
Configuring Industrial Wireless Mesh Networks via Multi-Source
Domain Adaptation

Xia Cheng
Florida International University

Miami, Florida, USA

xchen075@�u.edu

Mo Sha
Florida International University

Miami, Florida, USA

msha@�u.edu

Dong Chen
Colorado School of Mines

Golden, Colorado, USA

dongchen@mines.edu

ABSTRACT

Low-power wireless mesh networks (WMNs) have been widely

deployed to connect sensors, actuators, and controllers in industrial

facilities. As industrial WMNs become increasingly heterogeneous

and complex, recent research has reported that resorting to ad-

vanced machine learning techniques to con�gure WMNs presents

signi�cant performance improvements compared to traditional

methods. However, it is costly to collect su�cient data to train

good network con�guration models in many industrial facilities.

In such scenarios, the bene�ts of using learning-based methods

that depend on a large amount of data are outweighed by the costs.

Recently there have been growing interests in using simulations

to con�gure WMNs because simulations can be set up in less time

and introduce less overhead. Unfortunately, recent studies show

that the network con�guration selected from a simulated network

may not be able to help its corresponding physical network achieve

desirable performance due to the simulation-to-reality gap. In this

paper, we formulate the network con�guration prediction as a

multi-source domain adaptation problem and introduce a novel

solution. Experimental results show that our solution e�ectively

closes the simulation-to-reality gap and provides 80.45% prediction

accuracy when it uses cheaply generated simulation data and 440

data traces collected from the physical network for training. As a

comparison, the deep neural network (DNN) model trained without

using simulation data requires 3,080 costly physical data traces to

achieve 80.39% prediction accuracy.

CCS CONCEPTS

• Networks→Wireless local area networks; Network man-

agement; Network simulations; Network performance mod-

eling; Network measurement; • Computing methodologies

→Machine learning approaches.

KEYWORDS

Industrial Wireless Mesh Networks, Network Con�guration, Multi-

Source Domain Adaptation

1 INTRODUCTION

Industrial Internet of Things (IoT) promises one of the largest po-

tential economic e�ects of IoT – up to $47 trillion in added value

globally by 2025, according to the McKinsey report on future disrup-

tive technologies [35]. Industrial wireless mesh networks (WMNs),

the underlying support of industrial IoT, typically connect sensors,

actuators, and controllers in industrial facilities [31]. Over the last

decade, the networks that implement the IEEE 802.15.4-basedWMN

standards, such as WirelessHART [56], ISA100 [22], WIA-FA [20],

and 6TiSCH [21], have been widely deployed in various industrial

facilities including manufacturing plants, steel mills, and oil re-

�neries. A decade of real-world deployments has demonstrated

the feasibility of using low-power wireless technology to achieve

reliable communication in industrial facilities.

Although WMNs achieve good performance most of the time

thanks to decades of research, they are di�cult to con�gure, be-

cause con�guring an industrialWMN is a time-consuming, complex

process, which involves theoretical computation, simulation, and

�eld testing, among other tasks. If the network or the application

requirement changes, the �eld engineers may have to repeat the

whole network con�guration process. As industrial WMNs become

increasingly heterogeneous and complex, a breadth of recent re-

search has reported that resorting to advanced machine learning

techniques to con�gure WMNs presents signi�cant performance

improvements compared to traditional methods [36, 57, 59]. How-

ever, it is very costly to collect su�cient data to train good network

con�guration models in industrial facilities. In such scenarios, the

bene�ts of using learning-based methods that depend on a large

amount of training data are outweighed by the costs. To address the

issue, there have been growing interests in using network simula-

tions to con�gure physical networks [29, 47] because a simulation

can be quickly implemented and set up, introduces little to no com-

munication overhead, and allows for di�erent con�gurations to be

evaluated under exactly the same conditions. However, Shi et al.

show that the network con�guration selected from simulations may

fail to help the physical network achieve its desirable performance

due to the simulation-to-reality gap and propose a single-source

domain adaptation method, namely SDA, to narrow the gap [46].

Unfortunately, SDA cannot close the gap when using the data gen-

erated by a single simulator and leaves a more than 10% accuracy

gap.

In this paper, we present an empirical study to better under-

stand the simulation-to-reality gap in network con�guration and

introduce MARIA, a Multi-source domain Adaptation solution for

wiReless network confIgurAtion, which uses a large amount of

simulation data together with a small amount of physical data to

close the gap. To our knowledge, this paper represents the �rst

study that explores the bene�t of using the data generated by multi-

ple simulators to con�gure industrial WMNs. Speci�cally, we make

the following contributions:

• We present an empirical study that investigates the bene�t

of using the data produced by multiple simulators to train

network con�guration models;

• We formulate the network con�guration prediction as

a multi-source domain adaptation problem and develop

MARIA to close the simulation-to-reality gap in network

con�guration;

Cheng, et al.

• We develop a new method that selects simulation data sets

for MARIA to deliver best performance;

• We implement MARIA and evaluate it using four simulators

and a physical network that consists of 50 devices. Experi-

mental results show thatMARIA provides 80.45% prediction

accuracy when using 6,600 simulation data traces together

with 440 physical data traces for training. As a compari-

son, the deep neural network (DNN) model trained without

using simulation data must use a large amount of phys-

ical data (3,080 data traces) to achieve similar prediction

accuracy (80.39%).

The remainder of our paper is organized as the following sec-

tions. Section 2 introduces the background of WirelessHART net-

works and the data sets used in our empirical study and evaluation.

Section 3 presents our empirical study. Section 4 and Section 5

introduce the design of MARIA and our simulation data selection

method. Section 6 evaluates MARIA. Section 7 reviews the related

work. Section 9 concludes the paper.

2 BACKGROUND AND DATA SETS

In this section, we �rst introduce the background of WirelessHART

networks and then present the data sets, which are used in our

empirical study and evaluation.

2.1 WirelessHART Networks

In this paper, we use the con�guration ofWirelessHARTnetworks [56]

as an example to present our empirical study and network con�g-

uration solution. Today the networks that implement the Wire-

lessHART standard are the most widely used in industrial facilities.

For instance, Emerson Process Management, one of the leading

WirelessHART network suppliers, has deployed more than 54,835

WirelessHART networks globally and gathered 19.7 billion operat-

ing hours of experience [15]. Typically, a WirelessHART network

consists of a gateway, multiple access points, and a set of �eld de-

vices. The network manager, a software module that runs on the

gateway, is responsible for performing the management operations,

such as collecting link statistics, generating routes, and schedul-

ing transmissions. To meet the stringent real-time and reliability

requirements posed by industrial IoT applications, WirelessHART

adopts the IEEE 802.15.4 physical layer and employs the time slotted

channel hopping (TSCH) technique in the medium access control

(MAC) layer. TSCH is designed to combat narrow-band interfer-

ence and multi-path fading by combining time-slotted medium

access, multi-channel communication, and channel hopping. Un-

der TSCH, time is divided into slices of �xed length (e.g., 10<B)

that are grouped into a slotframe. Each time slot is long enough

to transmit a data packet and an acknowledgement between a pair

of communicating devices. All network devices are time synchro-

nized and share the notion of a slotframe that repeats over time. A

WirelessHART network uses up to 16 channels and all devices per-

form channel hopping in each time slot. WirelessHART supports

both source routing and graph routing. For each data �ow, source

routing provides a single route between source and destination,

while graph routing provides a primary route and a set of backup

routes to improve the network reliability by taking advantage of

route diversity. Therefore, each network device is required to have

at least two outgoing routes under graph routing.

2.2 Con�guration-Performance Data Sets

In this paper, we use the data shared by Shi et al. [46]. The data con-

sists of �ve data sets:D? ,D1,D2,D3, andD4.D? contains the data

traces collected from a physical network with 50 TelosB motes [44],

which runs the open-source WirelessHART implementation [55]

and has six data �ows with di�erent sources, destinations, data

periods, and priorities. Three performance metrics, including the

end-to-end latency !, the battery lifetime �, and the end-to-end

reliability �, are selected as the requirements for con�guring the

WirelessHART network. To meet such performance requirements,

three con�gurable network parameters, including the packet re-

ception ratio (PRR) threshold for link selection ', the number of

physical channels used in the network � , and the number of max-

imum transmission attempts per packet �, are used to generate

the routes and transmission schedule for the network operation.

When ' ∈ {0.60, 0.61, ..., 0.90}, � ∈ {1, 2, ..., 8}, and � ∈ {1, 2, 3},

there exist 744 (31 ∗ 8 ∗ 3) parameter combinations. The network

manager may generate the same routes and transmission sched-

ule for di�erent network parameter combinations. After removing

the redundant con�gurations that result in the same routes and

transmission schedule, there are 88 distinct network con�gura-

tions. The experiments are performed under each of 88 network

con�gurations and the network performance (!, �, and � values)

is measured and stored as a data trace every 50B . Under each net-

work con�guration, 75 network performance traces are collected,

resulting in 6,600 (75 ∗ 88) data traces in total. The same Wire-

lessHART implementation and settings are adopted to perform

simulations in the TOSSIM simulator [50], the ns-3 simulator [37],

the Cooja simulator [9], and the OMNeT++ simulator [38] to create

D1, D2, D3, and D4, respectively. D1, D2, D3, and D4 contain

the simulated network performance traces under each network

con�guration gathered from these four simulators. Each ofD1,D2,

D3, and D4 also contains 6,600 data traces (75 traces under each of

88 con�gurations).

3 EMPIRICAL STUDY

In this section, we �rst formulate the con�guration of an industrial

WMN as a machine learning problem and introduce our experi-

mental setup. We then present our empirical study that explores

the bene�t of using multiple simulators to close the simulation-to-

reality gap in network con�guration.

3.1 Problem Formulation

The primary purpose of con�guring an industrial WMN is to select

the network con�guration, which can help the network achieve

its desirable performance. Therefore, the network con�guration

problem can be formulated as a machine learning problem with the

goal of learning a nonlinear mapping 5\ (·) : x→ y, where x is an

input vector of application-speci�ed performance requirements and

y is a vector of network con�guration parameters, which allows the

network to meet the performance requirements x. Here, we let x

= 2>=20C4=0C8>=(!, �, �) and y = 2>=20C4=0C8>=(',�,�). \ denotes

the model parameters that are learned from the training data in a

Configuring Industrial Wireless Mesh Networks via Multi-Source Domain Adaptation

Figure 1: Prediction accuracy when di�erent numbers of

matches are removed.

data-driven manner. The network con�guration parameter values

y can be discretized without losing the generality. Therefore, 5\
can be further restricted as a discriminative model, which solves a

classi�cation problem: the classi�er 5\ predicts the network con-

�guration y, which allows the network to meet the performance

requirements x.

3.2 Experimental Setup

The primary goal of our empirical study is to answer the question:

Whether using the data produced by multiple simulators can better

close the simulation-to-reality gap in network con�guration than

relying on a single simulator.

WeuseD1,D2, andD? (see Section 2.2) in our study. To facilitate

the comparisons among D1, D2, and D? , we preprocess the data

by discretizing the performance measurements x. Speci�cally, we

divide each performance metric into a set of regions and map each

performance measurement into one of those regions. For example,

all the measurements on the end-to-end latency ranges between

100.12<B and 499.93<B . We divide the latency range [100, 500)<B

into 80 regions, map the measurements (e.g., 103.17<B , 290.38<B ,

and 498.85<B) into those regions, and convert the measurements

into the region IDs (e.g., 1, 39, and 80). Each of D1, D2, and D?

contains 6,600 data tuples, each of which consists of x and y. For

∀(G,~) ∈ D? , we de�ne the tuple (G,~) as a match in D1 if (G,~)

exists in D1 and count the number of matches in D1. We follow

the same method to count the number of matches in D2.

We use the number of matches in each simulation data set as a

metric to quantify how much network con�guration knowledge

learned from it can be applied in D? , because there exists a strong

positive correlation between the number of matches in a data set

and the prediction accuracy provided by the machine learning mod-

els trained with it. We have performed experiments to con�rm this.

Speci�cally, we remove di�erent numbers of matches in a simula-

tion data set, train network con�guration models using it, and then

measure the prediction performance. For example, Figure 1 shows

the prediction accuracy provided by DNN and SDA models on D?

when the percentage of matches removed from D1 varies from

0% to 90%. Both DNN and SDA provide lower prediction accuracy

when more matches are removed fromD1. The prediction accuracy

achieved by DNN is 33.45% when no match is removed from D1.

The prediction accuracy decreases to 10.15% when 90% of matches

are removed. Similarly, the prediction accuracy provided by SDA

decreases from 70.02% to 59.31% when the percentage of matches

removed from D1 increases from 0% to 90%. More importantly,

we observe very high correlation coe�cients between the number

of matches and the prediction accuracy. The Pearson correlation

coe�cient under DNN is 0.997 and the one under SDA is 0.984.

The results show that the number of matches in a simulation data

set is a good metric to re�ect how much network con�guration

knowledge learned from it can be applied in the physical data.

3.3 Results and Observations

To better understand the simulation-to-reality gap in network con-

�guration, we count the number of matches under each network

con�guration and divide each number by the number of data tuples

under a con�guration (75) to calculate the percentages of matches.

Figure 2 plots the percentage of matches under each network con-

�guration (from 1 to 88). As Figure 2 shows, D1 does not have

any matches under 29 network con�gurations. For example, D1

does not have any matches under Con�guration 70, thus it is very

unlikely for the machine learning model trained with D1 to make

good predictions under this con�guration. D2 also does not con-

tain any matches under 29 con�gurations. The small percentages of

matches under more than half of 88 network con�gurations explain

the cause of the simulation-to-reality gap in network con�gura-

tion. The network con�guration model learned from simulations

cannot work well in a physical network because of the domain

discrepancy. Such domain discrepancy results from the fact that

the theoretical models adopted by the simulators cannot precisely

capture extensive uncertainties and variations such as interference

in real-world deployments. To investigate whether it is bene�cial

to use the data produced by multiple simulators for training, we

combine D1 and D2, count the matches in the combined set D1+2,

and compare them against the ones in D1. We divide the increased

matches under each network con�guration by 75 to compute the

increased percentage of matches. Figure 3 plots the increased per-

centage of matches under each con�guration. As Figure 3 shows,

compared to D1, D1+2 contains more matches under 10 network

con�gurations. For example, D1+2 gets �ve more matches (6.67%)

under Con�guration 2. More importantly, under Con�guration 79

and 85, D1+2 contains matches (79: 4.0%; 85: 5.33%) while D1 does

not have any matches. D2 is generated by ns-3, which adopts a

theoretical model di�erent from that of TOSSIM. Such a model

provides the knowledge, which cannot be learned from D1. There-

fore, D1 and D2 provide complementary knowledge on network

con�guration.

Observation 1: The data produced by multiple simulators carries

more matches than a single simulation data set, which can help on

better closing the simulation-to-reality gap in network con�guration.

As Figure 3 shows, the combined set does not have any matches

under some network con�gurations. This emphasizes the impor-

tance of using the data collected from the physical network to

learn the missing knowledge. Therefore, it is important to develop

a solution that makes good use of the data generated by multiple

simulators and the one collected from the physical network. A naive

solution is to combine the data generated from multiple simulators

and use it as the single source domain for domain adaptation. To

investigate the performance of such an approach, we use half data

from the combined set as the training data and employ SDA to

Cheng, et al.

Figure 2: The percentage of matches under each network con�guration in D1 or D2.

Figure 3: The increased percentage of matches under each network con�guration in D1+2.

Figure 4: Prediction accuracy on physical data when using

di�erent simulation data sets.

perform training. Figure 4 plots the prediction accuracy when we

use the combined D1 and D2, together with di�erent amounts of

data traces collected from the physical network for training. As

Figure 4 shows, SDA cannot take the advantage of the combined

data and its prediction accuracy when using the combined data is

lower than the one when only using D1 or D2. For example, when

SDA uses D1, D2, and 88 data traces (one data trace under each of

88 con�gurations) collected from the physical network for training,

SDA achieves 51.67% accuracy. As a comparison, it provides 55.98%

accuracy without using D2 and 53.22% accuracy by using D2.

Observation 2: Simply mixing the data generated by multiple simu-

lators for domain adaptation cannot e�ectively improve accuracy.

4 MARIA

Motivated by our observations in Section 3.3, we develop MARIA, a

multi-source domain adaptation solution for wireless network con-

�guration, which uses a large amount of simulation data generated

by multiple simulators together with a small amount of physical

data to close the simulation-to-reality gap. Speci�cally, we consider

" source domains (the data produced by" simulators):DB
1 ,D

B
2 , ...,

DB
"
, and one target domainDC (the data collected from the physical

network). We name source domain as simulation domain and target

domain as physical domain in the rest of this paper. Each simulation

domain consists of data traces DB
:
= {(GB8 , ~

B
8)}

ĩ

ġ

8=1, : = 1, 2, ..., " ,

where GB8 is the 8-th input vector of performance requirements, ~B8 is

the corresponding network con�guration label, and # B
:
is the num-

ber of the data traces in the :-th simulation domain. The physical

domain consists of data traces DC
= {(GC8 , ~

C
8)}

Ī

8=1, where #
C is the

number of the data traces in the physical domain. The creation of

DC is much more costly than creating DB
:
, therefore our goal is to

learn a good classi�er 5\ from the data traces in multiple simulation

domains and a little physical domain data (# C j # B
:
).

Inspired by the e�orts that employ multi-source domain adap-

tation in surface electromyography physiological signal process-

ing [7, 48], video concept detection [14], image classi�cation [51]

as well as the theoretical analysis [4, 34], MARIA trains the clas-

si�er 5\ based on the weighted simulation domain data and a few

physical domain data traces. Speci�cally, the classi�er 5\ is learned

by optimizing the following loss function:

L(\) = L?ℎ~B820; + ULB8<D;0C8>= (1)

where \ denotes the parameters of the classi�er learned during

the minimizing loss process, U is a weighting factor, which is used

to achieve the balance between the loss on physical domain data

L?ℎ~B820; and the loss on simulation domain data LB8<D;0C8>= .

Classi�cation loss on physical domain L?ℎ~B820; : L?ℎ~B820;
allows the classi�er to learn from a small amount of physical domain

data by employing the cross-entropy loss:

L?ℎ~B820; = − E
(x,y) ∈DĪ

~ log(5\ (G)) (2)

where y is the one-hot label and 5\ (G) is the prediction provided

by the classi�er.

Domain Alignment loss LB8<D;0C8>= : LB8<D;0C8>= helps the clas-

si�er learn from a larger amount of the simulation data generated

by di�erent simulators. Although the distribution of data traces in

each simulation domain is di�erent from the one in the physical

domain, each simulation domain shares a few matches with the

Configuring Industrial Wireless Mesh Networks via Multi-Source Domain Adaptation

physical domain. Therefore, the classi�er can learn more knowl-

edge on the input feature space and the corresponding classi�cation

label of the physical domain when training with the matches of

di�erent simulation domains.

Motivated by the observation that di�erent simulation domains

share di�erent numbers of matches with the physical domain (as

Figure 2 shows), MARIA employs a set of weighting factors to di�er-

entiate the contributions of di�erent simulation domains to the loss

LB8<D;0C8>= and uses such a weighting scheme to ensure the better

use of those simulation domains that contain more matches and less

use of the simulation domains that contain many duplicated even

con�icted data traces in the training process. Speci�cally, MARIA

uses the maximum mean discrepancy (MMD) criterion proposed

in [5] to measure the relevance between each simulation domain

and the physical domain. The core idea of MMD is to match two

distributions based on the mean of features in the reproducing

kernel Hilbert space (RKHS) after mapping them to RKHS. By com-

puting MMD between each simulation domain and the physical

domain, MARIA de�nes the weighting factor V8 and assigns it to its

corresponding cross-entropy loss. Finally, LB8<D;0C8>= is decided

by calculating the function:

LB8<D;0C8>= = −

"
∑

8=1

V8 E
(x,y) ∈Dĩ

ğ

~ log(5\ (G)) (3)

where V8 denotes the relevance between D
B
8 and DC . To compute

V8 , MARIA �rst measures the MMD value between each simulation

domain and the physical domain, applies the exponential function

to each measured value, and then adds them up. Finally, V8 is calcu-

lated according to the ratio of the single MMD value to the sum of

all values. Speci�cally, V8 is adjusted by calculating the following

function:

V8 =
exp(−W (�8B (DB

8 ,D
C))X)

∑"
8=1 exp(−W (�8B (D

B
8 ,D

C))X)
(4)

where �8B (DB
8 ,D

C) denotes the measured MMD value between

DB
8 and DC , W and X are the coe�cients to adjust the spread of

�8B (DB
8 ,D

C).

Our implementation adopts a DNN architecture that consists of

three fully connected layers. It uses !, �, and � as the input features

of G8 , two hidden layers, and the recti�ed linear unit (ReLU) as

the activation function for those hidden layers. In addition, our

implementation sets the number of neurons in the output layer

to 88 (equal to the number of all distinct network con�guration

categories) and employs the softmax function as the activation

function for the output layer. While considering the number of

total data traces, our implementation sets the batch size equal to

the number of data traces and updates the parameters \ once in

each epoch to speed up the training process. Our implementation

employs the Adam optimizer [24] to optimize the parameters \ and

con�gures the learning rate to 0.12. We set W = 1000 and X = 2

when we compute V8 for each simulation domain before optimizing

the loss function L(\).

5 SIMULATION DATA SELECTION

MARIA is designed to train network con�guration models based on

input simulation and physical data. However, it is not always bene-

�cial to use all available data for training because some simulation

data sets may not carry unique network con�guration knowledge.

Moreover, having more simulation domains increases the di�culty

of optimizing a good network con�guration model.

Inspired by the insights learned in Section 3.3, we develop a

method that selects the simulation data sets for training based on

a small amount of physical domain data in DC . To reduce the dif-

�culty of optimizing the loss, our method minimizes the number

of simulation domains used for training and makes sure that the

selected simulation data sets include all matches. Speci�cally, we

consider" sets:): , : = 1, 2, ..., " , where): is associated with the

:-th domain DB
:
and includes all matches when comparing DB

:
with DC . The number of sets" is equal to the number of simula-

tion domains. The union of those" sets contains all matches in all

simulation data, namely the universe. Therefore, the simulation do-

main selection problem can be formulated as the set cover problem,

which aims to identify the smallest sub-collection of those" sets

whose union equals the universe. We have proved the problem to

be NP-hard and omitted the proof here due to space limit.

Algorithm 1: Simulation Data Selection Method

Input :)1,)2, ...,)"
Output :a sub-collection

1 Initialize = = 0, 2>D=C [] = {0}, (= {)1,)2, ...,)" };

2 ∀?, @ ∈ [1 .. "], initialize*
@
? =)? ∩)@ if ? ≠ @; otherwise

*
@
? = ∅;

3 for 8 ← 1 to" do

4 for 9 ← 1 to" do

5 If*
9
8 ≠ ∅, 2>D=C [8] = 2>D=C [8] + 1;

6 If)8 =
⋃"

9=1*
9
8 , = = = + 1;

7 for = g 1 do

8 if = > 1 then

9 if ∃)? ¦)@ and)? ,)@ ∈ ((?, @ ∈ [1 .. "], ? ≠ @)

then

10 (= (−
{

)?
}

;

11 else

12 Identify)? among the = sets, where 2>D=C [?] is

the least ;

13 (= (−
{

)?
}

;

14 else

15 (= (−
{

)?
}

; //)? is the only one

16 ∀A ∈ [1 .. "],* A
? = *

?
A = ∅;

17 = = 0, 2>D=C [] = {0};

18 for 8 ← 1 to" do

19 for 9 ← 1 to" do

20 If*
9
8 ≠ ∅, 2>D=C [8] = 2>D=C [8] + 1;

21 If)8 ∈ (and)8 =
⋃"

9=1*
9
8 , = = = + 1;

22 Output (;

Our simulation data selection method removes each simulation

data set, which does not contain unique matches, from the initial

Cheng, et al.

"-set collection one by one. Algorithm 1 illustrates our method

with a collection of simulation data sets)1,)2, ...,)" as its input.

Algorithm 1 �rst initializes a counter = for the number of redundant

sets, an array 2>D=C , and a collection of sets ((line 1). It also initial-

izes the intersection between each pair of sets* (line 2). Then, it

traverses each pair of sets in a two-level nested loop and counts

the number of non-empty intersections for each set (line 3-5). If a

set does not contain unique matches, this set is a candidate that

can be removed from (and = increases by one (line 6). There may

be more than one candidate. If any set)? is a subset of)@ ,)? is re-

moved from (to eliminate the inclusion relation (line 9-10). When

a redundant set is removed, the sets that represent this redundant

set may have to be kept in the �nal sub-collection. To minimize the

�nal sub-collection, Algorithm 1 sorts 2>D=C and removes)? with

the least value in 2>D=C among = candidates (line 12-13). If)? is

the only candidate, it is removed (line 15). Then, the intersections

associated with)? are emptied (line 16). Accordingly, the counter

= and 2>D=C are updated to check whether there still exists any

redundant set (line 18-21). Finally, the collection (is the output

(line 22). Therefore, the simulation data sets associated with the

sets in (are selected for MARIA.

6 EVALUATION

We perform a series of experiments to examine the performance

of MARIA on identifying good network con�gurations. We �rst

evaluate the prediction accuracy of MARIA and compare it against

the one provided by the state-of-the-art method SDA [46] (see

Section 6.1). We change the data used by SDA to create multiple

baselines. We then apply the network con�gurations selected by

MARIA on a physical network and measure its performance (see

Section 6.2). In addition, we investigate the e�ects of di�erent loss

functions and simulation domain data size on the performance of

MARIA (see Section 6.3 and 6.4) and study how our simulation

data selection a�ects MARIA (see Section 6.5). Finally, we validate

the performance of MARIA by introducing a validation stage (see

Section 6.6).

We run MARIA and baselines on the data introduced in Sec-

tion 2.2. Speci�cally, we use D1, D2, D3, and D4, which are gen-

erated by TOSSIM, ns-3, Cooja, and OMNeT++, respectively, for

training. We divide 6,600 physical domain data traces into two sets:

3,960 traces (60% of the data) for training and 2,640 traces (40% of

the data) for testing. We train the network con�guration model us-

ing the simulation domain data and the training set of the physical

domain data, and evaluate the model using the testing set of the

physical domain data. We implement our neural network under

the framework provided by PyTorch. In each iteration, our neural

network is trained with all data in the training set and all parame-

ters are updated accordingly. We employ the program provided by

Shi et al. [46] as our baseline implementation and adopt its default

settings.

6.1 Performance of MARIA

We �rst evaluate the prediction accuracy of MARIA and compare it

against the baselines. Our simulation data selection method selects

D1 and D2 for MARIA as its input. To ensure fair comparisons,

we also use D1 and D2 for SDA and vary the data used as the

Figure 5: Prediction accuracy of di�erent methods when one

to 10 shots of physical domain data, together with the simula-

tion domain data, are used for training. The black dotted line

indicates the accuracy provided by the DNN model trained

with 35 shots of physical domain data.

single simulation domain to create three baselines: (i) using D1

(named SDA-TOSSIM), (ii) using D2 (named SDA-ns-3), and (iii)

using the combination of D1 and D2: half from D1 and half from

D2 (named SDA-mixed). We de�ne 88 data traces (one data trace

under each network con�guration) as one shot of data. Figure 5

plots the prediction accuracy of di�erent methods when one to 10

shots of physical domain data, together with simulation domain

data, are used for training. When only one shot of physical domain

data (88 data traces) is used for training, the prediction accuracy

provided by MARIA is 58.18%. Our three baselines provide similar

performance. The highest accuracy provided by three baselines is

55.98%. None of these methods can perform well when they use

a single shot of physical domain data for training. This con�rms

the observation that there exist signi�cant performance variations

when the network uses the same con�guration due to runtime

dynamics and multiple shots of physical data are needed for ef-

fective domain adaptation [45]. The results also show that blindly

exploring the parameter space (e.g., using a brute-force method)

would require a large amount of physical domain data (thousands

of experimental runs on the physical network) to identify a good

con�guration. Collecting one sample under each con�guration is

not enough to produce a good model. After more physical domain

data is used for training, the prediction accuracy of all methods

increases. As Figure 5 shows, MARIA consistently achieves the

best performance. For example, when using three shots of physical

domain data, MARIA provides 75.68% prediction accuracy, while

SDA-TOSSIM, SDA-ns-3, and SDA-mixed provide 65.76%, 67.15%,

and 64.85% accuracy, respectively. When �ve shots of physical do-

main data (440 data traces) are used for training, MARIA achieves

80.45% prediction accuracy, which is close to the 80.39% accuracy

provided by the DNNmodel that is trained with 35 shots of physical

domain data (3,080 data traces). As a comparison, SDA-TOSSIM,

SDA-ns-3, and SDA-mixed provide 70.56%, 67.72%, and 69.75% accu-

racy, respectively, when �ve shots of physical domain data are used

for training. The reason behind is that di�erent simulators employ

di�erent models to capture the e�ects of ambient environments

and the network con�guration knowledge o�ered by di�erent sim-

ulators is complementary to each other. MARIA outperforms the

baselines thanks to its capability of taking advantage of the diverse

network con�guration knowledge o�ered by multiple simulators.

Configuring Industrial Wireless Mesh Networks via Multi-Source Domain Adaptation

Figure 6: Energy consumption and time consumption of col-

lecting di�erent amounts of physical data from a physical

network with 50 devices.

Figure 7: Time consumption of di�erent methods when dif-

ferent amounts of physical data are used for training.

Using a small amount of physical domain data to provide a good

model represents a very important feature of MARIA because the

data collection from a physical network is very time and energy

consuming. Figure 6 plots the energy and time consumption of

collecting physical domain data from a network with 50 devices. As

Figure 6 shows, collecting �ve shots of physical domain data con-

sumes 1,503� and takes 6.11ℎ>DAB , while the collection of 10 shots of

physical domain data consumes 3,150� and takes 12.22ℎ>DAB . As a

comparison, it consumes 13,974� and takes 54.99ℎ>DAB to collect 45

shots of physical domain data to train the DNNmodel for the 82.92%

accuracy. As Figure 5 shows, the prediction accuracy of all methods

increases slowly when more than �ve shots of physical domain data

are used for training. For example, the accuracy provided byMARIA

increases slightly from 80.45% to 82.70% and the accuracy provided

by SDA-TOSSIM, the one providing the best performance among

three baselines, increases from 70.56% to 71.74%, when we increase

the physical domain data used for training from �ve shots to 10

shots. Besides, the low accuracy provided by SDA-mixed also shows

that simply mixing the data generated by di�erent simulators for

training does not work well. This is because many duplicated even

con�icted data traces are also added into the training data, which

signi�cantly increases the di�culty of optimizing the classi�er.

MARIA is designed to be lightweight. We then evaluate the

e�ciency of MARIA by measuring its runtime overhead. We run all

methods on a server equipped with a 2.6GHz quad-core processor

and measure the training time. Figure 7 plots the time consumption

of di�erent methods when di�erent amounts of physical domain

data are used for training. As Figure 7 shows, MARIA consumes

slightly more time than the baselines when three, four, and �ve

shots of physical domain data are used for training. The slight

increases in time consumption are in exchange for a proportionally

much-larger increase in prediction accuracy. More importantly, the

time consumption of MARIA increases slowly when more physical

domain data is used for training, while the time consumption of

all baselines increases sharply. For example, the time consumed by

MARIA increases from 264B to 312B when we increase the physical

domain data from �ve shots to 10 shots. As a comparison, the

time consumed by SDA-TOSSIM increases from 253B to 718B . This

represents another very important feature of MARIA, which results

from the fact that our model is trained with all data traces of the

training set in each iteration while the baselines only use part of

the data traces in the training set during each iteration.

6.2 Validation on a Physical Network

To demonstrate the practicality of MARIA, we apply the network

con�gurations selected by MARIA on a physical network that con-

sists of 50 devices and measure the network performance including

the end-to-end reliability, the end-to-end latency, and the battery

lifetime. We run the open-source implementation of WirelessHART

networks provided by Li et al. [55] and con�gure multiple data

�ows. We run the experiments under di�erent network topologies

by varying the number of data �ows and the locations of sensors

and actuators. When performing the experiments, we �rst inject

di�erent network performance requirements into MARIA, apply

the network con�gurations selected by our model on the physical

network, and then examine whether the network that uses the

selected parameters can provide the desirable performance. Table 1

lists the network con�gurations selected by our model based on

�ve di�erent sets of network performance requirements. We repeat

experiments under each network con�guration 100 times on the

physical network. Figure 8 plots the boxplots of latency, battery

lifetime1, and reliability when deploying �ve sets of network con-

�gurations selected by our model. As Figure 8 shows, when the

network uses the con�gurations selected by our model, its perfor-

mance meets the requirements speci�ed by the application (listed

in Table 1). For example, the latency, battery lifetime, and relia-

bility requirements are 165<B , 21530~, and 98%, respectively, in

the �rst testing case (ID = 1). When employing the network con-

�guration selected by our model (87% as the PRR threshold, three

physical channels, and three transmission attempts per packet), the

median values of latency, battery lifetime, and reliability measured

from the network are 160.80<B , 217.9330~, and 100%, respectively,

which meet all speci�ed requirements. Similarly, the latency, bat-

tery lifetime, and reliability requirements are 180<B , 20530~, and

96%, respectively, in the third case (ID = 3). When the network uses

the selected con�guration (87% as the PRR threshold, four physical

channels, and two transmission attempts per packet), the network

achieves the median latency of 164.13<B , the median battery life-

time of 207.0530~, and the median reliability of 98.0%, which meet

all speci�ed requirements. These results show that the network

con�gurations selected by MARIA can help the network achieve

desirable performance.

1The battery lifetime is calculate according to the assumption that each device is
powered by two Lithium Iron AA batteries with a total capacity of 42,700� , the time
duration of radio activities, and the power consumption of the radio in each state
provided by the radio chip data sheet [10].

Cheng, et al.

Table 1: Five Example Network Con�gurations Selected by Our Model.

Case ID
Performance Requirement Network Con�guration

Latency (ms) Battery lifetime (day) Reliability (%) PRR threshold (%) # of channels # of Tx attempts

1 165 215 98 87 3 3

2 160 210 96 90 3 2

3 180 205 96 87 4 2

4 220 225 95 90 7 2

5 120 200 98 84 2 3

(a) End-to-end latency. (b) Battery lifetime. (c) End-to-end reliability.

Figure 8: Measured network performance when the network con�gurations selected by our model are used. Central mark

in box indicates median; bottom and top of box represent the 25th percentile and 75th percentile; red dots indicate outliers;

whiskers indicate the range that excludes outliers.

Figure 9: Prediction accuracy provided by MARIA without

the loss function LB8<D;0C8>= .

6.3 E�ect of Di�erent Loss Functions

To investigate the e�ects of di�erent loss functions on the perfor-

mance of MARIA, we repeat the experiments by disabling one loss

function in each run. We �rst remove all simulation domain data

and disable the loss function LB8<D;0C8>= de�ned in Eq. 3. Figure 9

plots the prediction accuracy when we disable LB8<D;0C8>= and

use di�erent shots of physical domain data for training. As Fig-

ure 9 shows, without using LB8<D;0C8>= , the accuracy provided by

MARIA is 71.97% when �ve shots of physical domain data are used

for training. As a comparison, MARIA achieves 80.45% accuracy

with both losses enabled. Without using LB8<D;0C8>= , MARIA must

use �ve more shots of physical domain data to achieve similar pre-

diction accuracy (80.03%). The results show that the loss function

LB8<D;0C8>= plays an important role in enhancing the prediction

accuracy, especially when only a small amount of physical domain

data is available for training.

Figure 10: Prediction accuracy provided by MARIA without

the loss function L?ℎ~B820; .

We then remove all physical domain data traces and disable the

loss function L?ℎ~B820; de�ned in Eq. 2. Figure 10 plots the predic-

tion accuracy provided by MARIA without using L?ℎ~B820; when

di�erent numbers of simulation domain data traces are used for

training. As a comparison, we plot the accuracy achieved byMARIA

when it uses both loss functions and one shot of physical domain

data for training in Figure 10. As Figure 10 shows, the prediction

accuracy increases from 34.35% to 36.38% when the number of data

traces increases from 880 to 7,920. This is because the number of

matches increases when more simulation domain data is used for

training. When more than 7,920 simulation data traces are used

for training, the accuracy increases slightly as the newly added

data includes very few unique matches. For example, the prediction

achieved by MARIA without L?ℎ~B820; is 36.52% when 13,200 data

traces are used for training. As a comparison, the accuracy provided

by MARIA with both loss functions is signi�cantly higher when it

uses only one shot of physical domain data. For example, MARIA

achieves 56.93% accuracy when it uses 880 simulation data traces for

Configuring Industrial Wireless Mesh Networks via Multi-Source Domain Adaptation

Figure 11: Prediction accuracy when we use di�erent num-

bers of simulation data traces.

training and 59.12% accuracy when it uses 13,200 simulation data

traces. The results show the signi�cant e�ect of the loss function

L?ℎ~B820; on the performance of MARIA.

6.4 E�ect of Simulation Domain Data Size

To study the e�ect of the size of simulation domain data on the

performance of MARIA, we repeat the experiments when di�erent

numbers of simulation data traces (a half fromD1 and the rest from

D2) and �ve shots of physical domain data are used for training.

Figure 11 plots the prediction accuracy provided by MARIA when

we increase the total number of simulation data traces from 880

to 13,200. As Figure 11 shows, the prediction accuracy increases

when we add more simulation data traces into the training set. For

example, MARIA achieves 77.6% accuracy when using 880 simula-

tion data traces and 80.34% accuracy when using 6,160 simulation

domain data traces. After using more than 6,160 data traces, the

prediction accuracy achieved by MARIA increases slowly. For in-

stance, when 13,200 simulation data traces are used for training, the

prediction accuracy is 82.00%. This is because the newly added data

traces introduce a small amount of unique matches when the size

of simulation domain data is large. The results show that MARIA

can achieve a high accuracy when su�cient simulation domain

data and a few physical domain data traces are used together for

training.

6.5 E�ect of Our Simulation Data Selection

Method

To examine the e�ect of our simulation data selection method on

the performance of MARIA, we disable it and manually create

11 di�erent simulation domain combinations by including some

or all of those four data sets (six combinations by including two

data sets, four combinations by including three data sets, and one

combination by including all four data sets). We then use each

of 11 simulation domain combinations together with �ve shots of

physical domain data (440 traces) to train the network con�guration

model through MARIA. To ensure fair comparisons, we let each

simulation domain combination include 13,200 traces. Figure 12

plots the accuracy provided by MARIA when it uses each of 11

combinations and one single simulation domain for training.

As Figure 12 shows, MARIA achieves the best performance

(82.00% accuracy) when it uses D1 (generated by TOSSIM) and

D2 (generated by ns-3) for training. As a comparison, the model

that usesD3 (generated by Cooja) andD4 (generated by OMNeT++)

Figure 12: Prediction accuracy when the simulation domains

consist of the data sets generated by di�erent simulators.

for training provides 76.55% accuracy. This is because the combina-

tion of D1 and D2 includes more matches than the combination

of D3 and D4. The results con�rm the correctness of the selection

made by our method. Figure 12 also shows that using the data from

three or all four simulators does not provide better performance.

For instance, MARIA provides 80.38% accuracy when it uses D1,

D2, and D4 for training and 79.58% accuracy when it replaces D4

with D3. The accuracy of our model is only 78.90% when using

the data generated by all simulators. The results show that blindly

introducing more simulation domains cannot improve the perfor-

mance of MARIA. This is because the combination of D1 and D2

already includes all matches in the simulation data and the di�culty

of optimizing the classi�er among multiple simulation domains and

the physical domain increases when more simulation domains are

introduced. The results emphasize the importance of our simula-

tion data selection method. Besides, MARIA provides the lowest

prediction accuracy (72.01%) when it uses the data produced by a

single simulator for training. The results highlight the bene�t of

using the simulation data gathered from multiple simulators.

To further validate our simulation data selection method, we

vary the data in the simulation data sets, run Algorithm 1 to select

simulation data, and compare the selections against the optimal

ones. Speci�cally, we remove di�erent amounts of data from one

data set and combine it with the other sets to create various simu-

lation data combinations. Under each combination, we randomly

remove a certain ratio of data from one data set 1,000 times and

compare the simulation data sets selected by Algorithm 1 against

the optimal selections. If the selection provided by our simulation

data selection method is the same with the optimal selection, we

de�ne it as a correct selection. Figure 13 plots the selection accuracy

(the number of correct selections divided by 1,000) when di�erent

ratios of data (0% to 90%) are removed from D1, D2, D3, and D4,

respectively. As Figure 13 shows, the accuracy is always 100% when

the data removal from D1 ranges from 0% to 70%. After that, the

accuracy decreases slightly to 99.90% when 80% of data is removed

from D1 and �nally reaches 99.60% when 90% of data is removed

from D1. When more data is removed, the chance for no unique

matches in D1 increases. Similarly, the accuracy decreases from

100% to 99.90% when 60% of data is removed from D2. It further

decreases to 98.10% when 90% of data is removed D2. As a compar-

ison, the accuracy is consistently 100% when we remove data from

D3 orD4. They both are proper subsets ofD1 orD2, therefore the

data removal does not result in any change on unique matches. The

Cheng, et al.

Figure 13: Selection accuracy of our data selection method

when we vary data in D1, D2, D3, and D4, respectively.

Figure 14: Prediction accuracy with the validation stage.

results demonstrate the e�ectiveness of our data selection method

in selecting the best-suited simulation data sets for MARIA.

6.6 Performance Validation

Finally, we repeat our experiments with a validation stage to further

validate the performance of MARIA. We use the same simulation

domain data as presented in Section 6.1, and divide 6,600 physical

domain data traces into three sets: training set (60% of the data),

validation set (20% of the data), and testing set (20% of the data).

We train the network con�guration model using the simulation

data and the training set of the physical domain data, validate the

model on the validation set of the physical domain data, and then

evaluate the optimal model validated using the testing set of the

physical domain data. We randomly select the data samples from

the physical domain data and put them into those three data sets

and repeat the experiments to eliminate the e�ect of data partitions

on the results. Figure 14 plots the prediction accuracy achieved by

MARIA and the baselines on the testing set from an experimental

run. As Figure 14 shows, MARIA consistently achieves the best

performance. For example, MARIA achieves 77.65% prediction ac-

curacy when �ve shots of physical domain data (440 data traces)

are used for training. As comparisons, SDA-TOSSIM, SDA-ns-3, and

SDA-mixed provide 67.42%, 67.35%, and 68.18% accuracy, respec-

tively. We observe similar results when we split the physical data

di�erently. The experimental results con�rm that the prediction

accuracy provided by MARIA is not resulted from over�tting.

7 RELATED WORK

Signi�cant e�orts have been made in the literature to model the

characteristics of wireless sensor networks (WSNs) and optimize

network con�gurations through mathematical techniques such as

convex optimization [32], game theory [1], and meta heuristics [43].

For example, the characteristics of low-power wireless links have

been studied empirically with di�erent platforms, under varying

experimental conditions, assumptions, and scenarios [3], and net-

work con�guration methods have been developed to improve the

performance of WSNs by adapting a few parameters in the physi-

cal and media access control (MAC) layers [12, 13, 16, 42, 52, 62].

As wireless deployments become increasingly hierarchical, hetero-

geneous, and complex, a breadth of recent research has reported

that resorting to advanced machine learning techniques for wire-

less networking presents signi�cant performance improvements

compared to those traditional methods. For instance, deep learning

has been used to automatically uncover correlations that would

otherwise have been too complex to be extracted by human ex-

perts [6, 26, 36, 59] and reinforcement learning has been employed

to enable network self-con�guration [11, 23, 28, 33, 40, 53, 57]. The

key component behind the remarkable success of those data-driven

methods is the capability of optimizing a huge number of free

parameters to capture extensive uncertainties, variations, and dy-

namics in real-world wireless deployments, which not only yield

complex features, such as communication signal characteristics,

channel quality, queuing state of each device, and path conges-

tion situation, but also have many network control targets, such

as resource allocation, queue management, and congestion con-

trol. However, data collection from many wireless deployments,

including the ones in industrial facilities, is costly; therefore it is

di�cult to obtain su�cient information for deep learning to train

a good model or reinforcement learning to identify an optimal

policy for network con�guration. In such scenarios, the bene�ts

of employing learning-based methods that require much data are

outweighed by the costs. To address this issue, there have been

increasing interests in using network simulations to con�gure phys-

ical networks [29, 47]. For instance, Liu et al. develop a framework,

which integrates the process control system model and the network

model into a uni�ed discrete-event simulator and leverages it to

identify good network con�gurations [29]. Slabicki et al. introduce

an open-source framework for end-to-end LoRa simulations and

propose to dynamically optimize link parameters for scalable and

e�cient network operations [47]. Unfortunately, a recent study

shows that the network con�guration selected according to simula-

tions may fail to help the physical network achieve the desirable

performance due to the simulation-to-reality gap [46]. This paper

aims to close such a gap and provide a new solution that learns

a good predictive model for network con�guration using a large

amount of inexpensive simulation data and a small number of costly

physical measurements.

Domain adaptation has been used to narrow the gap between

di�erent domains in computer vision [51, 54, 58], natural language

processing [39], magnetic resonance imaging [18], network per-

formance modeling [27], structural health monitoring [17], and

building occupancy estimation [2, 60]. Domain adaptation aims

to learn from one or multiple source domains, together with or

without a target domain, and then generate a model that performs

well on the target domain. Generally, the source domain data and

the target domain data share the same space for both input features

and labels, but they do not share the same distribution. Over the

Configuring Industrial Wireless Mesh Networks via Multi-Source Domain Adaptation

past decades, many single-source domain adaptation methods have

been proposed to address the domain shift [25, 30]. However, there

have been very few studies looking into the use of domain adap-

tation to address the domain shift issue in network con�guration.

Recently, Shi et al. develop SDA, which leverages a teacher-student

neural network to close the simulation-to-reality gap in network

con�guration [46]. However, SDA cannot close the gap when using

the data produced by a single simulator and leaves a more than 10%

accuracy gap. More recently, Cheng et al. propose a meta-learning

based solution, which adapts network con�guration at runtime.

However, it is not applicable for closing the simulation-to-reality

gap [8]. To our knowledge, this paper represents the �rst systematic

e�ort to explore the bene�t of using the data generated by mul-

tiple simulators to close the simulation-to-reality gap in network

con�guration.

Multi-source domain adaptation [49] has been employed recently

in computer vision [61], natural language processing [19, 39], and

physiological signal processing [7, 48]. For instance, Sun et al. de-

velop a multi-source domain adaptation method, which computes

the weighting factors for multiple sources according to both mar-

ginal and conditional probability di�erences between the source

domains and the target domain [48]. Duan et al. propose to lever-

age a set of pre-computed classi�ers independently learned from

multiple source domains to e�ectively reduce the domain discrep-

ancy [14]. Peng et al. propose to transfer knowledge learned from

multiple source domains to an unlabeled target domain by dynami-

cally aligning moments of their feature distributions [41]. MMD is

employed by those learning methods to measure the discrepancy

between domains and diminish the distribution shift between the

source domain and target domain accordingly [14, 48]. Moreover,

early theoretical analysis provides strong guarantees for represent-

ing the target domain distribution as the weighted combination of

source domain distributions [4, 34]. Inspired by the existing analysis

and methods, we develop the �rst solution that leverages the multi-

source domain adaptation to close the simulation-to-reality gap

in network con�guration. Our experimental results show that our

solution can close the simulation-to-reality gap and signi�cantly

outperform the state-of-the-art method, SDA.

8 DISCUSSIONS ON REAL-WORLD

APPLICATIONS AND GENERALIZATION

This paper aims to provide a solution for engineers to well con�gure

an industrial WMN after they deploy it in the �eld. We recommend

the engineers following six steps to con�gure the network. First,

the engineers should measure the ambient operation environments,

such as collecting noise traces. Second, the engineers should im-

plement the physical network in multiple simulators and then feed

the environmental measurements into those simulators. Third, the

engineers should run simulations in each simulator to measure the

performance of the simulated network with every possible combi-

nation of network parameters. A large amount of simulation data

that carries valuable network con�guration knowledge can be inex-

pensively obtained in this step. Fourth, the engineers should collect

a few performance measurements from the physical network when

it uses each possible combination of network parameters. Collect-

ing the physical data in this step introduces signi�cant overhead

(see Figure 6), which emphasizes the importance of minimizing the

amount of physical data needed for training in our solution. Fifth,

the engineers should train the network con�guration model using

MARIA. Finally, the engineers can con�gure the physical network

in the �eld with the con�guration selected by MARIA based on

the network performance requirements posed by the upper layer

industrial applications.

We expect our solution would a�ect not only industrial WMNs

but other complex wireless networks as it provides a replicable tem-

plate for novel network con�guration strategies. Our data-driven

design is not tied to any speci�c network protocol stack, network

topology, or performancemetric. Moreover, our deep learning based

solution is capable of accepting a large number of tunable parame-

ters and automatically uncovering the correlations between those

parameters and network performance that would otherwise have

been too complex to be extracted by human experts.

9 CONCLUSIONS

In this paper, we present MARIA, a novel multi-source domain

adaptation solution for industrial WMN con�guration. Experimen-

tal results show that MARIA provides 80.45% prediction accuracy

when it uses 6,600 cheaply generated simulation data traces and

440 data traces collected from the physical network for training.

As a comparison, the DNN model trained only with physical data

requires 3,080 costly physical data traces to achieve comparable

prediction accuracy (80.39%).

ACKNOWLEDGMENT

This workwas supported in part by the National Science Foundation

under grant CNS-2150010.

REFERENCES
[1] Eitan Altman, Thomas Boulogne, Rachid El Azouzi, Tania Jiménez, and Laura

Wynter. 2006. A Survey on Networking Games in Telecommunications. Com-
puters and Operations Research 33, 2 (2006), 286–311.

[2] Irvan B Arief-Ang, Flora D Salim, and Margaret Hamilton. 2017. DA-HOC: Semi-
Supervised Domain Adaptation for Room Occupancy Prediction Using �$2

Sensor Data. In ACM International Conference on Systems for Energy-E�cient
Built Environments (BuildSys).

[3] Nouha Baccour, Anis Koubâa, Luca Mottola, Marco Antonio Zúñiga, Habib
Youssef, Carlo Alberto Boano, and Mário Alves. 2012. Radio Link Quality Es-
timation in Wireless Sensor Networks: A Survey. ACM Transaction on Sensor
Network 8, 4 (2012).

[4] John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
man. 2008. Learning Bounds for Domain Adaptation. In Advances in Neural
Information Processing Systems.

[5] Karsten M. Borgwardt, Arthur Gretton, Malte J. Rasch, Hans-Peter Kriegel, Bern-
hard Schölkopf, and Alex J. Smola. 2006. Integrating Structured Biological Data
by Kernel Maximum Mean Discrepancy. Bioinformatics 22, 14 (2006), e49–e57.

[6] Xianghui Cao, Lu Liu, Yu Cheng, and Xuemin Shen. 2018. Towards Energy-
E�cient Wireless Networking in the Big Data Era: A Survey. IEEE Communica-
tions Surveys & Tutorials 20, 1 (2018), 303–332.

[7] Rita Chattopadhyay, Qian Sun, Wei Fan, Ian Davidson, Sethuraman Pan-
chanathan, and Jieping Ye. 2012. Multisource Domain Adaptation and Its Appli-
cation to Early Detection of Fatigue. ACM Trans. Knowl. Discov. Data 6, 4 (2012),
26 pages.

[8] Xia Cheng and Mo Sha. 2023. Meta-Learning Based Runtime Adaptation for
Industrial Wireless Sensor-Actuator Networks. In IEEE/ACM International Sym-
posium on Quality of Service.

[9] Cooja. 2021. Source Code of Cooja. https://github.com/contiki-os/contiki/wiki/
An-Introduction-to-Cooja

[10] Crossbow. 2010. TelosB. https://dtsheet.com/doc/1368377/telosb-datasheet---
willow-technologies

[11] Hiba Dakdouk, Erika Tarazona, Reda Alami, Raphaël Féraud, Georgios Z. Pa-
padopoulos, and Patrick Maillé. 2018. Reinforcement Learning Techniques for

Cheng, et al.

Optimized Channel Hopping in IEEE 802.15.4-TSCH Networks. In ACM Interna-
tional Conference on Modeling, Analysis and Simulation of Wireless and Mobile
Systems (MSWIM).

[12] Wei Dong, Chun Chen, Xue Liu, Yuan He, Yunhao Liu, Jiajun Bu, and Xianghua
Xu. 2014. Dynamic Packet Length Control in Wireless Sensor Networks. In IEEE
Transactions on Wireless Communications, Vol. 13.

[13] Wei Dong, Jie Yu, and Pingxin Zhang. 2015. Exploiting Error Estimating Codes for
Packet Length Adaptation in Low-PowerWireless Networks. In IEEE Transactions
on Mobile Computing, Vol. 14.

[14] Lixin Duan, Ivor W. Tsang, Dong Xu, and Tat-Seng Chua. 2009. Domain Adap-
tation from Multiple Sources via Auxiliary Classi�ers. In Annual International
Conference on Machine Learning.

[15] Emerson. 2022. Emerson. https://www.emerson.com/en-us/expertise/
automation/industrial-internet-things/pervasive-sensing-solutions/wireless-
technology

[16] Songwei Fu, Yan Zhang, Yuming Jiang, Chengchen Hu, Chia-Yen Shih, and
Pedro Jose Marron. 2015. Experimental Study for Multi-layer Parameter Con�g-
uration of WSN Links. In IEEE International Conference on Distributed Computing
Systems (ICDCS).

[17] Paul Gardner, Xuanang Liu, and Keith Worden. 2020. On the Application of
Domain Adaptation in Structural Health Monitoring. Mechanical Systems and
Signal Processing 138 (2020), 106550.

[18] Mohsen Ghafoorian, AlirezaMehrtash, Tina Kapur, Nico Karssemeijer, ElenaMar-
chiori, Mehran Pesteie, Charles R. G. Guttmann, Frank-Erik de Leeuw, Clare M.
Tempany, Bram van Ginneken, Andriy Fedorov, Purang Abolmaesumi, Bram
Platel, and William M. Wells. 2017. Transfer Learning for Domain Adaptation in
MRI: Application in Brain Lesion Segmentation. In Medical Image Computing
and Computer Assisted Intervention.

[19] Han Guo, Ramakanth Pasunuru, and Mohit Bansal. 2020. Multi-Source Domain
Adaptation for Text Classi�cation via DistanceNet-Bandits. In Proceedings of the
AAAI Conference on Arti�cial Intelligence.

[20] IEC. 2017. WIA-FA. https://webstore.iec.ch/publication/32718
[21] IETF. 2020. 6TiSCH: IPv6 over the TSCH mode of IEEE 802.15.4e. https:

//datatracker.ietf.org/wg/6tisch/documents/
[22] ISA100. 2018. ISA100. https://isa100wci.org/
[23] Piumika N. Karunanayake, Andreas Könsgen, Thushara Weerawardane, and

Anna Förster. 2023. Q learning based adaptive protocol parameters for WSNs.
Journal of Communications and Networks 25 (2023). Issue 1.

[24] Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimiza-
tion. In International Conference on Learning Representations (ICLR).

[25] Brian Kulis, Kate Saenko, and Trevor Darrell. 2011. What You Saw Is Not What
You Get: Domain Adaptation Using Asymmetric Kernel Transforms. In IEEE
Conference on Computer Vision and Pattern Recognition.

[26] D.Praveen Kumar, Tarachand Amgoth, and Chandra Sekhara Rao Annavarapu.
2019. Machine Learning Algorithms for Wireless Sensor Networks: A Survey.
Information Fusion 49 (2019), 1–25.

[27] Hannes Larsson, Farnaz Moradi, Jalil Taghia, Xiaoyu Lan, and Andreas Johnsson.
2023. Domain Adaptation for Network Performance Modeling with and without
Labeled Data. In NOMS 2023-2023 IEEE/IFIP Network Operations and Management
Symposium.

[28] Chi Harold Liu, Qiuxia Lin, and Shilin Wen. 2019. Blockchain-Enabled Data
Collection and Sharing for Industrial IoT With Deep Reinforcement Learning.
IEEE Transactions on Industrial Informatics 15, 6 (2019), 3516–3526.

[29] Yongkang Liu, Richard Candell, Kang Lee, and NaderMoayeri. 2016. A Simulation
Framework for Industrial Wireless Networks and Process Control Systems. In
IEEE World Conference on Factory Communication Systems (WFCS).

[30] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. 2015. Learning
Transferable Features with Deep Adaptation Networks. In Proceedings of the
32nd International Conference on Machine Learning.

[31] Chenyang Lu, Abusayeed Saifullah, Bo Li, Mo Sha, Humberto Gonzalez, Dolvara
Gunatilaka, Chengjie Wu, Lanshun Nie, and Yixin Chen. 2016. Real-Time Wire-
less Sensor-Actuator Networks for Industrial Cyber-Physical Systems. Proc. IEEE
104, 5 (2016), 1013–1024.

[32] Zhi Quan Luo and Wei Yu. 2006. An Introduction to Convex Optimization
for Communications and Signal Processing. IEEE Journal on Selected Areas in
Communications 24, 8 (2006), 1426–1438.

[33] Nguyen Cong Luong, Dinh Thai Hoang, Shimin Gong, Dusit Niyato, Ping Wang,
Ying-Chang Liang, and Dong In Kim. 2019. Applications of Deep Reinforcement
Learning in Communications and Networking: A Survey. IEEE Communications
Surveys and Tutorials 21, 4 (2019), 3133–3174.

[34] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. 2009. Domain
Adaptation with Multiple Sources. In Advances in Neural Information Processing
Systems.

[35] James Manyika, Michael Chui, Jacques Bughin, Richard Dobbs, Peter Bisson,
and Alex Marrs. 2013. Disruptive Technologies: Advances that will Transform
Life, Business, and the Global Economy. http://www.mckinsey.com/business-
functions/digital-mckinsey/our-insights/disruptive-technologies

[36] Qian Mao, Fei Hu, and Qi Hao. 2018. Deep Learning for Intelligent Wireless
Networks: A Comprehensive Survey. IEEE Communications Surveys and Tutorials
20, 4 (2018), 2595–2621.

[37] NSNAM. 2019. ns-3 Network Simulator. https://www.nsnam.org/
[38] OMNeT++. 2021. Source Code of OMNeT++. https://github.com/omnetpp/

omnetpp
[39] Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. 2021. A Survey of the

Usages of Deep Learning for Natural Language Processing. IEEE Transactions on
Neural Networks and Learning Systems 32, 2 (2021), 604–624.

[40] Stephen S. Oyewobi, Gerhard P. Hancke, Adnan M. Abu-Mahfouz, and Adeiza J.
Onumanyi. 2019. An E�ective Spectrum Hando� Based on Reinforcement
Learning for Target Channel Selection in the Industrial Internet of Things. Sensors
19, 6 (2019), 1–21.

[41] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang.
2019. Moment Matching for Multi-Source Domain Adaptation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV).

[42] Yang Peng, Zi Li, Daji Qiao, andWensheng Zhang. 2013. I2C: AHolistic Approach
to Prolong the Sensor Network Lifetime. In IEEE International Conference on
Computer Communications (INFOCOM).

[43] Mauricio G.C. Resende and Panos Pardalos. 2006. Handbook of Optimization in
Telecommunications. Springer.

[44] Mo Sha. 2016. Testbed at the State University of New York at Binghamton.
https://users.cs.�u.edu/%7Emsha/testbed.htm

[45] Junyang Shi, AitianMa, Xia Cheng,Mo Sha, and Xi Peng. 2023. AdaptingWireless
Network Con�guration From Simulation to Reality via Deep Learning-Based
Domain Adaptation. IEEE/ACM Transactions on Networking (2023), 1–16.

[46] Junyang Shi, Mo Sha, and Xi Peng. 2021. Adapting Wireless Mesh Network
Con�guration from Simulation to Reality via Deep Learning based Domain Adap-
tation. In USENIX Symposium on Networked Systems Design and Implementation
(NSDI).

[47] Mariusz Slabicki, Gopika Premsankar, and Mario Di Francesco. 2018. Adap-
tive Con�guration of LoRa Networks for Dense IoT Deployments. In IEEE/IFIP
Network Operations and Management Symposium (NOMS).

[48] Qian Sun, Rita Chattopadhyay, Sethuraman Panchanathan, and Jieping Ye. 2011.
A Two-Stage Weighting Framework for Multi-Source Domain Adaptation. In
Advances in Neural Information Processing Systems.

[49] Shiliang Sun, Honglei Shi, and Yuanbin Wu. 2015. A Survey of Multi-Source
Domain Adaptation. Information Fusion 24 (2015), 84–92.

[50] TOSSIM. 2021. Source Code of TOSSIM. https://github.com/tinyos/tinyos-
main/tree/master/tos/lib/tossim

[51] Hang Wang, Minghao Xu, Bingbing Ni, and Wenjun Zhang. 2020. Learning
to Combine: Knowledge Aggregation for Multi-source Domain Adaptation. In
Computer Vision – ECCV.

[52] Jiliang Wang, Zhichao Cao, Xufei Mao, and Yunhao Liu. 2014. Sleep in the
Dins: Insomnia Therapy for Duty-cycled Sensor Networks. In IEEE International
Conference on Computer Communications (INFOCOM).

[53] Jingjing Wang, Chunxiao Jiang, Kai Zhang, Xiangwang Hou, Yong Ren, and Yi
Qian. 2020. Distributed Q-Learning Aided Heterogeneous Network Association
for Energy-E�cient IIoT. IEEE Transactions on Industrial Informatics 16, 4 (2020),
2756–2764.

[54] Mei Wang and Weihong Deng. 2018. Deep Visual Domain Adaptation: A Survey.
Neurocomputing 312, 27 (2018), 135–153.

[55] WCPS. 2018. Wireless Cyber-Physical Simulator (WCPS). http://wsn.cse.wustl.
edu/index.php/WCPS:_Wireless_Cyber-Physical_Simulator

[56] WirelessHART. 2024. WirelessHART. https://�eldcommgroup.org/technologies/
wirelesshart

[57] Hansong Xu, Xing Liu, Wei Yu, David Gri�th, and Nada Golmie. 2020. Rein-
forcement Learning-Based Control and Networking Co-Design for Industrial
Internet of Things. IEEE Journal on Selected Areas in Communications 38, 5 (2020),
885–898.

[58] Ruijia Xu, Ziliang Chen, Wangmeng Zuo, Junjie Yan, and Liang Lin. 2018. Deep
Cocktail Network: Multi-Source Unsupervised Domain Adaptation with Cate-
gory Shift. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[59] Chaoyun Zhang, Paul Patras, and Hamed Haddadi. 2019. Deep Learning in
Mobile and Wireless Networking: A Survey. IEEE Communications Surveys &
Tutorials 21, 3 (2019), 2224–2287.

[60] Tianyu Zhang and Omid Ardakanian. 2019. A Domain Adaptation Technique
for Fine-Grained Occupancy Estimation in Commercial Buildings. In ACM/IEEE
International Conference on Internet of Things Design and Implementation (IoTDI).

[61] Sicheng Zhao, Guangzhi Wang, Shanghang Zhang, Yang Gu, Yaxian Li, Zhichao
Song, Pengfei Xu, Runbo Hu, Hua Chai, and Kurt Keutzer. 2020. Multi-Source
Distilling Domain Adaptation. In Proceedings of the AAAI Conference on Arti�cial
Intelligence.

[62] Marco Zimmerling, Federico Ferrari, Luca Mottola, Thiemo Voigt, and Lothar
Thiele. 2012. pTunes: Runtime Parameter Adaptation for Low-Power MAC
Protocols. In International Conference on Information Processing in Sensor Networks
(IPSN).

	Abstract
	1 Introduction
	2 Background and Data Sets
	2.1 WirelessHART Networks
	2.2 Configuration-Performance Data Sets

	3 Empirical Study
	3.1 Problem Formulation
	3.2 Experimental Setup
	3.3 Results and Observations

	4 MARIA
	5 Simulation Data Selection
	6 Evaluation
	6.1 Performance of MARIA
	6.2 Validation on a Physical Network
	6.3 Effect of Different Loss Functions
	6.4 Effect of Simulation Domain Data Size
	6.5 Effect of Our Simulation Data Selection Method
	6.6 Performance Validation

	7 Related Work
	8 Discussions on real-world applications and Generalization
	9 Conclusions
	References

