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ABSTRACT
Video analytics is widely used in contemporary systems and services. At the forefront of video analytics are video
queries that users develop to find objects of particular interest. Building upon the insight that video objects (e.g.,
human, animals, cars, etc.), the center of video analytics, are similar in spirit to objects modeled by traditional
object-oriented languages, we propose to develop an object-oriented approach to video analytics. This approach,
named VQPy, consists of a front-end—a Python variant with constructs that make it easy for users to express video
objects and their interactions—as well as an extensible backend that can automatically construct and optimize
pipelines based on video objects. We have implemented and open-sourced VQPy, which has been productized in
Cisco as part of its DeepVision framework.

1 INTRODUCTION

The widespread deployment of surveillance cameras and
the expansion of online video platforms have resulted in a
tremendous surge in video data. Harnessing this extensive
video data for intelligent video analytics is vital for prac-
tical applications such as enhancing safety in smart cities,
optimizing traffic management, and enabling autonomous
driving, among others.

At the core of video analytics lies the concept of video
queries, which serve as a crucial link between users and
video data. Video queries enable users to specify and ex-
tract video objects or events that align with their particular
interests. For instance, a traffic planner may wish to analyze
patterns leading to traffic accidents, such as jaywalking or
vehicles speeding past pedestrians. Likewise, a police officer
might be interested in identifying suspicious activities, such
as someone lingering in a restricted area or attempting to
tamper with security equipment. Supporting video queries
is a complex task because real-world video queries typically
involve a combination of various traditional computer vision
(CV) tasks, including image classification, object detection,
object tracking, activity recognition, and more. Moreover,
tailoring this combination of CV tasks to suit the unique
query requirements of different users or applications adds
an additional layer of complexity.

State-of-the-art. The state-of-the-art approaches for ad-
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dressing video queries can be categorized into three primary
methods: (1) constructing a pipeline by hand; (2) employing
a SQL-like language; and (3) using a multimodal large lan-
guage model (MLLM), which provides a versatile zero-shot
solution capable of handling a wide range of video queries.
Our main observation behind this work is that video queries
are concerned about video objects (such as humans, animals,
vehicles, etc.) and their spatial and temporal interactions.
A key limitation in these existing techniques is the lack of
an object-based abstraction, making it hard for them to both
describe and optimize complex queries that center around
the existence of and/or the relationship between a variety of
video objects. We will elaborate on these approaches below;
a detailed description of related work can be found in §A.

Handcrafting pipelines. The most widely adopted approach
in industry for implementing a specific task is the manual
crafting of pipelines that connect pretrained vision models.
However, it can be a labor-intensive and error-prone process,
demanding deep expertise in computer vision and significant
engineering resources. In the construction of such a pipeline,
CV experts are required to identify objects and analyze their
relationships manually by selecting the appropriate models
from model repositories (such as HuggingFace (Wolf et al.,
2020), MMDetection (Chen et al., 2019), or various GitHub
contributions), writing inference code to query these models,
and creating programs to link these tasks together. This is a
formidable undertaking and it needs to be completely redone
for each new application.

SQL-based frameworks. To alleviate the laborious manual
efforts involved in constructing and configuring pipelines,
recent video database management systems (VDBMS), ex-
emplified by (Lu et al., 2016; Kang et al., 2020; 2022; Xu
et al., 2022), have introduced a high-level interface that per-
mits expressive querying using a SQL-like language. This
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interface allows for the automatic construction of pipelines
through SQL queries. However, SQL-based frameworks
were originally designed for processing structured tabular
data and are, therefore, not ideally suited for handling object-
based video queries. This discrepancy introduces challenges
in effectively expressing and executing video queries. To
express complex queries that involve temporal and spatial
relationships between objects (e.g., scenarios like a car ap-
proaching a cyclist), a SQL-based approach requires devel-
opers to “think like a table”—they typically treat camera
frames as if they were relational tables, with queries often
involving complex nesting, joins and group-bys on these
frame tables. Implementing such queries necessitates the
use of many UDFs that must be coded in imperative lan-
guages like Python.

Moreover, the disparity between video objects in video
queries and the structured data model used in SQL-based
frameworks can result in suboptimal query optimization.
The latter poses challenges in carrying out optimizations
specifically focused on individual objects, such as memoiza-
tion. For example, static properties (e.g., color) of a video
object remain unchanged once computed. As demonstrated
in our evaluation, remembering the values of such properties
for new frames (as opposed to recomputing them) can lead
to a ten-fold performance increase (§5.2), while doing so in
SQL is a formidable challenge.

Multimodal LLMs. The latest development in multimodal
large language models (MLLMs) empowers users to interact
with and comprehend videos using natural language queries.
This approach offers a solution that appears to eliminate the
necessity for constructing pipelines. While MLLMs show
great promise in video understanding, they excel most in the
realm of exploratory video analytics, where human users
engage with the video query system to iteratively explore
and gain a deeper understanding of the video content. They
are unable to answer questions regarding video objects on
a specific frame. Moreover, MLLMs come with a high
computational cost, which can result in substantial delays.
This, combined with the iterative process of generating re-
sponses, often renders the latency too long to be suitable for
time-sensitive applications like real-time surveillance.

Insight. Our key insight is video objects are fundamentally
similar to the objects modeled in traditional object-oriented
programming languages like Java or Python. Consequently,
the creation of a video-object-oriented query framework
allows for the straightforward development of complex
queries. Moreover, the video-object-oriented design en-
ables optimizations at the object level, which can greatly
enhance query performance.

VQPy. The original Python language lacks built-in support
for representing object interactions, spatial and temporal re-
lationships, and constraints on video frames. As a solution,

we have created VQPy, which is a Python variant featuring
constructs specifically tailored for expressing and modeling
video objects and their relationships. VQPy places video
objects at the core of all queries. These video objects exhibit
inheritance relationships and possess properties and oper-
ations, much like those in a conventional object-oriented
(OO) language. Basing VQPy off Python is intentional to
tap into the extensive machine learning ecosystem, making
it seamless for developers to construct end-to-end pipelines,
ranging from queries to subsequent tasks.

VQPy makes the following contributions:

• A video-object-oriented frontend: VQPy employs an
object-oriented approach to represent video objects and
their interactions, enabling developers to create intricate
queries with ease, without the need for additional code to
connect various CV tasks or express object interactions
through a relational data model for SQL. Additionally,
our design embraces object-oriented concepts like inheri-
tance and polymorphism, promoting code reusability and
facilitating query composition.

• An efficient backend with an object-centric data
model: Our backend is constructed based on a data model
that revolves around video objects rather than relational
tables. This approach streamlines the efficient execution
of video-object-oriented queries, enabling the integration
of numerous object-level computation reuses that were
not feasible in a SQL-based framework primarily geared
toward relational data.

• An extensible optimization framework: VQPy’s opti-
mization engine has been crafted as a flexible optimiza-
tion framework, making it effortless to integrate diverse
query optimizations like frame filtering and specialized
neural networks (NNs) as plug-and-play operators, requir-
ing minimal adjustments to the code.

Results. We have written 14 queries with VQPy and evalu-
ated on 5 datasets from real-word surveillance video streams.
On average, VQPy achieved more than 10× query speedup
over state-of-the-art systems without sacrificing accuracy.
We also implemented three optimizations commonly used
in previous works showcasing VQPy’s ability to integrate
customized optimizations. VQPy has been open-sourced
at https://github.com/vqpy/vqpy and integrated into Deep-
Vision, which is Cisco’s comprehensive video analytics
framework, for commercial purposes.

2 VQPY OVERVIEW

As shown in Figure 1, VQPy’s architecture contains three
core components: frontend, backend, and library.

Frontend. The frontend of VQPy augments Python’s ca-
pacity to articulate video queries through the introduction of

2
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Figure 1. VQPy architecture.

three key constructs: VObj, Relation, and Query. VObj serves

as the central abstraction within VQPy, defining the primary

objects of interest within video data. Relation builds upon

VObj, specifying spatial or temporal relationships among

these objects, while Query further extends the concepts of

VObj and Relation to define a comprehensive video query.

Backend. VQPy’s backend framework uses an object-based

data model, and comprises three fundamental components:

operators, planner, and execution engine. When presented

with a video query, our planner constructs a sequence of op-

erators, such as object detection and object tracking, using

a graph-based data model centered around VObj. Subse-

quently, the execution engine carries out the execution of

this pipeline. Moreover, VQPy’s backend simplifies the

process of optimization registration, allowing users to ef-

fortlessly incorporate their filters and specialized neural

networks for video objects into our backend through straight-

forward Python annotations. The planner, equipped with

metadata from the property library and profiling data from

the model zoo, then reorganizes the operators within the di-

rected acyclic graph (DAG) to generate an optimized query

plan that aligns with the users’ specified accuracy targets.

Library. VQPy provides a library that encompasses a model

zoo, which integrates state-of-the-art models both for com-

mon CV tasks including object detection, action recogni-

tion, and object tracking, and for specific property func-

tions like license plate recognition or color detection. The

models in the library can be selected to construct VObj and

Relation. VQPy’s library also provides commonly used

VObjs, Relations and Queries that serve as building blocks

for constructing other queries. Besides, VQPy’s library also

includes backend optimizations including specialized NNs

and filters corresponding to the built-in VObjs and Queries.

3 FRONTEND: VIDEO-OBJECT-ORIENTED
PROGRAMMING

This section discusses VQPy’s frontend, with a focus on

how users can express queries in an object-oriented manner.

As discussed in §2, to empower Python with video query

abilities, VQPy extends Python’s syntax with three major

constructs: VObj, Relation, and Query. These constructs are

similar to Python classes but carry special properties and

constraints to ease the development of video analytics.

VObj. Much like an object in vanilla Python, VObj defines

the video object type users want to query on (e.g., vehicle,

person, etc.). VObj supports the definition of properties, e.g.,
the color of the car, which can be used in Query for detecting

objects with such properties, such as a red car.

Figure 2 demonstrates how to construct a vehicle VObj with

the properties “center”, “direction”, and “color”. In VObj,

properties can be built with other properties defined in the

same VObj (e.g., the “direction” property takes as input the

“center” property of the vehicle VObj), or with pre-defined

properties in vqpy.VObj (e.g., bbox, frame rate, vobj image,

etc.), or with properties in its super-VObjs.

vobj Vehicle(vqpy.VObj):

def __init__(self):
self.model = "yolox"
self.class_names = ["car", "truck", "bus"]

@stateless(input="bbox")
def center(self, bbox):

pass

@stateful(input="center", history_len=5)
def direction(self, hist_centers):
# self-customized
if hist_centers[0][0] - hist_centers[4][0] > 0:

return "up"
else:

return "other directions"

@stateless(model="color_detect")
def color(self, images):
# built-in color_detect model
pass

Figure 2. VQPy Vehicle VObj.

In VObj, each property can be either stateless or stateful,
indicating whether the property requires cross-frame infor-

mation (e.g., direction) or not (e.g., color). If a property

is stateless, that is, the property is static in the VObj and

only depends on the current frame (such as “color” and “li-

cense”), users can modify the property with a @stateless

annotation, which allows the developer to specify other prop-

erties within the same frame as dependencies. Similarly, to

compute a stateful property, users can annotate it with a

@stateful annotation, which takes as input the length of the

history of its dependent property. In the Vehicle VObj exam-

ple shown in Figure 2, the direction property of a car is a

stateful property, and computing it requires five consecutive

frames of the center property.

To build a VObj in VQPy, users can directly utilize the vision

models from VQPy’s library by referring to the model name.

For example, the Vehicle VObj uses the built-in “yolox” as

its model to detect vehicle objects, and the “color detect”

model to compute the color property. Besides, developers

can also write customized code to define properties, such as

the direction property in Figure 2.
3
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A special VObj we provide is the scene VObj, which repre-
sents the scene of each frame. This can be used to define
background properties, such as day or night, rainy or sunny,
whether at an intersection, etc.

Relation. To ease the query development for object in-
teractions, we introduce the Relation construct. Taking
VObjs as input, Relation models spatial or temporal rela-
tions between the input VObjs. Similarly to properties on
VObj, properties on Relation can be either stateful or state-
less. Figure 3 demonstrates how to use Relation to construct
a spatial relation between objects using simple python code.

relation SpatialRelation(vqpy.Relation):
def __init__(self, vobj1, vobj2):

pass

@stateless(input1="center", input2="center"):
def distance(centers):

pass

@stateful(input="distance", history_len=5):
def getting_close(self, dists):
return dists[0] - dists[4] < 0

Figure 3. VQPy spatial relation.

relation PersonBallInteraction(vqpy.HOIRelation):
def __init__(self, person, ball):

self.model = "UPT"
self.object_class_name = "ball"

@stateful(input="interaction", history_len=30):
def serve(interactions):

return hold_then_throw()

Figure 4. VQPy person ball relation.

Instead of hand-written python code, one could also build a
property with a vision model. For example, in Figure 4, the
PersonBallInteraction Relation uses the built-in human
object detection model of “UPT” to compute the interac-
tions between human and ball. The “interaction” property
on RelationPersonBallInteraction builds a connection be-
tween a person and a ball. To construct such properties,
users can select vision models from VQPy’s library that can
directly predict these properties on frames.

Query. Query is the main entry of a video query. With
the Query construct, our goal is to enable query expressions
to be semantically aligned with users’ interests in video
objects and their relationships. Figure 5 demonstrates how a
police officer can construct a query of “retrieving the license
plates of red cars” with VQPy. Figure 6 includes a more
complex query on both video objects (a speeding car) and
their spatial relationships (a car close to a person), where a
city safety guard wants to query the traffic hazard case of a
speeding car passing a person.

As shown in both examples, VQPy introduces
two constructs, frame constraint and frame output.
frame constraint allows users to express their filtering
constraints on video frames, while frame output selects
the output objects of interest. In particular, VQPy invokes
frame output to output a set of video objects whose

query FindRedCar(vqpy.Query):
def __init__():

self.car = Car()

def frame_constraint():
return self.car.color == "red"

def frame_output():
return self.car.license_plate

Figure 5. VQPy query for retrieving license plates of red cars.
query TrafficHazards(vqpy.Query):
def __init__():

self.car = Car()
self.person = Person()
self.relation = SpatialRelation(self.car, self.person)

def frame_constraint():
return (self.relation.distance < 0.1)

& (self.car.speed > 60)

Figure 6. VQPy query for traffic hazards.

containing frames satisfy the constraints declared in
frame constraint.

Additionally, to enable queries over the entire video, we
introduce video constraint and video output. Figure 7
depicts how to express a query of “counting the number
of vehicles turning right throughout the video”. A Query

with video constraint and video output outputs the aggre-
gated results, where the same object that appears in different
frames will be regarded as one single entity.

query TrafficFlow(vqpy.Query):
def __init__():

self.vehicle = Vehicle()

def video_constraint():
return self.vehicle.motion == "turn_right"

def video_output():
return vqpy.count(self.vehicle)

Figure 7. VQPy query for traffic flow analysis.

Note that VQPy supports the use of logical operators (&, |,
and ¬) to connect the predicates in a constraint. With logical
operators, queries on video objects with the conjunction or
disjunction of a number of predicates (e.g., a person who
wears jeans and whose hair is not black), as well as co-
curing objects (e.g., frames with a person and a red car) can
all be easily expressed.

Inheritance. VQPy supports inheritance for VObj, Relation,
and Query similar to standard python semantics. For ex-
ample, a sub-VObj or sub-Relation can inherit a super-
VObj/super-Relation, and thus all properties defined in the
super-VObj/super-Relation are directly accessible in the sub-
VObj/sub-Relation. A sub-Query can reuse the constraints
of all its super-Query to construct a stricter constraint. Inher-
itance facilitates code reuse and allow VQPy to provide a
library of basic VObj, Relation and Query for users to extend.
Inheritance also provides a natural way to enable optimiza-
tions such as specialized NNs and frame filters, which we
will detail in §4.4.

Event Composition with Higher-Order Queries. Event
4
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composition allows users to express complicated queries by
connecting basic queries. To support composition, VQPy
provides higher-order queries that take other queries as
input and extend the query dimension temporally or spa-
tially. Specifically, VQPy offers three high-order queries:
DurationQuery, SpatialQuery, and TemporalQuery.

A DurationQuery checks whether a condition defined in the
base query continues to hold for a number of frames or a
time period. It can express queries such as a person loitering
for more than 20 mins, or a bag unattended for more than
5 mins. A SpatialQuery takes in two basic Queries, each
containing a frame constraint and a specific spatial relation.
VQPy automatically generates a new frame constraint for
the SpatialQuery that checks whether the two video objects
satisfy the specified spatial relationship. A TemporalQuery

takes in two Queries, each containing a frame constraint

or video constraint as well as a temporal relation. VQPy
generates a video constraint for the TemporalQuery that
checks whether the two events satisfy the specified temporal
relationship.

Query composition follows the following rules:
Rule 1: SpatialQuery takes in only basic queries;
Rule 2: DurationQuery takes in basic queries or
SpatialQueries;
Rule 3: TemporalQuery takes in basic queries as well as all
three higher-order queries (including itself).

Figure 8 depicts how a traffic safety analyst can use the
higher-order query constructs of VQPy to implement a
complicated query that searches for hit-and-run scenar-
ios. The example includes two events, car-hit-person,
and car-run-away, which happen sequentially. The
car-hit-person query is concerned with the spatial rela-
tionship between a car object and a person object. The
car-run-away query is interested in a car object with a cross-
frame property (”speed”).

from vqpy.lib.query import CollisionQuery, SpeedQuery
from vqpy.lib.query import SequentialQuery

query HitAndRun(vqpy.Query):
def __init__():

self.car = Car()
self.person = Person()
car_hit_person = CollisionQuery(

subqueries = [self.car, self.person]
dist_threshold = 0.1)

car_run_away = SpeedQuery(car, velocity_threshold)
self.sequential = SequentialQuery(

subqueries=[car_hit_person, car_run_away],
time_window="10s",
id_match=(car_hit_person.car, car_run_away.car)

)

def video_constraint():
return self.sequential

def video_output():
return self.car.license_plate

Figure 8. VQPy code for hit and run.

In the HitAndRun example, the user first employs

CollisionQuery, a sub-Query of the higher-order
SpatialQuery which checks whether the distance of
the two input VObjs is smaller than a threshold indicating a
potential collision, for building a car-hit-person query.

To construct this query, developers directly pass two
VObjs Car and Person. They can then leverage VQPy’s
built-in SpeedQuery, to construct a car run away query,
by specifying the Car VObj with a speed that exceeds
velocity threshold. With the two sub-queries defined, they
can easily compose them into a SequentialQuery, a sub-
Query of the higher-order TemporalQuery, by specifying a
desired time window, which represents the maximum inter-
val between the two events. The sequential query can used
directly in the video constraint of the HitAndRun query.

4 BACKEND: A VIDEO-OBJECT-CENTRIC
OPTIMIZATION FRAMEWORK

4.1 Plan Generation

As shown in Figure 1, VQPy’s backend includes three com-
ponents, i.e., operators, query planner, and execution engine.
The backend is designed with VObjs and their relations as
its data model.

Data Model. Our query planner maintains a graph data
structure, which flows across the operators on a DAG. Nodes
in the graph represent VObjs and edges represent their re-
lationships. There are four kinds of edges: (1) a motion
edge connects two VObjs which represent an identical object
from consecutive frames (to track stateful properties such
as actions), (2) a spatial-relation edge connects two VObjs

that are located in the same frame, (3) a duration-relation
edge connects two VObjs in frames whose distance is within
a given time constraint, and (4) a temporal-relation edge
connects two VObjs such that the from-VObj is in a frame
that precedes the frame that contains the to-VObj. The last
three kinds of edges correspond to the three higher-order
query types discussed earlier. Nodes and edges all carry
properties.

Operators. VQPy supports queries with six types of op-
erators: video reader, frame filter, object detector,
objector tracker, object filter, and projector. Object

filter includes VObj filter and Relation filter; projector in-
cludes VObj projector and Relation projector. Video reader

reads in the video stream and passes the frame information
to subsequent operators. Frame filter filters out irrelevant
frames. For instance, a motion detector that filters out static
frames can serve as a frame filter in the pipeline for answer-
ing queries including moving video objects; a texture-based
filter can quickly eliminate frames that do not contain live
objects such as humans or animals. Object filter filters
outs VObjs or Relations that do not satisfy the user specified
constraints.

5
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Figure 9. VQPy operator DAG for a query that searches for the

suspect getting in a red car.

Object detector detects video objects and labels their

classes. Object tracker identifies the same video object

across different frames. Note that object tracker is used

only when the query constraints involve stateful proper-

ties. Projector outputs the results for VObj or Relation

involved in the query.

Operators are implemented as iterators. Each operator

consumes the graph(s) passed from its previous operator,

and outputs a new graph with updated nodes and/or edges.

Specifically, object detector generates new nodes into the

graph. Both object tracker and projector update edges.

For example, object tracker adds motion edges between

existing VObjs, and annotates them with track id. Object

filter removes nodes, spatial-relation edges, or temporal-

relation edges that fail the user-specified constraints.

To support the computation of stateful properties on VObj or

Relation, which requires the history data of their dependent

properties, the stateful projector maintains a local sliding

window of historical data of all of its dependencies. When

executing the DAG, the executor generates frame batches

(i.e., the size of each batch is user-defined) and executes the

pipeline on a per-batch basis.

Example DAG. Figure 9 shows how a pipeline DAG is

constructed and executed to answer the query that searches

for a suspect getting into a red car, and identifies the license

plate of the car. The code for the query is illustrated in

Figure 10.

A police officer uses the image of the suspect to find the

person in the video. The example query has a spatial relation

query of “person getting into car” (PIntoC), and two basic

queries of a suspect person (Suspect) and a red car (RedCar),

respectively. To find the suspect, our planner uses a human

object detector that generates a graph with a single Person

VObj, with two fields, a stateless feature vector property

that computes the feature vector of a person from each

image, and a stateful similarity property that takes in the

past 30 frames of the feature vector property, to compare

the distance between each person’s feature vectors and those

of the target suspect and determine whether they are the

same person. To identify red cars, the planner uses a car

vobj Person(vqpy.VObj):
@stateless(input="bbox")
def feature_vector(self, bbox):

pass

@stateful(input="feature_vector", history_len=30)
def similarity(self, feat_vectors):

return dist(feat_vectors, SUSPECT_VEC).mean()

# red car query is omitted
query Suspect(vqpy.Query):

def frame_constraint():
return self.person.similarity > 0.8

query PIntoC(vqpy.Query):
pass

query SuspectIntoCar(vqpy.Query):
def __init__():

self.spatial = (
subqueries = [RedCar(), Suspect()],
relation_q = PIntoC())

def video_constraint():
return self.spatial

def video_ouput():
self.car.license_plate

Figure 10. VQPy code for suspect getting in a red car.

detector that generates another graph with a single Car VObj

containing a “color” property.

To construct the DAG, VQPy’s planner first retrieves the de-

pendencies of the nested query. The PIntoC Query depends

on the Suspect and RedCar Queries, and therefore the plan-

ner places all the filters and projectors related to PIntoC after

Suspect and RedCar. Suspect and RedCar have no dependen-

cies between each other, so they can run in parallel. Next,

the planner generates the detectors, trackers, projectors and

filters for each query, according to the VObjs and Relations

included in the frame/video constraints. Note that multi-

ple projectors could be generated for one predicate, due to

the dependencies between properties. In the example, two

projectors for feature vector and similarity property are

generated for the similarity > 0.8 predicate.

The planner generates multiple frame filters and places them

before the computation-expensive detectors (car detector

and person detector), including frame filters based on frame

difference (e.g., motion detector), and cheap filters corre-

sponding to detectors (e.g., texture-based car filter and per-

son filter). Note that the color==red filter on the car path

and the similarity > 0.8 filter on the person path are VObj

filters, that only filter out VObjs that falsify the constraints

on properties, and cannot filter out frames. The join operator

serves as a frame filter that filters out the frames without

RedCar or Suspect, merges the information of person and car

retrieved from the previous operators including computed

properties and filtered VObj ids, and passes the graph with

three (car and person) nodes to the spatial relation projector,

which eventually adds two edges between these nodes.

Operators can be placed on different devices. For example,

the compute-intensive object detector can be placed on a
6
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GPU server while the low-cost object filter can be placed on
an edge device (such as a camera). This design can easily
support both offline batch and real-time streaming analytics.

4.2 Object-level Computation Reuse

The object-based data model used in our backend facilitates
object-level computation reuse. In VQPy, each video ob-
ject (VObj) represents a unique entity that appears across
multiple frames, holding stateful and stateless properties.
Reuse opportunities arise when a VObj possesses intrinsic
properties, a special type of stateless property that remains
constant across frames. Intrinsic properties are common
in video queries—for example, an amber alert query may
search for a red car with a license plate ending at “45” where
both the red color and the license plate are intrinsic prop-
erties. VQPy enables users to annotate stateless properties
as intrinsic using intrinsic=True, facilitating computation
reuse at the video object level.

VQPy’s backend tags each video object with a label in-
dicating whether its intrinsic properties satisfy the query
constraints. Due to the static nature of these properties, this
label would never change once computed. When process-
ing a new frame, VQPy uses a lightweight tracker based
on the Kalman filter to identify VObjs on the frame. If a
VObj has been detected before, VQPy directly utilizes the
VObj’s intrinsic label for sub-queries that involve intrinsic
properties while only sending newly-detected VObjs to the
full computation pipeline. This optimization often leads to
significantly improved computation efficiency.

In SQL-like video query frameworks, achieving such opti-
mizations is unattainable because of the limitations imposed
by their tabular data model. Under this model, each row in
the tabular structure is treated as a separate entity, render-
ing the task of grouping rows based on objects challenging.
Specifically, SQL frameworks lack a built-in concept of
“objects”, making it impossible to implement memoization
strategies at the individual object level.

VQPy also supports query-level computation reuse where
results from previous queries are materialized and reused
when multiple queries are conducted on the same video,
further improving efficiency.

4.3 DAG Optimization

Our planner performs three kinds of optimizations on the
generated DAG: (1) operator fusion that fuses neighbor op-
erators to reduce the overhead of executing each operator
separately and minimize the intermediate data generation,
(2) predicate pull-up that pulls filters to an early point of the
pipeline, thereby reducing the amount of data that needs to
be processed by the subsequent operators and saving com-
putation costs, and (3) generating and comparing alternative

optimization paths based on the inheritance relationships
between video objects. Since the first two optimizations
were used in prior systems such as (Xu et al., 2022) and
(Xu et al., 2019), this subsection will focus specifically on
the third optimization, which is a unique contribution of
VQPy. To realize (3), our plan generates all possible exe-
cution DAGs from a given query, each corresponding to a
potential execution pipeline. The planner then profiles each
DAG using a short canary input video provided by the user
—a technique also employed by systems like (Romero et al.,
2022). The profiling helps compare the costs and accuracies
of each DAG. During this process, we also identify the cost
of each operator in each DAG, which can be used to perform
intra-DAG optimizations such as (1) and (2). The planner
selects the best plan that meets the target accuracy with the
lowest cost (best runtime). This plan can be saved for future
queries on similar datasets to save optimization time.

DAG optimizations require estimation of accuracy and per-
formance. For accuracy estimation, we use common tech-
niques from recent work (Kang et al., 2020; Bastani et al.,
2020; Cao et al., 2021) that uses the original models to
generate ground-truth labels. We use F1 score to estimate
accuracy and compute an F1 score per DAG. To estimate
each DAG’s accuracy, VQPy runs the DAG with the most
general models/filters and then other candidate DAGs over
the canary input’s frames and stores these results in a ta-
ble. During query optimization, VQPy queries the table
only with each DAG’s predicates to produce a final set of
labels. The results from the user’s initial DAG are used as
the ground-truth labels. Finally, the candidate DAG’s F1
score is computed by comparing these labels.

We use a standard approach of estimating costs: we compute
the latency of executing each DAG for a batch of input
frames. The costs of different DAGs are compared to find
the most efficient candidate (that still meets the accuracy).

4.4 Extension

We build our backend as an extensible optimization engine
for easy integration of emerging video analytics optimiza-
tions. Basing VQPy off Python enables developers to easily
integrate customized optimizations with Python annotations
that can meet their desired performance-accuracy tradeoff.
Here we showcase how to integrate three optimizations used
commonly in previous works: (1) specialized NNs, (2) bi-
nary classifiers for objects, and (3) frame filters.

Specialized NNs. Specialized NNs are dedicated to the de-
tection of specific objects and are often much less compute-
intensive than general object detectors. Using specialized
NNs first in the pipeline to filter out irrelevant frames is an
effective optimization, which has been widely adopted in
previous systems (Kang et al., 2021; 2017; Lu et al., 2018;
Kang et al., 2022; Hsieh et al., 2018; Anderson et al., 2018).
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vqpy.register(RedCarDetection, "my_red_car")

vobj RedCar(Car):
def __init__(self):

self.specific = {"color": "red"}
self.model = "my_red_car"

@filter():
def no_red_on_road(self, frame_image):

road_image = crop(frame_image, ROAD_REGION)
return "red" in road_image

Figure 11. Optionally register models/filters on a RedCar VObj.

Figure 11 shows how to register a specialized NN for the
RedCar VObj. Users need to first register their specialized
NN (RedCarDetection) into VQPy’s library by invoking the
register function, so that they can use it in the VObj by
referring to its name (“my red car”). Models from popular
model zoos such as Huggingface, TorchVision, MMLab,
and etc. are natively supported in VQPy and can be directly
registered as specialized NNs.

Register specialized NNs in the super-VObj can lead to mul-
tiple query plans, thus providing additional optimization
opportunities. For example, to detect a red car, we could di-
rectly employ the specialized red car detector registered with
the red car VObj, or use the general car detector registered
with its parent VObj car and then apply a red color filter. The
planner can determine whether to use the specialized model
by examining metrics such as the confidence scores of the
output results and the cost of different execution paths.

Binary classifiers. Binary classifiers directly answer
whether an object exists on a frame. With binary classifiers,
frames with a low probability of including the target objects
are discarded, improving computation efficiency. Binary
classifiers have been used in multiple video optimization
systems (Li et al., 2020; Lu et al., 2018; Yang et al., 2022).

Figure 11 also shows how to register a binary classifier
(no red on road) on the RedCar VObj, with a simple anno-
tation filter. VQPy’s planner takes this information to
generate a corresponding filter operator and inserts it at
the beginning of the pipeline. The filter inserted calls the
no red on road function to discard frames without any red
cars at an early stage, improving computation efficiency.

Frame Filters. Differencing-based frame filters are an
effective optimization adopted by many systems (Li et al.,
2020; Kang et al., 2017; 2020); it filters out less informative
frames that are close to the background or other frames.

vobj Scene:

@filter():
def similar_to_bg(self, frame_image):

return diff(BACKGROUND, frame_image)<2.0

@filter(n_prev=1):
def similar_to_prev(self, frame_images):

return diff(frame_image[0], frame_image[1])<1.0

Figure 12. Optionally register frame filters on the Scene VObj.

No. NL Descriptions CVIP standardized

Q1 ”A green sedan is keeping straight.” ”green sedan go straight”
Q2 ”A green bus going straight down the street

followed by a white car.”
”green bus go straight”

Q3 ”A red sedan runs down the street.” ”red sedan go straight”
Q4 ”A black sedan keeps driving forward.” ”black sedan go straight”
Q5 ”A large black SUV turns right.” ”black suv turn right”

Table 1. Queries selected from CityFlow-NL.

Figure 12 shows an example for registering differencing-
based frame filters to VQPy, which can be defined on
VQPy’s special Scene VObj. To define the similar to prev

frame filter, which requires the results of a number of pre-
vious frames to compare against, users can specify such a
number in the filter annotation.

5 EVALUATION

We evaluated VQPy on 14 queries on 5 datasets from real-
world surveillance video streams. Our evaluation results
demonstrate that:

(1) VQPy achieves up to 12.6× query speedups compared
to manually crafted pipelines on 5 complex vehicle retrieval
queries (§5.1).

(2) VQPy achieves up to 12.3× speedups compared to EVA,
the state-of-the-art SQL-based framework, on video object
queries (§5.2).

(3) Compared to a MLLM-based approach VideoChat,
VQPy is 7× faster, requires 10× less GPU memory, and
produces significantly (3-5×) higher accuracy (§5.3).

§5.4 briefly discusses how VQPy is adopted by a major tech
company to help its customers develop complex queries.

5.1 Comparison with Handcrafted Pipelines

Dataset and Queries. Our experiments utilized the
CityFlow-NL dataset (Feng et al., 2021) from the 2023
AI CITY CHALLENGE, Challenge Track 2 (Naphade et al.,
2023), featuring 3.25 hours of traffic footage across 10 in-
tersections from 40 cameras, with a minimum resolution
of 960p at 10 frames per second. We evaluated on all 36
videos in the test set, which includes 184 vehicle tracks
paired with natural language queries describing various ve-
hicle attributes and scenarios. The original challenge was
framed as a vehicle retrieval problem where vehicles for
these queries are ranked. We repurposed the task into a
video analytics problem which is concerned about the loca-
tions of the video frames that include the vehicles meeting
the query constraints. Specifically, we randomly chose 5
queries from the CityFlow-NL dataset listed in Table 1.

Settings. We compared our method with CVIP (Le et al.,
2023), the top prize winner in this Challenge Track. As
detailed in Table 1, CVIP standardizes the natural language
queries into a fixed format of color-type-direction during
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Figure 13. Performance Comparison of VQPy and CVIP.

preprocessing. We adapted VQPy to use the same standlized

query format, and evaluated the runtime performance of

both VQPy and CVIP excluding the text standardization

pre-processing step. Note that VQPy focuses on query

development and optimization, not on model improvement

(i.e., for higher accuracy). For a fair comparison, we let

VQPy use the same pre-trained vision models as used by

CVIP in each query. We used two configurations for VQPy:

the vanilla VQPy and VQPy with user-provided intrinsic

annotations (see §4.2) for color and type. We evaluated

both VQPy and CVIP on a Google Cloud virtual machine

instance, equipped with one NVIDIA T4-16G GPU, 16

vCPUs (8 cores), and 104GB RAM.

Results. VQPy achieves the same accuracy as CVIP across

all five queries, due to the use of the same pretrained models.

Figure 13(a) compares the query execution time between

VQPy and CVIP. Regardless of the query type, CVIP con-

sistently requires around 850 seconds due to the necessity

of processing all cropped images with all detection models

(for color, type, and direction), resulting in a stable runtime.

In contrast, VQPy employs filters after the computation of

each property, efficiently filtering out vehicles that do not

meet a property condition before computing other proper-

ties. For example, if the color property of a frame does not

satisfy the condition (e.g., red), VQPy will not proceed to

the computation of the other properties. This approach sig-

nificantly reduces unnecessary computations, resulting in an

average 3.1× speedup over CVIP, as shown in Figure 13(a).

This performance gain stems from VQPy’s object-centric

approach (e.g., properties can be computed and associated

with individual video objects) as well as its use of lazy
evaluation.

Specifically, VQPy demonstrates more pronounced perfor-

mance gains for queries on green vehicles than black ve-

hicles, as the former are less common in the dataset. This

rarity results in more objects being filtered out early in the

detection process, reducing unnecessary model inferences.

Moreover, VQPy with user-specified intrinsic annotations

outperforms vanilla VQPy by allowing reuse of computation

results for color and type.

The detailed savings in per-frame computation time are re-

ported in Figure 13(b), which depicts how the per-frame

computation changes as frames are being processed. As

seen, though spending much less time on each frame than

CVIP (due to the use of lazy evaluation), the vanilla VQPy

follows a similar computation curve while the intrinsic anno-

tations flatten the curve, due to computation reuse. Overall,

intrinsic annotations provide an additional 9.5× speedup

compared to the vanilla VQPy, bringing the improvement

over CVIP up to 12.6×.

5.2 Comparisons with SQL-based Frameworks

Baselines. We compared VQPy with the state-of-the-art

SQL-based framework, EVA (Xu et al., 2022), whose opti-

mizations subsume those in other frameworks such as (Kang

et al., 2020; 2017; Lu et al., 2018). EVA is also the most

well-developed framework, supporting the largest number

of SQL primitives.

Queries. It is hard to construct video queries involving

complex relationships between objects with EVA. Therefore

we compared VQPy and EVA only with queries that count

video objects with specific properties. We chose three types

of queries: objects with stateless properties, objects with

stateful properties, and objects with both kinds of properties.

Query type Specific Query Eva & VQPy expression

Stateless property Red car See Figures 18, 19
Stateful property Speeding car See Figures 20, 21
Stateless & stateful properties Red speeding car See Figures 22, 23

Table 2. Stateful and stateless properties to compare with EVA.

Table 2 summarizes the stateful and stateless properties we

chose. For a fair comparison, we let VQPy use EVA’s built-

in YOLO detection model and nor-fair tracker. To detect

color, we adopted an NN model from CVIP. The model

can be easily annotated as a stateless property of color on

the car VObj. To integrate the same model into EVA, we

wrote a UDF to wrap the model around adapting the I/O

(pandas Dataframes) formats required by EVA. To detect

speed, we handcrafted a function using information from

objects’ bounding boxes. This function was used directly

as a stateful property in VQPy; we turned it into a Python

UDF to integrate it in EVA.

EVA lacks support for important SQL primitives such as

window functions or group-by, which are necessary for

forming the input, often a set of objects in consecutive

frames, for stateful properties of video objects (e.g., the

speed of cars). To retrieve this historical data for each video

object in Eva, we had to join the tables from different (i-th)

lagged frames.

Appendix §B shows the actual query code under VQPy

and EVA: it is clear that VQPy enables straightforward

development of video queries while EVA presents users a

relational structure requiring much more mental power to

translate video objects and tables back and forth.
9
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Camera location FPS Resolution

Banff, Candada (BanffLiveCam, 2019) 15 1280x720
Jaskson Hole, WY (SeeJacksonHole, 2019) 15 1920x1080
Southampton, NY (twinforkspestcontrol.com, 2019) 30 1920x1080

Table 3. Video datasets to compare with SQL-based frameworks.
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Figure 14. Red Car Query: VQPy is averagely 4.9× faster.
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Figure 15. Speeding Car Query: VQPy is averagely 1.5× faster.
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Figure 16. Red Speeding Car Query: VQPy is averagely 11× faster.

Datasets. Table 3 summarizes our datasets, which come

from public surveillance video streams deployed around

North America and have been adopted by other works (Li

et al., 2020; Xu et al., 2022; Kang et al., 2020; 2017) in

evaluation. To evaluate how different video lengths affect

the query execution time, we constructed the video datasets

with two configurations: (1) 5 video clips of 3 minutes each,

and (2) 5 video clips of 10 minutes each. Our evaluations

were conducted on a Google Cloud virtual machine instance

with an NVIDIA T4- 16G GPU, 16 vCPUs (8 cores), and

104GB RAM.

Results. Since EVA does not contain any frame filters or

specialized NNs, we also disabled such optimizations in

VQPy for a fair comparison. As such, query accuracy de-

pends purely on the model chosen and the UDFs. By using

the same models and UDFs, EVA and VQPy achieve the

same accuracy. The performance comparisons are reported

in Figure 14, Figure 15 and Figure 16, respectively, for the

three queries. Each figure consists of the results for both

3-minute video clips (left) and 10-minute clips (right).

Stateless property. As shown in Figures 14(a) and 14(b),

VQPy achieves an average of 5.0× speedup on the short

video clips and a 4.8× speed up on the long clips. This is

primarily due to the computation reuse across the frames

for the same VObj, for its intrinsic color property.

Stateful property. As shown in Figure 15, VQPy is 1.5×
faster than EVA where the performance gain comes from

EVA’s requirement of using expensive table joins to compute

the stateful property of speed.

Stateless and stateful property. EVA allows each query to

contain only one single statement. As such, to implement

queries on video objects with both stateless and stateful

queries, we had to use query nesting. As shown in Figure 16,

EVA is 7.5-15.2× slower compared to VQPy. In addition to

the aforementioned reasons, EVA does not support creating

“VIEW” from queries, and hence filters used in later part

of the query cannot be pushed to apply on earlier tables,

leading to redundant executions of UDFs. We manually

optimized EVA’s SQL queries by pushing down the filters.

Despite this optimization, EVA is still 3.3-5.7× slower, due

to its inability to perform object-level optimizations.

5.3 Comparisons with Multimodal LLMs

We have constructed a set of 6 queries to compare VQPy

with VideoChat (Li et al., 2023), a state-of-the-art MLLM-

based video understanding system. This set includes queries

on specific video objects, aggregation queries, and those

involving object interactions. VQPy achieves an average

accuracy of 81.5%, while VideoChat-13B of 42.6% and

VideoChat-7B of 39.9%. In terms of the execution time,

VQPy outperforms VideoChat by an overall of 7×. Details

of this evaluation can be found in §C.

5.4 Real-World Adoption and Use Cases

VQPy has been productized in Cisco as a query develop-

ment/execution layer in its major vision product DeepVision,

to enable its customers to develop and execute complex

queries. DeepVision is a comprehensive video analytics sys-

tem that enables users to monitor and analyze video streams

from various sources with ease. It is a scalable and modu-

lar serverless open-source framework with state-of-the-art

object detectors, trackers, and behavior detectors integrated.

VQPy was integrated into DeepVision as a service, execut-

ing queries over a real-time video stream from the com-

pany’s video source service. VQPy’s results are streamed

back to DeepVision’s dashboard for real-time monitoring.

VQPy empowers DeepVision with the video query ability,

orchestrating the underlying models’ output, and automati-

cally selecting the most efficient plan to construct and ex-

ecute the pipeline, satisfying the real-time query latency

requirements.

As of Oct 26 2023, VQPy has powered two critical user

applications created for Cisco’s Australian customers, i.e.,
loitering and queue analysis. Loitering alerting is essential

for smart city safety. Queue analytics plays a vital role
10
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in retail store management. Figure 17 demonstrates how
VQPy integrates with DeepVision and delivers the results
on DeepVision’s Graphana-based dashboard.

(a) Loitering alert.

(b) Queue analysis

Figure 17. Use cases of VQPy with DeepVision.

6 CONCLUSION

This paper presents VQPy, a video-object-oriented system
we built for easy expression and optimization of complex
video analytics queries. VQPy has an object-oriented fron-
tend, enabling abstraction and modularity, as well as an
extensible backend, allowing advanced developers to in-
tegrate optimizations into the VQPy pipeline. We have
open-sourced VQPy, which is currently used in Cisco for a
range of vision tasks.
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A DETAILED RELATED WORK

SQL-like languages. Treating video frames as relational
tables, prior work on video analytics often uses SQL-like
languages to express video queries. Optasia (Lu et al., 2016),
BlazeIt (Kang et al., 2020), and EVA (Xu et al., 2022) al-
low users to register NN UDFs and query frames whose
properties satisfy given predicates. These frameworks, how-
ever, cannot express complex queries that involve multiple
objects across multiple frames.

Miris (Bastani et al., 2020) and OTIF (Bastani & Madden,
2022) are frameworks specially designed for queries re-
quiring cross-frame positional information (of bounding
boxes), like a speeding car or a car moving toward a person.
However, they cannot process queries on actions involving
posture details (inside a bounding box), like people falling.
SVQ++ (Chao et al., 2020) and (Xarchakos & Koudas,
2023) are frameworks targeting interactions between ob-
jects; they can express queries like ”a person throw a ball”.
Zeus (Chunduri et al., 2022) is another specialized frame-
work supporting queries on object interactions.

EVA (Xu et al., 2022) and VIVA (Romero et al., 2022;
Kang et al., 2022) support queries on actions, but not
spatial and temporal relationships between video objects.
Miris (Bastani et al., 2020) uses a customized Speed UDF to
express queries involving cross-frame information such as
Speed(car) > 30 km/h; SVQ++ (Chao et al., 2020) requires
a customized a THROW UDF to express interactions between
different objects (e.g., a person throws a ball). If the prede-
fined UDFs and models cannot satisfy a user’s need, the user
must hand-write UDFs to deal with raw frames, a task that
typically requires an in-depth understanding of the underlin-
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ing systems. VIVA (Romero et al., 2022) provides relation
hints that allow users to express relationships between their
own models and existing models in the framework.

Other query languages. Rekall (Fu et al., 2019) offers
a Python library for video event specification, which al-
lows users to iteratively specify and refine the temporal
and spatial relationships of video segments. It cannot ex-
press queries including complex activities within or between
objects, such as a person walking or riding a bicycle. Cae-
sar (Liu et al., 2019) employs a text-based specification for
users to express queries. It defines a vocabulary of basic
actions such as ”approach”, ”near”, and ”stop”, and users
can use these basic actions to compose a more complex
action to use in a query. However, the vocabulary system is
hard to extend and customize. Queries are constrained by
the supported vocabulary.

Specialized models. Several video analytics systems use
specialized models to either filter out frames to reduce the
work of using expensive machine learning models or di-
rectly provide answers. Existing works mostly target spe-
cific query types such as selection (e.g., NoScope (Kang
et al., 2017) and PP (Lu et al., 2018)) or aggregation (e.g.,
Blazelt (Kang et al., 2020) and ABAE (Kang et al., 2021)).

Model selection. Other works propose using multiple mod-
els with different performance-accuracy trade-offs to adapt
to the dynamic nature of the videos. TAHOMA (Anderson
et al., 2018) and NoScope (Kang et al., 2017) employs a cas-
cading approach that can skip compute-expensive models
by answering the query with cheap models on easy frames.
THIA(Cao et al., 2021) shares the same idea but uses a single
model with multiple exit points to explore the performance-
accuracy trade-off. Figo (Cao et al., 2022), instead of cas-
cading the models, uses an ensemble of models with the
same architecture but different sizes and dynamically selects
the most cost-efficient model for the current video chunk.

Runtime optimizations. Systems like Scanner (Poms et al.,
2018), Jellybean (Wu et al., 2022), VideoStorm (Zhang
et al., 2017), and LLAMA (Romero et al., 2021) focus on
optimizations of end-to-end analytics pipelines via efficient
use of heterogeneous hardware. These techniques do not
focus on query expressions, and thus are also orthogonal to
and can be integrated into VQPy.

B QUERY CODE COMPARISONS BETWEEN
VQPY AND EVA

This section compares three pairs of query programs (il-
lustrated in Figure 18-19, Figure 20-21, and Figure 22-23)
used to evaluate VQPy and EVA (§5.2). Programs in each
pair are written in EVA and VQPy, respectively, to express
the same query. As seen, the abstractions we provide in
VQPy make it much easier to develop and understand a

query while developers must “think like a table” when us-
ing a SQL-based framework, which is counter-intuitive and
leads to code that is hard to understand and maintain.

C COMPARISONS WITH MULTIMODAL
LLMS

No. Query Type Statement

Prompt You are an AI assistant. A human gives a video about
traffic and asks questions about the humans and cars on
it. You should give helpful, detailed, and polite answers.

Q1 Boolean Are there any people passing the crosswalk?
Q2 Boolean Are there any cars turning left at the crossing?
Q3 Boolean Are there any red cars in the video?
Q4 Aggregation Tell me the average number of cars on the crossing.
Q5 Aggregation Tell me the average number of people that are walking.
Q6 Boolean Is anyone hitting the ball in the image? Answer by yes

or no.

Table 4. Three query sets (Q1-Q3, Q4-Q5, Q6) used to compare
VQPy with VideoChat, and their natural language statement.

Queries and Datasets. We have constructed a set of 6
queries to compare VQPy with MLLM-based methods, sum-
marized in Table 4. This set includes queries on specific
video objects, aggregation queries, and those involving ob-
ject interactions. We used Auburn (CityofAuburnAL, 2022),
a public surveillance video that monitors the traffic at a
crossroad, as our dataset for the first two queries. Table 3
includes some of its properties, and a sample frame from
the video can be found in Figure 24. Since MLLM models
consume a large amount of computation resources, we could
only use a 10-minute clip in the daytime in the experiment.
The first query set (Q1-Q3) contains three boolean queries
asking for Yes/No responses. The second query set (Q4 and
Q5) consists of aggregation queries asking for a floating
value.

For Q6, we used an image dataset V-COCO (Gupta & Malik,
2015) to query on object relationships. This dataset, which
contains 4532 images for testing, selects a subset of MS-
COCO (Lin et al., 2014) images and annotates the human-
object interaction. In our evaluation, we considered only
one specific human-object pair and queried whether this
interaction exists in each clip.

VideoChat. We compared VQPy with VideoChat (Li et al.,
2023), a state-of-the-art multimodal LLM designed for
video analytics, which can support both boolean queries and
aggregation queries. However, it can only answer questions
regarding the entire video, not individual frames. When ask-
ing questions regarding individual frames, VideoChat often
provided irrelevant responses; an example of that is illus-
trated in Figure 25. When the length of the video grows, the
consumption of GPU memory rapidly increases: we need
at least 40GB GPU memory to process VideoChat-7b for a
video clip as short as 540 frames of a 1920x1080 resolution.
Moreover, the video embedding computation is slow, and
this problem becomes more pronounced when we offload
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import evadb

cursor = evadb.connect().cursor()
cursor.query("""

LOAD VIDEO
'./video.mp4'

INTO
MyVideo;

""").df()
cursor.query("""

CREATE FUNCTION
Color

IMPL
'./color.py';

""").df()
cursor.query("""

SELECT
id, YOLO.bbox

FROM
MyVideo

JOIN LATERAL
UNNEST(Yolo(data))

AS
YOLO(label, bbox, score)

WHERE
Color(Crop(data, YOLO.bbox)) = 'red'

AND
YOLO.label = 'car';

""").df()
cursor.query("DROP FUNCTION IF EXISTS Color;").df()
cursor.query("DROP TABLE IF EXISTS MyVideo;").df()

Figure 18. EVA SQL expressions for querying red cars.

import vqpy

vobj Car(vqpy.VObj):
def __init__(self):

self.model = "yolov8m"
self.class_names = ["car"]

@stateless(model="color_detect", intrinsic=True)
def color(self, images):

pass

query QueryRedCar(vqpy.Query):
def __init__(self):

self.car = Car()

def frame_constraint(self):
return (self.car.score > 0.6) \

& (self.car.color == 'red')

def frame_output(self):
return (self.car.bbox,)

Figure 19. VQPy expressions for querying red cars.

parts of the model to the CPU to save GPU memory.

Consequently, we had to split the 10-minute video dataset
into 600 one-second clips and query VideoChat on each clip.

Evaluation Setup. We evaluated both VQPy and VideoChat
on a Google Cloud virtual machine instance, equipped with
one A100-40G GPU, 12 vCPUs (6 cores), and 85GB RAM.
We consiered two versions of VideoChat in our experiments:
VideoChat-13B and VideoChat-7B. Since our GPU memory
is insufficient to store both the entire VideoChat-13B model
and the intermediate results, we enabled the low-resource
mode when running the VideoChat-13B model, which uses
8-bit weight and offloads part of the video embedding com-
putation to CPU memory.

Since VideoChat can only provide natural language replies,
we had to analyze the query results ourselves. We care-
fully designed the clear statements (as shown in Table 4 to
make the responses more regular. We used a pattern-based
analyzer to resolve most of the responses and annotated
the remaining manually. For unclear responses, we simply
dropped these data points when computing accuracy.

For the first two sets of queries Q1-Q5, we used YOLOX (Ge
et al., 2021) as VQPy’s detection model. For the interaction
query Q6, we used UPT (Zhang et al., 2022), one of the
best two-stage models in the V-COCO dataset as VQPy’s
baseline model.

No. VideoChat-7B VideoChat-13B∗ VQPy VQPy-Opt

Pre 38.4 1071.0 N/A N/A

Q1 72.4 656.3 34.4
Q2 80.7 637.3 32.9
Q3 85.1 563.7 48.2 52.6
Q4 116.9 848.6 31.9
Q5 137.3 836.8 35.4

Q6 3503.8 8183.5 112.4 30.0

Table 5. Execution time for VideoChat and VQPy (millisecond per
frame). Note that VideoChat has a pre-computation phase that
loads the video and computes its embedding. VQPy-Opt combines
Q1-Q6 in a single execution with computation reuse enabled.
VideoChat-13B∗: Low resource mode due to GPU memory limit.

No. Pr(positive) VideoChat-7B VideoChat-13B∗ VQPy

Q1 21.7% 0.412 0.422 0.902
Q2 37.5% 0.382 0.360 0.591
Q3 46.1% 0.674 0.685 0.915
Q6 4.9% 0.130 0.237 0.867

Table 6. F-1 score for boolean queries. We also provide the positive
sample rate in the dataset to reflect the structure of data.
VideoChat-13B∗: Low resource mode due to GPU memory limit.

Results. Table 5 reports the execution time for VideoChat
and VQPy under these queries. VQPy outperforms
VideoChat under all the settings and tests.

Table 6 shows the F-1 score for the boolean queries Q1,
Q2, Q3 and Q6. For Q1-Q3, we obtained the ground truth
by labeling them manually. For Q6, we used the V-COCO
annotations to generate the result. We also provided the per-
centage of queries that have a Yes response, which can affect
the F-1 score if the tested program has a fixed probability
of misprediction on each type of response. To summarize,
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import evadb

cursor = evadb.connect().cursor()
cursor.query("""

LOAD VIDEO
'video.mp4'

INTO
MyVideo;

""").df()
cursor.query("""

CREATE FUNCTION
Add1

IMPL
'./add1.py';

""").df()
cursor.query("""

CREATE FUNCTION
Velocity

IMPL
'./velocity.py';

""").df()
cursor.query("""

CREATE TABLE
TrackResult

AS
SELECT

id, data, T.iid, T.bbox, T.score, T.label
FROM

MyVideo
JOIN LATERAL

UNNEST(EXTRACT_OBJECT(
data, Yolo, NorFairTracker))

AS
T(iid, label, bbox, score);

""").df()
cursor.query("""

CREATE TABLE
TrackResultAdd1

AS
SELECT

Add1(id, iid, bbox)
FROM

TrackResult;
""").df()
cursor.query("""

SELECT
trackresult.id, trackresult.iid, trackresult.bbox

FROM
TrackResult

JOIN
TrackResultAdd1

ON
trackresult.id = trackresultadd1.added_id

AND
trackresult.iid = trackresultadd1.cur_iid

WHERE
trackresult.label = 'car'

AND
Velocity(trackresult.bbox,

trackresultadd1.last_bbox) > 1;
""").df()
cursor.query("DROP TABLE IF EXISTS MyVideo;").df()
cursor.query("DROP TABLE IF EXISTS TrackResult;").df()
cursor.query("DROP TABLE IF EXISTS TrackResultADD1;").df()
cursor.query("DROP FUNCTION IF EXISTS Add1;").df()
cursor.query("DROP FUNCTION IF EXISTS Velocity;").df()

Figure 20. EVA SQL expressions for querying speeding cars.

import vqpy
from getvelocity import get_velocity

vobj Car(vqpy.VObj):
def __init__(self):

self.model = "yolov8m"
self.class_names = ["car"]

@stateful(input="bbox", history_len=1)
def velocity(self, bboxes):

velocity = get_velocity(bboxes[0], bboxes[1])
return velocity

query QuerySpeedingCar(vqpy.Query):
def __init__(self):

self.car = Car()

def frame_constraint(self):
return (self.car.score > 0.6) \

& (self.car.velocity > 1.0)

def frame_output(self):
return (self.car.track_id, self.car.bbox,)

Figure 21. VQPy expressions for querying speeding cars.

VQPy exhibits superior accuracy, achieving an average F-1
score of 81.87% across queries Q1, Q2, Q3, and Q6, far
surpassing the F-1 scores of VideoChat-13B and VideoChat-
7B, which are 42.6% and 39.95%, respectively.

Model Average Response Maximum Response

VideoChat-7B Q4: 6.87; Q5: 6.78 Q4: 250; Q5: 414
VideoChat-13B∗ Q4: 4.86; Q5: 4.95 Q4: 65; Q5: 100
VQPy Q4: 0.89; Q5: 0.66 Q4: 3.3; Q5: 5.28

Table 7. Evaluation results for Q4 and Q5.
VideoChat-13B∗: Low resource mode due to GPU memory limit.

Table 7 summarizes the evaluation results for the aggrega-
tion queries Q4 and Q5, revealing that VideoChat’s answers
are rather inaccurate. For VideoChat-13B, 73.7% queries
are preserved for Q4 and 60.1% for Q5. For VideoChat-7B,
these percentages are 64.2% and 53.2%, respectively. For
Q4, there are never more than 4 cars on the crossing at the
same time, but under both models, the average number re-
ported by VideoChat exceeds this. For Q5, there are never
more than 10 walking people in the video, but there are at
least 15% of responses that return a value larger than 10.

Available Optimizations. Similar to VideoChat which al-
lows users to ask multiple queries after uploading a video,
we can also support this in VQPy to reduce unnecessary
computations. We tested the VQPy pipeline that executes
Q1-Q5 in a single execution, which results in an overall
3.4× speedup compared to executing them individually;
details are shown in Table 5.

Another optimization we performed on Q6 is to extend
our backend with specialized NNs and filters. We used a
cheap detector (Jocher, 2020) to filter out frames without
target objects, and trained a specialized model (following
the ideas in (Xarchakos & Koudas, 2023)) to drop the frames
that are unlikely to contain the required action. With these
optimizations, we were able to obtain a further gain of 3.7×
with a 0.08 loss in the F1-score.
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import evadb

cursor = evadb.connect().cursor()
cursor.query("""

LOAD VIDEO 'video.mp4'
INTO MyVideo;

""").df()
cursor.query("""

CREATE FUNCTION Add1
IMPL './add1.py';

""").df()
cursor.query("""

CREATE FUNCTION Velocity
IMPL './velocity.py';

""").df()
cursor.query("""

CREATE FUNCTION Color
IMPL './color.py';

""").df()
cursor.query("""

CREATE TABLE
TrackResult

AS
SELECT

id, Color(Crop(data, bbox)), T.iid,
T.bbox, T.score, T.label

FROM
MyVideo

JOIN LATERAL
UNNEST(EXTRACT_OBJECT(

data, Yolo, NorFairTracker))
AS

T(iid, label, bbox, score);
""").df()
cursor.query("""

CREATE TABLE
TrackResultAdd1

AS
SELECT

Add1(id, iid, bbox)
FROM

TrackResult
""").df()
cursor.query("""

CREATE TABLE
TrackResultJoin

AS
SELECT

trackresult.id, trackresult.iid,
trackresult.color, trackresult.bbox,
trackresult.label, trackresult.score,
trackresultadd1.last_bbox

FROM
TrackResult JOIN TrackResultAdd1

ON
trackresult.id = trackresultadd1.added_id

AND
trackresult.iid = trackresultadd1.cur_iid;

""").df()
cursor.query("""

SELECT
id, iid, bbox

FROM
TrackResultJoin

WHERE
Velocity(bbox, last_bbox) > 1

AND
color = 'red' AND label = 'car';

""").df()
cursor.query("DROP TABLE IF EXISTS MyVideo;").df()
cursor.query("DROP TABLE IF EXISTS TrackResult;").df()
cursor.query("DROP TABLE IF EXISTS TrackResultAdd1;").df()
cursor.query("DROP TABLE IF EXISTS TrackResultJoin;").df()
cursor.query("DROP FUNCTION IF EXISTS Add1;").df()
cursor.query("DROP FUNCTION IF EXISTS Velocity;").df()
cursor.query("DROP FUNCTION IF EXISTS Color;").df()

Figure 22. EVA SQL expressions for querying red speeding cars.

import vqpy
from getvelocity import get_velocity

vobj Car(vqpy.VObj):
def __init__(self):

self.model = "yolov8m"
self.class_names = ["car"]

@stateless(model="color_detect", intrinsic=True)
def color(self, images):

pass

@stateful(input="bbox", history_len=1)
def velocity(self, bboxes):

velocity = get_velocity(bboxes[0], bboxes[1])
return velocity

query QueryRedSpeedingCar(vqpy.Query):
def __init__(self):

self.car = Car()

def frame_constraint(self):
return (self.car.score > 0.6) \

& (self.car.color == 'red') \
& (self.car.velocity > 1.0)

def frame_output(self):
return (self.car.track_id, self.car.bbox,)

Figure 23. VQPy expressions for querying red speeding cars.

Figure 24. Sample image from Auburn video.

Figure 25. VideoChat is not able to solve long video on-frame
queries.
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