limited size of their dataset.
The limited size of dataset posed a hindrance to the
effective training of the models.

To address this issue, an alternative approach was
devised by transforming the task of predicting
the degree of cure from a regression problem
into a classification problem. This involved the
categorization of the degree of cure values into three
distinct categories: “low cured” (values less than
0.4), “moderate cured” (values ranging from 0.4
to 0.6), and “high cured” (values greater than 0.6).

By adopting this classification framework, we were
able to utilize three machine learning algorithms to
train models specifically designed for predicting the
degree of cure based on the experimental conditions.
Classification model SVC was built. The parameters
of the model are givenn Table 5.

The testing results of the three models on the test
data (20-33% of the dataset) are presented in the
confusion matrices as shown in figure 6. Figure 6(a)
SVC classifier correctly classifies all instances from
class “low”, misclassifies 4 from class “moderate”
and correctly classifies instances from class “high”.
Intuitive analysis of the reason could be the imbalance
in dataset resulting in the misclassification.

(a) (b) (c)
Confusion Matrix 8 Confusion Matrix 8 Confusion Matrix
3 0 0 3 0 0 i 1 0 6
6 ]
] ° T
88 38 83 4
o3 3 1 4 23 3 0 4 rL: 0
3J 0 30 30
= E EE EE
L _2 § =) _2 ¥ = -2
=} 0 0 2 =) 1 1 0 o 0 1 1
= F= F=
-0 -0 -0
low moderate high low moderate high low moderate high
Predicted label Predicted label Predicted label
Figure 6: Confusion matrix (a) SVC, (b) Ada boost classifier, (c) XGB classifier
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Due to the presence of an imbalanced dataset,
evaluating the model's performance solely through a
confusion matrix proved to be challenging. Therefore,
an exploration of alternative metrics was conducted,
and the corresponding results are presented in the
table 6.

Table 5: Hyperparameters for classification models

SvC

n_estimators -

Parameter

max_depth -

max_leaves -

max_feature -

learning_rate -

Base_estimator | -

objective -

Gamma scale

class_weight balanced

true
42

probability

Random_state

The performance of SVC was evaluated based on
precision, recall, specificity, accuracy, and F-1 score.
Overall, the SVC model outperformed the other models
in most metrics, demonstrating higher precision (0.86)
and recall (0.81). This suggests that the SVC model
had a better ability to correctly identify instances
belonging to specific classes. It also achieved a higher
specificity (0.91), indicating a strong capability to
accurately classify negative instances. The SVC
model’s accuracy (81%) was also the highest among
the three models, further solidifying its performance.

Accurate prediction of the degree of cure in thermosets
is a crucial task in additive manufacturing (AM).
Traditional approaches, such as Differential Scanning
Calorimetry (DSC), Dynamic Mechanical Analysis
(DMA), and Dielectric Analysis (DEA), have been
widely employed for this purpose. However, there is a
need for an efficient, non-destructive ad non-invasive
approach in measuring the Degree of cure. For instance,

5. CONCLUSION

In this paper, a data-driven approach was developed
using machine learning algorithms to accurately
predict the degree of cure (DOC) in the in-situ curing
aimed AM process of thermosets. The performance
of five different models were compared and it was
found that the support vector classifier (SVC) model
achieved the highest accuracy, precision, and recall.
This data-driven approach overcomes the limitations
of traditional methods by considering localized
variations, adapting to complex curing kinetics,
and directly predicting the degree of cure. The
results demonstrate the superiority of our approach
in accurately predicting DOC and provide valuable
insights for quality control and process optimization
in AM.

Despite the success of this data-driven approach,
there are still avenues for further research and
improvement. First, expanding the dataset size could
enhance the accuracy and generalization capabilities
of the models. A larger dataset would provide more
diverse samples and improve the models' ability to
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DSC measurement on a large amount of sample is very
time consuming and limited to only laboratory scale.
They also rely on predefined mathematical models or
assumptions about the curing process which sometimes
is not the case for some systems.

Table 6: Hyperparameters for classification models

Model Precision | Recall Specificity | Accuracy

F-1

SvC 0.86 0.81 0.91 81

0.80

In this manuscript, a data-driven approach for Degree
of cure measurement was presented. Both regression
and classification models were examined. Notably,
the classification models, namely SVC exhibited
significant advantages over the regression models.
While the regression models failed to accurately
predict the degree of cure values, the classification
models successfully categorized the degree of cure
into three distinct categories: “low cured,” “moderate
cured,” and “high cured.” Furthermore, the evaluation
metrics of the classification models emphasized
their performance in predicting the degree of cure
categories. For instance, the SVC model achieved
high precision, recall, specificity, accuracy, and
F-1 score, indicating its effectiveness in accurately
classifying thermosets into the appropriate degree of
cure categories. However, there are several factors
that affect this study. First, limitation of dataset. The
data set used in this study was relatively small. This
could have led to overfitting of the models. Another
limitation is the reliance on a specific machine
learning algorithm, such as XGB Classifier, SVC, and
AdaBoost, for classification modeling. While these
algorithms have shown promising results in this study
dealing with small dataset, there may be alternative
algorithms or ensemble techniques that could yield
even better performance. And finally, the third factor
is the quality of the training process. This includes
answering the following questions: What is the best
strategy for determining the number and importance
of features?What is the correct number of trees to
generate? How should error rates be evaluated?

capture the complex relationships within the curing
process. Additionally, exploring other machine
learning algorithms or ensemble techniques may yield
even better performance and robustness. Moreover,
investigating the impact of different features or feature
engineering techniques could provide additional
insights into the curing process and potentially
enhance the models' predictive capabilities.
Furthermore, it would be valuable to evaluate the
performance of our approach on different thermoset
materials and manufacturing conditions. This would
help assess the generalizability and applicability
of the models across various scenarios. Moreover,
incorporating real-time monitoring and feedback
mechanisms into the predictive models could enable
adaptive control strategies and real-time adjustments
during the AM process.

In conclusion, our research demonstrates the
effectiveness of a data-driven approach using
machine learning for predicting the degree of cure in
thermosets for AM applications. This approach has
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the potential to revolutionize quality control and
process optimization in AM, leading to improved
manufacturing outcomes and enhanced material
design. Future work should focus on expanding
the dataset, exploring alternative algorithms, and
evaluating the approach on different materials and
manufacturing conditions to further advance the field
of predictive models for thermoset curing in AM.
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