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Abstract

Let X be a d-dimensional Gaussian process in [0, 1], where the component are indepen-
dent copies of a scalar Gaussian process X on [0, 1] with a given general variance function
~2(r) = Var (Xo(r)) and a canonical metric §(t,s) := (E (Xo(t) — Xo(s))*)"/2 which is com-
mensurate with v(t—s). Under a weak regularity condition on =, referred to below as (Co.),
which allows v to be far from Holder-continuous, we prove that for any Borel set E C [0, 1],
the Hausdorff dimension of the image X (F) and of the graph Grg(X) are constant almost
surely. Furthermore, we show that these constants can be explicitly expressed in terms of
dimg(F) and d. However, when (Cp ) is not satisfied, the classical methods may yield differ-
ent upper and lower bounds for the underlying Hausdorff dimensions. This case is illustrated
via a class of highly irregular processes known as logBm. Even in such cases, we employ a
new method to establish that the Hausdorff dimensions of X(E) and Grg(X) are almost
surely constant. The method uses the Karhunen-Loéve expansion of X to prove that these
Hausdorff dimensions are measurable with respect to the expansion’s tail sigma-field. Under
similarly mild conditions on v, we derive upper and lower bounds on the probability that
the process X can reach the Borel set F' in R? from the Borel set E in [0, 1]. These bounds
are obtained by considering the Hausdorff measure and the Bessel-Riesz capacity of £ x F'
in an appropriate metric ps on the product space, relative to appropriate orders. Moreover,
we demonstrate that the dimension d plays a critical role in determining whether X |g hits
F or not. For this purpose, we introduce a further condition, denoted as (Cy), which is
satisfied by all relevant examples from (Cpy). When E is an Ahlfors-David-regular compact
set in the metric d, we obtain precise upper and lower bounds on the hitting probability of F'
by X from E in terms of Hausdorff measure and capacity in the Euclidean metric, utilizing
specific kernels. These bounds facilitate the proof of an undecidability property, by which
there are examples of sets £ x F' which have the same Hausdorff dimensions relative to ps
but for which one target set F' has a positive hitting probability while the other does not.

Keywords: Gaussian process, Karhunen-Loeve expansion, hitting probabilities, Hausdorff
dimension, capacity.

Mathematics Subject Classification 60J45, 60G17, 28A78, 60G15


http://arxiv.org/abs/2307.16886v1

1 Introduction

This paper studies some fractal properties for Gaussian processes with a general covariance struc-
ture. Properties of interest include the Hausdorff dimension of the image sets and the graph sets,
and corresponding hitting probabilities. One of our motivations is to understand better the high
path irregularity exhibited by certain Gaussian processes X started from 0. For example the
family of processes X = B? defined in [17], which for any given function v on R, such that 72 is
of class C? on R, with limy v = 0, and +? is increasing and concave near the origin, is defined by
the following Volterra representation

50~ | t \/ () - ) (1)

where W is a standard Brownian motion.

In the particular case v(r) := log™?(1/r), where § > 1/2, the process B" is an element of
the family of Gaussian processes called logarithmic Brownian motions (logBm). The condition
B > 1/2 ensures that B” has continuous paths as guaranteed by the so-called Dudley-Fernique
theorem (see for instance [1]). This one-parameter family of logBm processes spans a wide range
of highly irregular continuous Gaussian processes, which are not Holder-continuous. For general
v, the Dudley-Fernique theorem can be used generically to show that BY admits the function
h:r e v(r)log?(1/r) as a uniform modulus of continuity almost surely, which is an indication
of the non-Holder-continuity of logBm. That property can in turn be established “by hand”.
Indications of how to do so are in Section 2, a full treatment being left to the interested reader.
In any case, the logBm scale is instructive since it extends to the edge of continuous processes
and beyond in a one-parameter family.

The broader model class defined via the Volterra representation (1.1) is interesting and con-
venient for several reasons. It involves a simple kernel which makes it amenable to calculations.
It produces a process X = B7 which, while not having stationary increments, has increments
which are nonetheless roughly stationary. Proposition 1 in the original reference [17] explains
how the canonical metric d(s,t) of X, for s,t € R, is commensurate with (¢t — s), for processes
which are more irregular than the Wiener process, i.e. as soon as r = o(+*(r)). The variance
of the process X = B? at time ¢ is precisely v*(t), which implies that the process starts at 0,
and that the scale of the process behaves similarly to the popular class of self-similar models, like
fractional Brownian motion and related Gaussian processes, for which the variance equals 2 for
self-similarity parameter H. Note for instance that the process X = BY with v(r) = r¥ yields
a self-similar process known as the Riemann-Liouville fractional Brownian motion. It is H-self-
similar, does not have stationary increments, but has increments whose variance is commensurate
with the variance |t — s|?# of standard fractional Brownian motion (fBm). Aside from the fBm
and logBm scales, many other scales of continuity can be obtained from B?, some of which yield
interesting properties when examined from the lens of Hausdorff dimensions, as we will see. For
instance, the choice vy(z) = exp(—log?(1/x)), introduced at the end of Section 2.1, provides a
process which is less irregular than logBm, but is more irregular than any Hoélder-continuous
process, such as fBm and Riemann-Liouville fBm. Again, this process does not have stationary
increments, but it does satisfy the commensurability condition between ¢ and 7 (see Condition
(T'), i.e. the relations (2.1) at the start of Section 2), and thus its increments can be deemed
roughly stationary. Since this regularity scale defines processes which are intermediate between




the extremely irregular logBm, and the Holder-continuous processes, these processes provide a
good test of our methods’ applicability. Interestingly, we will see that those processes share some
desirable hitting probability features with Holder-regular processes, which the logBm processes
are too irregular to possess.

Most of the results in the literature about the fractal properties for Gaussian processes do
not apply to the case of logBm, or to the processes which are more regular than logBm but
not Hélder-continuous. For the question of hitting probabilities, see for example [2,19]; for
the Hausdorff dimension of the image and the graph sets, see [10]. This inapplicability stems
from those references’ assumptions which imply some form of Holder continuity. To wit, the
conditions in those references imply that, for some a € (0,1), we have v (r) < r* near the
origin. To make matters more delicate yet, there are many regularity scales between the Holder
continuity scale and the logarithmic scale of logBm mentioned above, the aforementioned case
of the choice y(z) = exp(—log?(1/x)) being only one such instance. This motivates us to study
the fractal properties for Gaussian processes X with more general covariance structure, under
flexible conditions which would encompass the entire class of a.s. continuous Volterra processes
B7 in (1.1). We thus investigate these problems under some general conditions on the standard
deviation function v only, with no direct reference to any regularity scale, and no assumption
that our processes be given in a particular form such as the Volterra representation (1.1), so that
our results may be satisfied by large classes of processes within and/or beyond the Hélder scale.
We concentrate our efforts on handling the broadest possible class of processes which satisfy the
commensurability condition §(s,t) =< (|t — s|), namely Condition (I') from relations (2.1).

By concentrating only on Condition (I'), i.e. relations (2.1), we are able to relax the restriction
of stationarity of increments (see Proposition 5 in [17]), and to break away from the confines of
Holder continuity, as illustrated above by the logBm class and other non-Hélder processes. Apart
from the paper [21], and the original paper [17] where logBm was introduced, few authors have
studied precise regularity results for Gaussian processes beyond the Holder (fractional) scale.
See [20] for a study of various regularity classes, some of which interpolate between logBm and
fBm, in the context of central limit theorems for Gaussian time series with memory. Recently
in [8], logBm was proposed as a model for very rough volatility, making the ideas introduced in [24]
more quantitative when one leaves the Holder scale. Recently, the logBm was employed to study
the C*>°-Regularization of ODEs by noise as in [9], the idea behind using logBm for this purpose
is that the local time of logBm is highly regular (it is C*° in its space variable) due to the high
irregularity of paths of the underlying process. Another interesting class of Gaussian processes
with non-stationary increments, which satisfy relations (2.1), are the evolution-sense solutions of
the linear stochastic heat equation, see those studied in [22,23]. The processes resulting from
the models in those papers have complex Holder regularity in space and in time, but stochastic
heat equations driven by noises with logBm-type behavior or other non-Holder noises, will have
evolution-sense solutions which inherit those non-Holder regularities. One has every reason to
expect that these examples of processes will still satisfy Condition (I') (relations (2.1)), which
can be shown by employing arguments similar to the proof of Proposition 1 in [17].

These details are omitted, since the purpose of this paper is to remain at a scope which
encompasses all these regularity scales simultaneously by requiring only the commensurability
Condition (I'), and interpreting our results via v only, not in reference to any specific scale.
To be clear, the Volterra-type processes BY in (1.1) are convenient for generating examples of
processes which satisfy Condition (I') and other general technical conditions. For instance, that
logBm satisfies Condition (I') with [ = 2 was established in Proposition 1 in [17]. We will use



such examples as illustrations, while our theorems and results are stated and established under
more general conditions such as Condition (I'). We now provide a summary of the results which
we establish in this paper, and how they are articulated.

In Section 2, we provide some general hypotheses on «, which are important to ensure some
desirable properties for the process X. Some preliminaries on Hausdorff measures, Bessel-Riesz
capacities and Hausdorff dimension on R, and R, x R?, in a general context, are also given here.
All these preliminaries allow us to provide optimal upper and lower bounds for the Hausdorff
dimension of the image X(FE) and the graph Grg(X), where £ C [0,1], and for the hitting
probabilities estimates, in the sections 3 and 4 respectively. The choice to present results relative
to subsets of [0, 1] in the time variable, as opposed to another time interval, is arbitrary, and used
for convenience.

Section 2 is also where we recall and establish important results on the process X that imply
lower bounds for hitting probabilities, and upper bounds for hitting probabilities and Hausdorff
dimensions of images and of graphs. Those results are respectively Lemma 2.4, which proves a
so-called 2-point local non-determinism property, and Lemma 2.5, which is a type of small-ball
probability estimate (probability of reaching a small ball in space over a small ball in time of
similar diameter). These are proved under the commensurability Condition (I'), i.e. relations
(2.1). Moreover we interpret these results under various general conditions on - which are not
hard to check and are satisfied by large classes of regularity scales of interest to us and to others.
With these tools in hands, and with the additional definitions and basic results recalled in Section
2 about Hausdorff dimensions relative to general metrics, we are able to provide the exact value
of the Hausdorff dimension of the image X (F) and the graph Grg(X), where E C [0, 1], in the
section 3, under mild regularity conditions which extend far beyond the Holder scale. Similarly
these tools help us provides some optimal lower and upper bounds for hitting probabilities in
Section 4. The choice to present results relative to subsets of [0, 1] in the time variable, as
opposed to another time interval, is arbitrary, and is used for convenience.

We finish this introduction with a detailed narrative description of the main results in Sections
3 and 4 and their ramifications.

Recall that in [10], Hawkes resolved the problem of computing the Hausdorff dimension of
the image and of the graph of a Gaussian process X with stationary increments, i.e. assuming
d(s,t) = y(|t — s|), under the strong condition ind.(y) > 0, where ind.(-) is the lower index,
which will be defined in (2.16). A positive lower index for v implies a-Hélder-continuity of the
paths of X for all @ € (0,ind.(7)). In section 3, we relax those two conditions used by Hawkes.
We consider functions « which satisfy a very mild regularity condition: the general condition
labeled as (Cgy ), by which the inequality (2.25)) holds for all € € (0,1). Assuming these, using
methods from potential theory and covering arguments, we prove in Section 3.1 that for all Borel
set £ C [0, 1], the Hausdorff dimension of X (£) and Grg(X) are constants almost surely, which
are provided explicitly in terms of dims(F) and d, where dims(-) denotes the Hausdorff dimension
associated with the canonical metric 9§, and d is the dimension of the ambient image space. In this
same Section 3.1 we also show in Lemma 3.1 that the condition “ind.(y) > 0” used by Hawkes
implies the regularity condition (Cp.); however, we also know from Example 2.2 that condition
(Coy) goes significantly further than “ind.(y) > 0” since it is satisfied by the aforementioned
important regularity class where v(x) = exp(—log?(1/x)), for which ind.(y) = 0.

On the other hand, in some regularity scales, condition (Cp, ) fails to hold. Without this
condition, the method of using potential theory and covering arguments may lead to different
upper and lower bounds for the Hausdorff dimension, both for the image and for the graph of X.



For instance, in the logBm case, (Cop) fails because (2.25) holds only for some, though not all,
e € (0,1). Therefore, in Section 3.2, we develop a general method that enables us to prove that
the Hausdorff dimension of the image and of the graph are almost surely constants, which hold
for any continuous Gaussian process X. The idea we introduce is to use the Karhunen-Loeve
representation of X and to prove that, for any Borel set £ C [0, 1] the Hausdorff dimensions of
X(FE) and Grg(X) are measurable with respect to certain tail sigma-fields, so we can apply a
Kolmogorov zero-one law, showing that these random variables are almost surely constants. These
constants depends on F, and when (Cgy) fails, they are not given explicitly, but for example,
in the scale of logBm, the upper and lower bounds which we obtain with the capacity+chaining
method are explicit and become nearly optimal towards the upper end of the logBm scale, i.e.
when (> 1/2. To be specific, for instance in the case of the graph’s dimension, while Section 3.1
shows using a general argument that Condition (C.) for fixed ¢ implies, for an appropriate metric
ps defined in (2.37), that dim,, (Grg(X)) is bounded below by dims(£) and above by dims(E) +
ed, in Section 3.2, in the specific case where ~(r) is commensurate with log™?(1/r), a slightly
finer analysis implies that the upper bound can be replaced by dims(E)5/(8 — 1/2). When 3 is
large, i.e. towards the higher regularity range of logBm, this is equivalent to dimg(FE)(1+1/(20)).
The factor 3/(8 —1/2) is not an improvement over the general result in Section 3.1 on the lower
end of the logBm scale, since it explodes when [ approaches 1/2, but it is an improvement on the
general result when the logarithmic-scale Hausdorff dimension dimj.,(E) is finite (see equation
(3.15) and following line for the definition and relevant property of dimje,(+)). Indeed, the v of the
logBm scale satisfies Condition (C.) with e = 1/(20) and, noting that dims(E) = 57" dimye(E),
where dimg(E) is intrinsic to £ (i.e. does not depend on (), thus one only needs to require
dimj,e(E) < Bd to get an improved upper bound. This requirement, and the corresponding
improvement on the upper bound, which incidentally is dimension-independent, holds for large /3
as soon as dimy.,(£) is finite.

In section 4, our investigation focuses on the hitting-probabilities problem, i.e. estimating the
probability of the event {X (E) N F # @} where E C [0,1] and F' C R are Borel sets. Assuming
that functions 7 satisfy Condition (C.) for some fixed e € (0,1) and a slightly strengthened
concavity condition near the origin (Hypothesis 2.2), again using the capacity-+chaining method,
we obtain upper and lower bounds on the probability in question in terms of the Hausdorff
measures and the Bessel-Riesz capacities of I x F', relative to appropriate metrics and orders.
These results are estalished in the first subsection of Section 4. These bounds suggest that, under
condition (Cg, ), the dimension d is a critical value for the dimension of £ X F' in the intrinsic
metric.

In the second subsection of Section 4, we do in fact prove that under the slightly stronger
condition (Cyp), we can improve our results quantitatively, by making mild regularity assumptions
(Ahlfors-David regularity) on either the set E or the set F. We show in this subsection that the
aforementioned criticality follows, by proving that, for any process X satisfying a condition (Cy),
defined therein, which is an intermediate condition between the weaker condition (Cgp, ) and the
stronger condition (Cp), whether or not a set can be reached by X with positive probability
cannot be decided when the dimension of E x F' is critical. This condition is satisfied by all
our examples of functions v of interest with zero index satisfying (Cpy ). In particular, the case
v(z) = exp (—log?(1/x)) with ¢ € (0, 1) satisfies (Cy). We provide references in Section 4 and
we explain therein how our results improve on prior known criticality studies, where processes X
were restricted to being Holder-continuous and sets E were restricted to being intervals.

As a final application of our general result on hitting probabilities, in the last subsection



of Section 4, we show first, under condition (Cg, ), that the so-called stochastic co-dimension
of X(F) exists and is given by d — dimgs(F) under a mild regularity condition on E. On the
other hand, when condition (Cg, ) fails to hold, the method may lead to some upper and lower
bounds for the hitting probabilities which are not necessarily optimal. We use the logBm case to
illustrate this lack of optimality. In this case, the hitting-probabilities estimates do not help to
compute the stochastic co-dimension of X (F). However, since we proved in Section 3 that the
Hausdorff dimension of X (F) is almost surely constant, denoting this constant by ((F), then it
is well within the realm of the possible, under some regularity condition on £ (e.g. similar to the
Ahlfors-David regularity), that the stochastic co-dimension of X (FE) might be equal to d — ((F).
This is an open problem at this point, and we do not have a well-developed strategy to resolve
it, leaving it as a conjecture.

2 Preliminaries

This section collects and establishes general facts about Gaussian processes whose variance func-
tion 72 is an increasing function starting from 0, particularly those whose canonical metric is
commensurate with v, a property referred to below as Condition (I') given by relations (2.1).
The key technical estimate for upper bounds on Hausdorff measures of images and graphs is
Lemma 2.5 below. It holds without any regularity assumptions on 7. We provide mild techni-
cal conditions which imply various levels of regularity, including corresponding estimates of the
integral f, featured in this lemma. Examples illustrating the various regularity behaviors are
provided. Lemma 2.4 is a two-point local non-determinism property which will help us estab-
lish lower bounds on hitting probabilities. It assumes a mild concavity property near the origin,
referred to below as Hypothesis 2.2.

The second part of this section provides the definitions of Hausdorff measures and Riesz-Bessel
capacities needed to understand and quantify the results in this paper. Since we work beyond
Holder regularity scales, notions of capacities and Hausdorff measures with respect to power
functions apply when modified to be relative to non-Holder metrics, using balls and distances
relative to our processes’ regularity scales, e.g. the processes’ canonical metrics rather than
powers of Fuclidean distance; Hausdorff dimensions are thus relative to those metrics. General
results expressing equivalent formulations of these Hausdorff dimensions are collected and justified
in this section. Some of our results later in the paper will also relate to Euclidean-metric Hausdorft
dimensions.

2.1 Gaussian processes with general variance function and commen-
surate squared canonical metric

In this entire paper we will work with {X,(¢),t € R, } a real-valued mean-zero continuous Gaus-
sian process defined on a complete probability space (€2, F,P), with canonical metric § of X, on
(R )? defined by
1/2
5(s,1) == (B(Xo(s) — Xo(t))?)".
Let v be continuous increasing function on Ry (or possibly only on a neighborhood of 0 in R.),
such that limg, v = 0. We assume the following throughout, which we refer to as Condition (I'):
for some constant [ > 1 we have, for all s, € R, or possibly only all s,¢ in the neighborhood of



0 where 7 is defined,
E (Xo(t))” = +(t)

(I) and (2.1)

1V (1t = s]) < 8(t,s) < VIA(Jt = s).
Now, we consider the R%valued process X = {X(t) : t € R, } defined by
X(t) = (Xq(t),..., Xq(t)), teRy, (2.2)
where X7, ..., X are independent copies of X,. Let us consider the following hypotheses

Hypothesis 2.1. The increasing function ~ is concave in a neighborhood of the origin, and for
all 0 < a < oo, there exists € > 0 such that 7/(s+) > V17 (a—).

Hypothesis 2.2. For all 0 < a < b < 0o, there exists ¢ > 0 and ¢ € (0,1/+/1), such that
Y(t) —v(s) < coy(t —s) forall s,t € a,b] with 0 <t—s<e. (2.3)

The following lemma shows that Hypothesis 2.1 implies Hypothesis 2.2, and under the strong
but typical condition 7/(0+) = oo, the constant ¢y in (2.3) can be chosen arbitrarily small. The
proof is given in [21].

Lemma 2.3. Hypothesis 2.1 implies Hypothesis 2.2. Moreover if v'(0+) = 400, then for all
0<a<b<ooandallcy >0, there exists € > 0 such that

Y(t) —v(s) < coy(t—s) forall t,s € la,b] with 0 <t—s <e.
The following lemma is also proven in [21].

Lemma 2.4. Assume Hypothesis 2.2. Then for all 0 < a < b < 0o, there exist constants € > 0
and ¢; > 0 depending only on a,b, such that for all s,t € [a,b] with [t — s| < ¢,

Var (Xo(t)| Xo(s)) > 1 6%(s,t) = (c1/D) 7*(|t — s]). (2.4)

Condition (2.4) is called two-point local non-determinism.

We denote by Bs(t,r) = {s € Ry : 0(s,t) < r} the closed ball of center ¢ and radius r in
the metric 9. The following lemma is useful for the proof of the upper bounds for the Hausdorff
dimension in Theorem 3.2. It is an improvement of both of proposition 3.1. and proposition 4.1.
in [21]. The proof that we give here uses similar arguments to those of [4, Proposition 4.4.].

Lemma 2.5. Assume that v satisfies the commensurability condition (I'), i.e. relations (2.1).
Let 0 <a <b< oo, and I := [a,b]. Then for all M > 0, there exist positive constants cy and 1
such that for all v € (0,1q), t € I and z € [-M, M]* we have

P{, it X6 =2 < rf < el £,00)" (25)

SEB(;(t,T’)ﬂI

where || - || is the Euclidean metric, and f, is defined by

e I/QV(V_I(ZI/QT)y)d
O R TR
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Proof. We begin by observing that, for all M > 0 and z = (21, ..., z4) € [-M, M]¢, we have

d

f X(s) — < C inf X; — 2z < .
{ it 1XG) =] %—QLQ%H (5l <1}

1=

Then since the coordinate processes of X are independent copies of X, it is sufficient to prove
(2.5) for d = 1. Note that for any s,t € I, we have

E (Xo(s)Xo(t))
E (Xo(t)?)

This implies that the Gaussian process (R(s))ser defined by

E (Xo(s) | Xo(t)) =

Xo(t) = (s, £) Xo(t). (2.6)

R(s) := Xo(s) — c(s,t) Xo(t), (2.7)

is uncorrelated with and thus independent of X (¢), since these two processes are jointly Gaussian.
Let
Z(t,r):= sup | Xo(s)—c(s,t)Xo(t)].

s€Bs(t,r)NI

Then

inf |X0 s) — 2| < 7’}

s€Bgs(t,r)N
(2.8)
< IP’{ inf  e(s,t) (Xo(t) — 20)| <r+ Z(t,r)+ sup |(1— c(s,t))zo|}
s€B,(t,r)NI s€Bs(t,r)NI
By the Cauchy-Schwarz inequality and relations (2.1), we have for all s,t € I,
|E [Xo(t) (Xo(t) — Xo(s))]]
e TR G )
_ EXo(0))" (E(Xo(t) = Xo()2)"* _ 8(s.0) (2.9)
a E (Xo(t)?) (t)
S C3 5(87 t)v

where ¢ = (y(a))™". Let 7o := 1/2c3, then (2.9) implies that for all 0 < r < rq and s € Bs(t,r)NI,
we have 1/2 < ¢(s,t) < 3/2. Furthermore, for 0 < r < ry, s € Bs(t,r), and 2y € [—M, M], we

have
(1 —c(s,t))z0] < csMr.

Combining this inequality with (2.8), we derive that

IP’{ inf | Xo(s) — 2] < 7’} <P{|Xo(t) — 2| <2(cs M +1)r+2Z(t,7)}

s€Bs(t,r)NI (210)

<a(r+E[Z(r)]),

for all zy € [-M, M] and 0 < r < ry, where the constant ¢4 depends on M, a, b, | and c3 only.
The last inequality follow from the independence between X (¢) and Z(t,r).
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Now we bound E [Z(t,7)]. Indeed, we have
Z(t,r) < Zu(t,r) + Za(t, 1), (2.11)
where
Zilt,r) = [Xo(®)] sup 1 c(s,0)
s€Bg(t,r)NI
Zo(t,r):= sup | Xo(s) — Xo(t)]-
s€Bg (t,r)NI
Using (2.9) and Cauchy-Schwartz inequality we get that
E[Zi(t,r)] <csr, (2.12)

where ¢; := (b)/v(a). Recall that relations (2.1) ensure that Bs(t,r) C {s € Ry : [t —s| <
7~ 1(1Y27)}. Therefore
Zy(t,r) < sup | Xo(t) — Xo(s)]-

t—s|<y~1(11/27)
sel

Now, using the fact that §(s,t) < v/Iy(|t — s|) then [16, Lemma 7.2.2] ensures that

E[Zy(t,r)] < E sup | Xo(t) — Xo(s)]
t—s| <y~ (12 r)
sel

(2.13)
1/2 —1(11/2y
B e Ay

< o (r+ f(r),

where cg is a universal constant which depends on [ only, and ¢; = v/I cs. Combining (2.10),...,(2.13)
the desired upper bound (2.5) follows immediately. O

Lemma 2.5 is quantitatively efficient when r and f,(r) are of the same order as » — 0. The
following condition (Cg) describes this situation:
(Cop): There exist two constants cg > 0 and x¢ € (0, 1) such that

1/2 d
/ y(xy)yiy <cgy(z) forall x € [0, x). (2.14)
0

V1og(1/y)

Corollary 2.6. If v satisfies the condition (Cy), then for all M > 0, there exists some constant
co depending on v, I, ro, xg and M, such that for all z € [—M, M|* and for all r € (0,79 Ay(z0))
we have

s€Bs(t,r)N

IP’{ inf 1X(s) — z|| < 7’} < cord. (2.15)

It is immediate that all power functions satisfy (2.14). Moreover, we will see in the sequel
that (2.14) is satisfied by all regularly varying functions of index a € (0,1]. We include some
facts here about indexes for the reader’s reference.



Let 7 : (0,1] — Ry be a continuous function which is increasing near zero and lim, o y(x) = 0.
Then its lower and upper indexes ind,(7y) and ind*(y) are defined respectively as

ind, (v) : = sup{a : y(z) = 0 (z)}

-1 2.16
— (inf{ﬁ y(z) =0 (xl/ﬁ)}) . ( )

and

ind” (7) := inf {a > 0: 2% = o (y(2))}
= sup {a >0 liminf (Lf)) _ 0} | (2.17)

0 X
It is well known that ind,(v) < ind*(y). Moreover we have the following statement

Lemma 2.7. If v is differentiable near 0, then

ind. (7) > lim inf (TJ(/S)) andind" (7) < limsup (Tg(g)) (2.18)

Proof. We start with the left hand term of (2.18). We assume that liminf, o (r+/(r)/v(r)) > 0
otherwise there is nothing to prove. Let us fix 0 < o < o < liminf, o (r+/(r)/7(r)), then there is
ro > 0 such that o/r < +/(r)/~(r) for any r € (0, o). Next, for r < ry € (0,70] we integrate over
71, 2] both of elements of the last inequality, we obtain that log (ro/r1)" < log (v(r2)/v(r1)), this
implies immediately that r — ~(r)/r® is nondecreasing on (0, o], and thence lim, o y(r)/r® exists
and finite. Since o/ < a, we get lim,;ov(r)/r® = 0 and then o/ < ind(7y). Since o’ and a are
arbitrarily chosen, the desired inequality holds by letting o/ T o and « 1 liminf, o (r/(r)/~(r)).

For the upper inequality in (2.18), we assume that limsup,, (r'(r)/7(r)) < oo otherwise
there is nothing to prove. We fix o’ > a > limsup, o (r7'(r)/v(r)). By a similar argument as
above there exists 11 > 0 such that r — v(r)/r® is nonincreasing on (0, ], and then lim, | y(r)/r*
exists and positive. Therefore lim,oy(r)/r® = oo and thence ind*(y) < /. Hence, by letting
o | aand a | limsup, o (rv/(r)/v(r)), we obtain the desired inequality. O

Remark 2.8. Notice that if in addition v is concave then limsup, (T;Y(IT(;)) < 1.

Recall that v is said to be a regularly varying function near 0 with index a € (0, 1] if it can be
represented as

7(x) = 2% L(x),

for all = € (0,z) for some zg > 0, where L : (0,z9) — [0,00) is a slowly varying function at 0
in the sense of Karamata, see for example [3]. Moreover such a slowly varying function can be
represented as

e ¢
L(z) = exp (n(x) +/ #dt) , (2.19)
where 1, ¢ : [0,29) — R, are Borel measurable and bounded functions, such that

limn(z) =mn9 € (0,00) and lime(z) =0.

z—0 z—0
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For more details one can see Theorem 1.3.1 in [3]. It is known from Theorem 1.3.3 and Proposition
1.3.4 in [3] and the ensuing discussion that there exists L : (0, 2] — R, which is C* near zero
such that L(x) ~ L(x) as x — 0, and L(-) has the following form

(z) = cio exp < / h ?dt) , (2.20)

for some positive constant c;g. Such function is called normalized slowly varying function (Kohlbecker
[14]), and in this case
g(x) = —x L'(z)/L(x) forall z € (0,x). (2.21)

For more properties of regularly varying functions see Seneta [25] or Bingham et al. [3].

()
exists, then ind.(y) = ind*(y) = a. Moreover one then readily checks that if o > 0, then ~(-) is
regularly varying with index «, and in this case, v(-) can be represented as v(x) = z® L(z) for all

x € (0, ] for some zq € (0, 1), where L(x) = c19 exp (f;o @dt), and e(x) = —% = a—%.

Remark 2.9. It is remarkable that Lemma 2.7 implies that when the limit o := lim, g (’Vyl(r))

The following result ensures that all regularly varying functions with indexes in (0,1) satisfy
(2.14).

Proposition 2.10. Let v be a regularly varying function near 0, with index o € (0,1]. Then =
satisfies (2.14).

Proof. Since 7 is a regularly varying function we represent it as y(z) = x® L(x) for all x € (0, x¢)
as discussed above. By a result of Adamovi¢ [3, Proposition 1.3.4], since we are interested only
in the asymptotic behavior of v near 0, we may assume without loss of generality that the slowly
varying part L(-) is C* and has the representation (2.20). Now let

@)= [ e —
I(x):= —/ YY) —Y—wmne.
0 y/log(1/y)
Then we only need to show that I(z) is bounded as x approaches 0. We first have
x® 1/2 dy logY2(2) x> [1/? dy
He) =20 [ Ly < | L)
”}/(LU) 0 yl_a lOg(l/y) ”}/(LU) 0 yl_a (2 22)

log™Y%(2) [* B dz
S R ECE=

It is easy to check that 7/(z) = 27! L(z) (o — (x)). Thus we may apply ’'Hopital’s rule to get
that

1 1/2 d log—1/2(9 T
lim sup —/ v(xy)iy < limL()/ L(2)z* 'dz
20 () Jo yy/log(1/y) ~ =0 () 0

— lim log~Y2(2) z21 L(x)
210 2271 L(x) (o — e(x))

=log ?(2)/a < o,
since a > 0. This finishes the proof. O
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Here are some examples of regularly varying functions which immediately satisfy Condition (Cy).

Example 2.1.
i) Ya,5(r) :==r*log’(1/r) for B € R and o € (0,1),
i) Yap(x) =2 exp (log?(1/z)) for ¢ € (0,1) and « € (0,1),

ii) Yo(T) := 2 exp (%) for a € (0,1).

On the other hand, one of our goals in this paper is to study path properties for continuous
Gaussian processes, satisfying Condition (I'), i.e. relations (2.1), within or beyond the Holder
scale. If ind,(y) > 0, it is not difficult to check that all trajectories of X are S-Holder continuous
for any 5 € (0,ind.(y)). When ind,(y) = ind*(vy) = 0, the trajectories of X are never Holder
continuous. Since all continuous Gaussian processes must live at least in the logarithmic scale,
i.e we should have y(z) = o (log™”(1/r)) for some 3 > 1/2. Thinking of this logarithmic scale
as the most irregular one, there are several other regularity scales which interpolate between
Holder-continuity scale and the aforementioned logarithmic scale. This compels us to ask the
following question: Is there a continuous and increasing function v with ind,(v) = ind*(y) = 0
which satisfies (2.14)7

Noting that most examples of interest of function v with ind.(y) = ind*(y) = 0 are slowly
varying in the sense of Karamata, for any such function =, [3, Proposition 1.3.4] ensures that

v is commensurate with a C* function v, which satisfies lim, IVZ‘I)(S;) = 0. Then the following
proposition addresses the aforementioned compelling question, essentially providing a negative

answer.

Proposition 2.11. Let v : [0,1] — Ry be a differentiable increasing function and assume that
limg oz (x)/v(x) = 0. Then

' 1 1/2 dy B
lgﬁ)l (m/() v(zy)m> = 0. (2.23)

Proof. From Lemma 2.7, since lim, |, x;’(,if) = 0 implies that ind,(y) = ind*(y) = 0, and ~(-) is

normalized regularly varying at zero, hence it can be represented as v(z) = cg exp ([ (t)/tdt)

where e(x) := —% for some fixed xy € (0,1). Then using Fatou’s Lemma we obtain

— /01/2 exp (1;%L:e(t)/tdt) #ya/y) (2.24)

:/1/2L:oo
o yy/log(1/y) 7

where, from the second to the third line, we used the facts that, for any fixed y € (0,1/2), we
have

/ xe(t)/tdt\ < log(L/y) sup |(0)],

Yy te(0,x)
for all z € (0, ), and that lim,|o|e(z)| = 0. This finishes the proof. O
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The last result shows that condition (Cy) fails for a wide array of functions  with zero index.
Thus condition (Cp) will not help to provide information on the upper bounds of the Hausdorff
dimension of image and graph and the hitting probabilities for Gaussian processes whose modulus
of continuity is slowly varying. We must therefore devise a weaker condition than (Cy), satisfied
by a larger class of +’s, including slowly varying functions. First of all, for £ > 0 we propose the
following condition.

(C.): There exist three constants € € (0,1), c. > 0 and z. > 0, such that

1/2 d
/ y(xy)yiy <c (y(@)'F forall0<uw < .. (2.25)
0

V1og(1/y)

The following condition, denoted by (Cpq,), is weaker than (Cg) and it will be helpful to give
some optimal upper bounds for the Hausdorff dimension of the image and graphe of X and the
hitting probabilities.

(Co4): For all € > 0 there exist two constants c. > 0 and x. > 0, such that (2.25) is satisfied.

The following example shows that the weaker condition (Cg,) is satisfied by a large class of
functions v with ind,(y) = ind*(y) = 0.
Example 2.2. Let g € (0,1) and let ~y, be the function defined by ~,(x) := exp (—log?(1/x)) for
xz € [0,1]. Then , satisfies (Coy).
Remark 2.12. Let us prove the claim in Example 2.2. We have
1/2 d 1/2 d
Y q Y
len)— e = [ exp (- (log(1/2) + log(1/)) —
/o Ty log(17y) o y\/log(1/y)
o dz
= exp (— (log(1/x) + 2)?) —,
| e (- ost/a) 2

where we used the change of variable z = log(1/y). Using the fact that, for all ¢ € (0, 1) there is
some N := N(c) > 0 large enough, so that

(14+u)?>14cu? forallu> N, (2.27)

(2.26)

we may fix ¢ € (0,1), and its corresponding N(c). Then we break the integral in (2.26) into the
intervals [log(2), N'log(1/x)) and [N log(l/x),+00) and denote them by Z; and Z,, respectively.
We write

(log(1/x) + 2)* =log"(1/x) x (1 + z/log(1/x))",
and we note that the second term is bounded from below by 1+¢ (W) " when » > Nlog(1/x)
due to (2.27), and bounded from below by 1 when z < Nlog(1/x). Therefore

= 27,(z) /N log(1/x). (2.28)

( q( / )) Nlog(1/x) dZ
I, <exp(—log?(1l/x / —
' 0 NE
On the other hand

_epa Az

7, < exp (~ log?(1/x)) / e =

Combining (2.28), (2.29) and the fact /log(1/x) = o (y,*(2)) for all € > 0, the proof of the
claim in Example 2.2 is complete.

— c(q) (). (2.29)
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As announced in the introduction, we spend some effort in this paper to study the Hausdorff
dimensions of image sets and graphs, and associated hitting probabilities, for extremely irregular
continuous Gaussian processes, those which satisfy Condition (C.) for some € € (0,1). We use the
logBm processes as a main source of examples. Proving that logBm is non-Holder-continuous can
be done “by hand” by employing a classical technique to establish a liminf on the gauge function
in the Holder-modulus of continuity, as is done for Brownian motion. It can also be established by
invoking Fernique’s zero-one law regarding gauge functions of Gaussian processes, which states
that any gauge function of the path of such a process must be a sub-Gaussian variable, and
must thus have a finite expected value. This property can then be combined with the known
optimality of Dudley’s so-called entropy integral as an upper and lower bound for Gaussian
processes with stationary increments, up to multiplicative constants. This proof strategy must be
adapted to deal with the issue that the increments of B” are only roughly stationary in the sense
of commensurability (as defined as in relations (2.1)). The same proof structure also works to
show that the process B defined using v, in Example 2.2 is not Hélder-continuous, and similarly
to prove that that an a.s. modulus of continuity for B is not an a.s. modulus of continuity for
any logBm.

The details of these proofs are not within the scope of this paper, and are left to the interested
reader, who will find [1,16,21] and results in the current section herein instructive. In justifying
Example 2.2, we proved that the standard deviation function  of B satisfies (Cg, ); the reader
will easily check that the standard deviation function 7 of logBm satisfies (Cq/25) but fails to
satisfy (C.) for all € € (0,1/20).

2.2 Hausdorff measure, Hausdorff dimension and Riesz-Bessel capac-
ity on R, and R, x R? equipped with general metrics

To give formula for the Hausdorff dimension of the image X (F) and the graph Grg(X) under
some general conditions on 7, we must first provide appropriate notions of Hausdorff measure
and Hausdorff dimension associated with a general metric 9, since these will apply in particular
with ¢ equal to the canonical metric 9.

Let ¢ : [0,1] x [0,1] — R be a metric on [0, 1]. For § > 0 and E C [0, 1], the S-dimensional
Hausdorff measure of E in the metric 0 is defined by

n—0

H(E) := lim inf {i (2r,)" : E C O Bs (ry) ,rn < n} : (2.30)

n=1 n=1

The associated Hausdorff dimension is defined as

dims(E) := sup {B > 0:HUE) > 0} . (2.31)
The Bessel-Riesz capacity of order 3 in the metric ¢ is defined by
-1
CY(E):= | inf & 2.32
)= | int Enst] 232

where &5 3(v) denote the S-energy of a measure v € P(FE) in the metric space d, defined as

o v(dt)v(ds)
Laplv) = / / (0(t,5)
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If § is the Euclidean metric on R” for some n we denote the associated S-energy by Eenes(+) and
the corresponding Bessel-Riesz capacity by C2 (). There exists an alternative expression for the

Hausdorff dimension given through the Bessel-Riesz capacities by
dim;(E) = sup {5 >0:CH(E) > o} . (2.33)

It is useful to understand from whence formula (2.33) comes. The fact that the right hand of (2.33)
is a lower bound for dims(F£) is due to the so-called energy method (see for example Theorem
4.27 in [18]). That it is an upper bound comes from an application of Frostman’s Lemma in the
metric space ([0, 1],9), as we now explain.

Since capacities are non-negative, if dimgs(F) = 0, then the upper bound in (2.33) holds. We
thus assume that dimg(E) > 0. It was proven in [11] that, if £ is any subset of some general
metric space (Z,0) then we have

dims(E) = sup {# : 3ro > 0,¢9 > 0, and v € P(E) : v (Bs(z,7)) < co r? for all r < ry and z € Z}.
(2.34)

See for example Proposition 5 and Note 12 in [11] for a good understanding of this last formulation,
which we now use to prove the remaining inequality in (2.33). Let a € (0, dims(E)), and fix some
B € (o, dims(E)). Equality (2.34) implies that there exists v € P(E), 0 <1y < 1,and 0 < ¢y < 00
such that

v(Bs(z,7)) <cor?  forall7 <rgand z € Z. (2.35)

For a fixed t € F, since (2.35) ensures that v has no atom, we derive the following decomposition:

dS - oka, E+1
Z/(ts (2- 2-k+1) O(E, S; (6,2 ))
<q Zz—k(ﬁ—
k=1

with ¢; = 2%¢y. The last sum is finite since a < 3, and does not depend on t € E. Using the
fact that v is a probability measure, we deduce that &;,(v) < +o00. which finishes the proof of
the upper bound part in (2.33).

We will also need Hausdorff-dimension notions to quantify the size of the graphs of our pro-
cesses as subsets of R, x R%. Let ps be the metric defined on R, x R? via

(2.36)

ps ((5,2), (t,y)) := max{d(t,s), ||z —y||}, forall (s,),(t,y) € Ry x R (2.37)

For 3 > 0 and G C R, x R? be a Borel set, the 3-dimensional Hausdorff measure of G in the
metric ps is defined by

Ho(G) = lim intf {Z (2r.)": G C | By, (ra) ,7n < n} . (2.38)

n=1 n=1

Let us also recall the so called S-Hausdorff content in the metric ps, which is defined as follows

HE . (G) :mf{Z\Gi@:Gc UGZ}, (2.39)
=1

i=1

15



where the infimum is taken over all possible covering of GG, not merely ball coverings, and where
||, denotes the diameter in the metric ps. The corresponding Hausdorff dimension of G is defined
and characterized by

dim,, (G) :==inf{8 > 0: H) (G) =0} =inf{8 > 0: M _(G) =0} (2.40)

For the proof of the second equality above one can see Proposition 4.9 in [18]. The Bessel-Riesz
capacity of order o of GG, in the metric py, is defined by

e (G :{ w [ 7“] | (2.41)
HEP(E) JR, xRd JR | xRe (ps(u,v))™

Using the same arguments (2.34) and (2.36), used for (2.33), we can deduce the following alter-
native expression of dim,, (-) in terms of Bessel-Riesz capacities:

dim,, (G) = sup {a > 0:C5 (G) > 0}. (2.42)

3 Hausdorff dimension for the rank X (F) and graph Grg(X)

3.1 Less irregular Processes

Let E C [0, 1] be a general Borel set. Our goal in this subsection is to give minimal conditions on
~ under which upper and lower bounds for the Hausdorff dimension of the image X (F) and the
graph Grg(X) are well quantified, and are preferably explicit. When X has stationary increments
and ind.(y) > 0, an explicit formula for the Hausdorff dimension of X (E) under the Euclidean
metric was provided by Hawkes in [10, Theorem 2]. The following lemma shows that the condition
ind, () > 0 generically ensures that v satisfies Condition (Cgp;). We also saw in the previous
section that the converse if far from true, since (Cqy) allows regularity classes with zero index.

Lemma 3.1. Let v be continuous, increasing, and concave near the origin. If we assume that
ind.(y) > 0, then v satisfies Condition (Co).

Proof. By a change of variable and an integration by part, we obtain that for x € (0, 1) sufficiently
small, we have

- 1/2 dy
)= | v(my>7log(1 - 3.1)

/ Vdog (z/y)dv(y log(2)~(x/2)

/ Vog (1/y)dy(y) / \/log du

Fix an arbitrary a € (0,ind(v)), then v(z) = o(x®) near zero and so u'/* = o (y~'(u)) near zero
also. Therefore, for any fixed € € (0, 1), there ex1sts c. < oo and x. € (0, 1/2] such that for all
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x € (0, x.],

v(2)
I(z) < a2 /0 V1og (1/u)du

<2077 y(z) [log (ﬁ)

< e (y(x) 7,
Since ¢ is arbitrarily small, the proof is complete. O

We relax the stationarity of increments, by assuming only that 0, the canonical metric of X,
is commensurate with v, i.e. 7 satisfies relations (2.1). Then we have the following result, which
also eliminates the need for a positive index.

Theorem 3.2. Let X : [0,1] — R? be a continuous d-dimensional centered Gaussian process
with i.i.d. scalar components who all share a canonical metric ¢ satisfying Condition (T'), i.e.
relations (2.1). The following statements hold.

i) For any Borel set E C [0,1],
dimene (X (E)) > d Adims(E)  a.s. (3.2)
and

dim,, (Grg(X)) > dims(E)  a.s. (3.3)

ii) Assume in addition that the function v in Condition (I') satisfies Condition (C.) for some
€ (0,1). Then for any Borel set E C [0, 1],

dimg(E) A d < dimeyo (X (E)) < dA (dimg(E) +ed)  a.s. (3.4)
and
dims(E) < dim,, (Grg(X)) < dims(E) +ed  a.s. (3.5)
where dimey. () denote the Hausdorff dimension associated with the Euclidean metric.

Corollary 3.3. Let X : [0,1] — R? be a Gaussian process as in Theorem 3.2 such that § Condition
(). If v satisfies Condition (Coy) then we have

dimey (X (£)) = d Adims(E)  and  dim,, (Gre(X)) = dims(E)  almost surely.  (3.6)

Before proving this Theorem 3.2 we introduce some notation. Let J = J;~,J, be the class of all
v-dyadic subintervals of [0, 1] such that the elements of each subclass J,, are of the form

Lin =[G -1y 12,72,
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forn € Nand 1 < j < (y7(27))"". By using relations (2.1) and substituting d-balls by
v-dyadic intervals in the definition of Hausdorff measure, we obtain another family of outer
measures {H;(-) : 8 > 0}. Making use of relations (2.1) we can check that for all fixed 3, the

measures 7—[? () and H ? (-) are commensurate and then are equivalent. The detailed proof of this
equivalence, omitted here for brevity, follows the lines of Taylor and Watson [26] p. 326., which
applies immediately due to the concavity of v on a neighborhood of 0.

Proof of Theorem 3.2. We begin by proving (i). Let ¢ < d A dims(E), then (2.33) implies that
there is a probability measure v supported on F such that

ds)v(dt
/ / % < . (3.7)
5JE (6(s,1))
Let p := vo X! be the image of v by the process X, then by transfer theorem, Fubini’s theorem
and scaling property we have

. </ %) - /.2 (||X<t> s X<s>r|<) V(dsv(d)

. / ds)dt) _ (38)
I S (AR ’
where ¢; ¢ :=E (1/]|Z||°) with Z ~ N(0, I;), which is finite because ( < d. Then C$,.(X(E)) >0

a.s. Hence the classical Frostman theorem ensures that dime, (X(E)) > ¢ a.s., and letting
¢ T d A dimg(FE) we obtain (3.2). Let us now prove (3.3), let ¢ < dimg(E) be arbitrary and let v
be the probability measure such that & ,(r) < co. Let g := v o Gr(X)~! be the image of v by
the map ¢ — (¢, X(¢)), then again transfer theorem, Fubini’s theorem and scaling property imply
that

E filde)i(dy) >: E( 1 )ded
</<R+xw>2 (ps((t,2), (5,9))" [E (8(t, ) V| X (t) — X(s)[])° (ds)o(di)

B v(ds)v(dt)
- /E 5t s

(3.9)

where co ¢ = P[||Z|| < 1+ E [| 2]~ 1jz)>1] with Z ~ N(0, 1), which is finite whenever ( is.
Then C§, (Grg(X)) > 0 as. Hence (2.42) implies that dim,; Grp(X) > ¢ a.s. and by letting
¢ T dims(FE) the desired lower bound (3.3) follows.

Now let us prove (ii), the lower bounds follow from (i), so it is sufficient to establish the upper
bounds. We only prove (3.5), and the assertion in (3.4) follows from a projection argument. Let
¢ > dims(E), by definition of Hausdorff dimension we have #$(E) = 0 and then ?:Zg(E) = 0. Let
n > 0 be arbitrary, then there is a family of v-dyadic interval (I)x>1 such that for every k& > 1
thereis ny € N, 1 < jp < (v 1(27)) " and I == [(je — 1) v (27™) , je 7L (27)] and we have

Ec|JIn and ) |Llf<n, (3.10)
k=1 k=1

where |-|; denote the diameter associated to the metric 0. For all fixed n > 1, let M, be the
number of indices k for which ny = n, which is obviously finite due to right hand part of (3.10).
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Let us denote the corresponding 7-dyadic intervals by I for ¢ = 1,..., M,. It is not hard to
check, using the commensurability condition (I'), i.e. (2.1), that for all i = 1,..., M,, we have
c3 27" < |I''f; < s 27" where the constants c3 and ¢, depend on [ only. Then

> M2 < /e (3.11)
n=1

Let K C R¥*! be an arbitrary compact set, we will construct an adequate covering of Gry (X)NK.
To simplify we suppose that K = [0, 1]¢"L. For every n > 1 let €, be the collection of Euclidean
dyadic subcubes of [0, 1]? of side length 27", and for all i = 1,..., M,, let G,,; be the collection of
cubes C' € €, such that X (I") N C # (). Then we have

co My

Grg(X)nfo, "' c | |J U rxc (3.12)

n=1 =1 C’egn,z-

Let ¢ € (0,1) such that v satisfies Condition (C.). For alln > 1,7 € {1,...,M,} and C € €,
(2.5) and (2.25) imply that

P{C € G,;} < cs27 179, (3.13)

where c; depends on € only. Combining (3.11), (3.12) and (3.13) we obtain

oo My

E (M (Gra(X)n[0,1)7) <cg Y Y > 27CH=Ip(C e g, }

n=1 i=1 I€¢,

<cr Y M, Card(¢, )27 ") (3.14)

n=1

=cr Y M2 <,

n=1

where H (-) represent the a-Hausdorff content in the metric ps which is defined in (2.39) and
the constants cg, ¢; and cg depend on ¢ only. Since 1 > 0 is arbitrary we get that

HS Y (Grp(X)NK) =0 almost surely,

Ps,00

and therefore, by using (2.40), we have dim,, (Grg(X)NK) <(+ed as. for all K C Ry x RY.
Hence by the countable stability of Hausdorff dimension and by making € | 0 and ¢ | dims(FE)
we get the desired upper bound in (3.5).

Finally, the upper bound in (3.4) follows directly from the facts that Hausdorff dimension
does not increase by taking projection. O

Here are some interesting cases that are covered by our study in this section
Example 3.1.

i) Lipschitz scale: Let vy be defined near 0 by ~(r) := r L(r), where L(-) is a slowly varying
function at 0 with limgy L (1) € (0, +00], and let 6 such that relations (2.1) (Condition (T"))
are satisfied. Then it is not difficult to show that dimg(E) = dime,.(E), where dimeyc(+)
denote the Hausdorff dimension associated to the Fuclidean metric on R,.
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i) Holder scale: For a € (0,1) let v be defined defined near 0 by v(r) = r*L (r), where L(+) is
a slowly varying function at 0, and let § satisfying (I'). Then it can be shown easily, using
the slowly varying property of L(-), that dims(FE) = dimey.(F)/cv.

i9t) Beyond the Hélder scale: For q € (0,1) let v be defined by ,(x) := exp (—log?(1/x)) and o
such that (2.1) holds. First, note that for any Borel set E C [0, 1] such that dims(E) < oo,
by using the fact that r* = o (y(r)) for any a > 0, one can show that dim.,.(E) = 0. Hence
the Fuclidean metric is not sufficient to describe the geometry of some Borel sets.

3.2 Most irregular processes (LogBm)
Now, when v(x) = log™?(1/z) for some 8 > 1/2, Condition (Cq,) fails to holds, we only have

1/2 dy 1-1/28
ry) ———= = y(x) /lo z) = (v(x
[ e < 5 te) Viea 1) = (@)

which means that v satisfies Condition (Cyq/24), but none of Conditions (C.) for € € (0,1/25)
are satisfied. On the other hand, since §(t, s) =< log™” (L), it follows that

=
dim;(E) = dimyg(E)/8, (3.15)

where dimy.,(-) is the Hausdorff dimension in the metric dj4(Z, ) := log™'(1/|t — s|). Therefore
Theorem 3.2 ensures that

dimiog(B) 7 < dime,e X(E) < % (dimlog(E) + %l) nd (3.16)
and di 5 1 d
nn%g() < dim,, Gre(X) < 3 (dimlog(E) + 5) : (3.17)

The upper bounds above might be improved, by using an alternative covering argument based
on the uniform modulus of continuity of X. This is what the following proposition shows

Proposition 3.4. Let X be a d-dimensional Gaussian process such that the canonical metric 6
is commensurate with v(r) = log™?(1/r) for some § > 1/2. Then almost surely

dimewe X(E) < dimiog(F) 7 ana dim,,, Grp(X) < ditmog (F7)

=T CE T R

for all E C [0,1].

Proof. First, by relations (2.1) and the fact that ~ is increasing near the origin with v(0) = 0, we
have that .
._ ()
Q. (1) :=~y(r)log(l/r) + | ————=—=dy, (3.19)
o yy/log(1/r)
is a uniform modulus of continuity for X, see for example [16, Theoerem 7.2.1 p. 304]). Then
there is €y C Q such that P(€y) = 1 and for all w € €2 there exists a random number 7 (w) € (0,1)
such that
sup | X(t) — X(s)] <c;@,(n) forall 0 <n<n(w), (3.20)

[t—s|<n

20



where c¢; is a positive constant. Since ®.,(n) = O (log_(ﬁ_lm(n)), then (3.20) ensures that for

all 0 <r < log_l(@) the image of any ball Bs_ (t,7) by X(-,w) has a diameter smaller than

c1(2r)%712. Let w € € be fixed and let E C [0, 1] such that dimg(E) < oo. Then for any
€ > dimyee (£), there is a covering of E by balls {B;l (tiyri) 11> 1} such that Y57, (2r;)* < e for
some ¢ arbitrarily small which we choose such that 51/ £ <2log” ( ) then Grg(X) is covered
by the family {Bs,, (t:,7:) x X (Bs,,(ti,7:)) : i > 1} and we have

- £/(6-1/2)
H%fo V2 (Grg Z(}Bgl (ti,r:) x X (Bs,, (t,,m))}p&)
< ¢y 23(272-)5 < cye.
i=1
Since ¢ is arbitrarily small we get Hf)é,(go_l/ 2 (Grg(X)) = 0 and consequently dim,, Gre(X) <
¢/(B —1/2). By letting ¢ | dimye(E) the proof is complete. O

Remark 3.5.

i) The upper bounds in (3.18) are uniform in the sense that the negligible set does not depend
on E. The covering method used in this proof can be adapted to show that, under the
following stronger condition (Coy): “@.(r) = o(y'7%(r)) near zero for all £ > 0 small
enough”, the upper bounds dims(E) A d and dims(F) are uniform for X (F) and Grg(X),
respectively.

ii) Let £ C [0, 1] such that 0 < dimj,(£) < oo then by combining (3.2), (3.16) and (3.18) we
obtain

dimiog (E) Ad < dime, (X (F)) < dimog(E)

S Y ANd a.s.

This is due to the fact % (dimlog(E) + %l) > dllﬁnlolg/z A d. Hence the upper bound nearly
agrees with the lower bound near the upper (less irregular) end of the logarithmic scale, i.e.

for large .

Since the previous methods lead to different upper and lower bounds for Hausdorff dimensions
of the image and the graph in the logarithmic scale, it is interesting to ask the following question:
Are the random variables dim,, (Grg(X)) and dime,. X (E) constant almost surely in this loga-
rithmic scale? The main goal of the remaining part of this section is to answer this question. The
key probabilistic idea is to use the Karhunen-Loeve expansion of the process X so that we can
show that the random variables dim,, (Grg(X)) and dime,. X (£) are measurable with respect to
a tail sigma-field, and therefore by the zero-one law of Kolmogorov they should be almost surely
constants. Let us first recall the Karhunen-Loeve expansion, which says that X has the following
L?-representation, see for example [1, Theorem 3.7 p. 70 and (3.25) p. 76] :

X(t) = i M2 &), (3.21)
=1
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where (§;)i>1 is an i.i.d. sequence of N(0, ;) standard Gaussian vectors, and (\;);>1 and (¢;);>1

are respectively eigenvalues and eigenvectors of the covariance operator of Qx, defined on L?([0, 1])
by

(@)t /Qst

where Q(s,t) := E [Xo(s)Xo(t)] is the covariance function of each component of X. It is easy to
see from (3.21) that the canonical metric ¢ has the following representation

1/2
(ZA (1 (t) — s ))) : (3.22)

In addition, this formula shows that every eigenfunction 1; is continuous, since all eigenfunctions
share ¢ as a modulus of continuity up to a multiplicative constant, i.e. [1;(t)—;(s)| < )\i_l/25(s, t).

Theorem 3.6. Let {X(t) :t € [0,1]} be a d-dimensional continuous Gaussian process as defined
n (2.2), satisfying the commensurability condition (T'), i.e. relations (2.1), such that

lim (r) log"/*(1/r) = 0. (3.23)
Then for all Borel set E C (0,1) there is a non-random constant C(E) € [0, +oc] such that
dim,, (Grg(X)) = C(E) a.s. (3.24)
The following deterministic lemma is a key to prove Theorem 3.6.

Lemma 3.7. Let f : [a,b] — R? be a Borel measurable function and g : [a,b] — R be a Lipschitz
in the metric 6, i.e.

lg(t) —g(s)|| < C,é(t,s)  forall s,t € [a,b, (3.25)
for some positive constant C,. Then for all Borel set E C [a,b] we have
dim,; (Gre(f +g)) = dimy, (Gre(f)). (3.26)

Proof. Let a := dim,; (Grg(f)). Then H* (Grg(f)) = 0 for all £ > 0. Therefore we fix ¢ > 0
and 7 > 0 to be arbitrary so that there exists a cover (Bs(t;,7:) X B(zi,1));5, of Grg(f) such
that -

er‘“ <. (3.27)
=1

From this last cover of Grg(f) we will construct another cover of Grg(f + g). Indeed, by using
(3.25) if t € Bs(t;,r;) for some ¢ > 1, then

lg(t) — gl < Cyr. (3.28)

Now let ¢ > 1 such that ¢ € Bs(t;,r;) and f(t) € B(z;,r;), we then deduce from this and from
(3.28) that (f + g)(t) € B (@, 7;) where Z; := x; + g(t;) and 7; := (1 4 C,)r;. Therefore the
collection of balls (Bjs (t;,7;) x B(%;,7;)) is a cover of Grg(f + g) and we have

[e.e]

Mo (Gru(f +9)) < (14 Co)™ ™) rete < (14, .

5,00
Jj=1
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Since 7 > 0 is arbitrary, this shows that H5 "5 (Gre(f +g)) = 0 for all € > 0. Hence (2.40)
ensures that
dim,, (Grg(f +g)) < a =dim,, (Grg(f)). (3.29)

The other inequality follows from (3.29) with f:: f+gand g:= —g. O

Proof of Theorem 3.6. First let us note that (3.23) implies that X has a continuous version, then
by using [1, Theorem 3.8] the series in (3.21) converge uniformly on [0, 1] a.s.2, thus it is a concrete
version of X. Considering this version, we define for all n > 1 the finite and infinite parts of X,
denoted by X, and X,, « as follows

Xia() =Y N2&wi(t) and X, oo(t) = X(t) — Xy (t) forall ¢ €[0,1].
=1
Then we have

X1a(t) = X)) < (Z\m) sup A1) = ()] < (Da) s (3:30)

for all s,t € [0, 1], almost surely, where we used (3.22) in the last inequality. We fix E C [0, 1]
to be a Borel set. By making use of (3.30), Lemma 3.7 applies for almost every w; specifically,
for fixed n, this is the set of w’s such that )" |&]| is finite. Lemma 3.7 thus ensures that, by
countable intersection, almost surely,

dim,, Gre(X) = dim,, Gre(X, ) for all n > 1.

This shows that the random variable dim,, (Grg(X)) is measurable with respect to the tail
o-algebra (>, 0 ({&.,7 > n+1}). Hence the Kolmogorov’s 0-1 law ensures that this random
variable is constant almost surely. O

Remark 3.8. The proof of Theorem 3.6 relies on the fact that the dimension of the graph
of the process X is in the tail sigma-algebra of a sequence of i.i.d random variables. But the
Karhunen-Loeve expansion of X may have only finitely many non-zero terms, making that tail
sigma-algebra property arguably artificial. Still, the proof’s argument carries through, though
the result of the theorem can be obtained more directly. Indeed, if A\; = 0 for all ¢ greater than
some fixed ng, and assuming that the eigenfunctions 1; are differentiable for all ¢ < ng and at
least one of them satisfies the fact that: |¢;(t) — 1;(s)| > ¢; |t — s| for s, € J for some i < ng
and some interval J C [0, 1]. Then the canonical metric of the process is commensurate with the
Euclidean metric on J, and Corollary 3.3 proves that, for all E C J, the Hausdorff dimension
of Grg(X) equals the usual Hausdorff dimension of E. More generally, still assuming that all
A; = 0 for all ¢ greater than some fixed ngy, but without assuming that the eigenfunctions
are differentiable, by applying Lemma 3.7 with f = X, oo = 0 and g = X, = X, we get
dim,, (Gre(X)) = dim,, (Grg(0)) = dim,, (£ x 0) = dims(E).

Due to the complex structure of the image compared to the graph, the previous methodol-
ogy, which is based on a covering argument and Hausdorff measures techniques to show that
dim,, Grg(X) is measurable with respect to a tail sigma-field, is difficult to be applied to the
image case, which pushes us to seek other methods. To prove a similar result for dime, X (FE)
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we will proceed differently, trying to use the Karhunen-Loeve expansion again combined with a
potential theoretical approach to be able to prove that dime,. X (FE) is measurable with respect
to the tail sigma-field associated with the sequence of Gaussian random variables appearing in
the Karhunen-Loeve expansion.

Theorem 3.9. Under the same conditions of Theorem 3.6 we have for all Borel set E C [0, 1]
there exists a non-random constant ¢(E) € [0,d] such that

ditene (X (E)) = ¢(E)  a.s. (3.31)

Remark 3.10. Just as in Theorem 3.6, the proof of Theorem 3.9 also seems to use the Kolmogorov
0-1 law artificially when there is only a finite number of nonzero Karhunen-Loeve eigenvalues \;.
Yet the same arguments as in Remark 3.8 lead to a direct proof that the dimension of the image
is non-random, and in fact, dime,.(X (£)) = dims(E) A d.

Remark 3.11. We believe that the situation in the previous remark can never occur if condition
(Cos) does not hold. We know of two classes of examples where no such situation can be
constructed because all processes that violate condition (Cgy) in those classes have infinitely
many non-zero Karhunen-Loeve eigenvalues. Recall the Volterra processes in (1.1). Then we
can prove that every eigenfunction v; of such a process is a-Hdlder-continuous on [0, 1] for any
0 < a < 1. The details are left to the reader. For such a process, if its Karhunen-Loeéve expansion
had only finitely many non-zero terms, then the process would also be a-Hdélder-continuous,
almost surely, which would imply, using the lower-bound side of the commensurability condition
(T') in (2.1), that its standard deviation function « has a positive lower index, and thus that
condition (Cy;) holds because of Lemma 3.1; again details are omitted. We also leave it to the
reader to check that, in the case of processes with stationary increments, the same argument
via Holder-continuity holds. Thus, for both Volterra processes and processes with stationary
increments satisfying condition (I'), we can prove by contrapositive that if condition (Cgy) is
violated, then the Karhunen-Loeve expansion had infinitely many non-zero terms.

In order to prove Theorem 3.9 we need some preliminaries. First we start by a classical result,
whose proof is an application of Hahn-Banach theorem, see for example Theorem 1.20 p. 17
in [15].

Lemma 3.12. Let (E, p) be a compact metric space and f : E — RY be a continuous function.
Then for any probability measure  on f(FE) there exists a probability measure v on E such that

pw=vo fL

Recall that the Karhunen-Loeve expansion provides a concrete continuous version of the Gaus-
sian process X, that all its eigenfunctions are continuous, and that using the notation X, and
X0 defined in the proof of Theorem 3.6, the function X ,, as a finite (random) linear combi-
nation of eigenfunctions, is continuous, and therefore, X,,  is continuous as a difference of two
continuous processes. All these statements are to be understood almost surely. Let us denote by
Q1. and Q,, « their distributions on the space of continuous functions, and by ¢; ,, and d,, ~ their
associated canonical metrics respectively. The expression (3.22) then immediately implies

0 n(s,t) = Z/\ (i(t) = ¢i(s))*  and 6 (s,t) = D N (eilt) = vils)?, (3.32)

i=n+1
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and these two processes are independent by construction. Therefore we have the equality in
distribution (X, P) < (X1n + Xnoo, Q1 ® Qp00). For convenience, we denote by €, and €, »
two copies of the space of continuous functions; the measures Q;, and Q, . are defined on
these two spaces. We may also choose to define the law of X on the set of continuous functions
Q =0, xQ , and for w € Q the paths X ,(w) and X, «(w) can be understood using the
obvious projection.

Proof of Theorem 3.9. For all n > 1 and all Borel set E C [0, 1] we denote by K, (-) the following
random kernel

Ko(s,t,0) == (810 (5,1) V | X oo (5, 0) — Xpoo(t,w)|))™"  forall s,t € [0,1] and w € Q. (3.33)

Let v be a probability measure on E. Denote by (, (£, -) the random variable defined as follow

G (E) :=sup {( >0 : inf / / v(ds)v(dt) < oo}. (3.34)
veP(E)
We will show that for any fixed integer n > 1 and for all Borel set £ C [0, 1] we have
dimeye X (F) = (u(F) Ad  almost surely. (3.35)

Since the integers are countable, (3.35) holds almost surely for all n > 1 simultaneously. In
particular, almost surely, (,(F) A d does not depend on n.

Indeed, let n > 1 be fixed and E C [0, 1] be a Borel set, we will first prove that dime,. X (E) <
Gu(E)Ad as. Let w € Q,, := { max;<,||&] < oo}, and assume that (,(F)(w) < d otherwise there
is nothing to prove. Then (3.34) implies that for all ¢ > (,(£)(w) we have

/ / (s,t,w)]* v(ds)v(dt) = co for all v € P(E). (3.36)

On the other hand, we note that for all s,¢ € [0, 1] we have
[ X (¢ w) = X(s,w)]| < | X1a(t,w) = Xin(s, W)l + [ Xneo(t, w) = Xnoo(s,w)|

< (max IS ) 0 (0:9) + [Xnn:6) = Kol
< <%x||£i(w)|| +1) Brn (8, 5) V | Xnoo(t,w) — Xpool(s,w)|]  (3.37)
— (r{lg%Xng(w)H + 1) [Kn(s,t,w)]_l.

Thus by (3.36) and (3.37) we infer that

/ / X, wds (S) o~ forallveP(E). (3.38)

Using Lemma 3.12, any probability measure p on X (E,w) may be written as g = vo X (-, w) for
some v € P(FE), so using this fact as well as (3.38) we obtain C$,. (X (E,w)) = 0 and then by (2.33)

euc

we have dimey X(E,w) < (. Letting ¢ | (,(E)(w) we get dimeye X (E,w) < (,(E)(w). Since
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P(Q,) = 1, the desired upper bound hold almost surely for fixed n, and then as we mentioned,
for all n simultaneously.

We will now show that dim X (F) > (,(E)Ad a.s. First, we remark that the random variable
(»(E) is measurable with respect to o({&; : ¢ > n + 1}) and therefore it is independent from X ,,.
Let n € N and wy € Q,, « be fixed, we assume that ,(F)(w2) > 0 otherwise there is nothing to
prove. Let 0 < ¢ < (,(E)(w2) Ad be arbitrary, then there exists a probability measure v, € P(E)
such that

/ / (K (5, wa)]* Uy (ds) 1, (dE) < 00 (3.39)

EJE

Now for any w; € €2, we consider the random probability measure p,, ., defined on X (E) via
Uy wo(F) =10, {s € E : X (t,(w1,we)) € F}) forall FF C X(E).

Our aim is to show that

Eeuct (Huwywy) <00 for Qq,-almost all wy € Q. (3.40)

In fact, for wy € €, o being fixed, taking expectation with respect to Qi ,(dw;) and using a
transfer theorem and Fubini’s theorem we obtain that

1
Eq, ., (Eeuc W ://IE n( )desywdt.
Ql, ( 7< (ILL ) 2)) B E\ Ql, ||X17n(t) _ X17n(s) —l— ano(t’ w2) _ Xn7oo(8’ w2)||< g 2( ) 2( )
::In’cx(g,t,u&)
(3.41)
In order to prove (3.40) we only need to show that
Lnc(t,s,ws) < co[Kn(s,t,wy)]®  forall s,t € E, (3.42)

where ¢ is a positive constant. Let s,t € E, if K, (s,t,wy) = 0o the above inequality is obvious.
So we assume that K, (s,t,ws) < oo. Then for simplicity we let

u:=0d1,(s,t) and v(ws) = X, o(t,ws) — Xy 0o(s, w2).

Then using the Gaussian scaling property and the independence between X ,, and X,, ., we have

1 1 o~ lel
In 7ta =K 1 - d 5 3.43
clstw) = Bo,, (||uZ+v<w2>||<) / oz +vi et B8)

where Z is a standard Gaussian vector N (0, /). There are four possible cases: (i) u =0 < ||v(w2)]|,
(i) |[v(wa)]| = 0 < u, (iii) 0 < ||v(we)|| < u and (iv) 0 < u < ||v(we)||. Since ¢ < d, the inequality
(3.42) is trivial in the first two cases, let us then prove it only in the cases (iii) and (iv). First,
for w := v(ws)/u let J(w) be defined as

1 e 2
T (w) = /R (e cem IS GREL Y (3.44)
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One can remark that I,(s,t) = u=¢J(w). When 0 < [[v(wp)|] < u, using the fact that the
functions z — e 1#I°/2 and 2 — |l2||~¢ have the same monotony as functions of ||z||, then for all
w € R? we have

/ (eI — e mIeI2) ([l 4 w| = — [|a]|~)dae > 0. (3.45)
R4
Hence using a change of variables we obtain
1 6_@ ( )
<2 [ o amgts = e

where ¢; = ¢; ¢ = 2(2m) %2 fR ra=¢=1 /2y < 50 since ¢ < d. Then multiplying J(w) by u=¢
and using the upper bound (3.47), we get

Lc(s,t,ws) < u " = ¢y [K(s,t,w)]". (3.47)

This gives the desired inequality in the case (iii). On the other hand, when 0 < u < [|v(ws)|| we
upper bound the integral J(w)

1 x 2 ]_ - 2
J(w) = (27T)—d/2 (/ ¢ e_%dx —|—/ T e e_T“dx)
Ja-rwlliwl /2 |2+ W] Ja-rwl<lwl/2 1| %+ W]

dx
< (2m)~%? (HWH_C/ e—||w||2/2dx+e—llwll2/8/ 7)
R a—rw]|<fwil/2 |7+ wl[¢ (3.48)
< ca (Iwll 6+ eI <)
< cljw] 7,

where, in the first inequality, the bound of the second term follows from the fact that ||z|| > |lw/||/2,
the second and third inequalities follow from passing to polar coordinates and using the facts that
¢ < d and that supr?e /2 < oo. Thus multiplying J(w) by u~¢ and using the upper bound

reR
(3.48) we obtain
I(s,t,ws) < c3 ||v(wz)||_< =3 [K(S,t,WQ)]C, (3.49)

which finishes the proof in the case (iv).

Now using (3.39), (3.41) and (3.42) we obtain that Eg, , (Eeuc,c (ft-w,)) < 00. Therefore
Eeucc (Hun w,) < 00 for Qy ,-almost all wy € Q4 ,,, which implies that dime,e X (£, (w1, ws)) > ¢ for
Q1 p-almost all wy € €2y, and for all ¢ < d A (,(E)(w2). Hence by letting ¢ T d A (,(E)(w2) we
get that

dimeye X (F, (w1, w2)) > d A (o(E)(w2)  for Qy p-almost all wy € Q. (3.50)

Accordingly, since wy € €, o is arbitrarily chosen, then using Fubini’s theorem and (3.50) we
obtain that
P [dimeye X (F) > d A (u(E)]

- Ql,n ® @n,oo {(Wlu W2) : dimcuc X(E7 (Wla w2)) Z d A Cn(E)(w2)}
- @1,n [Cdl € Q1,n : dimeuc X(E, (wla WQ)) > d N Cn(E) (WZ)] Qn,oo(dWZ)

Qn,oo
=1.
(3.51)
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Hence the proof of (3.35) is complete.

Now, since (,(E) Ad does not depend on n, and since for all n > 1 we have (,,(F) measurable
with respect to o ({§ : ¢ > n+ 1}), then dime, X(F) is measurable with respect to the tail
sigma-field of (¢;);>1 and hence by the 0-1 law of Kolmogorov, it is constant almost surely, which
finishes the proof. O

Remark 3.13. The previous theorems 3.6 and 3.9 only use condition (3.23) which is sufficient
for the mere existence of a continuous modification for X. Moreover, it was shown in Theorem
3.2 under Condition (Cp; ) that the constant c¢(F) and C(E) are nothing but dims(E) A d and
dims(E), respectively. But even if Condition (Co; ) fails, Theorems 3.6 and 3.9 show that the
Hausdorff dimension of the image and graph are almost surely constants, and this is valid for
the entire class of continuous Gaussian processes, including logBm and other extremely irregular
continuous processes.

4 Criteria on hitting probabilities

In this section we develop criteria for hitting probabilities of a Gaussian process X where, as
before, its canonical metric § satisfies the commensurability condition (I'). The concavity Hy-
pothesis 2.2 for the standard deviation function v will also be generically required. We also assume
that 7 satisfies Condition (Cp), or merely (C.). Under these mild conditions, we will establish
lower bounds for the probability that X will hit a set F' from a set £, namely P{X(F) N F # &},
in terms of capacities of F x F', and upper bounds on that hitting probability in terms of Haus-
dorff measures of £/ x F. Our conditions are general enough to apply to large classes of Gaussian
processes within and beyond the Holder scale. In the first subsection below, we present the main
results of this section, which provide estimates under both Conditions (Cp) and (C.) for fixed
e € (0,1). These results suggest that a critical dimension can be identified under (Cg, ), i.e. for
those processes which satisfy (C.) for every e. This is the topic of the second subsection, wherein
we show that in the critical dimension case, under (Cg, ), the hitting probability’s positivity can-
not be decided merely based on dimensions. In the third subsection, we investigate the so-called
co-dimension of the image set X (E), and we show in particular that it has an explicit expression
under a mild regularity condition on the set F.

4.1 General hitting probability estimates

Recall the metric ps on the product space, defined in (2.37). Our general result is the following.

Theorem 4.1. Let X be a d-dimensional Gaussian process with i.i.d. components satisfying
the commensurability condition (I'). Let 0 < a < b < oo and M > 0, and let E C [a,b] and
F C [-M, M) be two Borel sets. With the notation and conditions in Section 2, the following
holds.

i) If Hypothesis 2.2 is satisfied, then there exists a constant ¢y > 0 depending only on a,b, M
and the law of X, such that

aCL(EXF)<P{X(E)NF #0}. (4.1)
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ii) If Condition (Cq) is satisfied, then there ezists a constant co > 0 also depending only on
a,b, M, and the law of X, such that

P{X(E)NF #0} <cHl (ExF). (4.2)

iii) If Condition (C.) is satisfied for some ¢ € (0,1), then there exists a constant c.3 > 0
depending on a,b, M, e, and the law of X, such that

P{X(E)NF # 0} < c3. HI(E x F). (4.3)

Proof. We begin by proving the lower bound in (4.1). Assume that C¢ (E x F) > 0 otherwise
there is nothing to prove. This implies the existence of a probability measure p € P(E x F') such

that d ) 5
v
a( < : (4.4)
p6 /1%+XR‘1 /]Rl+><Rd p6 u U Cg(g (E X F)

Consider the sequence of random measures (m,,),>1 on E x I defined as

o (dtdz) = (27m)"2 exp (—w) (dtdz)

— [ e (B it x ) - ) deptanan),

Denote the total mass of m,, by ||m,|| = m,(E x F). Let us first verify the following claim on
the moments of ||m,,||:

E([ma]) 2 e, and  E(Jma]®) < co€ppalie). (4.5)

where the constants ¢; and cy are independent of n and pu.
First, we have

Blmd) = [ [ ew (<5 (2 420) —itcn)) deptanan
/%X‘% o ) M (46)

(2m)4/? dM? B
> (i (i) o =

This proves the first inequality in (4.5). We have also

E (|lm.|*) = /( o /R Qde—z’<<§,x>+<n,y>> X exp (—%(f,n)F n(t, 8)(5,77)T) d€ dn p(dtdz)u(dsdy),
(4.7)

where T, (t,5) = (n" g + Cov(X (s), X ())), where I5; denotes the 2d x 2d identity matrix, and
where Cov(X(s), X(t)) is the 2d-covariance matrix of (X (s), X(¢)). Now let ¢ > 0 so that (2.4)
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is satisfied for all s,t € [a,b] such that |t — s| < e. Using the same lines as Step 1 and Step 2 of
the proof of Theorem 2.5 in [21] we obtain that

E ([ma|?) < 5 + Jo,
where

(2m)? ez —yl’

h= /(ExF)2mD(a) ( det (q)n(s,t)>)d o (_ 2 det (Pn(s, 1))

B (27r)d
b /(EXF)Q\D@)( det(‘bn(s’t))>

) p(dtdz)p(dsdy)

7 n(dtdz)p(dsdy),

where D(g) := {((t,x), (s,y)) : [t — s| < &} and ,,(s,t) :== n~' 15 + Cov(Xo(s), Xo(t)).
First we bound J5. Observe that

det (D, (s, 1)) > E(X2(s))E(X2(t)) — (EXo(t)Xo(s))* =: h(s,1). (4.8)

By the Cauchy-Schwartz inequality, the function (s,t) — h(s,t) is nonnegative, and since v(r) =
0 < r = 0, this function is strictly positive and continuous away from the diagonal {s = t}.
Therefore, for all s,t € [a,b] with |t — s| > ¢, det (P,,(s,t)) > c3, where c3 is a positive constant
depending on [a, b]. Hence

5 < (2m/c | pldtdn)u(dsdy)
(ExF)2\D(e)

pdu)p(dv)
((t,2), (s,))

Let us now bound J;. If ((t, ), (s,y)) € D(e) then (4.8) and Lemma 2.4 ensures that for some
constant c5 > 0

<@/ sup (s (u,0) /
(u,w)E(EXF)? (ExF)? Ps

7= C&palp). (49

det (®,(s,1)) > c572(a) 6%(s, t).
Observe that if det (®,(s,t)) < ||z — y||?, using the fact that sup, g 2%/%e7°* < oo, then

er)t (e eyl s
(det (@,(s,1)))) 7 p( 2 det <<1>n<s,t>>) =Te—yl

On the other hand, when det (®,(s,t)) > ||z — y||* we get

(2m) exp (_c_3 lz =yl ) (2m)
(det (P, (s,1))))"? 2 det (Pu(s,1)) ) = 2 yd(a)é(s, t)d

Therefore we conclude that

J < ¢y / p(dtdz)u(dsdy)
< (Exr)? (max{d(s,t), |z —y|})

d = Cr gpa,d(:u% (410)

for some constant c;. The proof of our moment estimates in claim (4.5) is complete.
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Now, using these moment estimates in (4.5) and the Paley—Zygmund inequality (c.f. Kahane
[12], p.8), one can check that {m,,n > 1} has a subsequence that converges weakly to a finite
random measure meq, supported on the set {(s,z) € £ x F': X(s) = x}, which is positive on an
event of positive probability and also satisfying the moment estimates of (4.5). Therefore, using
again the Paley-Zygmund inequality, we conclude that

B (||mol])* ci
>

E ([[mooll?) — ca€psalpe)

P{X(E)NF # @} > P{[[me| > 0} =

By definition of capacity, this finishes the proof of (4.1).

For the upper bound in (4.2), we use a simple covering argument. We choose an arbitrary
constant ¢ > HY (E x F). Then there is a covering of E x F' by balls { B, ((t;,z;),7;),i > 1} in
(R4 x R?, ps) with small radii r;, such that

Ex FC|JBy((t,x:),r) with ) (2r)* <. (4.11)
i=1 =1

It follows that

{(X(E)NF # 0} = J{ X (Bs(t;,1:)) N Blai,r:) # @}

i=1
- -z <. .
U {f X = < } (4.12)

Since Condition (2.14) is satisfied, using Corollary 2.6 and (4.12) we obtain

o

PIX(E)NF A0 <SP { it X0 il <

S Cg Z 27’i)d S Cg C (413)
i=1

Let ¢ | HY (E x F), the upper bound in (4.2) follows.
For the upper bound in (4.3), first note that condition (2.25) ensures that

IP{ inf || X(¢) —z| < r} <cori=) forall 0 <r < rgand z € [-M, M]* (4.14)

teBs (t,r)

where 7o and ¢y are two positive constants. Hence the proof of (4.3) follows from the same
argument as in (4.12), (4.11) and (4.13), and by using (4.14) instead of Corollary 2.6. O

The following corollary suggests that dim,, (E x F') = d is a critical dimension for computing
hitting probabilities.

Corollary 4.2. Let E, F be two bounded Borel sets in Ry and R? respectively. Under Hypothesis
2.2 and Condition (Coy) we have

rixienrpe){ 20 e D20 o

We explore this criticality in the next subsection, using general sets £ and processes X.
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4.2 Hitting probabilities: undecidability in the critical dimension case

We now show that the critical dimension case, dim,,(E x F') = d, is undecidable, for a large class
of functions ~y satisfying (Co.), in the following sense: there exist compact sets Fy, Fy C [0, 1]
and Fy, Fy C [M, M]? such that dim,,(E; x Fy) = dim,,(Fy x Fy) = d and

We start with providing some lower bounds and upper bounds on P{X(F)NF # (0} when FE
satisfies the Ahlfors-David regularity in the metric 4. This will be the key to prove (4.16). First,
we recall the definition of an Ahlfors-David regular set.

Definition 4.3. Let (X, p) be a bounded metric space, let a > 0, and let G C X. We say that
G is a-Ahlfors-David regular if there exists a Borel probability measure o on G and a positive
constant ¢y such that

o' < pu(B,(a,r) <cor® foralla € G, and all 0<r <1, (4.17)

To best represent the delicate size of our hitting probabilities of interest, we find it necessary to
introduce a finer concept of regularity for our standard deviation function ~, using slowly-varying
modulation. Let £ : (0,00) — Ry be a slowly varying function at 0, such that lim, .o (y) = c €
(0, 4+00]. We denote the following condition (Cy),

(Cy): There exist two constants ¢; > 0 and zq € (0,1) such that

1/2
/0 y(xy)ydiy <cy(x)l(y(z)) forall z € [0,z (4.18)

V1og(1/y)

Remark 4.4.

i) This condition (Cy) is slightly stronger than (Cy. ), and weaker than (Cy) when lim,_,, ¢(y) =
+00. Moreover it is satisfied by a large class of functions v with zero index of interest to
us, including the example y(x) = exp (—log?(1/x)) with g € (0, 1).

ii) When lim,_,, ¢(y) < +o00, the conditions (Cy) and (C;) are equivalent.

iii) The case of lim, ,o ¢(y) = 0 does not occur. Indeed, one can show that, up to a multiplicative
constant, y(x) is a lower bound of the integral in Condition (Cy).

This modulated condition (Cy) is naturally accompanied by the more general notion of Haus-
dorff measure with a gauge function other than the power function, which we will also need. For
a metric space (X, p) and a function ¢ : Ry — R, right-continuous and increasing near zero
with limgy ¢ = 0, and G C X be a Borel set, the p-Hausdorff measure of G in the metric p is
defined by

H2(G) zylzgr(l)inf{zl<p(2rn):G§ L_JIB,, (rn), Tn <n}. (4.19)
The same reasoning as in the proof of Theorem 4.1 leads to an upper bound more accurate

than (4.3), under the condition (C;). The proof of the following theorem is thus left to the
interested reader.
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Theorem 4.5. Let 0 < a < b < oo and M > 0, and let E C [a,b] and F C [-M, M]? be two
Borel sets. If vy satisfies the hypothesis 2.2 and the condition (Cy), then

' CL(Ex F) <P{X(E)NF #0} <o H(E x F), (4.20)
where pq(z) := x4 0%(z).

If F is an a-Ahlfors-David regular set in the metric §, the hitting probability estimates (4.20)
take a more specific form. Namely the lower and upper bounds are given, respectively, in terms
of the Bessel-Riesz capacity of F' and the Hausdorff measure of F' in the Euclidean metric, the
latter still being relative to the -modulated power function. However, when « reaches the critical
dimension d, the capacity lower bound requires the use of a logarithmic metric. To be specific,
we have the following proposition, whose proof, based on the previous theorem, requires a bit of
care, and is therefore included below.

Proposition 4.6. Let X be a d-dimensional Gaussian process such that its standard deviation
function ~y satisfies Condition (I'), Hypothesis 2.2 and Condition (C;). Let 0 < a < b < oo and
M > 0. Also let E C [a,b] be a a-Ahlfors-David regqular set in the metric § for some 0 < a < d.
Then for all0 < M < 1 and F C [-M, M]? the following two alternatives hold, depending on
whether o equals the critical dimension d.

i-1) If o < d and v satisfies Condition (Co) then

¢y Co (F) SP{X(E)NF # 0} < s HE (), (4.21)

i-2) If a < d and vy satisfies Condition (Cy) for some £ given such that lim,_,, {(y) = +o0, then
we have

;' Cl(F) <P{X(E)NF # 0} < cgHEE(F), (4.22)

euc euc

where pq_o(z) 1= 2 04(x) and c3 is a positive constant depends on a, b, M and o only.

ii) If o« = d then
&t Cs,, (F) <P{X(E)NF # 0} (4.23)

where the metric S145(-) is defined on [—M, M]% by Sox(z,y) := —log ' (||z — yl|).

Remark 4.7. In the case a = d, the upper bound in terms of the Hausdorff measure, under either
Condition (Cy) or Condition (C,) with lim,_,q ¢(y) = +00, is not informative. Indeed, under (Cy)
the Hausdorff measure is a discrete measure, implying that the upper bound is typically too large
to be informative, and under Condition (C;) the Hausdorff measure is infinite for any nonempty
set F.

Proof. Using the bounds in (4.20), to prove (i) it will be sufficient to show that

¢ 'CLN(F)<ClL(ExF) and HPYE x F) < c;HEE(F), (4.24)
respectively. Indeed for the capacities inequality, since F is a-Ahlfors-David regular in the metric
J, then by using [6, Proposition 2.5], with Gy = E, Gy = F, p1 =9, p2 = ||| and p3 = ps, we get
the desired inequality. On the other hand, for the Hausdorff measures inequality, we follow the

same reasoning of [6, Proposition 2.1]. Assume that Hé&i * (F) < oo otherwise there is nothing to
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prove. Let ¢ > Haw ®(F) be arbitrary. Then there is a covering of F' by open balls Beye(y,,7)

such that

F C | Bewelan,ra) and > (2r) " ¢%(2r,) < C. (4.25)
n=1 n=1

Let Ns(E,r) be the smallest number of balls in the metric ¢ of radius » by which we can cover
E. For all n > 1, let Bs(ty j,7), j = 1,...,Ns(E,r,) be the family of balls covering E. It follows
that the family Bs(t, ;,7n) X Beue(®n,7n), j = 1,....Ns(E,r,), n > 1 covers £ x F. Let Ps(E,r)
be the greatest number of disjoint balls Bs(z;,r) of radius » > 0 and centers x; € F. The left
inequality of (4.17) ensures that

s (E,r
;! Ps(E,r) Z (Bs(t;, 7)) = u(Gy) <1 for all r € (0,1]. (4.26)

Using the well known fact that
N(S(E>2T) SP(S(EaT)> (427)

we obtain that Ns(E,r) < 2%cyr~* for all r € (0,1]. Hence combining this with (4.25) we obtain
that

o) Né(E T’n) [e'e}
H2UE x F) Z Z (2r,)* 04(2r,) < 2% ¢ Z 2r) 0 0 (2r,) < 2% ¢ C. (4.28)

=1

Letting ¢ | Haie “(F), the desired inequality follows immediately.

The result in (ii) is a consequence of [6, Proposition 2.5], we only need to mention that the
capacity term Cglog(-) considered in (4.23) is equivalent to the capacity term C°,.(-) considered
in [6]. Hence the proof is complete. O

The next proposition states our undecidability claim with precise assumptions. In particular,
any a-Ahlfors-David-regular compact set E in X’s metric leads to the construction of sets in the
target space where one cannot decide whether they are reachable from E based solely on their
dimensions.

Proposition 4.8. Let X, a, b and M be as in Proposition 4.6. Let E C [0,1] be a a-Ahlfors-
David regular compact set in the metric 6 with o € (0,d). Then there exist two compact sets
Fi, Fy C [=M, M]* such that dim,,(E x Fy) = dim,,(E x Fy) =d and that

P{X(E)NF #0} =0 and P{X(E)NE #£o} > 0. (4.29)

Remark 4.9. The previous proposition shows that we can construct image sets leading to un-
decidability for any compact a-Ahlfors-regular set in the domain of X (relative to §), when

€ (0,d). But we are also able to construct examples of undecidable image sets with a = d.
Indeed, assume X is a fractional Brownian motion (fBm) with Hurst parameter H, and assume
Hd = 1. We show here that in the particular case where F := [ is an interval, the critical
case dims(E) = + = d is also undecidable. First note that it was proved in [5] for a fractional
Gaussian random field X restricted on Iy x ... X [, for some intervals Iy,..., I, with Hurst
parameter (Hy, ..., Hy), that X does not visit points in the critical dimension case d = @) where
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Q=H'+.+H k_ !, Since our domains are one-dimensional, we apply this to the case of fBm
itself, i.e. k = 1. Let then X = B be a d-dimensional fBm with Hd = 1. Let I} = {z} for
some fixed point z € R? then evidently dime,(F}) = 0 and the aforementioned result [5] implies
P{X(E)NF, # @} = 0. On the other hand, one can easily construct a Borel set Fy C [—1,1]¢
such that its Euclidean dimension dime,.(F3) = 0 though it has positive logarithmic capacity
Cglog (Fy) > 0. Then, by using (4.23), we obtain P{X(E) N Fy, # @} > 0. Moreover, the intervals
are known to be 1/H-Ahlfors-David regular in the metric d; therefore Lemma 4.12 ensures that
dim,, (£ x Fy) = dim,,(E x F;) = 1/H = d. This prove the aforementioned undecidability.

Proof of Proposition 4.8. First, it turns out that since F is a-Ahlfors-David regular in the metric
0, we have the following convenient expression for the ps-dimension of £ x F"

dim,, (£ x F) = dims(E) + dimeye (F).

This formula is established in Lemma 4.12, which is stated and proved in the next subsection,
though this analysis lemma’s proof is self-contained and its result can thus be used here. There-
fore, by Proposition 4.6, recalling the notation ¢4, introduced in Item (i) therein, to obtain
(4.29), it is sufficient to find Fy, Fy C [—M, M]? such that dimeye(F}) = dimeu(F) = d — a and
that

HPi-o(F)) =0 and CL(F) > 0. (4.30)

euc euc

To prove this, we claim that it is sufficient to show the following, which is established in the
independent Lemma 4.10 immediately following the proof of this proposition. Let 6 > 1 be fixed.
There exist two probability measures p; and py supported by two different compact subsets F}
and Fy of [—M, M]?, such that for some positive constants c; and cg we have

Cgl (pd—a("“) 1Og6(€/r) S 241 (Beuc(za T)) S Cs de—a(r) 10g6(6/7’) for all r € (O’ 1)’ T Fl’ (431)
and
¢ ' log™(e/r) < pa (Bewe(w, 7)) < " log™(e/r) forallr e (0,1), z € Fp.  (4.32)

We begin by proving our claim (4.30) for the compacts F; and F, mentioned above. For all
r € (0,1) and F' C [—M, M]? let New(F,7) be the minimal number of balls Be.(z;,7) of radius r
required to cover F'. By using the lower estimate in (4.31) and the same argument used in (4.26)
and (4.27), in the Euclidean metric this time, we deduce that

New(F1,7) < ¢7 (@aca(r) ™ log™(e/r)  for all r € (0,1). (4.33)
Furthermore, using the definition of the ¢,_,-Hausdorff measure as well as (4.33) we infer that

HP—o (F)) < cg limsup pg_o(7) Newe(Fi, ) = limsup log™’(e/r) = 0, (4.34)

euc
r—0 r—0

where cg is a positive constant. This gives the first outcome of (4.30). Now, we show that
Ci—a(F2) > 0, where by definition it is sufficient to prove that Eeyed—a(ft2) < 0o, with ps being
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the measue identified in (4.32). First notice that the upper bound in (4.32) ensures that ps has
no atom. Then for all x € F5 we have

—(d—a)o(d—a) (j+1) —j
< K 2 2 (Beuc(t, K277)
||SC—de @ Z/y llz—yll€ (k2 G+1) k2-0]} ||~”C—y’|d “ Z ( )

< 2472 ¢ Z log ™% (27 e/ k), (4.35)

Jj=0

Iy

where k := diame,.(F») and cg depends only on 6, «, k and d. The last sum is finite since 6 > 1,
and does not depend on x so by integrating with respect to the probability measure po(dz) we
get that E.uea—al2) < 0o, which proves the second outcome of (4.30).
In remains to show that dimeye(F}) = dimey(F2) = d—a. First, notice that the same reasoning
as in (4.33) and (4.34) will ensures that
’Hsol

euc

(F1) <oo and HE

euc

where 1 (1) := pq_q(r)log?(1/r) and @o(r) := r**log?(1/r). Since *(-) log?(1/-) and log~?(1/-)
are slowly varying functions and lim, o £(r) € (0, +0o0], then

(F) < o0, (4.36)

ri= = o(py(r))  and riTE =o(po(r))  asr — 0,
for all € > 0. This fact combined together with (4.36) imply that Hi-*(Fy) = HI-o+e(F,) = 0

euc euc

for all € > 0. On the other hand, (4.35) ensures that Eued—alp2) < oo and then C% 2(Fy) > 0.
Moreover, repeating the same argument as (4.35), we obtain that Eeued—a—c(ft1) < 00 and then

Cla=e(F, 1) > ( for all € > 0 small enough. Hence, combining all the previous facts we infer than

d—a—e <dime(F) <d—a<dime(F) <d—a+e foral e>0.

Since € > 0 is arbitrary, we deduce that dimey(F}) = dimey.(F>) = d — «, which finishes the
proof.

The next lemma, whose proof establishes the existence of measures p; and o satisfying
conditions (4.31) and (4.32), is enough to conclude the proof of the proposition. O

Lemma 4.10. Let a € (0,d) and 0 > 1, then there exist two compact subsets Fy and Fy of
[—M, M]¢ which respectively, support two probability measures py and py satisfying (4.31) and
(4.32).

Before proving this lemma, we give the following key result for constructing the measures in (4.31)
and (4.32), which appears as Proposition 7.4 in [6]. The proof of that proposition comes from
the procedure for constructing the classical Cantor set and its associated singular continuous
distribution function, which is then adapted to a scale that might involve a regularly/slowly
varying function in general rather than a power function.

Proposition 4.11. (Appendiz B Proposition 7.4 in [6]) Let ¢ be a function satisfying
®(0) =0 and (2z) < 2¢¥(x) for all z € (0, xg), (4.37)

for some xy € (0,1). Then there exists a Borel set G C [0, 1] which support a probability measure
v such that

colv(r) <v(la—r,a+r]) <cop(r) forallr €[0,20) and a € G. (4.38)
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Proof of Lemma 4.10. First, let us define the functions ¢ (r) := r'=*/4Y/(r)1og?(e/r) and
Uo(r) := r'=*/dlog=%(¢/r). Since v < d, one readily checks that 1; for i = 1,2 are continuous
increasing functions on (0, 1) such that (4.37) is satisfied. Therefore, using Proposition 4.11, there
exist two Borel probability measures 1 and 2 supported by two compact subsets [F(; and
Fy o of [0, 1], respectively, and two positive constants ¢y, co such that for i = 1,2 we have

¢, wi(r) < poil[r —rx+ 7)) < cibi(r) forallr € (0,79) and = € Fpy, (4.39)

d d
for some ry € (0,1). Now, let p; := ® po,; and F; := X Fp,; for i = 1,2. Then using (4.39) and
=1 j=1
the definition of the measure p;, we obtain that

d
c; 1 d(r) < i <H[x] -7,z + r]) < clyd(r) forallre (0,1) and (21,...,2q4) € F; , (4.40)

Jj=1

for i = 1,2. The fact that the Euclidean norm ||.||» and the maximum norm ||.||, are equivalent
ensures that (4.31) and (4.32) follow with c5 depending on the constants ¢y, 6, «, d and ¢, and
the constant cg depending the constants co, 6, a and d. Hence the proof is complete.

Ul

4.3 Co-dimension of the image set X (F)

In this final subsection we consider the so-called stochastic codimension of our image sets. For
a random Borel set K C R the upper and lower stochastic codimensions of K are defined as
follows:

codim(K) :=sup {8 <d : forall F C R?s.t. dim.,.(F) < we have P{K N F # @} =0},
(4.41)

and

codim(K) :==inf {# <d : forall F C RY s.t. dimey.(F) > 8 we have P{K N F # @} > 0}.
(4.42)

The above definitions can be found in [13]. Moreover, [13, Lemma 4.7.1 p. 435] provides the
following summary

>0, whenever dimg,.(F") > codim(K)

‘ ‘ : (4.43)
=0, whenever dimg,.(F) < codim(K)

MKHF#@{

It is worth noting that the upper and lower stochastic codimension of K are not random, even
if K is a random set. Notice that codim(K) < codim(K) for all K. Moreover, in the case
when codim(K') = codim(K), we write codim(K) for the common value and call it the stochastic
codimension of K.

Let (Y, p) be a metric space. We recall that, the upper Minkowski dimension of a Borel set
G CY, in the metric p, is defined as

dim, 3/ (G) = inf{a : 3 c(a) > 0 such that N,(G,r) < c(a)r™® for all r > 0}. (4.44)
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where N,(G,r) is the smallest number of balls of radius 7 in the metric p needed to cover G. The
following lemma, which shows how Minkowski dimension can be helpful in estimating Hausdorff
dimensions, will be useful for the rest of this section, particularly in establishing our formula for
the dimension of the cartesian product of two Borel sets, where at least one is Ahlfors-David-
regular.

Lemma 4.12. Let E C [a,b] and F C [-M, M| be two bounded Borel sets. Then we have

dim;(E) + dimeye (F) < dim,, (£ x F)

(@01 (E) + ditne (F) A (dimg(E) + Fmwert(F)) . )

<
<

Moreover, if E (resp. F') is Ahlfors-David regular, in the metric § (resp. the Fuclidean metric),
then
dims(E) = dimg p(E)  (resp.  dimeye(F) = dimeye ar(F)). (4.46)

In that case, i.e. when one of E or F' is Ahlfors-David regular in its associated metric, we have
dim,, (£ x F) = dims(E) + dimeye (F). (4.47)

Proof. We start by proving the upper bound in (4.45). Let us assume that dims(£) > 0 and
dime,(F') > 0 otherwise when one of these dimensions is equal to zero, the result can be readily
deduced from the property that the Hausdorff dimension does not increase under projection. Let
a € (0,dimg(E)) and S € (0, dime,e(F)); then CZ (E) > 0 and by Frostman’s theorem there is a
probability measures v supported on F such that

v(Bs(t,r)) < csr® for all t € [a,b] and r € (0,1).

Now, using [6, Proposition 2.1-i)] we have C3:*%(E x F) > ¢ C5.(F) > 0. Hence dim,, (E x F) >
a+ (. Letting o 1 dims(F) and 8 1 dimey(F), the lower inequality in (4.45) follows.

For the upper bound, let o > dimg 3/(E) and 8 > dimey(F), then HE (F) = 0 and

euc

Ns(E,7r) <czr™® forallr > 0. (4.48)

By using [6, Proposition 2.1-ii)] we obtain H3 7 (Ex F) < cs Hj,(F) = 0. Hence dim, (Ex F) <
a+ 3. Letting a | dimg (E) and S | dimey(F), the first term of the upper inequality in (4.45)
follows. The second term follows in the same way. For the statement (4.46) it suffices to go
through the same lines of the proof of the Euclidean case, which is shown in [15, Theorem 5.7 p.

80]. The last statement of the lemma follows immediately from its first two statements. O

We are ready to state and easily prove a formula for the stochatic codimension of our processes’
image sets.

Corollary 4.13. Let X be a d-dimensional Gaussian process verifying the commensurability
condition (T') such that its standard deviation function -y satisfies the concavity Hypothesis (2.2)
and the mild regularity condition (Coy). Let E C [0,1] be a Borel set such that dims(E) =
dimg p(E). Then we have

codim (X (E)) = (d — dims(E)) V 0. (4.49)
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Proof. First, using Corollary 4.2 and Lemma 4.12 we obtain that

BXEINF £} 70 it i) < o ) (150

If 0 < dimg(F) < d then (4.50) ensures immediately that codim(X(£)) = d — dimg(E). On the
other hand, if dims(E) > d then (4.50) implies that P{X(E) N F # @} > 0 for all F' C [-M, M]*
with dimey.(F) > 0, which means that codim(X(£)) = 0. Remains the case when dims(E) =
dims p/(E) = 0, for which (4.50) provides that P{X(E)NF # @} = 0 for all F C [-M, M]?
with dime,.(F) < d. This implies that codim(X(E)) = d. Hence the proof of (4.49) is then
complete. O

We finish our paper with a discussion and a conjecture of what may happen when the mild
regularity condition (Cyg, ) fails to hold. The method of Theorem 4.1 leads to a lack of information
on hitting probabilities estimates when that condition fails. For instance, in the logBm scale, i.e.
when d(t,s) =< log™?(1/|t — s|) for some B > 1/2, the method Subsection 4.1 leads to a lower
bound of P{X(E) N F # @} in terms of the ps-capacity of E' x F' with order d, and to an upper
bound in terms of the ps-Hausdorff measure of E' x F' with order d(1 — 1/2/3). Namely we have

¢i'CL(Ex F) <P{X(E)NF # o} < HIPE x F), (4.51)
which implies that

>0 if dim,(E X F)>d
IP’{X(E)“F#@}{ =0 if dim,,(E x F) <d(1—1/28) °

If £ is Ahlfors-David regular, by Lemma 4.12 we have dim,,(E x F) = dims(E) + dimey(F).
Therefore (4.52) takes the following form

S0 if dimee(F) > d — dims(E)
PAX(E)NF 7 2} { 20 i dim(F) < d — dimg(E) — d/25

When combining (4.41), (4.42) and (4.53) we get that
codim (X (F)) <d—dimg(F) and codim (X (FE)) > d— dims(E) — d/20.

On the other hand, it follows from (3.2) and (3.16), when dims(E) < d, that dims(E) and
dims(E)+d/2p are lower and upper bounds for dime,. X (), respectively. Moreover Theorem 3.9,
which holds without any regularity assumptions on the standard deviation function 7, ensures that
dime,. X (F) = ¢(E) a.s., where ¢(E) is a non-random constant depending only on E and on the
law of X. Thus in the case of logBm, the constant c(F) lives in the interval [dims(£) , dims(F) +
d /2], which becomes an increasingly precise estimate as one approaches the regularity realm of
Condition (Cpy). However, we conjecture that the constant c¢(£), whose value is unknown for
highly irregular processes beyond that realm, is nonetheless directly connected to the image’s
stochastic codimension. In other words we conjecture the following.

Conjecture 4.1. Let X be as in Theorem 3.9. Let E C [0,1] be a Borel set such that dims(E) =
dims p(E) < ¢(E) < d, where c(E) was defined in that theorem as the almost sure value of
dimey. X (E). Then

(4.52)

(4.53)

rxmnr#o{ 20 fan 20 dn) (459

In other words, we have the following formula for the stochastic codimension of X (FE):

codim (X (FE)) =d — c(E).
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