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Abstract
Calibration is a well-studied property of predictors which guarantees meaning-
ful uncertainty estimates. Multicalibration is a related notion — originating in
algorithmic fairness — which requires predictors to be simultaneously calibrated
over a potentially complex and overlapping collection of protected subpopula-
tions (such as groups defined by ethnicity, race, or income). We conduct the first
comprehensive study evaluating the usefulness of multicalibration post-processing
across a broad set of tabular, image, and language datasets for models spanning
from simple decision trees to 90 million parameter fine-tuned LLMs. Our findings
can be summarized as follows: (1) models which are calibrated out of the box
tend to be relatively multicalibrated without any additional post-processing; (2)
multicalibration post-processing can help inherently uncalibrated models and also
large vision and language models; and (3) traditional calibration measures may
sometimes provide multicalibration implicitly. More generally, we distill many
independent observations which may be useful for practical and effective applica-
tions of multicalibration post-processing in real-world contexts. We also release
a python package implementing multicalibration algorithms, available via ‘pip
install multicalibration’.

1 Introduction
A popular approach to ensuring that probabilistic predictions from machine learning algorithms are
meaningful is model calibration. Intuitively, calibration requires that amongst all samples given score
p 2 [0, 1] by an ML algorithm, exactly a p-fraction of those samples have positive label. Calibration
ensures that a predictor has an accurate estimate of its own predictive uncertainty, and is a fundamental
requirement in applications where probabilities may be taken into account for high-stake decisions
such as disease diagnosis (Dahabreh et al., 2017) or credit/lending decisions (Bequé et al., 2017).
Miscalibration can result in undesirable downstream consequences when probabilistic predictions are
thresholded into decisions: if a predictor has high calibration error in disease diagnosis, for example,
the individuals assigned lower predicted probabilities may be unfairly denied treatment. Calibration
has a long history in the machine learning community (Guo et al., 2017; Minderer et al., 2021;
Niculescu-Mizil and Caruana, 2005; Platt et al., 1999), but was arguably first introduced in fairness

contexts by Cleary (1968). More recently, it has appeared in the algorithmic fairness community via
the seminal works of Chouldechova (2017); Kleinberg et al. (2017).

Although calibration ensures meaningful uncertainty estimates aggregated over the entire population,
it does not preclude potential discrimination at the level of groups of individuals: a model may
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be well calibrated overall but systematically underestimate the risk or qualification probability on
historically underrepresented subsets of individuals. For example, Obermeyer et al. (2019) show
differing calibration error rates across groups defined by race for prediction in high-risk patient care
management systems. As pointed out by Obermeyer et al. (2019), in the downstream task of patient
intervention based on thresholds over probabilistic predictions, this can inadvertently lead to differing
rates of healthcare access based on group membership.

To combat these issues, the notion of multicalibration was proposed as a refinement of standard
calibration (Hébert-Johnson et al., 2018). Multicalibration requires that a model be simultaneously
calibrated on an entire collection of (efficiently) identifiable and potentially overlapping subgroups of
the data distribution. A plethora of recent theoretical work has studied and utilized multicalibration to
obtain interesting and important guarantees in algorithmic fairness (Bastani et al., 2022; Devic et al.,
2024; Dwork et al., 2021; Gopalan et al., 2022b,c; Jung et al., 2021; Shabat et al., 2020), learning
theory (Gollakota et al., 2024; Gopalan et al., 2023, 2022a), and cryptography (Dwork et al., 2023).
Desirable consequences of multicalibrated predictors abound: multicalibration can provide provable
guarantees on the transferability of a model’s predictions to different loss functions (omniprediction,
Gopalan et al. (2022a)), the ability of a model to do meaningful conformal prediction (Jung et al.,
2023), and universal adaptability or domain adaptation (Kim et al., 2022).

Although there is a host of theoretical results surrounding multicalibration and related notions, there
is little systematic empirical study of the latent multicalibration error of popular machine learning
models, the effectiveness of multicalibration post-processing algorithms, or even best practices for
practitioners who wish to apply ideas and algorithms from the multicalibration literature. In particular,
theoretical results are often concerned with multicalibration towards subgroups defined by potentially
infinite hypothesis classes (Haghtalab et al., 2023; Hébert-Johnson et al., 2018). In contrast, fairness
practitioners may prioritize the equitable performance of a model over a finite number of protected
subgroups of interest. These groups are typically defined by attributes and meta-data such as race,
sex, ethnicity, etc. (Chen et al., 2023) which are normatively deemed as important. Furthermore,
most existing works applying multicalibration in practical settings only focus on one-off datasets
or examples, and do not validate the algorithm(s) across a variety of datasets and models or with
realistic finite sample restrictions (Barda et al., 2020; La Cava et al., 2023; Liu et al., 2019).

To address these, we consider a “realistic” setup where a practitioner only has a finite amount of data,
and must choose how to partition this data between learning and post-processing in order to achieve
a suitable accuracy and multicalibration error rate over a finite set of subgroups. This allows us to
investigate many important questions pertaining to the practical usage of multicalibration concepts
and algorithms, which, to the best of our knowledge, have not been systematically considered by the
theoretical or practical communities. For example, we use this setup to investigate the effectiveness
of multicalibration post-processing algorithms and hyperparameter choices, as well as the latent
multicalibration properties of popular machine learning models at a large scale.

More broadly, we initiate a systematic empirical study of multicalibration with the goal of answering
two salient questions:

Question 1. In practice, how often and for what machine learning models is multicalibration an
expected consequence of empirical risk minimization?

Question 2. Conversely, when must additional steps be taken to multicalibrate models, how difficult
is this to do in practice, and what steps can be taken to make this easier?

The conventional wisdom is that multicalibration is something that is not naturally achieved by ML
algorithms—this is precisely why many in the community have focused on creating post-processing
algorithms which do achieve it (see, e.g., Gopalan et al. (2022b); Hébert-Johnson et al. (2018), and
Section 1.2). However, recent theoretical results suggest that multicalibration may in fact be an
inevitable consequence of certain empirical risk minimization (ERM) methods with proper losses
(Błasiok et al., 2023; Liu et al., 2019). This apparent conflict between conventional wisdom and recent
results has not been tested in practice. We propose studying Question 1 since we believe that the
current state of multicalibration in ML models should be systematically studied to better understand
the implications for modern learning setups involving large models and fine-tuning. Question 2 is
complementary and focused on investigating the effectiveness of current multicalibration algorithms
on real datasets and illuminating challenges which can guide the development of future algorithms. A
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Figure 1: Test accuracy vs. maximum group-wise calibration error (smECE) averaged over five
train/validation splits for simple neural networks (MLPs) trained on Credit Default, MEPS, and
ACS Income. Each point corresponds to the performance of the multicalibration post-processing
algorithm HKRR (Hébert-Johnson et al., 2018) or HJZ (Haghtalab et al., 2023) with a different choice
of hyperparameters. Standard empirical risk minimization (ERM) for MLPs achieves nearly optimal
accuracy and multicalibration error. Similar plots for each dataset are in Appendix H.

partial answer to one or both of these questions could help practitioners concerned about fairness
understand when they should or should not expect multicalibration algorithms to help.

1.1 Our Contributions
We conduct a large-scale evaluation of multicalibration methods, comparing three families of methods:
(1) standard ERM, (2) ERM followed by a classical recalibration method (e.g. Platt scaling), and (3)
ERM followed by an explicit multicalibration algorithm (e.g. that of Hébert-Johnson et al. (2018)).

We find that in practice, this comparison is surprisingly subtle: multicalibration algorithms do not
always improve worst group calibration error (relative to the ERM baseline), for example. From
the results of our extensive experiments on tabular, vision, and language tasks (involving running
multicalibration algorithms more than 45K times), we extract a number of observations clarifying the
utility of multicalibration algorithms. Most significantly, we find:

1. ERM alone is often a strong baseline, and can often be remarkably multicalibrated without
further post-processing. In particular, on tabular datasets, multicalibration post-processing
does not improve upon worst group calibration error of ERM for simple NNs.

2. Multicalibration algorithms are very sensitive to hyperparameter choices, and can require
large parameter sweeps to avoid overfitting. Furthermore, these algorithms tend to be most
effective in regimes with large amounts of available data, such as image and language
datasets.

3. Traditional calibration methods such as Platt scaling or isotonic regression can sometimes
give nearly the same performance as multicalibration algorithms, and are hyperparameter-
free. Furthermore, compared to multicalibration post-processing, they are extremely compu-
tationally efficient.

We also present numerous practical takeaways for users of multicalibration algorithms, which are
not apparent from the existing theoretical literature, but are crucial considerations in practice. We
believe that our investigations will not only broaden the practical applicability of multicalibration as a
concept and algorithm, but also provide valuable information to the theoretical community as to what
barriers multicalibration faces in practice. To both of these ends, all code used in our experiments
is publicly accessible, and we also release a python package implementing two multicalibration
algorithms which we make available via ‘pip install multicalibration’. 1

Organization. In Section 1.2, we begin with a brief review of related theoretical and experimental
work in the multicalibration literature. We then detail our key experimental design choices in
Section 2, before discussing our results on tabular data in Section 3. We extend our results to more
complex image and language datasets in Section 4. Finally, we conclude with limitations of our
experiments as well as practical takeaways for practitioners of fair machine learning in Section 5.

1Experiment code is available at https://github.com/dutchhansen/empirical-multicalibration,
while code for the python package is available at https://github.com/sid-devic/multicalibration.
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1.2 Related Works: Theory and Practice
The theory of multicalibration is rife with theoretical results investigating the sample complexity
(Shabat et al., 2020), learnability, and computational efficiency of multicalibrated predictors. Hébert-
Johnson et al. (2018) initiated this study by showing that achieving multicalibration over a hypothesis
class C defining protected subgroups requires access to a weak agnostic learner for that class (Shalev-
Shwartz and Ben-David, 2014). From a fairness perspective, however, we are oftentimes—but not
always (Sahlgren and Laitinen, 2020)—interested in subgroups defined by features or metadata,
rather than a generic (and potentially infinite) hypothesis class. Subgroups in practical applications
of algorithmic fairness are often given as input to the machine learning algorithm and intrinsic to a
particular dataset of interest.

Although there are results describing and proving links between ERM and multicalibration in theory
(Błasiok et al., 2024, 2023; Liu et al., 2019), we systematically evaluate when this link holds in
practice across a broad range of models. To the best of our knowledge, only Barda et al. (2021);
La Cava et al. (2022) consider issues when applying multicalibration in practice. Both works are
limited to small models or only run experiments with one or two datasets. Pfohl et al. (2022) measure
subgroup calibration, but do not discuss it at length. In recent work, Detommaso et al. (2024) utilize
multicalibration as a tool to improve the overall uncertainty and confidence calibration of language
models but, to our knowledge, do not focus on or report fairness towards protected subgroups. We
provide additional discussion of related works in Appendix C.

2 Preliminaries
We work in the binary classification setting with a domain X and binary label set Y = {0, 1}, and
assume data is drawn from a distribution D over X ⇥ Y . We consider arbitrary risk predictors
f : X ! �(Y), which return probability distributions over the binary label space. We will measure
the calibration of f on a dataset S 2 (X ⇥ Y)n with the binned variant of the well-known and
standard Expected Calibration Error, which we refer to as ECE (Guo et al., 2017). Throughout, we
measure ECE with 10 bins of equal width 0.1.

Recent work has questioned ECE as a calibration measure, due to consistency and continuity issues
that come with relying on a fixed bin width. To address these, we also report calibration as measured
by smoothed ECE (smECE, Błasiok and Nakkiran (2023)), which (1) can be roughly thought of as
the ECE after applying a suitable kernel-smoothing to the predictions, and (2) satisfies desirable
continuity and consistency guarantees. Importantly, unlike binned ECE, there are no hyperparameters
associated with measuring the smoothed calibration error. A full description of smECE is beyond the
scope of our work—we refer the interested reader to Błasiok and Nakkiran (2023).

Multicalibration requires that a predictor have not only small calibration error overall, but also when
restricted to marginal subgroup distributions of the data. In particular, we assume that there is a (finite)
collection of groups G = {g1, g2, . . . }, where gi ✓ X . We operationalize measuring multicalibration
by reporting the maximum calibration error over a given collection of subgroups G.2 Taking the max
avoids fairness concerns associated with the (weighted) mean of groups of varying size and/or degree
of overlap. Note that the subgroup collection G is context and dataset dependent, and that the groups
within G may be overlapping, capturing desirable intersectionality notions (Ovalle et al., 2023).

2.1 Multicalibration Post-Processing Algorithms and Hyperparameter Selection
In theory, standard calibration post-processing methods like Platt scaling (Platt et al., 1999) or
temperature scaling (Guo et al., 2017) do not guarantee that predictions will be well-calibrated on
protected subgroups. Therefore, in order to achieve multicalibration, Hébert-Johnson et al. (2018)
propose an iterative boosting-style post-processing algorithm which we refer to as HKRR. The
algorithm works by iteratively searching for and removing subgroup calibration violations until
convergence. We detail the algorithm’s hyperparameters and the values we choose for them in
Appendix F.1, and note that we perform a relatively wide parameter sweep.

The recent work of Haghtalab et al. (2023) also provide a family of alternative multicalibration
algorithms with better theoretical sample complexity guarantees. This is motivated by the fact that
HKRR is known to be theoretically sample inefficient (Gopalan et al., 2022b), and easily overfits

2Multicalibration was introduced before smECE, and was designed to reduce a bucketed group-wise calibration
error (similar to ECE). Therefore, our investigations concerning smECE are of a purely empirical character.
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(Detommaso et al., 2024).3 At a high level, each algorithm of Haghtalab et al. (2023) corresponds
to a certain two-player game. Different algorithms in the family are a consequence of each player
playing a different online learning algorithm. We detail the hyperparameters over which we search
in Appendix F.2, but note here that we use the same code and predominantly the same parameters
reported by the authors. We refer to any (post-processing) algorithm in this family as HJZ.

In addition to the multicalibration algorithms HJZ and HKRR, we test the usefulness of three standard
calibration techniques in reducing multicalibration error: Platt scaling (Platt et al., 1999), isotonic
regression (Zadrozny and Elkan, 2002), and temperature scaling Guo et al. (2017). The first two
techniques are hyperparameter-free, and we use implementations given by Scikit-learn. We also
use a parameter-free version of temperature scaling which we detail in Appendix F.3.

2.2 Subgroup Selection, Datasets, and Experimental Methodology
Multicalibration post-processing requires the selection of “groups” or subsets of the population of
interest. As our investigation is primarily motivated by fairness desiderata, these subgroups determine
what segments of the population the practitioner would like to “protect” or guarantee performance
over. In most practical applications, these subgroups are constructed via features or conjunctions of
features given as input for each data point. This way of constructing groups is standard: it is used by
large production systems such as LinkedIn (Quiñonero Candela et al., 2023), in the measurement of
bias in ML (Atwood et al., 2024; Tifrea et al., 2024) and NLP systems (Baldini et al., 2022; Li et al.,
2023), and in the auditing of large, deployed ML systems (Ali et al., 2019; Imana et al., 2024).

We experiment across a variety of classification tasks: five tabular datasets (ACS Income, UCI Bank
Marketing, UCI Credit Default, HMDA, MEPS), two language datasets (Civil Comments, Amazon
Polarity), and two image datasets (CelebA, Camelyon17). For each dataset, we also define between
10 and 20 overlapping subgroups depending on available features or metadata. We detail and provide
citations for each of our datasets and exact subgroup descriptions in Appendix E. In what follows, we
give a high level overview of how we determined subgroups in our experiments.

For our tabular datasets, we determined groups by “sensitive” attributes—individual characteristics
against which practitioners would not want to discriminate. In many cases, such attributes naturally
include race, gender, and age, and vary with available information. For example, on ACS Income,
we include groups such as “Multiracial” and “Seniors.” We also include some groups which are
conjunctions of two attributes, for example “Black Women” or “White Women.”

On datasets where samples are not in correspondence with individuals—Camelyon17, Amazon
Polarity, and Civil Comments—we define groups based on available information that can be viewed
as “sensitive” with respect to the underlying task. In other words, we define groups such that
an individual or institution using a predictor which is miscalibrated on this group may be seen
as discriminating against the group. For example, a social media service should ideally not be
underconfident when predicting the toxicity of posts mentioning a minority identity group; such
predictions may allow hate speech to remain on the platform, or may provide differential engagement
boosting based on the presence of racial identifiers in posts. Therefore, we include “Muslim,”
“Black,” and various other phrases defining protected groups in the Civil Comments dataset. In
Appendix B, we further discuss group selection methodology and speculate about other ways of
achieving multicalibration via group design.

Data Partitioning. For consistency, we partition all datasets into three subsets: training, validation,
and test. Test sets remain fixed across all experiments. We report accuracy and multicalibration
metrics on the test set averaged over five random splits of train and validation sets for tabular data, and
three splits for more complex data. Whenever a (multi)calibration post-processing algorithm is used,
we run it using a holdout set of variable size from our training set, which we term the calibration

set. We define the fraction of the training set used in (multi)calibration post-processing to be the
calibration fraction. The exact calibration fractions over which we search appear in Appendix G.1
for tabular datasets and Appendix G.2 for image and language datasets. Note that multicalibration
post-processing methods are far less sample efficient than standard post-hoc calibration methods.
Therefore, the calibration fractions we test are broadly distributed between 5% and 100% of the
training data (rather than using, say, a standard 10% of data for post-hoc calibration).

3For example, the number of samples required for generalization guarantees of HKRR is typically O( 1
↵4�1.5 ),

where ↵ determines the allowed multicalibration violation and � represents a suitable discretization width. For
reasonably small values of ↵ and �, this can balloon the required number of samples to an unreasonable number.

5



The calibration set is used solely in multicalibration post-processing, and is not used in training a
model prior to the post-process. This procedure is motivated by a need to measure the importance of
fresh samples in multicalibration post-processing. If a model is already multicalibrated on its entire
training set S, we cannot re-use S in HKRR or HJZ to improve the model, since the algorithms cannot
improve on a predictor which is already perfectly multicalibrated on a particular dataset. This applies
to models such as neural networks, which usually fit their training set to very low calibration error
and high accuracy (Carrell et al., 2022). For these models, we also anticipate that the multicalibration

error on the training set will be low, and hence, the data from S unusable for post-processing.4
Therefore, the calibration fraction itself is an important hyperparameter we consider. Ideally, in order
to maximize the resulting accuracy of the final model, we would utilize as much data as possible
for model training, and minimize the amount of data required for multicalibration post-processing.
However, due to the sample complexity of multicalibration algorithms, we will see that finding this
specific point can be difficult (see Figure 3).

Compute. All experiments were performed on a collection four AWS G5 instances, each equipped
with a NVIDIA 24GB A10 GPU. We used only the CPU for multicalibration and calibration post-
processing, which was by far the most computationally intensive task. We estimate that all of our
experiments cumulatively took 10 days of running time on these four instances.

3 Experiments on Tabular Datasets
We begin our investigation with tabular data. Although simpler than vision or language data, tabular
data is an important and realistic setting which many algorithmic fairness practitioners encounter
throughout the health, criminal justice, and finance sectors (Barda et al., 2021; Barenstein, 2019;
Obermeyer et al., 2019). As our base predictors in this setting, we consider multilayer perceptron
NNs (MLPs), decision trees and random forests, SVMs, naive Bayes, and logistic regression. We
defer dataset and group details to Appendix E, and model details to Appendix G.1. We note here that
our datasets span from 10K examples (MEPS) to 200K (ACS Income), and that we vary the size of
the calibration set between 5% to 100% of the available training data. All of our results are computed
with a mean and standard deviation over five train / validation splits. We instill the following insights
from running multicalibration post-processing algorithms over 40K times on over 1K separately
trained models.

Observation 1: On tabular data, ML models which tend to be calibrated out of the box also tend to
be multicalibrated without additional effort.

In Figure 1, we show the performance of every choice of multicalibration algorithm (corresponding to
each choice of aforementioned hyperparameters) for MLPs on three datasets: MEPS, Credit Default,
and ACS Income. We find that ERM performs nearly as well — in terms of worst group calibration
error — as the best set of hyperparameters for HJZ and HKRR across our wide parameter sweep. This
is seen broadly across all of our tabular datasets for models which one may expect to be calibrated
in practice, such as logistic regression or random forests.5 We include the complete plots of all
multicalibration runs versus ERM in Appendix H.1.

We provide further evidence for Observation 1 by inspection of Figure 2. This table corresponds
to the best choice of hyperparameters (according to maximum group-wise smECE on a validation
dataset) of each method tested on the MEPS dataset. We find that HKRR and HJZ show no statistically
significant improvements to max smECE for MLPs, random forests, and logistic regression. The
gains offered by HKRR and HJZ in terms of worst group calibration error are also marginal (0 to 0.01)
on the Bank Marketing, ACS Income, and Credit Default datasets (see Appendix H.2). On HMDA,
however, multicalibration does seem to provide a noticeable improvement on the order of 0.03-0.07
for MLPs, random forests, and logistic regression (Figure 27). We believe this is because ERM
achieves worse calibration error on HMDA, possibly due to the increased difficulty of the dataset.

Observation 2: HKRR or HJZ post-processing can help un-calibrated models like SVMs or naive
Bayes achieve low group-wise maximum calibration error. Oftentimes, however, similar results can
be achieved with traditional calibration methods like isotonic regression (Zadrozny and Elkan, 2002).

4Indeed, we test this more rigorously in Appendix A, where we experiment with data reuse between model
training and multicalibration post-processing.

5We use the Scikit-learn random forest implementation, which predicts a probability corresponding to the
fraction of positive points at the leaf.
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Model ECE # Max ECE # smECE # Max smECE # Acc "
MLP ERM 0.022 ± 0.006 0.106 ± 0.009 0.024 ± 0.002 0.086 ± 0.015 0.864 ± 0.001
MLP HKRR 0.019 ± 0.005 0.122 ± 0.008 0.019 ± 0.004 0.104 ± 0.002 0.835 ± 0.003
MLP HJZ 0.019 ± 0.003 0.088 ± 0.011 0.021 ± 0.002 0.076 ± 0.018 0.864 ± 0.003
MLP Isotonic 0.02 ± 0.006 0.108 ± 0.021 0.02 ± 0.004 0.089 ± 0.021 0.864 ± 0.003

RandomForest ERM 0.019 ± 0.001 0.094 ± 0.006 0.021 ± 0.001 0.083 ± 0.004 0.863 ± 0.003
RandomForest HKRR 0.019 ± 0.005 0.122 ± 0.008 0.019 ± 0.004 0.104 ± 0.002 0.835 ± 0.003
RandomForest HJZ 0.021 ± 0.004 0.106 ± 0.011 0.021 ± 0.003 0.101 ± 0.012 0.86 ± 0.003
RandomForest Isotonic 0.015 ± 0.002 0.089 ± 0.014 0.017 ± 0.001 0.084 ± 0.014 0.862 ± 0.002

SVM ERM 0.143 ± 0.002 0.376 ± 0.012 0.072 ± 0.001 0.186 ± 0.006 0.857 ± 0.002
SVM HKRR 0.019 ± 0.005 0.122 ± 0.008 0.019 ± 0.004 0.104 ± 0.002 0.835 ± 0.003
SVM HJZ 0.031 ± 0.003 0.156 ± 0.021 0.027 ± 0.004 0.155 ± 0.02 0.828 ± 0.002
SVM Isotonic 0.048 ± 0.023 0.231 ± 0.085 0.048 ± 0.023 0.218 ± 0.069 0.847 ± 0.017

LogisticRegression ERM 0.022 ± 0.002 0.106 ± 0.008 0.022 ± 0.001 0.083 ± 0.003 0.866 ± 0.002
LogisticRegression HKRR 0.019 ± 0.005 0.122 ± 0.008 0.019 ± 0.004 0.104 ± 0.002 0.835 ± 0.003
LogisticRegression HJZ 0.021 ± 0.003 0.114 ± 0.019 0.023 ± 0.001 0.09 ± 0.011 0.866 ± 0.003
LogisticRegression Isotonic 0.017 ± 0.003 0.109 ± 0.019 0.019 ± 0.003 0.097 ± 0.02 0.863 ± 0.002

DecisionTree ERM 0.067 ± 0.004 0.261 ± 0.028 0.047 ± 0.004 0.166 ± 0.012 0.85 ± 0.006
DecisionTree HKRR 0.019 ± 0.005 0.122 ± 0.008 0.019 ± 0.004 0.104 ± 0.002 0.835 ± 0.003
DecisionTree HJZ 0.031 ± 0.003 0.156 ± 0.021 0.027 ± 0.004 0.155 ± 0.02 0.828 ± 0.002
DecisionTree Isotonic 0.014 ± 0.003 0.196 ± 0.026 0.015 ± 0.003 0.186 ± 0.027 0.838 ± 0.01

NaiveBayes ERM 0.277 ± 0.019 0.544 ± 0.02 0.164 ± 0.013 0.287 ± 0.011 0.714 ± 0.018
NaiveBayes HKRR 0.019 ± 0.005 0.122 ± 0.008 0.019 ± 0.004 0.104 ± 0.002 0.835 ± 0.003
NaiveBayes HJZ 0.031 ± 0.003 0.156 ± 0.021 0.027 ± 0.004 0.155 ± 0.02 0.828 ± 0.002
NaiveBayes Isotonic 0.019 ± 0.005 0.128 ± 0.017 0.021 ± 0.005 0.122 ± 0.015 0.831 ± 0.006

Figure 2: Best performing HKRR and HJZ post-processing algorithm hyperparameters (selected
based on validation max smECE) compared to ERM on the MEPS dataset. Calibrated models
(MLP, random forest, logistic regression) need not be post-processed to achieve multicalibration.
However, uncalibrated models (SVM, decision trees, naive Bayes) do benefit from multicalibration
post-processing algorithms. Cells highlighted in blue show the importance of the choice of metric for
selecting the best post-processing method for decision trees. Metric choice — worst group ECE vs.
worst group smECE — can change which of ERM or HJZ is preferable.

Across our datasets, we find that SVMs, decision trees, and naive Bayes almost always have their
max smECE error improve by 0.05 or more using multicalibration post-processing. We also point
out the relatively strong performance of isotonic regression and other traditional calibration methods
across datasets and models. For example, isotonic regression provides nearly all the improvements
(up to 0.01 error) of the multicalibration algorithms when applied to naive Bayes in Figure 2. On the
Credit Default dataset in Figure 28, isotonic regression is — when considering standard deviation —
tied with the optimal multicalibration post-processing algorithms for SVM and naive Bayes. We have
similar findings for the MEPS dataset and random forests trained on the HMDA dataset. Platt scaling
and isotonic regression are desirable because they are parameter-free methods which work out of
the box without tuning, are simple for practitioners to implement, and further do not require large
parameter sweeps to find effective models.

Observation 3: A practitioner utilizing multicalibration post-processing can potentially face a trade-
off between worst group calibration error and overall accuracy. This is most salient in high calibration
fraction regimes (40-80%).

Due to the necessity of using hold-out data for running multicalibration post-processing, practitioners
may have to choose between accuracy and worst group calibration error. For example, in Figure 3 we
show that running multicalibration post-processing for MLPs on the HMDA dataset has a different
optimal calibration fraction when considering accuracy and worst group calibration error as separate
objectives. In fact, in this example, improving multicalibration error comes at a cost to accuracy of
about 2%. Although small, this does indicate that the decision to use multicalibration post-processing
here should be context-dependent. Additional examples of this tradeoff include decision trees or
logistic regression on most datasets (Figures 31 and 33). We note, however, that these tradeoffs are
more apparent in the higher calibration fraction regimes, where most of the training data is held out

for multicalibration post-processing. This regime is potentially less relevant to practitioners, who
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Figure 3: (Left/Middle): Hold-out calibration fraction vs. worst group calibration error (left) and
accuracy (right) for MLPs on HMDA. Lowering worst group calibration error may come at a cost
of model accuracy. The impact of calibration fraction for each dataset is available in Appendix H.3.
(Right): Gap between measured smECE and ECE for every experiment. As sample size increases,
the two metrics become very similar. However, some variability exists at lower sample sizes.

usually reserve most of the available data for base model training. Plots for each dataset and model
are in Appendix H.3.

Observation 4: On small datasets, there can be variations between smECE and standard binned ECE.

To illustrate an example, if a practitioner were selecting the best post-processing method for decision
trees from Figure 2 based on ECE (see table cells highlighted in blue), HJZ may seem like a
reasonable choice since it has a worst group ECE calibration error of 0.156. However, when using
worst group smECE to measure performance, HJZ does not significantly improve upon ERM. This has
an important consequence: if selecting the best model based on only the worst subgroup calibration
error, the choice of calibration metric used will impact the choice of model.

In the rightmost plot of Figure 3, we also show each group’s sample size vs. the gap between
measuring the group calibration error with smECE vs using ECE (over all datasets and groups). We
find that as the group sample size increases, the gap between the metrics generally shrinks (and
Observation 4 becomes less relevant). We note, however, that even on the ACS Income dataset with
200K examples, we find a significant difference of 0.1 between measuring the overall calibration
error of SVMs with ECE vs. smECE (Figure 25). More generally, to avoid issues stemming from
ECE bin choice, we recommend that practitioners utilize the smECE calibration measurement tool6
due to its theoretical guarantees and stability across our experiments.

Observation 5: When considering statistical significance, there is no clearly dominant algorithm
between HKRR and HJZ on tabular data. However, HJZ is more robust towards the tested choice of
hyperparameters. This may allow practitioners utilizing HJZ to find good solutions faster than using
HKRR when post-processing simpler models such as naive Bayes or decision trees.

Over all tabular datasets and all base models (Appendix H.2), HJZ and HKRR had statistically distin-
guishable performance on 24 out of 30 cases. Among these 24 cases, HJZ performed better 7 times.
Nonetheless, we observe that the HJZ family of algorithms is usually less sensitive to hyperparameter
changes. In Figure 1 for example, most of the green points corresponding to hyperparameter choices
for HJZ are tightly concentrated around ERM. We observe similar phenomena throughout additional
model and dataset plots in Appendix H.1. Practitioners wishing to apply smaller hyperparameter
searches over multicalibration algorithms may consider HJZ a suitable option, even if it gives slightly
suboptimal worst group calibration error.

Additional Experiments. To understand how sensitive our observations are to our particular choice
of group collection G, we also validate each of these observations with a new set of defined groups
G0, whose definitions are found in Appendix E.5. The full tabular results and plots for these new
groups for each dataset is in Appendix I.1. Overall, the takeaway for most models (including MLPs)
largely remains the same: it is difficult to find instances where multicalibration helps in a statistically
significant way over ERM (for calibrated models) or some form of simple calibration (Observations
1 and 2). Further, where multicalibration does help, this help may sometimes comes at a cost to
accuracy (Observation 3).

6
https://github.com/apple/ml-calibration
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4 Experiments on Language and Vision Datasets
In this section, we evaluate the ability of multicalibration post-processing to improve upon the
multicalibration of vision transformers, DistilBERT, ResNets, and DenseNets on a collection of
image and language tasks. Our goal is to understand if multicalibration post-processing can help in
more complicated, large-model regimes within both the train-from-scratch and pre-trained paradigms.

As we move from smaller, tabular datasets to larger image and language datasets, we find that
multicalibration algorithms may provide empirical improvements. Note here that in cases where we
use a ResNet on language data, we train from scratch but use pretrained GloVe embeddings in the
fashion of Duchene et al. (2023). In cases where we use a ResNet or DenseNet on image data, we also
train from scratch. Whenever using a transformer, we finetune from pretrained weights (Dosovitskiy
et al., 2021; Sanh et al., 2019). We defer further dataset, model, and group information to Appendix E
and Appendix G.2.

Multicalibrating large models has an increased computational cost: For a single base predictor on
tabular data, a full parameter sweep—training the multicalibration algorithm with every choice of
hyperparameter—required 1-2 hours on a typical calibration set of 100K examples. With more
complex base predictors (e.g. ResNets or language models) and larger datasets, this process takes
significantly longer. Additionally, due to the increased computational cost of re-training a model in
the image and language regimes, we only search over calibration fractions in {0.0, 0.2, 0.4} and report
our results averaged over three random train / validation splits. After running multicalibration post-
processing algorithms more than 1,700 times, we distill our findings into the following observations.

Observation 6: For image and language data, HKRR nearly always outperforms HJZ.

In all six of our experiments on image and language data (Appendix J.2), HKRR either matched or
significantly beat the performance of HJZ. Note that we use the same parameter sweeps for HKRR and
HJZ over image/language datasets that we used for the tabular datasets (see Appendix F), and leave
open the possibility that HJZ may require a larger hyperparameter sweep to achieve good performance
on these more complex tasks.

Observation 7: On language and vision data, multicalibration post-processing can improve worst
group calibration error relative to neural network ERM baselines by 50% or more. This stands in
contrast to multicalibration post-processing for MLPs on tabular data (Observation 1).

Over all language and vision datasets, HKRR improved worst group calibration error in 5 out of 6
cases. Among these 5, the least improvement we saw was HKRR decreasing the worst group smECE
of ERM from 0.06 to 0.043 (DistilBERT on Civil Comments). The greatest improvement we saw was
from 0.07 to 0.02 (ViT on Camelyon17) and 0.09 to 0.05 (ResNet-56 on Amazon Polarity). These
examples all appear in Figure 4. A full collection of tables and plots can be found in Appendix J.2.

Observation 8: Binned ECE and smECE provide nearly identical estimates of calibration error.

Among nearly all of our experiments on vision and language datasets with more than 100k examples,
we were not able to find any datasets where the metric used to measure worst group calibration error
would change the outcome of chosen model. This suggests that larger sample sizes largely close
observable gaps between calibration measures (c.f. Observation 4).

5 Takeaways for Practitioners and Discussion
In this section, we first provide reasonable recommendations to practitioners wishing to apply
multicalibration algorithms in practice. In Appendix B, we also discuss additional details on the
subgroup selection problem, which practitioners applying post-processing methods may find helpful.

First, we believe that the latent multicalibration of ERM has been generally underestimated for many
models. In particular, on tabular datasets, multicalibration post-processing cannot improve upon
ERM for MLPs (see Observation 1). Furthermore, the improvement offered for more complex image
and language data is generally less than 0.05 smECE when considering standard deviation.

This directly motivates our next takeaway: Current multicalibration post-processing algorithms—
when applied to calibrated models like neural networks—are extremely sensitive towards choice of
hyperparameters, since the potential “scope” of improvement is on the scale of 0.02 to 0.03 smECE.
The optimal hyperparameter choice for each algorithm largely varies by dataset and base model,
and it takes quite a bit of granular searching to find the best performing algorithm, or indeed, an
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Model ECE # Max ECE # smECE # Max smECE # Acc "
DistilBERT ERM 0.021 ± 0.001 0.065 ± 0.005 0.021 ± 0.001 0.06 ± 0.004 0.915 ± 0.001
DistilBERT HKRR 0.013 ± 0.0 0.047 ± 0.005 0.013 ± 0.0 0.043 ± 0.004 0.915 ± 0.001
DistilBERT HJZ 0.004 ± 0.001 0.043 ± 0.008 0.007 ± 0.001 0.043 ± 0.007 0.915 ± 0.001
DistilBERT Isotonic 0.002 ± 0.0 0.032 ± 0.006 0.005 ± 0.0 0.032 ± 0.006 0.916 ± 0.0
ResNet-56 ERM 0.039 ± 0.013 0.094 ± 0.009 0.039 ± 0.013 0.094 ± 0.009 0.867 ± 0.001
ResNet-56 HKRR 0.015 ± 0.001 0.059 ± 0.01 0.015 ± 0.001 0.047 ± 0.005 0.848 ± 0.004
ResNet-56 HJZ 0.013 ± 0.005 0.081 ± 0.012 0.014 ± 0.005 0.081 ± 0.012 0.863 ± 0.002
ResNet-56 Isotonic 0.005 ± 0.001 0.079 ± 0.009 0.007 ± 0.0 0.078 ± 0.008 0.863 ± 0.002

Figure 4: (Top): Test accuracy vs. maximum group-wise calibration error (smECE) over three
train/validation splits for ViT and DenseNet on Camelyon17, and DistilBERT on CivilComments.
Multicalibration post-processing has scope for improvement in each setting, and does so with
nearly no loss in accuracy. (Bottom): Impact of post-processing algorithms for Civil Comments
(DistilBERT) and Amazon Polarity (ResNet-56). Multicalibration and isotonic regression both offer
improvements to worst group calibration error. Full results are available in Appendix J.1.

algorithm which improves upon ERM at all. For example, the optimal HJZ algorithm used at least 15
different hyperparameter configurations across only our 30 tabular experiments (when considering
calibration fraction as an additional parameter); HKRR has similar sensitivity issues. Further, many
hyperparameter choices do not seem to improve upon the ERM base model—for example, see
DenseNet-121 in Figure 4 or the full plots in Appendix J.1—making a significant portion of the
hyperparameter sweeps not useful to perform. Since training HJZ or HKRR on a holdout of 100K
examples can take 1-2 hours, it can be several hours before a suitable choice of hyperparameters is
found. This computational cost is exacerbated in the larger regimes where multicalibration may be
most useful, which poses a major obstacle for practical applications of either HKRR or HJZ.

As a direct stopgap measure, we recommend running and evaluating traditional calibration methods.
As we point out in Observation 2, post-processing algorithms like isotonic regression can achieve
nearly the performance of multicalibration algorithms on tabular data. Isotonic regression also directly
improves worst group calibration error over ERM in 4/6 of our experiments on larger models (see,
e.g., Figures 4, J.2). Due to the fact that it is efficient and parameter free, we do not see a downside to
running Isotonic regression (or any other calibration method) and testing if the maximum group-wise
calibration error is beneath a desired threshold.

6 Experimental Limitations and Conclusion
One limitation of our results is that they are restricted to binary classification problems. While
multicalibration algorithms do extend to multiclass problems, this extension comes at a severe cost of
sample efficiency usually exponential in the number of labels (Zhao et al., 2021). We show that — at
least for tabular datasets — current multicalibration algorithms do not significantly improve upon a
competitive and calibrated ERM baseline. If we were to further burden the multicalibration algorithm
with the larger sample complexity of an additional label, we do not expect that their performance will
improve. Nonetheless, we plan to investigate the multiclass setting in future work, and believe that
those findings will be consistent with the results present in this paper. Another limitation is that we
do not offer much explanation of why we see differing performance of the two algorithms HJZ and
HKRR; we offer some discussion of this in Appendix C.3, but more is warranted in future work.

We believe that our work illuminates many avenues towards improving the viability of multicalibration
algorithms in practice. For example, developing parameter free multicalibration methods (akin to
what smECE accomplishes for calibration metrics) is an important direction with direct impacts on
the practice of fair machine learning. Similarly, post-processing techniques with better empirical
sample complexity could significantly help the practice of multicalibration.
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A Simplifying Data Partitioning with Data Reuse

As discussed in Section 2.2, throughout our experiments on tabular, vision, and language data in
Sections 3 and 4, we held out a portion of data from training solely for running multicalibration
post-processing. This was motivated by two facts: (1) multicalibration may require fresh samples for
theoretical statistical guarantees; and (2) if a model already has low worst group calibration error on
a holdout set S, that set S cannot be used for post-processing since there are no “group calibration
violations” that either HJZ or HKRR can correct. Fact (1) holds for any base model (neural networks,
decision trees, random forests, etc.), while (2) only holds for models which we believe may always
achieve perfect training loss or calibration error, like neural networks.

We investigate these two facts experimentally by asking whether a practitioner may reuse a portion
of the base model training data for multicalibration post-processing. Such data reuse could be very
convenient to practitioners already saddled with hyperparameter optimizations. To test for this, we
run ERM on all available training data, and run each post-processing method on this same set of data.
Again searching over all post-processing hyperparameters (now except for calibration fraction), we
provide test results corresponding to hyperparameters that achieved the best validataion max smECE.
We provide full results for all tabular datasets in Appendix H.4.

Observation 9: Reusing model training data for multicalibration post-processing can sometimes be
competitive with holding out data for post-processing. However, it can also come at a steep cost to
worst group calibration error.

In some cases, reusing training data can marginally improve max smECE over the setup in which
we do not reuse data; this is true, for example, for MLPs post-processed with HKRR on the left of
Figure 5. Here, reusing training data improves upon using a calibration holdout by 0.025. In the
vast majority of cases, however, reusing training data either (1) does not improve upon utilizing
a holdout calibration set (for most models on ACSIncome or HMDA); or (2) significantly hurts
(for MEPS, CreditDefault, or BankMarketing). For example, many base models are significantly
hurt by data reuse for multicalibration post-processing on the CreditDefault dataset (in the right of
Figure 5), having their post-processed performance drastically drop by 0.05-0.1 worst group smECE.
These results demonstrate that practitioners utilizing multicalibration algorithms in practice may
be required to optimize over the calibration fraction holdout size in order to achieve competitive
empirical performance.

Figure 5: Impact of reusing all model training data for multicalibration post-processing on HMDA
(Left) and CreditDefault (Right) as measured by worst group calibration error (max smECE). Results
vary; for HMDA, post-processing with reused data essentially performs as well as post-processing
by holding out data for all models except random forest postprocessed with HKRR. However, on
CreditDefault, we find that data reuse can harm post-processing across the board. Plots for each
dataset available in Appendix H.4.1.
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B Additional Subgroup Design Considerations
For practitioners, there are (at least) two important properties of groups to consider during the group
selection phase: minimum group size and the richness of the group collection. The minimum group
size � is a parameter which has implications for the overall sample complexity of multicalibration.
In particular, it introduces a 1/� factor into known sample complexity upper and lower bounds
(Hébert-Johnson et al., 2018; Shabat et al., 2020). Note that � 2 [0, 1] is the size — as a fraction of
the dataset under a distribution D — of the smallest group in the collection G. Therefore, there is a
tradeoff between the size of the smallest group considered, and the number of samples needed for
good multicalibration generalization.

In our experiments, we restricted to groups which were >0.5% of the entire dataset (� = 0.005).
This was a reasonable “sweet spot” for us: Without enough samples from a particular group, known
multicalibration algorithms are prone to overfitting the training set and not providing desirable
generalization performance. On the other hand, if groups are not small enough, then the guarantees
provided by running multicalibration algorithm may not be much better than standard calibration
methods. Note that we consider collections of groups with sizes spanning from 0.5% all the way
to 70-80% of the data (see Appendix E for detailed information). We deem this range reasonably
sufficient to capture the varying sizes of groups that a practitioner may desire to protect in practice.

Group richness is also an important factor in group design. As discussed in Section 2.2, our results are
only relevant to the setting where (1) we have well-defined groups that we seek to protect which are
defined by simple features or conjunctions of features; and (2) we run multicalibration post-processing
with those same groups. These two points naturally give rise to a potentially promising direction: is it
practically feasible to multicalibrate with respect to a richer class of subgroups in order to obtain
better empirical performance with respect to the simpler groups which one may actually care about?
For example, one could test whether multicalibrating with respect to the group of all halfspaces would
provide improved worst group calibration error over the class of feature-defined groups than one may
actually care about final performance for.7 We leave such exploration to future work.

Remark 1 Using conjunctions of features or additional meta-data is not the only way to construct

subgroups of the data. For any imperfect predictor p̂, we can (nearly) always construct groups

against which the predictor is not multicalibrated. For example, simply take the set of data points for

which p̂ predicts the incorrect label. Groups defined in this way may potentially be “as complex” as

the underlying predictor p̂. Nonetheless, it is not clear whether this is a meaningful set of groups to

ask for multicalibration against (as it may require post-processing p̂ to be a perfect predictor). To

avoid such discussion, we intentionally determine groups by available features which we hypothesize

practitioners may deem important or “sensitive” to the underlying prediction task.

C Additional Related Work
There is reason to believe that empirical risk minimization (ERM) on neural networks and other
machine learning models may result in multicalibrated predictors. In recent works, Błasiok et al.
(2024, 2023) prove that loss minimization with neural networks may yield multicalibrated predictors.
Their proofs, however, may not be directly applicable to practice as they rely on an idealized optimiza-
tion procedure (we provide further discussion of the relation between our works in Appendix C.1).
Nonetheless, both works echo a relationship between ERM and multicalibration also articulated
in Liu et al. (2019), who show that group-wise calibration may be an inevitable consequence of
well-performing models.

In recent work, Detommaso et al. (2024) utilize multicalibration as a tool to improve the overall
uncertainty and confidence calibration of language models but, to our knowledge, do not focus on or
report fairness towards protected subgroups. Like us, they point out various issues with the standard
multicalibration algorithm, which they address with early stopping and adaptive binning. We instead
perform a large hyperparameter sweep which effectively implements an early stopping mechanism.
We discuss this further in Appendix C.2. Nonetheless, our results for large models are complementary
to those of Detommaso et al. (2024): both works demonstrate that (1) standard multicalibration can

7Surprisingly, it is possible to multicalibrate with respect to the (rich) class of all halfspaces with access to an
agnostic halfspace learner (Hébert-Johnson et al., 2018). In general, such agnostic learners are computationally
hard to obtain in theory, but usually easy to construct in practice (via ERM).
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at times be difficult to get working in practice; and (2) ideas from the theoretical multicalibration
literature can have impact at the scale of large models.

Limitations of Calibration. A collection of works characterize the limitations of calibration as a
property of predictors. Of particular note is Perez-Lebel et al. (2023), who remark that calibration is
often misunderstood in the literature, as it does not guarantee that output probabilities are close to the
ground truth probability distribution. We make no such claim about calibration, and only justify its
use in order to ensure model predictions are meaningful. Yuksekgonul et al. (2024) draw connections
between calibration and atypicality of certain examples, improving group wise-performance of NNs
without subgroup annotations via what they term “atypicality-aware recalibration.”

Applications of Multicalibration. Beyond classification, Globus-Harris et al. (2023) introduce
algorithms that post-process multicalibrated regression functions to satisfy a variety of fairness
constraints, and present experiments using such algorithms on logistic regression and gradient-
boosted decision trees. Benz and Rodriguez (2023) study predictive confidence in the setting of
AI-assisted decision making; they show the existence of distributions under which a “rational”
decision maker is unlikely to find an optimal policy using calibrated confidence values, and prove that
multicalibration with respect to the decision maker’s preliminary confidence values is often sufficient
for aversion of such issues. Zhang et al. (2024) also utilize a generalization of multicalibration to
tackle interesting problems like de-biased text generation and false negative rate control.

Calibration of NNs. Literature on the calibration of neural networks (NNs) is very rich; see
for example a treatment by Wang (2023). Most importantly, Minderer et al. (2021) have run
comprehensive, large-scale experiments detailing the degree to which modern NNs are calibrated.
Their results show that current state-of-the-art models appear to be nearly perfectly calibrated, and
appear to remain so even in the presence of distribution shift. This is in somewhat striking contrast to
the earlier results of Guo et al. (2017), which demonstrated the best models at time of their publication
to be quite miscalibrated, and highlighted the need to further investigate calibration measures. Our
focus in this work is instead on evaluating multicalibration of predictors on datasets over which we
can naturally define a collection of protected subgroups.

Carrell et al. (2022) examine a connection between generalization and calibration generalization,
the difference in calibration error on train and test sets. In particular, they claim DNNs to be well-
calibrated on their training sets and the accuracy generalization gap to upper bound the calibration
generalization gap. Such observations imply NNs that generalize well to be well-calibrated.

Trainable Calibration Measures. Laplace Kernel calibration measures have been shown to be
effective in enforcing confidence calibration for neural networks when used in training. In particular,
using MMCE (Maximum Mean Calibration Error) as a regularizer in tandem with cross-entropy loss
yields high accuracy predictions while moderately improving calibration by taming overconfident
predictions (Kumar et al., 2018). Additionally, this metric is efficiently computable in quadratic time.

Subgroup Robustness. Several works in subgroup robustness literature examine the performance of
NNs by worst-group-accuracy, particularly in cases where NNs tend to rely on spurious correlations.
Recent works by Kirichenko et al. (2023); LaBonte et al. (2023) propose last-layer fine-tuning as a
simple and computationally inexpensive way to do exactly that. Indeed, Mao et al. (2023) extend the
method to address fairness concerns, appending a fairness constraint to the training objective during
fine-tuning. Such works examine only one sensitive attribute at a time, and often consider the disjoint
groups produced by unique values of this attribute in conjunction with label. Rosenfeld and Garg
(2023) show connections between robustness and distribution shift for neural networks via unlabeled
test data.

In general, we view multi-group robustness as a notion of robustness which, like multicalibration,
aims to “respect” multiple groups simultaneously. Perhaps the closest connection between multigroup
robustness and multicalibration is: they intuitively may share similar mechanisms (as the reviewer
noted). That is, the mechanistic question in both cases is to understand which groups can be easily
computed from the predictor’s "features" – ie, which groups are easy for the predictor to distinguish.

C.1 Further Discussion of Błasiok et al. (2024)
The connection to our work is subtle. In Błasiok et al. (2024), the authors consider performing ERM
over some C0 ◆ C so that the resulting model is multicalibrated with respect to C. In their case, C0 is a
family of neural networks (NNs), and C is some family of smaller NNs. In many of our experiments,
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we indeed perform (approximate) ERM over some family of NNs, and one might expect this to result
in multicalibration with respect to our finite collection of groups G, which are easily computable by
some class of smaller NNs. This is because for NNs, it is possible to represent arbitrarily-complex
groups by simply taking "large enough" networks, without making design choices specific to the
group structure.

In our tabular experiments, we restrict our experiments to small multi-layer perceptron networks of
3-4 layers, whose smaller subnetworks may not be learning complex functions capturing groups of
interest (see Appendix G for model descriptions). Nonetheless, we find that these models possess
latent multicalibration properties, as discussed further in Observation 1 in Section 3. Our vision
and language experiments show that post-processing does have positive impact, suggesting that the
models sub-networks are not sufficiently capturing the groups of interest (see Section 4).

C.2 Equivalence of Early Stopping and Hyperparameter Sweeps
Detommaso et al. (2024) utilize two early-stopping criterion. The first is to halt further multicalibra-
tion iterations once the group conditioned on the bin set becomes “too small.” We also utilize this
technique, which is inherent in the algorithm of HKRR. Detommaso et al. (2024) also use a holdout
validation set to early-stop a variant of HKRR when the mean-squared error (MSE) on the hold-out
set fails to decrease. We instead vary the permitted violation parameter ↵ of HKRR, and select the
best parameter with a holdout validation set. ↵ controls the permitted calibration error conditioned
on a group and particular bin (of width � = 0.1 in our work). We believe that early stopping for a
validation metric should have similar performance to running the full HKRR with a variety of ↵ levels,
and selecting based on validation performance. Nonetheless, we note that in our experiments, we
select based on validation smoothECE multicalibration error, while Detommaso et al. (2024) select
on validation MSE. This could potentially lead to performance differences.

C.3 Discussion on Dynamics and Performance of HJZ and HKRR

The dynamics of both of the algorithms HJZ and HKRR are complex. In particular, the performance of
the algorithms depend on at least the following parameters:

1. Distribution of initial predictions output by the models (i.e. input to post-processing algo-
rithm);

2. Choice of hyperparameters for HKRR and HJZ;

3. "Complexity” or “expressiveness” of the groups; and

4. Number of available samples, and whether the samples are re-used from training or not.

In our work, we focus mainly on (2) and (4). We discuss (3) to an extent in Appendix B, but teasing
apart exactly how (1) and (3) contribute to the performance of multicalibration post-processign
algorithms is certainly an interesting avenue for future work. We believe that part of the reason for
the superiority of HKRR in language/vision data may be explained within the lens of (2) and (4).
That is, we may have found better hyperparameters for HKRR with a wider search, and the sample
complexity may be better in practice than the game-theoretic approach offered by HJZ.

Due to computational constraints and the added dimension of choosing how much data to save for
calibration, we search a large — but not all-encompassing — collection of hyperparameters for each
of the multicalibration algorithms tested. With regards to dataset size, 3 of the 4 vision/language
datasets are noticeably larger than the tabular datasets (by at least 100k samples). It is possible that
HKRR generally performs better on such dataset sizes, or that the optimal hyperparameters for HJZ
change significantly in this larger-sample regime.

Understanding why HJZ may be more stable to hyperparameter choices (see Observation 5 in
Section 3) is a more challenging question to answer, since it likely has to do with internal game
dynamics in the learning algorithm. In particular, by choosing various online learning algorithms,
HJZ implements a family of multicalibration post-processing methods. We test all algorithms from
this family with varying parameters. It is possible that the family of algorithms itself somehow has
a shift in stability as we scale to a large data regime (4). However, as analyzing even a singular
algorithm (e.g. HKRR) is challenging, we are not sure that speculating about the stability of a family
of algorithms is currently possible, and hence, leave this to future work.
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D Broader Impacts
Our work performs a comprehensive empirical evaluation of multicalibration post-processing, which
could help practitioners apply these notions more effectively in practice. We note however, that
fairness can be subtle, and multicalibration by itself may not be enough to ensure fairness. By now
it is well understood that there are tradeoffs between different notions of fairness, and the right
definitions to be deployed are context-dependent and depend on societal norms. Therefore, our results
on the latent multicalibration of neural networks should not be construed as implying that these
models are already fair, and care should be taken before deploying any ML model in applications
with consequential societal outcomes.

E Dataset and Subgroup Descriptions
Here, we detail the datasets and group information used in all experiments.

E.1 Tabular Datasets
The ACS Income dataset, introduced by Ding et al. (2021), is a superset of the UCI Adult8 dataset
(Becker and Kohavi, 1996) derived from additional US Census data. We use the folktables package
introduced alongside the work. In particular, we consider the task of predicting whether an American
adult living in California receives income greater than $50,000 in the year 2018. Features include
race, gender, age, and occupation. For this task, the dataset furnishes just under 200,000 samples.

The UCI Bank Marketing dataset documents 45,000 phone calls made by a Portuguese banking
institution over the course of several marketing campaigns (Moro et al., 2012). We consider the
task of predicting whether, on a given call, the client will subscribe a term deposit, given features
characterizing the housing, occupation, education, and age of the client.

The UCI Default of Credit Card Clients dataset (termed “Credit Default” in our experiments) doc-
uments the partial credit histories of 30,000 Taiwanese individuals (Yeh, 2016). We consider the
task of predicting whether an individual will default on credit card debt, given payment history and
additional identity attributes.

The HMDA (Home Mortgage Disclosure Act) dataset documents the US mortgage applications,
identity attributes of associated applicants, and the outcome of these applications (Federal Financial
Institutions Examination Council, 2017). We use a 114,000-sample variant of this dataset given by
Cooper et al. (2023), and consider the task of predicting whether a 2017 application in the state of
Texas was accepted.

The MEPS (Medical Expenditure Panel Survey) dataset comes from the US Department of Health
and Human Services and documents healthcare utilization of US households. We use a 11,000-
sample variant of the dataset, originally studied in Sharma et al. (2021), and consider the task of
predicting whether a household makes at least 10 medical visits, given socioeconomic and geographic
information of household applicants.

E.2 Image Datasets
The CelebA dataset, introduced by Liu et al. (2015), consists of 200,000 cropped and aligned images
of celebrity faces. We consider the task of predicting hair color, a task known to be difficult for
certain label-dependent subgroups due to the existence of spurious correlations (Sagawa et al., 2019).
Metadata documents certain characteristics of the individuals in the images such as gender, face
shape, hair style, and the presence of fashion accessories.

The Camelyon17 dataset, introduced by Bándi et al. (2019), consists of histopathological images
of human lymph node tissue. We use a patch-based variant of this dataset, introduced by Koh
et al. (2021), which consists of 450,000 96x96 images. Unlike Koh et al. (2021), we shuffle the
predetermined training and test splits. We consider the task of predicting whether a given image
contains tumorous tissue. Metadata documents the hospital from which a given patch originates, and
the original slide from which the patch is drawn.

E.3 Language Datasets
The CivilComments dataset, introduced by Borkan et al. (2019), contains 450,000 online comments
annotated for toxicity and identity mentions by crowdsourcing and majority vote. We use the WILDS

8For comparison with prior work, we include the original UCI Adult dataset in our benchmark repository.
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variant of this dataset, provided by Koh et al. (2021), though we shuffle the predetermined training
and test splits, and consider the task of prediction whether a given comment is labeled toxic.

The Amazon Polarity dataset, also introduced by Zhang et al. (2015) and a subset of the Amazon
Reviews dataset, provides the text content of 4,000,000 Amazon reviews. A review receives the label
1 when associated with a rating greater than or equal to 4 stars, and a label of 0 when associated with
a rating of less than or equal to 2 stars. As with Yelp Polarity, this dataset comes with no metadata, so
we define groups based on the presence of meaningful words. We use a randomly-drawn, 400,000
sample subset across all experiments.

E.4 Groups for Tabular Datasets

Here we present the subgroups considered for each dataset in our experiments. In all cases, we only
consider subgroups composing at least a 0.005-fraction of the underlying dataset.

Note that the ‘Dataset’ row in each table does not correspond to a group used in multicalibration
post-processing, nor are aggregate metrics used to compute worst-group metrics such as max smECE.
We include this row for convenience.

group name n samples fraction y mean

Black Adults 8508 0.0435 0.3461
Black Females 4353 0.0222 0.3193
Women 92354 0.4720 0.3491
Never Married 68408 0.3496 0.2344
American Indian 1294 0.0066 0.2836
Seniors 14476 0.0740 0.5410
White Women 55856 0.2855 0.3729
Multiracial 8206 0.0419 0.3572
Asian 32709 0.1672 0.4805

Dataset 195665 1.0000 0.4106

Figure 6: ACS Income groups.

group name n samples fraction y mean

Job = Management 9458 0.2092 0.1376
Job = Technician 7597 0.1680 0.1106
Job = Entrepreneur 1487 0.0329 0.0827
Job = Blue-Collar 9732 0.2153 0.0727
Job = Retired 2264 0.0501 0.2279
Marital = Married 27214 0.6019 0.1012
Marital = Single 12790 0.2829 0.1495
Education = Primary 6851 0.1515 0.0863
Education = Secondary 23202 0.5132 0.1056
Education = Tertiary 13301 0.2942 0.1501
Housing = Yes 25130 0.5558 0.0770
Housing = No 20081 0.4442 0.1670
Age < 30 3050 0.0675 0.1951
30  Age < 40 17359 0.3840 0.1129
Age � 50 12185 0.2695 0.1287

Dataset 45211 1.0000 0.1170

Figure 7: Bank Marketing groups.
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group name n samples fraction y mean

Male, Age < 30 3281 0.1094 0.2405
Single 15964 0.5321 0.2093
Single, Age > 30 6888 0.2296 0.1992
Female 18112 0.6037 0.2078
Married, Age < 30 1482 0.0494 0.2611
Married, Age > 60 225 0.0075 0.2667
Education = High School 4917 0.1639 0.2516
Education = High School, Married 2861 0.0954 0.2635
Education = High School, Age > 40 2456 0.0819 0.2577
Education = University, Age < 25 1610 0.0537 0.2795
Female, Education = University 8656 0.2885 0.2220
Education = Graduate School 10585 0.3528 0.1923
Female, Education = Graduate School 6231 0.2077 0.1814

Dataset 30000 1.0000 0.2212

Figure 8: Credit Default groups.

group name n samples fraction y mean

Applicant Ethnicity: Hispanic or Latino 26416 0.2313 0.6806
Applicant Ethnicity: Not Hispanic or Latino 73527 0.6439 0.7940
Applicant Ethnicity: Not provided 14128 0.1237 0.6704
Applicant Sex: Female 32143 0.2815 0.7319
Applicant Sex: Male 72635 0.6361 0.7713
Co-Applicant Sex: Female 35164 0.3080 0.8029
Co-Applicant Sex: Male 10336 0.0905 0.7767
Applicant Race: Black 9044 0.0792 0.6703
Applicant Race: Asian 8086 0.0708 0.8097
Applicant Race: Native American or Alaskan 1019 0.0089 0.5927
Co-Applicant Race: Black 2760 0.0242 0.7120
Co-Applicant Race: Asian 3339 0.0292 0.8194

Dataset 114185 1.0000 0.7524

Figure 9: HMDA groups.

group name n samples fraction y mean

Age 0-18 3308 0.2986 0.0605
Age 19-34 2468 0.2228 0.1021
Age 35-50 2186 0.1973 0.1404
Age 51-64 1813 0.1636 0.2670
Age 65-79 977 0.0882 0.4637
Not White 7121 0.6427 0.1227
Northeast 1553 0.1402 0.2260
Midwest 2020 0.1823 0.2040
South 4325 0.3904 0.1487
West 3181 0.2871 0.1481
Poverty Category 1 2435 0.2198 0.1577
Poverty Category 2 704 0.0635 0.1378
Poverty Category 3 1941 0.1752 0.1484
Poverty Category 4 3100 0.2798 0.1519

Dataset 11079 1.0000 0.1694

Figure 10: MEPS groups.
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E.5 Alternate Groups for Tabular Datasets
To validate our observations on tabular data, we repeated all experiments on each tabular dataset with
an alternate collection of groups. Like the original groups, these groups are defined by a feature or
conjunction of two features. We provide the alternate group definitions here, and present results on
these groups in Appendix I.

group name n samples fraction y mean

Associates Degree Male 7331 0.0375 0.4957
Associates Degree Female 8372 0.0428 0.3186
Divorced Female 10652 0.0544 0.4415
Under Part Time 16525 0.0845 0.1025
Part Time 55269 0.2825 0.1408
Full Time 135989 0.6950 0.5214
Over Full Time 11471 0.0586 0.6441
Not White 74659 0.3816 0.3574
Government Employee 29121 0.1488 0.5337
Private Employee 166544 0.8512 0.3890
Under 21 10166 0.0520 0.0106
Middle Aged 81582 0.4169 0.5064

Dataset 195665 1.0000 0.4106

Figure 11: ACS Income alternate groups.

group name n samples fraction y mean

Job = Management, Age < 50 7091 0.1568 0.1393
Job = Technician, Age < 30 436 0.0096 0.1858
Job = Blue-Collar, Age > 50 1075 0.0238 0.0679
Married, Education = Primary 5246 0.1160 0.0755
Single, Education = Tertiary 4792 0.1060 0.1836
Housing = Yes, Age < 30 1621 0.0359 0.0993
Housing = No, Age < 30 1429 0.0316 0.3037
Under 21 305 0.0067 0.3115
Middle Age 23841 0.5273 0.0977
Senior Age 961 0.0213 0.4225

Dataset 45211 1.0000 0.1170

Figure 12: Bank Marketing alternate groups.

group name n samples fraction y mean

Single, Male 6553 0.2184 0.2266
Single, Female 15964 0.5321 0.2093
Young Adult 9618 0.3206 0.2284
Middle Aged 8872 0.2957 0.2356
Education = High School, Female 2927 0.0976 0.2364
Education = University, Female 8656 0.2885 0.2220
Education = High School, Single 1909 0.0636 0.2368
Education = High School, Married 2861 0.0954 0.2635
Education = University, Single 7020 0.2340 0.2306
Education = University, Married 6842 0.2281 0.2435
Education = Graduate, Single 6809 0.2270 0.1842

Dataset 30000 1.0000 0.2212

Figure 13: Credit Default alternate groups.
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group name n samples fraction y mean

Loan Type 1 87857 0.7694 0.7327
Loan Type 2 17587 0.1540 0.8125
Loan Type 3 8047 0.0705 0.8311
HUD Median Family Income > 50k 107450 0.9410 0.7583
HUD Median Family Income  50k 6735 0.0590 0.6578
Has Co-Applicant 42535 0.3725 0.8079
Agency = OCC 5966 0.0522 0.8235
Agency = FRS 3879 0.0340 0.8729
Agency = FDIC 6951 0.0609 0.8708
Agency = NCUA 10626 0.0931 0.6882
Agency = HUD 64915 0.5685 0.7562
Agency = CFPB 21848 0.1913 0.6939
Loan Type = 1 to 4 Family 87857 0.7694 0.7327
Loan Type = Manufactured Housing 17587 0.1540 0.8125
Loan Type = Multi-Family 8047 0.0705 0.8311

Dataset 114185 1.0000 0.7524

Figure 14: HMDA alternate groups.

group name n samples fraction y mean

Under 21 3772 0.3405 0.0607
Middle Age 2874 0.2594 0.1990
Senior Age 1304 0.1177 0.4862
Sex = 1 5281 0.4767 0.1274
Sex = 2 5798 0.5233 0.2077
White 3958 0.3573 0.2534
Active Duty Group 2 6454 0.5825 0.1432
Marriage Group 1 3645 0.3290 0.2222
Marriage Group 2 450 0.0406 0.4867
Pregnancy Group 1 124 0.0112 0.4274
Pregnancy Group 2 2167 0.1956 0.1398
Insurance Group 1 5926 0.5349 0.1790
Insurance Group 2 3890 0.3511 0.1979

Dataset 11079 1.0000 0.1694

Figure 15: MEPS alternate groups.
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E.6 Groups for Image Datasets

group name n samples fraction y mean

Male 84434 0.4168 0.0207
Female 118165 0.5832 0.2389
Arched Eyebrows 54090 0.2670 0.2227
Bangs 30709 0.1516 0.2310
Big Lips 48785 0.2408 0.1629
Chubby 11663 0.0576 0.0189
Double Chin 9459 0.0467 0.0248
Eyeglasses 13193 0.0651 0.0392
High Cheekbones 92189 0.4550 0.1949
Mouth Slightly Open 97942 0.4834 0.1737
Oval Face 57567 0.2841 0.1761
Pale Skin 8701 0.0429 0.2455
Receding Hairline 16163 0.0798 0.0630
Smiling 97669 0.4821 0.1812
Straight Hair 42222 0.2084 0.1518
Wavy Hair 64744 0.3196 0.2145
Wearing Hat 9818 0.0485 0.0168
Young 156734 0.7736 0.1581

Dataset 202599 1.0000 0.1480

Figure 16: CelebA groups.

group name n samples fraction y mean

Hospital = 0 59436 0.1304 0.5000
Hospital = 1 34904 0.0766 0.5000
Hospital = 2 85054 0.1865 0.5000
Hospital = 3 129838 0.2848 0.5000
Hospital = 4 146722 0.3218 0.5000
Slide = 0 4316 0.0095 0.0083
Slide = 4 7294 0.0160 0.6697
Slide = 8 13455 0.0295 0.6469
Slide = 16 4971 0.0109 0.8236
Slide = 20 3810 0.0084 0.0071
Slide = 24 7727 0.0169 0.0238
Slide = 28 31878 0.0699 0.8469
Slide = 32 8831 0.0194 0.2466
Slide = 36 10661 0.0234 0.0015
Slide = 40 7395 0.0162 0.0170
Slide = 44 7958 0.0175 0.0030
Slide = 48 61110 0.1340 0.9273

Dataset 455954 1.0000 0.5000

Figure 17: Camelyon17 groups.
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E.7 Groups for Language Datasets

group name n samples fraction y mean

Male 20880 0.0466 0.1488
Female 33113 0.0739 0.1399
LGBTQ 14303 0.0319 0.2684
Not LGBTQ 433695 0.9681 0.1083
Christian 18961 0.0423 0.1103
Not Christian 380222 0.8487 0.1177
Muslim 13939 0.0311 0.2429
Not Muslim 418737 0.9347 0.1065
Other Religions 11030 0.0246 0.1528
Black 8448 0.0189 0.3638
Not Black 426444 0.9519 0.1049
White 14339 0.0320 0.3068
Not White 415090 0.9265 0.1016

Dataset 447998 1.0000 0.1134

Figure 18: Civil Comments groups.

group name n samples fraction y mean

expensive 5834 0.0146 0.4434
cheap 10928 0.0273 0.2753
food 3868 0.0097 0.5476
health 2381 0.0060 0.6237
music 26463 0.0662 0.6192
book 108100 0.2703 0.5289
movie 36191 0.0905 0.4731
tech 8515 0.0213 0.4547
exercise 2262 0.0057 0.5535
garbage 3248 0.0081 0.0702
terrible 6138 0.0153 0.0893
incredible 2532 0.0063 0.7986
love 53005 0.1325 0.7212
again 26106 0.0653 0.4454
star 42632 0.1066 0.4495

Dataset 399980 1.0000 0.5009

Figure 19: Amazon Polarity groups.

E.8 Dataset Usage and Licensing
• ACSIncome: While Folktables provides API for downloading ACS data, usage of this data

is governed by the terms of use provided by the Census Bureau. For more information, see
https://www.census.gov/data/developers/about/terms-of-service.html.

• BankMarketing: Creative Commons Attribution 4.0 International (CC BY 4.0)

• CreditDefault: Creative Commons Attribution 4.0 International (CC BY 4.0)

• HMDA: The variant we use is available for download on https://github.com/pasta41/
hmda?tab=readme-ov-file under an MIT license.

• MEPS: The variant we use is available for download on https://github.com/alangee/

FaiR-N/tree/master under an Apache 2.0 license.

• Civil Comments: This dataset is in the public domain and distributed under CC0.

• Amazon Polarity: We were not able to find a license for this dataset. It is a downstream
variant of a dataset generated with content from Internet Archive9.

9
http://archive.org/details/asin_listing/
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• CelebA: The creators of this dataset do not provide a license, though they encourage its use
for non-commercial research purposes only.

• Camelyon17: This dataset is in the public domain and distributed under CC0.

F Hyperparameters for Multicalibration and Calibration Algorithms
Here, we detail the hyperparameters with which equip algorithms from Haghtalab et al. (2023) and
Hébert-Johnson et al. (2018), as well as the hyperparameters used in standard calibration methods.

F.1 Hébert-Johnson et al. (2018) Algorithm
These authors do not report empirical performance of their algorithm. For consistency with calibration
measures, we fix a bin width of � = 0.1 in all experiments. The algorithm depends on one other
hyperparameter ↵, which is some constant factor of the acceptable difference between mean prediction
and mean label within each “category,” a subgroup g ✓ X restricted to the preimage of a particular
bin b ✓ [0, 1]. Modulo the randomness induced by a statistical query oracle, this algorithm converges
when violations within each category are sufficiently small. As originally proposed, we skip categories
g \ f�1(b) in iterations where |g \ f�1(b)|  �↵|g|. For each dataset and each base predictor, we
sweep over ↵ 2 {0.1, 0.05, 0.025, 0.0125}.

F.2 Haghtalab et al. (2023) Algorithms
These authors present an empirical examination in conjunction with theoretical results, though our
use of the algorithms differs significantly. Namely, instead of initializing predictions uniformly, we
initialize with the predictions of some base predictor. The authors also train their multicalibration
algorithms with substantially larger collections of subgroups, in some cases defining group by all
unique values of individual features. Instead, we only consider a collection of at most 20 “protected”
groups.

The authors evaluate six algorithms: four based on “no-regret best-response dynamics,” using an
empirical risk minimizer as the adversary and Hedge, Prod, Optimistic Hedge, or Gradient Descent
as the learner; two based on “no-regret no-regret dynamics,” using either Hedge or Optimistic Hedge
as both the adversary and learner. On each task, and with each algorithm, the authors train for 50-100
iterations and sweep over learning rate decay rates of ⌘ 2 {0.8, 0.85, 0.9, .95} for the learner and,
when applicable, rates of ⌘ 2 {0.9, 0.95, 0.98, 0.99} for the adversary. On two of the three datasets
they examine, the authors fix a bin-width of � = 0.1.

In all experiments, we consider the same multicalibration algorithms but restrict to 30 iterations
and a smaller collection of decay rates. In particular, for each dataset and base predictor, and
for each of the six algorithms, we sweep over decay rates ⌘ 2 {0.9, 0.95} for the learner and
⌘ 2 {0.9, 0.95, 0.98} for the adversary. We justify these restrictions by noting that (1) our base
predictors already achieve nontrivial accuracy on each task and (2) that this sweep covers a large
portion of the optimal hyperparameters found in Haghtalab et al. (2023). For consistency with our
hyperparameters for HKRR and chosen calibration measures, we fix � = 0.1 on all datasets.

F.3 Temperature Implementation
Temperature scaling can be made hyperparameter-free by choosing a divisor T ⇤ which minimizes
the cross-entropy loss on a held-out calibration split. One can also fix T to some positive real
number. For each dataset and base predictor, we examine both methods, scaling logits by 1/T for all
T 2 {0.2 · k : k 2 [20]}, as well as by 1/T ⇤ with T ⇤ obtained via the Pytorch implementation of
L-BFGS. We report only the best temperature scaling method on a hold-out validation set.

G Models and Training
Here, we describe the models used as base predictors and their hyperparameters (or the procedure for
obtaining these hyperparameters) in all experiments. Across all datasets, we use a train-validation-
test split of (0.6 : 0.2 : 0.2), fixing the test set and determining train/validation sets via random
seed. In all cases of a base-predictor hyperparameter search, we use validation accuracy to select
hyperparameters.

27



G.1 Models Used on Tabular Data
On all tabular datasets, we examine five standard prediction models from supervised learning: Deci-
sion Tree, Random Forest, Logistic Regression, SVM, and Naive Bayes, using a Scikit-learn im-
plementation in all cases. We also examine MLPs of varying architecture. For each dataset and predici-
ton model, we examine all calibration fractions CF 2 {0, 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}.
When CF = 1.0, we take the base predictor to output 1/2 for all samples. During both hyperparame-
ter search and test-set evaluation we average all metrics over five random splits of the training and
validation data.

G.1.1 Standard Supervised Learning Models
For Decision Tree, we vary maximum depth over {None, 10, 20, 50} and the minimum number of
samples required to split an internal node over {2, 5, 10}. For Random Forest, we vary these same
hyperparameters and fix the number of estimators at 100. For Logistic Regression and SVM, we
vary regularization strength; for Logistic Regression we let the inverse regularization strength C 2
{0.4, 1, 2, 4} and for SVM we let the regularization strength ↵ 2 {0.00001, 0.0001, 0.001, 0.01}.
Naive Bayes is hyperparameter-free.

While Decision Tree, Random Forest, Logistic Regression, and Naive Bayes are naturally prob-
abilistic, SVM is not. While Scikit-learn provides a probabilistic prediction method with the
predict_proba() function, this is implemented via Platt scaling of the SVM scores. For this reason,
we treat the SVM’s standard output labels as probabilities. For efficient on larger datasets, we also
use the SGDClassifier implementation of SVM.

G.1.2 MLPs
To reduce computation during MLP hyperparameter search, for each dataset we constructed a
smaller set of hyperparameters over which to sweep, based on what yielded the best performance in
preliminary experiments. In what follows, we let a sequence (`i)Ni=1 denote the ordered layer widths
for a particular MLP with N hidden layers. When we substitute some `i with BN, this indicates the
presence of a batch-normalization layer. In all experiments with MLPs on tabular datasets, we use
the Adam optimizer.

On ACS Income, we train for 50 epochs. We search over hidden-layer widths: (128,BN, 128),
(128, 256, 128), and (128,BN, 256,BN, 128). We vary batch size over {32, 64, 128} and learning
rate over {0.01, 0.001, 0.0001, 0.00001}.

On Bank Marketing, we train for 50 epochs. We search over hidden-layer widths of
(100), (128,BN, 128), (128, 256, 128), and (128,BN, 256,BN, 128). We vary batch size over
{64, 128, 256, 512} and learning rate over {0.001, 0.0001, 0.00001}. We also include a learning
rate schedule under which our learning rate is 0.00005 for the first five epochs and 0.00001 for the
remaining.

On Credit Default, we train for 5 epochs. We search over hidden-layer widths of (100),
(128, 256, 128), and (128,BN, 256,BN, 128). We vary batch size over {16, 32, 64, 128} and learn-
ing rate over {0.01, 0.001, 0.0001, 0.00001}.

On HMDA, we train for 30 epochs. We search over hidden-layer widths of (100), (128,BN, 128),
(128, 256, 128), and (128,BN, 256,BN, 128). We vary batch size over {128, 256, 512} and learning
rate over {0.001, 0.0001, 0.00001}. We also include a learning rate schedule under which our learning
rate is 0.00005 for the first five epochs and 0.00001 for the remaining. In addition, we search over
weight decays in {0, 0.0001, 0.00001}.

On MEPS, we train for 50 epochs. We search over hidden-layer widths of (100), (128,BN, 128),
(128, 256, 128), and (128,BN, 256,BN, 128). We vary batch size over {16, 32, 64} and learning
rate over {0.1, 0.01, 0.01, 0.001, 0.0001, 0.00001}. In addition, we search over weight decays in
{0, 0.0001, 0.00001}.

To ensure all NN outputs are probabilistic, we apply the softmax function before evaluating predictions
or passing into any post-processing algorithm. The only exception to this rule is when we apply
temperature scaling, which scales raw logits before passing into softmax.

G.2 Models Used on Vision and Language Tasks
On our vision and language datasets, we use much larger models, in some cases with as many as 85
million trainable parameters. We opt for hyperparameters already present in the literature, or alter-
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ations of such hyperparameters which give nontrivial accuracy, and we use the same hyperparameters
for each calibration fraction. We examine all calibration fractions CF 2 {0, 0.2, 0.4} and average all
runs over three random splits of the training and validation data.

Our experiments with language datasets involved two models: (1) DistilBERT, a pretrained trans-
former introduced by Sanh et al. (2019), and (2) a ResNet-56 using unfrozen, pretrained GloVe
embeddings (Pennington et al., 2014), the implementation for which comes from Duchene et al.
(2023).

On the CivilComments dataset, we train a DistilBERT for 10 epochs with a batch size of 16, learning
rate of 0.00001, and weight decay of 0.01, using the Adam optimizer. We fix a maximum token
length of 300.

On the Amazon Polarity dataset, we train a ResNet-56 with three input channels, which accept
a stacked embedding of 512 dimensions. We use the basic_english tokenizer provided by
torchtext, fixing a maximum token length of 70 and minimum frequency of 5. We train for
10 epochs with a batch size of 32 and learning rate of 0.0001 using Adam. Implementation-specific
details are provided in our code.

Our experiments with vision datasets involve three models: (1) vit-large-patch32-224-in21k,
a pretrained vision transformer introduced by Dosovitskiy et al. (2021), (2) ResNet-50 (He et al.,
2016), and (3) DenseNet-121 (Huang et al., 2017).

On CelebA, we train the ViT for 10 epochs with a batch size fo 64, learning rate of 0.0001, and
weight decay of 0.01, using Adam. We also train a ResNet-50 for 50 epochs with a batch size of 64
and learning rate of 0.001, using SGD with a momentum of 0.9.

On Camelyon17, we train the ViT for 5 epochs with a batch size of 32, learning rate of 0.001,
and weight decay of 0.01. We optimize with SGD, using a momentum of 0.9. We also train a
DenseNet-121 for 10 epochs with a batch size of 32, learning rate of 0.001, and weight decay of 0.01,
using SGD with a momentum of 0.9.
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H Results on Tabular Datasets
H.1 Plots for All Multicalibration Algorithms

Figure 20: All multicalibration algorithms on Decision Trees.
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Figure 21: All multicalibration algorithms on Random Forest.
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Figure 22: All multicalibration algorithms on Logistic Regression.
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Figure 23: All multicalibration algorithms on SVMs.
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Figure 24: All multicalibration algorithms on Naive Bayes.
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H.2 Tables Comparing Best-Performing Multicalibration Algorithms with ERM

Model ECE # Max ECE # smECE # Max smECE # Acc "
MLP ERM 0.01 ± 0.003 0.069 ± 0.011 0.012 ± 0.003 0.058 ± 0.005 0.812 ± 0.001
MLP HKRR 0.023 ± 0.001 0.065 ± 0.004 0.023 ± 0.001 0.063 ± 0.002 0.615 ± 0.0
MLP HJZ 0.01 ± 0.002 0.069 ± 0.008 0.013 ± 0.001 0.055 ± 0.004 0.81 ± 0.002
MLP Platt 0.017 ± 0.009 0.076 ± 0.008 0.018 ± 0.008 0.064 ± 0.008 0.809 ± 0.003
MLP Temp 0.011 ± 0.005 0.068 ± 0.01 0.013 ± 0.004 0.059 ± 0.007 0.811 ± 0.001
MLP Isotonic 0.01 ± 0.001 0.067 ± 0.008 0.011 ± 0.001 0.057 ± 0.002 0.811 ± 0.001

RandomForest ERM 0.01 ± 0.001 0.051 ± 0.01 0.011 ± 0.0 0.046 ± 0.002 0.819 ± 0.001
RandomForest HKRR 0.023 ± 0.001 0.066 ± 0.004 0.023 ± 0.001 0.063 ± 0.002 0.614 ± 0.001
RandomForest HJZ 0.007 ± 0.002 0.052 ± 0.003 0.01 ± 0.001 0.047 ± 0.003 0.818 ± 0.001
RandomForest Platt 0.006 ± 0.001 0.054 ± 0.001 0.01 ± 0.001 0.047 ± 0.002 0.818 ± 0.001
RandomForest Temp 0.027 ± 0.001 0.074 ± 0.008 0.027 ± 0.0 0.061 ± 0.004 0.819 ± 0.001
RandomForest Isotonic 0.008 ± 0.001 0.059 ± 0.011 0.011 ± 0.0 0.048 ± 0.004 0.818 ± 0.001

SVM ERM 0.216 ± 0.001 0.268 ± 0.002 0.109 ± 0.0 0.135 ± 0.001 0.784 ± 0.001
SVM HKRR 0.023 ± 0.001 0.065 ± 0.004 0.023 ± 0.001 0.063 ± 0.002 0.615 ± 0.0
SVM HJZ 0.03 ± 0.002 0.074 ± 0.002 0.026 ± 0.002 0.068 ± 0.006 0.612 ± 0.0
SVM Platt 0.336 ± 0.007 0.403 ± 0.003 0.168 ± 0.004 0.2 ± 0.001 0.664 ± 0.007
SVM Temp 0.022 ± 0.005 0.117 ± 0.005 0.022 ± 0.005 0.117 ± 0.005 0.678 ± 0.006
SVM Isotonic 0.081 ± 0.012 0.155 ± 0.007 0.081 ± 0.012 0.146 ± 0.006 0.664 ± 0.007

LogisticRegression ERM 0.012 ± 0.002 0.065 ± 0.011 0.015 ± 0.002 0.063 ± 0.011 0.779 ± 0.007
LogisticRegression HKRR 0.01 ± 0.001 0.042 ± 0.006 0.01 ± 0.001 0.037 ± 0.002 0.783 ± 0.0
LogisticRegression HJZ 0.011 ± 0.001 0.065 ± 0.005 0.014 ± 0.001 0.057 ± 0.002 0.783 ± 0.001
LogisticRegression Platt 0.023 ± 0.006 0.08 ± 0.019 0.024 ± 0.006 0.076 ± 0.02 0.772 ± 0.011
LogisticRegression Temp 0.02 ± 0.001 0.078 ± 0.005 0.021 ± 0.0 0.072 ± 0.003 0.783 ± 0.0
LogisticRegression Isotonic 0.005 ± 0.001 0.068 ± 0.008 0.009 ± 0.001 0.066 ± 0.009 0.775 ± 0.009

DecisionTree ERM 0.017 ± 0.001 0.066 ± 0.01 0.016 ± 0.001 0.059 ± 0.004 0.804 ± 0.0
DecisionTree HKRR 0.023 ± 0.001 0.065 ± 0.004 0.023 ± 0.001 0.063 ± 0.002 0.615 ± 0.0
DecisionTree HJZ 0.013 ± 0.002 0.064 ± 0.005 0.013 ± 0.001 0.054 ± 0.005 0.803 ± 0.002
DecisionTree Platt 0.015 ± 0.002 0.058 ± 0.004 0.014 ± 0.002 0.055 ± 0.004 0.803 ± 0.002
DecisionTree Temp 0.029 ± 0.002 0.088 ± 0.009 0.028 ± 0.002 0.072 ± 0.006 0.803 ± 0.001
DecisionTree Isotonic 0.007 ± 0.002 0.072 ± 0.01 0.01 ± 0.001 0.057 ± 0.003 0.803 ± 0.001

NaiveBayes ERM 0.117 ± 0.0 0.165 ± 0.0 0.109 ± 0.0 0.149 ± 0.001 0.754 ± 0.0
NaiveBayes HKRR 0.023 ± 0.001 0.065 ± 0.004 0.023 ± 0.001 0.063 ± 0.002 0.615 ± 0.0
NaiveBayes HJZ 0.03 ± 0.002 0.074 ± 0.002 0.026 ± 0.002 0.068 ± 0.006 0.612 ± 0.0
NaiveBayes Platt 0.091 ± 0.004 0.13 ± 0.004 0.086 ± 0.004 0.12 ± 0.003 0.759 ± 0.001
NaiveBayes Temp 0.089 ± 0.003 0.154 ± 0.004 0.087 ± 0.002 0.153 ± 0.004 0.754 ± 0.001
NaiveBayes Isotonic 0.004 ± 0.001 0.094 ± 0.003 0.007 ± 0.0 0.085 ± 0.002 0.769 ± 0.001

Figure 25: ACS Income.
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Model ECE # Max ECE # smECE # Max smECE # Acc "
MLP ERM 0.009 ± 0.004 0.048 ± 0.012 0.012 ± 0.002 0.046 ± 0.01 0.901 ± 0.002
MLP HKRR 0.007 ± 0.001 0.044 ± 0.006 0.007 ± 0.002 0.039 ± 0.003 0.879 ± 0.0
MLP HJZ 0.01 ± 0.002 0.043 ± 0.011 0.013 ± 0.002 0.039 ± 0.007 0.9 ± 0.003
MLP Platt 0.01 ± 0.002 0.048 ± 0.012 0.012 ± 0.001 0.044 ± 0.01 0.899 ± 0.001
MLP Temp 0.021 ± 0.006 0.047 ± 0.005 0.022 ± 0.005 0.041 ± 0.003 0.9 ± 0.002
MLP Isotonic 0.014 ± 0.003 0.044 ± 0.009 0.015 ± 0.002 0.04 ± 0.007 0.9 ± 0.0

RandomForest ERM 0.014 ± 0.001 0.045 ± 0.003 0.015 ± 0.0 0.038 ± 0.002 0.903 ± 0.002
RandomForest HKRR 0.007 ± 0.001 0.044 ± 0.006 0.007 ± 0.002 0.039 ± 0.003 0.879 ± 0.0
RandomForest HJZ 0.008 ± 0.001 0.035 ± 0.005 0.011 ± 0.001 0.031 ± 0.003 0.902 ± 0.001
RandomForest Platt 0.01 ± 0.002 0.039 ± 0.002 0.013 ± 0.001 0.033 ± 0.002 0.903 ± 0.001
RandomForest Temp 0.06 ± 0.002 0.084 ± 0.005 0.056 ± 0.001 0.07 ± 0.003 0.899 ± 0.001
RandomForest Isotonic 0.013 ± 0.005 0.037 ± 0.009 0.015 ± 0.004 0.034 ± 0.004 0.902 ± 0.001

SVM ERM 0.106 ± 0.001 0.211 ± 0.019 0.053 ± 0.001 0.106 ± 0.009 0.894 ± 0.001
SVM HKRR 0.007 ± 0.001 0.044 ± 0.006 0.007 ± 0.002 0.039 ± 0.003 0.879 ± 0.0
SVM HJZ 0.003 ± 0.001 0.073 ± 0.005 0.009 ± 0.001 0.073 ± 0.005 0.879 ± 0.0
SVM Platt 0.117 ± 0.001 0.246 ± 0.005 0.059 ± 0.001 0.123 ± 0.003 0.883 ± 0.001
SVM Temp 0.041 ± 0.004 0.091 ± 0.001 0.041 ± 0.004 0.091 ± 0.001 0.879 ± 0.001
SVM Isotonic 0.023 ± 0.009 0.129 ± 0.024 0.023 ± 0.009 0.129 ± 0.023 0.88 ± 0.001

LogisticRegression ERM 0.032 ± 0.001 0.062 ± 0.01 0.03 ± 0.001 0.053 ± 0.002 0.899 ± 0.001
LogisticRegression HKRR 0.007 ± 0.001 0.044 ± 0.006 0.007 ± 0.002 0.039 ± 0.003 0.879 ± 0.0
LogisticRegression HJZ 0.011 ± 0.001 0.045 ± 0.004 0.015 ± 0.001 0.042 ± 0.001 0.9 ± 0.001
LogisticRegression Platt 0.012 ± 0.001 0.049 ± 0.008 0.016 ± 0.001 0.043 ± 0.005 0.899 ± 0.002
LogisticRegression Temp 0.062 ± 0.001 0.088 ± 0.007 0.055 ± 0.001 0.066 ± 0.003 0.899 ± 0.001
LogisticRegression Isotonic 0.009 ± 0.002 0.04 ± 0.006 0.013 ± 0.001 0.036 ± 0.006 0.899 ± 0.002

DecisionTree ERM 0.028 ± 0.002 0.096 ± 0.014 0.022 ± 0.001 0.069 ± 0.003 0.897 ± 0.002
DecisionTree HKRR 0.007 ± 0.001 0.044 ± 0.006 0.007 ± 0.002 0.039 ± 0.003 0.879 ± 0.0
DecisionTree HJZ 0.003 ± 0.001 0.073 ± 0.005 0.009 ± 0.001 0.073 ± 0.005 0.879 ± 0.0
DecisionTree Platt 0.028 ± 0.004 0.086 ± 0.01 0.023 ± 0.003 0.067 ± 0.008 0.897 ± 0.003
DecisionTree Temp 0.056 ± 0.003 0.092 ± 0.01 0.05 ± 0.002 0.073 ± 0.002 0.896 ± 0.002
DecisionTree Isotonic 0.01 ± 0.002 0.06 ± 0.004 0.011 ± 0.002 0.055 ± 0.005 0.896 ± 0.002

NaiveBayes ERM 0.122 ± 0.003 0.271 ± 0.002 0.093 ± 0.002 0.197 ± 0.007 0.857 ± 0.003
NaiveBayes HKRR 0.007 ± 0.001 0.044 ± 0.006 0.007 ± 0.002 0.039 ± 0.003 0.879 ± 0.0
NaiveBayes HJZ 0.003 ± 0.001 0.073 ± 0.005 0.009 ± 0.001 0.073 ± 0.005 0.879 ± 0.0
NaiveBayes Platt 0.121 ± 0.003 0.263 ± 0.006 0.094 ± 0.002 0.195 ± 0.008 0.857 ± 0.002
NaiveBayes Temp 0.083 ± 0.003 0.264 ± 0.008 0.08 ± 0.003 0.24 ± 0.01 0.858 ± 0.002
NaiveBayes Isotonic 0.011 ± 0.003 0.055 ± 0.009 0.014 ± 0.003 0.047 ± 0.006 0.885 ± 0.002

Figure 26: Bank Marketing.
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Model ECE # Max ECE # smECE # Max smECE # Acc "
MLP ERM 0.05 ± 0.007 0.104 ± 0.013 0.049 ± 0.006 0.092 ± 0.013 0.824 ± 0.007
MLP HKRR 0.005 ± 0.001 0.08 ± 0.006 0.005 ± 0.001 0.076 ± 0.005 0.754 ± 0.0
MLP HJZ 0.014 ± 0.003 0.076 ± 0.013 0.016 ± 0.002 0.065 ± 0.007 0.829 ± 0.009
MLP Platt 0.132 ± 0.01 0.176 ± 0.013 0.12 ± 0.007 0.149 ± 0.011 0.816 ± 0.008
MLP Temp 0.022 ± 0.007 0.083 ± 0.014 0.022 ± 0.006 0.078 ± 0.013 0.83 ± 0.007
MLP Isotonic 0.009 ± 0.001 0.076 ± 0.011 0.011 ± 0.001 0.071 ± 0.009 0.831 ± 0.007
RandomForest ERM 0.038 ± 0.002 0.099 ± 0.008 0.038 ± 0.002 0.088 ± 0.006 0.868 ± 0.001
RandomForest HKRR 0.013 ± 0.001 0.061 ± 0.019 0.013 ± 0.001 0.047 ± 0.006 0.862 ± 0.002
RandomForest HJZ 0.024 ± 0.003 0.076 ± 0.01 0.024 ± 0.002 0.062 ± 0.008 0.852 ± 0.022
RandomForest Platt 0.017 ± 0.002 0.078 ± 0.009 0.017 ± 0.002 0.069 ± 0.006 0.868 ± 0.001
RandomForest Temp 0.04 ± 0.002 0.061 ± 0.003 0.04 ± 0.001 0.055 ± 0.004 0.867 ± 0.001
RandomForest Isotonic 0.009 ± 0.002 0.058 ± 0.008 0.01 ± 0.002 0.048 ± 0.004 0.869 ± 0.001
SVM ERM 0.144 ± 0.001 0.175 ± 0.004 0.072 ± 0.0 0.088 ± 0.002 0.856 ± 0.001
SVM HKRR 0.005 ± 0.001 0.08 ± 0.006 0.005 ± 0.001 0.076 ± 0.005 0.754 ± 0.0
SVM HJZ 0.051 ± 0.006 0.133 ± 0.006 0.047 ± 0.009 0.133 ± 0.006 0.721 ± 0.02
SVM Platt 0.353 ± 0.003 0.417 ± 0.006 0.175 ± 0.001 0.205 ± 0.002 0.647 ± 0.003
SVM Temp 0.268 ± 0.001 0.288 ± 0.003 0.254 ± 0.001 0.269 ± 0.002 0.631 ± 0.005
SVM Isotonic 0.06 ± 0.049 0.187 ± 0.033 0.044 ± 0.036 0.152 ± 0.028 0.754 ± 0.0

LogisticRegression ERM 0.016 ± 0.001 0.103 ± 0.002 0.016 ± 0.001 0.101 ± 0.002 0.827 ± 0.001
LogisticRegression HKRR 0.012 ± 0.001 0.043 ± 0.01 0.012 ± 0.0 0.04 ± 0.011 0.83 ± 0.002
LogisticRegression HJZ 0.023 ± 0.006 0.084 ± 0.014 0.024 ± 0.006 0.076 ± 0.019 0.833 ± 0.01
LogisticRegression Platt 0.019 ± 0.007 0.079 ± 0.016 0.02 ± 0.006 0.077 ± 0.016 0.831 ± 0.011
LogisticRegression Temp 0.062 ± 0.012 0.1 ± 0.017 0.062 ± 0.01 0.095 ± 0.015 0.832 ± 0.012
LogisticRegression Isotonic 0.004 ± 0.001 0.088 ± 0.018 0.007 ± 0.001 0.087 ± 0.019 0.832 ± 0.012

DecisionTree ERM 0.019 ± 0.001 0.064 ± 0.007 0.018 ± 0.002 0.055 ± 0.006 0.863 ± 0.001
DecisionTree HKRR 0.013 ± 0.002 0.056 ± 0.014 0.013 ± 0.002 0.051 ± 0.011 0.858 ± 0.001
DecisionTree HJZ 0.018 ± 0.002 0.07 ± 0.013 0.017 ± 0.002 0.058 ± 0.007 0.862 ± 0.001
DecisionTree Platt 0.017 ± 0.002 0.073 ± 0.007 0.016 ± 0.001 0.057 ± 0.009 0.863 ± 0.002
DecisionTree Temp 0.064 ± 0.002 0.09 ± 0.007 0.055 ± 0.001 0.07 ± 0.004 0.859 ± 0.001
DecisionTree Isotonic 0.011 ± 0.004 0.066 ± 0.007 0.013 ± 0.003 0.057 ± 0.008 0.86 ± 0.003

NaiveBayes ERM 0.134 ± 0.001 0.199 ± 0.003 0.126 ± 0.0 0.165 ± 0.002 0.808 ± 0.001
NaiveBayes HKRR 0.009 ± 0.002 0.062 ± 0.008 0.009 ± 0.002 0.059 ± 0.009 0.817 ± 0.003
NaiveBayes HJZ 0.052 ± 0.012 0.117 ± 0.013 0.052 ± 0.01 0.108 ± 0.009 0.805 ± 0.003
NaiveBayes Platt 0.124 ± 0.003 0.2 ± 0.009 0.118 ± 0.003 0.168 ± 0.006 0.809 ± 0.002
NaiveBayes Temp 0.174 ± 0.002 0.185 ± 0.001 0.173 ± 0.002 0.177 ± 0.002 0.809 ± 0.0
NaiveBayes Isotonic 0.006 ± 0.001 0.116 ± 0.002 0.009 ± 0.001 0.116 ± 0.002 0.817 ± 0.001

Figure 27: HMDA.
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Model ECE # Max ECE # smECE # Max smECE # Acc "
MLP ERM 0.018 ± 0.006 0.116 ± 0.035 0.02 ± 0.005 0.061 ± 0.005 0.819 ± 0.001
MLP HKRR 0.029 ± 0.002 0.057 ± 0.005 0.026 ± 0.001 0.049 ± 0.005 0.781 ± 0.0
MLP HJZ 0.029 ± 0.003 0.086 ± 0.003 0.028 ± 0.002 0.073 ± 0.001 0.781 ± 0.0
MLP Platt 0.028 ± 0.002 0.086 ± 0.001 0.027 ± 0.001 0.075 ± 0.002 0.781 ± 0.0
MLP Temp 0.035 ± 0.008 0.098 ± 0.015 0.035 ± 0.008 0.064 ± 0.004 0.821 ± 0.001
MLP Isotonic 0.003 ± 0.001 0.059 ± 0.001 0.003 ± 0.001 0.059 ± 0.001 0.781 ± 0.0

RandomForest ERM 0.019 ± 0.001 0.112 ± 0.017 0.02 ± 0.001 0.051 ± 0.003 0.82 ± 0.001
RandomForest HKRR 0.029 ± 0.002 0.057 ± 0.005 0.026 ± 0.001 0.049 ± 0.005 0.781 ± 0.0
RandomForest HJZ 0.029 ± 0.003 0.086 ± 0.003 0.028 ± 0.002 0.073 ± 0.001 0.781 ± 0.0
RandomForest Platt 0.027 ± 0.006 0.125 ± 0.028 0.029 ± 0.005 0.07 ± 0.008 0.812 ± 0.01
RandomForest Temp 0.027 ± 0.002 0.071 ± 0.006 0.026 ± 0.001 0.048 ± 0.001 0.82 ± 0.002
RandomForest Isotonic 0.027 ± 0.008 0.114 ± 0.015 0.025 ± 0.006 0.059 ± 0.004 0.818 ± 0.001

SVM ERM 0.181 ± 0.0 0.236 ± 0.002 0.091 ± 0.0 0.118 ± 0.001 0.819 ± 0.0
SVM HKRR 0.029 ± 0.002 0.057 ± 0.005 0.026 ± 0.001 0.049 ± 0.005 0.781 ± 0.0
SVM HJZ 0.029 ± 0.003 0.086 ± 0.003 0.028 ± 0.002 0.073 ± 0.001 0.781 ± 0.0
SVM Platt 0.18 ± 0.0 0.232 ± 0.003 0.09 ± 0.0 0.116 ± 0.001 0.82 ± 0.0
SVM Temp 0.06 ± 0.001 0.088 ± 0.0 0.06 ± 0.001 0.088 ± 0.0 0.819 ± 0.0
SVM Isotonic 0.013 ± 0.005 0.04 ± 0.005 0.013 ± 0.005 0.04 ± 0.004 0.82 ± 0.0
LogisticRegression ERM 0.01 ± 0.001 0.102 ± 0.026 0.015 ± 0.001 0.056 ± 0.002 0.819 ± 0.0
LogisticRegression HKRR 0.029 ± 0.002 0.057 ± 0.005 0.026 ± 0.001 0.049 ± 0.005 0.781 ± 0.0
LogisticRegression HJZ 0.029 ± 0.003 0.086 ± 0.003 0.028 ± 0.002 0.073 ± 0.001 0.781 ± 0.0
LogisticRegression Platt 0.023 ± 0.005 0.114 ± 0.018 0.023 ± 0.004 0.068 ± 0.005 0.817 ± 0.002
LogisticRegression Temp 0.022 ± 0.003 0.101 ± 0.015 0.022 ± 0.002 0.056 ± 0.003 0.819 ± 0.001
LogisticRegression Isotonic 0.009 ± 0.002 0.115 ± 0.026 0.014 ± 0.002 0.06 ± 0.004 0.818 ± 0.001

DecisionTree ERM 0.04 ± 0.003 0.181 ± 0.01 0.031 ± 0.001 0.089 ± 0.006 0.81 ± 0.003
DecisionTree HKRR 0.029 ± 0.002 0.057 ± 0.005 0.026 ± 0.001 0.049 ± 0.005 0.781 ± 0.0
DecisionTree HJZ 0.029 ± 0.003 0.086 ± 0.003 0.028 ± 0.002 0.073 ± 0.001 0.781 ± 0.0
DecisionTree Platt 0.038 ± 0.003 0.138 ± 0.027 0.029 ± 0.003 0.08 ± 0.007 0.811 ± 0.003
DecisionTree Temp 0.077 ± 0.001 0.154 ± 0.015 0.075 ± 0.001 0.103 ± 0.004 0.81 ± 0.003
DecisionTree Isotonic 0.021 ± 0.006 0.084 ± 0.018 0.022 ± 0.005 0.07 ± 0.007 0.811 ± 0.005

NaiveBayes ERM 0.187 ± 0.006 0.248 ± 0.009 0.108 ± 0.005 0.137 ± 0.004 0.807 ± 0.004
NaiveBayes HKRR 0.029 ± 0.002 0.057 ± 0.005 0.026 ± 0.001 0.049 ± 0.005 0.781 ± 0.0
NaiveBayes HJZ 0.029 ± 0.003 0.086 ± 0.003 0.028 ± 0.002 0.073 ± 0.001 0.781 ± 0.0
NaiveBayes Platt 0.197 ± 0.011 0.257 ± 0.012 0.119 ± 0.016 0.154 ± 0.019 0.792 ± 0.014
NaiveBayes Temp 0.07 ± 0.019 0.1 ± 0.023 0.069 ± 0.019 0.097 ± 0.025 0.807 ± 0.003
NaiveBayes Isotonic 0.028 ± 0.006 0.09 ± 0.022 0.027 ± 0.005 0.057 ± 0.008 0.806 ± 0.005

Figure 28: Credit Default.
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Model ECE # Max ECE # smECE # Max smECE # Acc "
MLP ERM 0.022 ± 0.006 0.106 ± 0.009 0.024 ± 0.002 0.086 ± 0.015 0.864 ± 0.001
MLP HKRR 0.019 ± 0.005 0.122 ± 0.008 0.019 ± 0.004 0.104 ± 0.002 0.835 ± 0.003
MLP HJZ 0.019 ± 0.003 0.088 ± 0.011 0.021 ± 0.002 0.076 ± 0.018 0.864 ± 0.003
MLP Platt 0.017 ± 0.005 0.1 ± 0.019 0.019 ± 0.003 0.088 ± 0.02 0.865 ± 0.003
MLP Temp 0.019 ± 0.007 0.091 ± 0.016 0.02 ± 0.004 0.081 ± 0.02 0.866 ± 0.001
MLP Isotonic 0.02 ± 0.006 0.108 ± 0.021 0.02 ± 0.004 0.089 ± 0.021 0.864 ± 0.003

RandomForest ERM 0.019 ± 0.001 0.094 ± 0.006 0.021 ± 0.001 0.083 ± 0.004 0.863 ± 0.003
RandomForest HKRR 0.019 ± 0.005 0.122 ± 0.008 0.019 ± 0.004 0.104 ± 0.002 0.835 ± 0.003
RandomForest HJZ 0.021 ± 0.004 0.106 ± 0.011 0.021 ± 0.003 0.101 ± 0.012 0.86 ± 0.003
RandomForest Platt 0.017 ± 0.003 0.093 ± 0.003 0.02 ± 0.001 0.085 ± 0.005 0.861 ± 0.006
RandomForest Temp 0.045 ± 0.003 0.096 ± 0.007 0.045 ± 0.002 0.092 ± 0.009 0.863 ± 0.002
RandomForest Isotonic 0.015 ± 0.002 0.089 ± 0.014 0.017 ± 0.001 0.084 ± 0.014 0.862 ± 0.002

SVM ERM 0.143 ± 0.002 0.376 ± 0.012 0.072 ± 0.001 0.186 ± 0.006 0.857 ± 0.002
SVM HKRR 0.019 ± 0.005 0.122 ± 0.008 0.019 ± 0.004 0.104 ± 0.002 0.835 ± 0.003
SVM HJZ 0.031 ± 0.003 0.156 ± 0.021 0.027 ± 0.004 0.155 ± 0.02 0.828 ± 0.002
SVM Platt 0.14 ± 0.001 0.322 ± 0.019 0.07 ± 0.001 0.161 ± 0.009 0.86 ± 0.001
SVM Temp 0.073 ± 0.008 0.163 ± 0.019 0.073 ± 0.009 0.158 ± 0.015 0.86 ± 0.001
SVM Isotonic 0.048 ± 0.023 0.231 ± 0.085 0.048 ± 0.023 0.218 ± 0.069 0.847 ± 0.017

LogisticRegression ERM 0.022 ± 0.002 0.106 ± 0.008 0.022 ± 0.001 0.083 ± 0.003 0.866 ± 0.002
LogisticRegression HKRR 0.019 ± 0.005 0.122 ± 0.008 0.019 ± 0.004 0.104 ± 0.002 0.835 ± 0.003
LogisticRegression HJZ 0.021 ± 0.003 0.114 ± 0.019 0.023 ± 0.001 0.09 ± 0.011 0.866 ± 0.003
LogisticRegression Platt 0.018 ± 0.003 0.109 ± 0.009 0.021 ± 0.002 0.093 ± 0.017 0.864 ± 0.003
LogisticRegression Temp 0.047 ± 0.002 0.119 ± 0.007 0.044 ± 0.001 0.087 ± 0.003 0.866 ± 0.002
LogisticRegression Isotonic 0.017 ± 0.003 0.109 ± 0.019 0.019 ± 0.003 0.097 ± 0.02 0.863 ± 0.002

DecisionTree ERM 0.067 ± 0.004 0.261 ± 0.028 0.047 ± 0.004 0.166 ± 0.012 0.85 ± 0.006
DecisionTree HKRR 0.019 ± 0.005 0.122 ± 0.008 0.019 ± 0.004 0.104 ± 0.002 0.835 ± 0.003
DecisionTree HJZ 0.031 ± 0.003 0.156 ± 0.021 0.027 ± 0.004 0.155 ± 0.02 0.828 ± 0.002
DecisionTree Platt 0.08 ± 0.005 0.316 ± 0.029 0.054 ± 0.004 0.192 ± 0.009 0.838 ± 0.004
DecisionTree Temp 0.098 ± 0.007 0.214 ± 0.025 0.092 ± 0.005 0.172 ± 0.015 0.838 ± 0.004
DecisionTree Isotonic 0.014 ± 0.003 0.196 ± 0.026 0.015 ± 0.003 0.186 ± 0.027 0.838 ± 0.01

NaiveBayes ERM 0.277 ± 0.019 0.544 ± 0.02 0.164 ± 0.013 0.287 ± 0.011 0.714 ± 0.018
NaiveBayes HKRR 0.019 ± 0.005 0.122 ± 0.008 0.019 ± 0.004 0.104 ± 0.002 0.835 ± 0.003
NaiveBayes HJZ 0.031 ± 0.003 0.156 ± 0.021 0.027 ± 0.004 0.155 ± 0.02 0.828 ± 0.002
NaiveBayes Platt 0.269 ± 0.008 0.535 ± 0.009 0.165 ± 0.004 0.292 ± 0.003 0.719 ± 0.007
NaiveBayes Temp 0.294 ± 0.003 0.368 ± 0.008 0.274 ± 0.002 0.323 ± 0.005 0.719 ± 0.007
NaiveBayes Isotonic 0.019 ± 0.005 0.128 ± 0.017 0.021 ± 0.005 0.122 ± 0.015 0.831 ± 0.006

Figure 29: MEPS.
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H.3 Influence of Calibration Fraction on Multicalibration Error and Accuracy

Figure 30: Influence of calibration fraction on MLP multicalibration and accuracy.
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Figure 31: Influence of calibration fraction on decision tree multicalibration.
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Figure 32: Influence of calibration fraction on RandomForest multicalibration.
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Figure 33: Influence of calibration fraction on LogisticRegression multicalibration.
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Figure 34: Influence of calibration fraction on SVM multicalibration.
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Figure 35: Influence of calibration fraction on NaiveBayes multicalibration.
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H.4 Tables Comparing Multicalibration Algorithms on Reused Data with ERM

Model ECE # Max ECE # smECE # Max smECE # Acc "
MLP ERM 0.017 ± 0.003 0.071 ± 0.009 0.017 ± 0.003 0.058 ± 0.009 0.81 ± 0.001
MLP HKRR 0.009 ± 0.002 0.048 ± 0.009 0.009 ± 0.002 0.04 ± 0.006 0.811 ± 0.001
MLP HJZ 0.013 ± 0.003 0.072 ± 0.009 0.015 ± 0.003 0.059 ± 0.007 0.808 ± 0.004
MLP Platt 0.01 ± 0.002 0.074 ± 0.008 0.012 ± 0.001 0.059 ± 0.004 0.811 ± 0.002
MLP Temp 0.017 ± 0.003 0.071 ± 0.009 0.017 ± 0.003 0.058 ± 0.009 0.81 ± 0.001
MLP Isotonic 0.008 ± 0.001 0.07 ± 0.002 0.01 ± 0.001 0.061 ± 0.002 0.811 ± 0.002
RandomForest ERM 0.009 ± 0.001 0.062 ± 0.009 0.011 ± 0.001 0.05 ± 0.003 0.819 ± 0.001
RandomForest HKRR 0.049 ± 0.001 0.123 ± 0.003 0.049 ± 0.001 0.12 ± 0.002 0.819 ± 0.001
RandomForest HJZ 0.007 ± 0.001 0.059 ± 0.01 0.009 ± 0.001 0.048 ± 0.003 0.819 ± 0.001
RandomForest Platt 0.017 ± 0.001 0.058 ± 0.003 0.017 ± 0.001 0.048 ± 0.002 0.819 ± 0.001
RandomForest Temp 0.027 ± 0.001 0.078 ± 0.007 0.027 ± 0.0 0.06 ± 0.001 0.819 ± 0.001
RandomForest Isotonic 0.075 ± 0.0 0.099 ± 0.004 0.071 ± 0.0 0.09 ± 0.003 0.819 ± 0.001
SVM ERM 0.299 ± 0.028 0.38 ± 0.054 0.15 ± 0.013 0.188 ± 0.024 0.701 ± 0.028
SVM HKRR 0.088 ± 0.012 0.061 ± 0.019 0.046 ± 0.006 0.052 ± 0.011 0.704 ± 0.025
SVM HJZ 0.135 ± 0.037 0.197 ± 0.04 0.084 ± 0.032 0.134 ± 0.039 0.703 ± 0.027
SVM Platt 0.299 ± 0.028 0.38 ± 0.054 0.15 ± 0.013 0.188 ± 0.024 0.701 ± 0.028
SVM Temp 0.064 ± 0.034 0.171 ± 0.029 0.062 ± 0.033 0.164 ± 0.031 0.701 ± 0.028
SVM Isotonic 0.002 ± 0.001 0.118 ± 0.014 0.002 ± 0.001 0.118 ± 0.014 0.701 ± 0.028

LogisticRegression ERM 0.012 ± 0.002 0.065 ± 0.011 0.015 ± 0.002 0.063 ± 0.011 0.779 ± 0.007
LogisticRegression HKRR 0.011 ± 0.005 0.045 ± 0.011 0.011 ± 0.005 0.038 ± 0.007 0.781 ± 0.006
LogisticRegression HJZ 0.011 ± 0.004 0.066 ± 0.014 0.013 ± 0.003 0.062 ± 0.015 0.78 ± 0.007
LogisticRegression Platt 0.012 ± 0.004 0.069 ± 0.018 0.013 ± 0.003 0.064 ± 0.016 0.78 ± 0.006
LogisticRegression Temp 0.02 ± 0.001 0.08 ± 0.01 0.02 ± 0.0 0.076 ± 0.009 0.779 ± 0.007
LogisticRegression Isotonic 0.005 ± 0.001 0.064 ± 0.007 0.008 ± 0.001 0.062 ± 0.008 0.779 ± 0.007

DecisionTree ERM 0.017 ± 0.001 0.066 ± 0.01 0.016 ± 0.001 0.059 ± 0.004 0.804 ± 0.0
DecisionTree HKRR 0.016 ± 0.001 0.05 ± 0.004 0.016 ± 0.001 0.047 ± 0.004 0.804 ± 0.0
DecisionTree HJZ 0.017 ± 0.001 0.06 ± 0.007 0.016 ± 0.001 0.055 ± 0.002 0.803 ± 0.001
DecisionTree Platt 0.017 ± 0.001 0.06 ± 0.007 0.016 ± 0.001 0.055 ± 0.002 0.803 ± 0.001
DecisionTree Temp 0.027 ± 0.001 0.078 ± 0.008 0.027 ± 0.001 0.07 ± 0.006 0.804 ± 0.0
DecisionTree Isotonic 0.017 ± 0.001 0.066 ± 0.01 0.016 ± 0.001 0.059 ± 0.004 0.804 ± 0.0

NaiveBayes ERM 0.117 ± 0.0 0.165 ± 0.0 0.109 ± 0.0 0.149 ± 0.001 0.754 ± 0.0
NaiveBayes HKRR 0.039 ± 0.002 0.059 ± 0.014 0.038 ± 0.002 0.047 ± 0.005 0.764 ± 0.002
NaiveBayes HJZ 0.07 ± 0.013 0.111 ± 0.011 0.064 ± 0.01 0.103 ± 0.009 0.751 ± 0.004
NaiveBayes Platt 0.09 ± 0.001 0.127 ± 0.001 0.085 ± 0.0 0.12 ± 0.001 0.76 ± 0.0
NaiveBayes Temp 0.089 ± 0.001 0.155 ± 0.003 0.087 ± 0.0 0.154 ± 0.001 0.754 ± 0.0
NaiveBayes Isotonic 0.003 ± 0.001 0.094 ± 0.002 0.007 ± 0.0 0.086 ± 0.0 0.768 ± 0.0

Figure 36: ACS Income. Training data reused for post-processing.
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Model ECE # Max ECE # smECE # Max smECE # Acc "
MLP ERM 0.013 ± 0.005 0.046 ± 0.005 0.014 ± 0.004 0.042 ± 0.005 0.901 ± 0.001
MLP HKRR 0.009 ± 0.002 0.046 ± 0.002 0.009 ± 0.002 0.041 ± 0.002 0.9 ± 0.001
MLP HJZ 0.007 ± 0.002 0.047 ± 0.006 0.011 ± 0.0 0.039 ± 0.005 0.9 ± 0.002
MLP Platt 0.008 ± 0.002 0.046 ± 0.006 0.011 ± 0.001 0.04 ± 0.005 0.901 ± 0.001
MLP Temp 0.013 ± 0.005 0.046 ± 0.005 0.014 ± 0.004 0.042 ± 0.005 0.901 ± 0.001
MLP Isotonic 0.008 ± 0.002 0.047 ± 0.007 0.01 ± 0.001 0.042 ± 0.006 0.9 ± 0.001

RandomForest ERM 0.014 ± 0.002 0.04 ± 0.003 0.015 ± 0.001 0.037 ± 0.002 0.902 ± 0.001
RandomForest HKRR 0.047 ± 0.003 0.135 ± 0.006 0.046 ± 0.002 0.132 ± 0.006 0.902 ± 0.001
RandomForest HJZ 0.01 ± 0.001 0.038 ± 0.004 0.012 ± 0.001 0.035 ± 0.002 0.903 ± 0.001
RandomForest Platt 0.015 ± 0.001 0.054 ± 0.006 0.017 ± 0.001 0.045 ± 0.002 0.903 ± 0.001
RandomForest Temp 0.058 ± 0.001 0.086 ± 0.003 0.056 ± 0.001 0.076 ± 0.001 0.902 ± 0.001
RandomForest Isotonic 0.056 ± 0.001 0.117 ± 0.005 0.045 ± 0.001 0.093 ± 0.006 0.902 ± 0.001

SVM ERM 0.205 ± 0.11 0.309 ± 0.087 0.102 ± 0.055 0.154 ± 0.041 0.795 ± 0.11
SVM HKRR 0.007 ± 0.001 0.042 ± 0.005 0.007 ± 0.001 0.037 ± 0.002 0.88 ± 0.001
SVM HJZ 0.021 ± 0.005 0.121 ± 0.012 0.024 ± 0.002 0.119 ± 0.014 0.878 ± 0.002
SVM Platt 0.205 ± 0.11 0.309 ± 0.087 0.102 ± 0.055 0.154 ± 0.041 0.795 ± 0.11
SVM Temp 0.165 ± 0.113 0.218 ± 0.105 0.155 ± 0.094 0.205 ± 0.081 0.795 ± 0.11
SVM Isotonic 0.004 ± 0.001 0.144 ± 0.006 0.004 ± 0.001 0.143 ± 0.006 0.879 ± 0.0

LogisticRegression ERM 0.032 ± 0.001 0.062 ± 0.01 0.03 ± 0.001 0.053 ± 0.002 0.899 ± 0.001
LogisticRegression HKRR 0.014 ± 0.003 0.039 ± 0.007 0.014 ± 0.003 0.036 ± 0.006 0.897 ± 0.002
LogisticRegression HJZ 0.01 ± 0.001 0.048 ± 0.005 0.014 ± 0.001 0.04 ± 0.003 0.899 ± 0.001
LogisticRegression Platt 0.012 ± 0.001 0.048 ± 0.006 0.015 ± 0.001 0.04 ± 0.003 0.899 ± 0.001
LogisticRegression Temp 0.062 ± 0.001 0.084 ± 0.004 0.056 ± 0.0 0.064 ± 0.001 0.899 ± 0.001
LogisticRegression Isotonic 0.006 ± 0.002 0.04 ± 0.005 0.01 ± 0.002 0.034 ± 0.003 0.9 ± 0.001
DecisionTree ERM 0.029 ± 0.002 0.099 ± 0.017 0.022 ± 0.001 0.069 ± 0.006 0.897 ± 0.002
DecisionTree HKRR 0.029 ± 0.003 0.101 ± 0.018 0.029 ± 0.003 0.09 ± 0.013 0.897 ± 0.002
DecisionTree HJZ 0.029 ± 0.003 0.1 ± 0.018 0.022 ± 0.002 0.07 ± 0.01 0.897 ± 0.002
DecisionTree Platt 0.028 ± 0.002 0.103 ± 0.017 0.022 ± 0.001 0.071 ± 0.007 0.897 ± 0.002
DecisionTree Temp 0.053 ± 0.004 0.085 ± 0.008 0.048 ± 0.001 0.072 ± 0.003 0.897 ± 0.002
DecisionTree Isotonic 0.029 ± 0.002 0.099 ± 0.017 0.022 ± 0.001 0.069 ± 0.006 0.897 ± 0.002

NaiveBayes ERM 0.122 ± 0.003 0.271 ± 0.002 0.093 ± 0.002 0.197 ± 0.007 0.857 ± 0.003
NaiveBayes HKRR 0.011 ± 0.005 0.044 ± 0.01 0.011 ± 0.005 0.038 ± 0.007 0.88 ± 0.002
NaiveBayes HJZ 0.044 ± 0.009 0.143 ± 0.023 0.042 ± 0.009 0.105 ± 0.011 0.864 ± 0.002
NaiveBayes Platt 0.12 ± 0.003 0.263 ± 0.002 0.094 ± 0.002 0.194 ± 0.007 0.857 ± 0.003
NaiveBayes Temp 0.083 ± 0.002 0.267 ± 0.004 0.081 ± 0.002 0.241 ± 0.005 0.857 ± 0.003
NaiveBayes Isotonic 0.006 ± 0.001 0.047 ± 0.003 0.009 ± 0.001 0.043 ± 0.001 0.886 ± 0.001

Figure 37: Bank Marketing. Training data reused for post-processing.
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Model ECE # Max ECE # smECE # Max smECE # Acc "
MLP ERM 0.034 ± 0.003 0.093 ± 0.014 0.034 ± 0.003 0.08 ± 0.005 0.83 ± 0.005
MLP HKRR 0.011 ± 0.002 0.056 ± 0.015 0.011 ± 0.002 0.05 ± 0.011 0.835 ± 0.004
MLP HJZ 0.009 ± 0.001 0.068 ± 0.01 0.012 ± 0.0 0.058 ± 0.007 0.833 ± 0.004
MLP Platt 0.011 ± 0.002 0.076 ± 0.007 0.013 ± 0.002 0.063 ± 0.003 0.835 ± 0.005
MLP Temp 0.024 ± 0.008 0.086 ± 0.01 0.024 ± 0.008 0.075 ± 0.011 0.83 ± 0.005
MLP Isotonic 0.005 ± 0.001 0.07 ± 0.017 0.008 ± 0.002 0.057 ± 0.005 0.833 ± 0.006

RandomForest ERM 0.038 ± 0.001 0.097 ± 0.007 0.038 ± 0.001 0.089 ± 0.005 0.868 ± 0.001
RandomForest HKRR 0.073 ± 0.002 0.11 ± 0.002 0.073 ± 0.002 0.106 ± 0.002 0.865 ± 0.001
RandomForest HJZ 0.023 ± 0.001 0.058 ± 0.004 0.023 ± 0.001 0.05 ± 0.003 0.868 ± 0.001
RandomForest Platt 0.024 ± 0.001 0.064 ± 0.005 0.024 ± 0.001 0.059 ± 0.004 0.868 ± 0.001
RandomForest Temp 0.038 ± 0.001 0.057 ± 0.003 0.039 ± 0.001 0.051 ± 0.002 0.868 ± 0.001
RandomForest Isotonic 0.074 ± 0.002 0.09 ± 0.005 0.068 ± 0.002 0.079 ± 0.003 0.868 ± 0.001
SVM ERM 0.345 ± 0.2 0.49 ± 0.158 0.166 ± 0.08 0.233 ± 0.055 0.655 ± 0.2
SVM HKRR 0.008 ± 0.002 0.071 ± 0.012 0.008 ± 0.002 0.058 ± 0.012 0.754 ± 0.0
SVM HJZ 0.051 ± 0.017 0.177 ± 0.033 0.048 ± 0.016 0.169 ± 0.03 0.723 ± 0.029
SVM Platt 0.345 ± 0.2 0.49 ± 0.158 0.166 ± 0.08 0.233 ± 0.055 0.655 ± 0.2
SVM Temp 0.135 ± 0.155 0.197 ± 0.155 0.119 ± 0.124 0.176 ± 0.112 0.655 ± 0.2
SVM Isotonic 0.002 ± 0.001 0.163 ± 0.002 0.002 ± 0.001 0.164 ± 0.002 0.754 ± 0.0
LogisticRegression ERM 0.016 ± 0.001 0.103 ± 0.002 0.016 ± 0.001 0.101 ± 0.002 0.827 ± 0.001
LogisticRegression HKRR 0.008 ± 0.001 0.036 ± 0.004 0.008 ± 0.001 0.035 ± 0.003 0.832 ± 0.001
LogisticRegression HJZ 0.017 ± 0.002 0.085 ± 0.006 0.018 ± 0.002 0.083 ± 0.005 0.828 ± 0.001
LogisticRegression Platt 0.008 ± 0.001 0.082 ± 0.004 0.01 ± 0.0 0.082 ± 0.004 0.829 ± 0.001
LogisticRegression Temp 0.069 ± 0.001 0.109 ± 0.002 0.067 ± 0.001 0.102 ± 0.003 0.827 ± 0.001
LogisticRegression Isotonic 0.003 ± 0.0 0.097 ± 0.002 0.006 ± 0.001 0.095 ± 0.001 0.826 ± 0.001

DecisionTree ERM 0.019 ± 0.002 0.064 ± 0.008 0.018 ± 0.002 0.054 ± 0.004 0.863 ± 0.001
DecisionTree HKRR 0.019 ± 0.002 0.052 ± 0.007 0.019 ± 0.002 0.048 ± 0.007 0.864 ± 0.001
DecisionTree HJZ 0.02 ± 0.001 0.058 ± 0.005 0.019 ± 0.001 0.052 ± 0.004 0.863 ± 0.001
DecisionTree Platt 0.019 ± 0.002 0.066 ± 0.006 0.017 ± 0.001 0.055 ± 0.006 0.863 ± 0.001
DecisionTree Temp 0.062 ± 0.002 0.089 ± 0.005 0.054 ± 0.002 0.073 ± 0.003 0.863 ± 0.001
DecisionTree Isotonic 0.019 ± 0.002 0.064 ± 0.008 0.018 ± 0.002 0.054 ± 0.004 0.863 ± 0.001

NaiveBayes ERM 0.134 ± 0.001 0.199 ± 0.003 0.126 ± 0.0 0.165 ± 0.002 0.808 ± 0.001
NaiveBayes HKRR 0.009 ± 0.001 0.069 ± 0.008 0.009 ± 0.001 0.059 ± 0.005 0.814 ± 0.002
NaiveBayes HJZ 0.054 ± 0.009 0.12 ± 0.018 0.052 ± 0.008 0.115 ± 0.019 0.807 ± 0.001
NaiveBayes Platt 0.122 ± 0.0 0.193 ± 0.003 0.116 ± 0.0 0.165 ± 0.002 0.808 ± 0.001
NaiveBayes Temp 0.175 ± 0.001 0.185 ± 0.001 0.174 ± 0.001 0.178 ± 0.001 0.808 ± 0.001
NaiveBayes Isotonic 0.006 ± 0.0 0.117 ± 0.001 0.008 ± 0.0 0.117 ± 0.001 0.817 ± 0.001

Figure 38: HMDA. Training data reused for post-processing.
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Model ECE # Max ECE # smECE # Max smECE # Acc "
MLP ERM 0.018 ± 0.005 0.115 ± 0.043 0.02 ± 0.004 0.064 ± 0.007 0.819 ± 0.001
MLP HKRR 0.016 ± 0.003 0.121 ± 0.052 0.016 ± 0.003 0.083 ± 0.02 0.819 ± 0.001
MLP HJZ 0.017 ± 0.003 0.097 ± 0.011 0.019 ± 0.002 0.06 ± 0.006 0.819 ± 0.002
MLP Platt 0.016 ± 0.002 0.116 ± 0.036 0.018 ± 0.001 0.058 ± 0.007 0.819 ± 0.002
MLP Temp 0.018 ± 0.005 0.115 ± 0.043 0.02 ± 0.004 0.064 ± 0.007 0.819 ± 0.001
MLP Isotonic 0.019 ± 0.002 0.156 ± 0.026 0.018 ± 0.001 0.071 ± 0.005 0.819 ± 0.001

RandomForest ERM 0.019 ± 0.002 0.112 ± 0.021 0.02 ± 0.001 0.052 ± 0.004 0.82 ± 0.001
RandomForest HKRR 0.022 ± 0.003 0.144 ± 0.023 0.022 ± 0.002 0.089 ± 0.008 0.818 ± 0.001
RandomForest HJZ 0.018 ± 0.003 0.123 ± 0.027 0.019 ± 0.002 0.058 ± 0.003 0.818 ± 0.002
RandomForest Platt 0.027 ± 0.003 0.141 ± 0.014 0.026 ± 0.002 0.063 ± 0.002 0.82 ± 0.001
RandomForest Temp 0.026 ± 0.003 0.073 ± 0.01 0.026 ± 0.001 0.048 ± 0.002 0.82 ± 0.001
RandomForest Isotonic 0.037 ± 0.003 0.124 ± 0.02 0.035 ± 0.002 0.073 ± 0.003 0.82 ± 0.001
SVM ERM 0.18 ± 0.0 0.233 ± 0.0 0.09 ± 0.0 0.117 ± 0.0 0.82 ± 0.0
SVM HKRR 0.03 ± 0.001 0.06 ± 0.002 0.021 ± 0.002 0.052 ± 0.004 0.82 ± 0.0
SVM HJZ 0.051 ± 0.006 0.166 ± 0.015 0.038 ± 0.004 0.091 ± 0.006 0.813 ± 0.008
SVM Platt 0.18 ± 0.0 0.233 ± 0.0 0.09 ± 0.0 0.117 ± 0.0 0.82 ± 0.0
SVM Temp 0.057 ± 0.0 0.088 ± 0.0 0.057 ± 0.0 0.088 ± 0.0 0.82 ± 0.0
SVM Isotonic 0.002 ± 0.001 0.044 ± 0.001 0.002 ± 0.001 0.043 ± 0.001 0.82 ± 0.0
LogisticRegression ERM 0.01 ± 0.001 0.102 ± 0.026 0.015 ± 0.001 0.056 ± 0.002 0.819 ± 0.0
LogisticRegression HKRR 0.008 ± 0.001 0.091 ± 0.036 0.008 ± 0.001 0.073 ± 0.028 0.819 ± 0.001
LogisticRegression HJZ 0.013 ± 0.004 0.102 ± 0.032 0.017 ± 0.002 0.059 ± 0.005 0.817 ± 0.002
LogisticRegression Platt 0.013 ± 0.001 0.097 ± 0.035 0.016 ± 0.001 0.057 ± 0.004 0.819 ± 0.0
LogisticRegression Temp 0.023 ± 0.001 0.075 ± 0.011 0.024 ± 0.0 0.053 ± 0.002 0.819 ± 0.0
LogisticRegression Isotonic 0.013 ± 0.003 0.13 ± 0.021 0.017 ± 0.002 0.061 ± 0.005 0.819 ± 0.001

DecisionTree ERM 0.041 ± 0.004 0.186 ± 0.014 0.031 ± 0.002 0.088 ± 0.007 0.81 ± 0.003
DecisionTree HKRR 0.041 ± 0.004 0.183 ± 0.017 0.039 ± 0.003 0.107 ± 0.014 0.81 ± 0.002
DecisionTree HJZ 0.042 ± 0.003 0.168 ± 0.021 0.031 ± 0.001 0.085 ± 0.004 0.81 ± 0.003
DecisionTree Platt 0.043 ± 0.003 0.188 ± 0.02 0.033 ± 0.001 0.089 ± 0.006 0.81 ± 0.003
DecisionTree Temp 0.08 ± 0.001 0.167 ± 0.022 0.076 ± 0.001 0.111 ± 0.014 0.81 ± 0.003
DecisionTree Isotonic 0.041 ± 0.004 0.186 ± 0.014 0.031 ± 0.002 0.088 ± 0.007 0.81 ± 0.003
NaiveBayes ERM 0.187 ± 0.006 0.248 ± 0.009 0.108 ± 0.005 0.137 ± 0.004 0.807 ± 0.004
NaiveBayes HKRR 0.028 ± 0.004 0.091 ± 0.016 0.028 ± 0.004 0.089 ± 0.019 0.807 ± 0.004
NaiveBayes HJZ 0.069 ± 0.018 0.139 ± 0.027 0.057 ± 0.016 0.103 ± 0.018 0.807 ± 0.004
NaiveBayes Platt 0.184 ± 0.007 0.245 ± 0.011 0.11 ± 0.005 0.142 ± 0.005 0.807 ± 0.004
NaiveBayes Temp 0.07 ± 0.02 0.101 ± 0.024 0.068 ± 0.02 0.098 ± 0.026 0.807 ± 0.004
NaiveBayes Isotonic 0.008 ± 0.002 0.076 ± 0.017 0.012 ± 0.001 0.049 ± 0.002 0.81 ± 0.001

Figure 39: Credit Default. Training data reused for post-processing.
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Model ECE # Max ECE # smECE # Max smECE # Acc "
MLP ERM 0.024 ± 0.006 0.107 ± 0.018 0.026 ± 0.004 0.1 ± 0.025 0.865 ± 0.002
MLP HKRR 0.024 ± 0.006 0.109 ± 0.022 0.024 ± 0.006 0.096 ± 0.016 0.862 ± 0.003
MLP HJZ 0.018 ± 0.001 0.105 ± 0.011 0.021 ± 0.002 0.093 ± 0.021 0.864 ± 0.003
MLP Platt 0.019 ± 0.003 0.096 ± 0.016 0.02 ± 0.002 0.084 ± 0.017 0.865 ± 0.002
MLP Temp 0.024 ± 0.006 0.107 ± 0.018 0.026 ± 0.004 0.1 ± 0.025 0.865 ± 0.002
MLP Isotonic 0.017 ± 0.004 0.081 ± 0.008 0.019 ± 0.002 0.07 ± 0.009 0.863 ± 0.002

RandomForest ERM 0.017 ± 0.001 0.091 ± 0.005 0.02 ± 0.001 0.082 ± 0.005 0.862 ± 0.002
RandomForest HKRR 0.089 ± 0.004 0.25 ± 0.026 0.088 ± 0.004 0.221 ± 0.025 0.848 ± 0.002
RandomForest HJZ 0.022 ± 0.003 0.088 ± 0.007 0.024 ± 0.001 0.083 ± 0.004 0.862 ± 0.002
RandomForest Platt 0.027 ± 0.002 0.09 ± 0.003 0.029 ± 0.001 0.08 ± 0.006 0.863 ± 0.001
RandomForest Temp 0.044 ± 0.001 0.102 ± 0.01 0.043 ± 0.001 0.089 ± 0.003 0.862 ± 0.002
RandomForest Isotonic 0.075 ± 0.002 0.167 ± 0.005 0.058 ± 0.002 0.121 ± 0.007 0.86 ± 0.003

SVM ERM 0.149 ± 0.015 0.359 ± 0.04 0.075 ± 0.008 0.179 ± 0.019 0.851 ± 0.015
SVM HKRR 0.018 ± 0.005 0.111 ± 0.013 0.018 ± 0.005 0.101 ± 0.006 0.853 ± 0.01
SVM HJZ 0.06 ± 0.007 0.211 ± 0.069 0.048 ± 0.009 0.183 ± 0.055 0.857 ± 0.006
SVM Platt 0.149 ± 0.015 0.359 ± 0.04 0.075 ± 0.008 0.179 ± 0.019 0.851 ± 0.015
SVM Temp 0.111 ± 0.039 0.198 ± 0.033 0.11 ± 0.038 0.194 ± 0.03 0.851 ± 0.015
SVM Isotonic 0.007 ± 0.004 0.202 ± 0.057 0.007 ± 0.004 0.195 ± 0.051 0.852 ± 0.014

LogisticRegression ERM 0.022 ± 0.002 0.106 ± 0.008 0.022 ± 0.001 0.083 ± 0.003 0.866 ± 0.002
LogisticRegression HKRR 0.024 ± 0.001 0.12 ± 0.011 0.023 ± 0.001 0.105 ± 0.009 0.861 ± 0.003
LogisticRegression HJZ 0.022 ± 0.003 0.106 ± 0.011 0.022 ± 0.002 0.083 ± 0.005 0.866 ± 0.001
LogisticRegression Platt 0.016 ± 0.004 0.092 ± 0.009 0.021 ± 0.002 0.078 ± 0.003 0.863 ± 0.001
LogisticRegression Temp 0.049 ± 0.002 0.112 ± 0.008 0.046 ± 0.001 0.087 ± 0.003 0.866 ± 0.002
LogisticRegression Isotonic 0.014 ± 0.002 0.087 ± 0.01 0.018 ± 0.002 0.073 ± 0.002 0.866 ± 0.001

DecisionTree ERM 0.067 ± 0.006 0.266 ± 0.029 0.048 ± 0.004 0.17 ± 0.013 0.849 ± 0.007
DecisionTree HKRR 0.074 ± 0.007 0.282 ± 0.034 0.073 ± 0.007 0.237 ± 0.022 0.845 ± 0.007
DecisionTree HJZ 0.068 ± 0.007 0.264 ± 0.035 0.049 ± 0.005 0.167 ± 0.018 0.849 ± 0.007
DecisionTree Platt 0.069 ± 0.008 0.267 ± 0.03 0.049 ± 0.005 0.171 ± 0.013 0.849 ± 0.007
DecisionTree Temp 0.095 ± 0.004 0.175 ± 0.019 0.091 ± 0.001 0.155 ± 0.01 0.849 ± 0.007
DecisionTree Isotonic 0.067 ± 0.006 0.266 ± 0.029 0.048 ± 0.004 0.17 ± 0.013 0.849 ± 0.007

NaiveBayes ERM 0.277 ± 0.019 0.544 ± 0.02 0.164 ± 0.013 0.287 ± 0.011 0.714 ± 0.018
NaiveBayes HKRR 0.023 ± 0.003 0.119 ± 0.026 0.023 ± 0.003 0.102 ± 0.019 0.833 ± 0.005
NaiveBayes HJZ 0.05 ± 0.017 0.205 ± 0.038 0.044 ± 0.014 0.183 ± 0.038 0.803 ± 0.004
NaiveBayes Platt 0.275 ± 0.018 0.54 ± 0.019 0.169 ± 0.011 0.295 ± 0.009 0.714 ± 0.018
NaiveBayes Temp 0.3 ± 0.007 0.373 ± 0.016 0.278 ± 0.005 0.326 ± 0.01 0.714 ± 0.018
NaiveBayes Isotonic 0.014 ± 0.002 0.121 ± 0.009 0.017 ± 0.001 0.111 ± 0.005 0.834 ± 0.006

Figure 40: MEPS. Training data reused for post-processing.
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H.4.1 Comparing Multicalibration Post-Processing Performance with Data Reuse

Figure 41: Data reuse comparison for ACSIncome.

Figure 42: Data reuse comparison for BankMarketing.

Figure 43: Data reuse comparison for MEPS.
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Figure 44: Data reuse comparison for CreditDefault.

Figure 45: Data reuse comparison for HMDA.
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I Results on Tabular Datasets with Alternate Groups
I.1 Plots for All Multicalibration Algorithms

Figure 46: All multicalibration algorithms on MLPs. Alternate groups.
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Figure 47: All multicalibration algorithms on Decision Trees. Alternate groups.
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Figure 48: All multicalibration algorithms on Random Forest. Alternate groups.
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Figure 49: All multicalibration algorithms on Logistic Regression. Alternate groups.
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Figure 50: All multicalibration algorithms on SVMs. Alternate groups.
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Figure 51: All multicalibration algorithms on Naive Bayes. Alternate groups.
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I.2 Tables Comparing Best-Performing Multicalibration Algorithms with ERM (Alternate
Groups)

Model ECE # Max ECE # smECE # Max smECE # Acc "
MLP ERM 0.014 ± 0.005 0.059 ± 0.007 0.015 ± 0.004 0.059 ± 0.008 0.811 ± 0.002
MLP HKRR 0.009 ± 0.003 0.037 ± 0.005 0.009 ± 0.003 0.035 ± 0.003 0.803 ± 0.001
MLP HJZ 0.019 ± 0.003 0.053 ± 0.01 0.02 ± 0.002 0.051 ± 0.011 0.807 ± 0.004
MLP Platt 0.012 ± 0.004 0.046 ± 0.008 0.014 ± 0.002 0.044 ± 0.007 0.811 ± 0.001
MLP Temp 0.012 ± 0.005 0.056 ± 0.005 0.013 ± 0.004 0.056 ± 0.005 0.811 ± 0.001
MLP Isotonic 0.012 ± 0.002 0.055 ± 0.005 0.013 ± 0.001 0.054 ± 0.006 0.811 ± 0.001
RandomForest ERM 0.01 ± 0.001 0.036 ± 0.001 0.011 ± 0.0 0.035 ± 0.001 0.819 ± 0.001
RandomForest HKRR 0.007 ± 0.001 0.043 ± 0.011 0.007 ± 0.001 0.042 ± 0.01 0.818 ± 0.0
RandomForest HJZ 0.007 ± 0.001 0.032 ± 0.005 0.011 ± 0.001 0.031 ± 0.003 0.813 ± 0.007
RandomForest Platt 0.009 ± 0.001 0.031 ± 0.003 0.011 ± 0.001 0.029 ± 0.002 0.816 ± 0.004
RandomForest Temp 0.027 ± 0.001 0.074 ± 0.001 0.027 ± 0.001 0.073 ± 0.0 0.819 ± 0.001
RandomForest Isotonic 0.008 ± 0.001 0.033 ± 0.001 0.011 ± 0.0 0.031 ± 0.001 0.818 ± 0.001

SVM ERM 0.216 ± 0.001 0.292 ± 0.004 0.109 ± 0.0 0.149 ± 0.002 0.784 ± 0.001
SVM HKRR 0.008 ± 0.0 0.034 ± 0.005 0.008 ± 0.0 0.032 ± 0.004 0.667 ± 0.0
SVM HJZ 0.013 ± 0.002 0.164 ± 0.009 0.019 ± 0.001 0.163 ± 0.009 0.665 ± 0.0
SVM Platt 0.336 ± 0.007 0.438 ± 0.0 0.168 ± 0.004 0.214 ± 0.0 0.664 ± 0.007
SVM Temp 0.099 ± 0.006 0.216 ± 0.0 0.099 ± 0.006 0.211 ± 0.0 0.678 ± 0.006
SVM Isotonic 0.081 ± 0.012 0.263 ± 0.014 0.081 ± 0.012 0.25 ± 0.011 0.664 ± 0.007

LogisticRegression ERM 0.012 ± 0.002 0.123 ± 0.014 0.015 ± 0.002 0.116 ± 0.012 0.779 ± 0.007
LogisticRegression HKRR 0.006 ± 0.002 0.041 ± 0.003 0.006 ± 0.002 0.038 ± 0.002 0.78 ± 0.007
LogisticRegression HJZ 0.011 ± 0.001 0.085 ± 0.013 0.014 ± 0.001 0.083 ± 0.012 0.775 ± 0.009
LogisticRegression Platt 0.021 ± 0.004 0.108 ± 0.017 0.021 ± 0.004 0.105 ± 0.015 0.774 ± 0.012
LogisticRegression Temp 0.019 ± 0.0 0.115 ± 0.004 0.02 ± 0.0 0.111 ± 0.005 0.776 ± 0.009
LogisticRegression Isotonic 0.005 ± 0.001 0.109 ± 0.007 0.009 ± 0.001 0.105 ± 0.004 0.775 ± 0.009

DecisionTree ERM 0.017 ± 0.001 0.051 ± 0.004 0.016 ± 0.001 0.048 ± 0.004 0.804 ± 0.0
DecisionTree HKRR 0.008 ± 0.001 0.041 ± 0.004 0.008 ± 0.001 0.039 ± 0.003 0.799 ± 0.001
DecisionTree HJZ 0.019 ± 0.001 0.049 ± 0.002 0.017 ± 0.002 0.046 ± 0.002 0.802 ± 0.001
DecisionTree Platt 0.011 ± 0.001 0.041 ± 0.006 0.013 ± 0.001 0.037 ± 0.005 0.803 ± 0.0
DecisionTree Temp 0.028 ± 0.002 0.073 ± 0.001 0.027 ± 0.002 0.072 ± 0.001 0.803 ± 0.001
DecisionTree Isotonic 0.007 ± 0.002 0.054 ± 0.003 0.01 ± 0.001 0.051 ± 0.003 0.803 ± 0.001

NaiveBayes ERM 0.117 ± 0.0 0.201 ± 0.001 0.109 ± 0.0 0.182 ± 0.0 0.754 ± 0.0
NaiveBayes HKRR 0.006 ± 0.001 0.042 ± 0.005 0.006 ± 0.001 0.039 ± 0.004 0.77 ± 0.001
NaiveBayes HJZ 0.017 ± 0.002 0.093 ± 0.006 0.021 ± 0.001 0.091 ± 0.007 0.762 ± 0.004
NaiveBayes Platt 0.085 ± 0.004 0.165 ± 0.007 0.08 ± 0.004 0.161 ± 0.006 0.756 ± 0.002
NaiveBayes Temp 0.079 ± 0.002 0.182 ± 0.002 0.069 ± 0.001 0.18 ± 0.002 0.754 ± 0.001
NaiveBayes Isotonic 0.008 ± 0.002 0.105 ± 0.001 0.011 ± 0.002 0.103 ± 0.001 0.768 ± 0.0

Figure 52: ACS Income. Alternate groups.
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Model ECE # Max ECE # smECE # Max smECE # Acc "
MLP ERM 0.008 ± 0.003 0.14 ± 0.018 0.012 ± 0.002 0.099 ± 0.009 0.9 ± 0.001
MLP HKRR 0.102 ± 0.003 0.127 ± 0.013 0.098 ± 0.001 0.117 ± 0.016 0.879 ± 0.0
MLP HJZ 0.019 ± 0.012 0.137 ± 0.016 0.021 ± 0.011 0.09 ± 0.008 0.901 ± 0.001
MLP Platt 0.011 ± 0.004 0.138 ± 0.022 0.014 ± 0.003 0.105 ± 0.017 0.896 ± 0.005
MLP Temp 0.042 ± 0.01 0.123 ± 0.024 0.042 ± 0.01 0.074 ± 0.007 0.901 ± 0.001
MLP Isotonic 0.008 ± 0.002 0.126 ± 0.024 0.01 ± 0.001 0.091 ± 0.009 0.9 ± 0.001

RandomForest ERM 0.014 ± 0.001 0.095 ± 0.01 0.015 ± 0.0 0.062 ± 0.001 0.903 ± 0.002
RandomForest HKRR 0.012 ± 0.002 0.106 ± 0.017 0.012 ± 0.002 0.082 ± 0.008 0.898 ± 0.001
RandomForest HJZ 0.011 ± 0.003 0.108 ± 0.022 0.013 ± 0.002 0.066 ± 0.014 0.903 ± 0.001
RandomForest Platt 0.009 ± 0.002 0.095 ± 0.022 0.012 ± 0.001 0.06 ± 0.006 0.903 ± 0.001
RandomForest Temp 0.057 ± 0.001 0.117 ± 0.019 0.054 ± 0.001 0.083 ± 0.002 0.903 ± 0.001
RandomForest Isotonic 0.008 ± 0.002 0.116 ± 0.024 0.011 ± 0.001 0.083 ± 0.009 0.901 ± 0.001

SVM ERM 0.106 ± 0.001 0.347 ± 0.027 0.053 ± 0.001 0.173 ± 0.013 0.894 ± 0.001
SVM HKRR 0.051 ± 0.014 0.108 ± 0.038 0.051 ± 0.014 0.091 ± 0.028 0.879 ± 0.0
SVM HJZ 0.106 ± 0.001 0.134 ± 0.003 0.098 ± 0.0 0.112 ± 0.004 0.879 ± 0.0
SVM Platt 0.117 ± 0.001 0.36 ± 0.009 0.059 ± 0.001 0.178 ± 0.004 0.883 ± 0.001
SVM Temp 0.152 ± 0.003 0.225 ± 0.0 0.151 ± 0.003 0.219 ± 0.0 0.88 ± 0.001
SVM Isotonic 0.023 ± 0.009 0.247 ± 0.025 0.023 ± 0.009 0.237 ± 0.021 0.88 ± 0.001

LogisticRegression ERM 0.032 ± 0.001 0.154 ± 0.006 0.03 ± 0.001 0.12 ± 0.002 0.899 ± 0.001
LogisticRegression HKRR 0.018 ± 0.002 0.132 ± 0.027 0.018 ± 0.002 0.108 ± 0.027 0.897 ± 0.002
LogisticRegression HJZ 0.106 ± 0.001 0.134 ± 0.003 0.098 ± 0.0 0.112 ± 0.004 0.879 ± 0.0
LogisticRegression Platt 0.023 ± 0.005 0.156 ± 0.009 0.023 ± 0.004 0.129 ± 0.012 0.897 ± 0.002
LogisticRegression Temp 0.061 ± 0.001 0.174 ± 0.02 0.056 ± 0.0 0.121 ± 0.005 0.899 ± 0.001
LogisticRegression Isotonic 0.008 ± 0.001 0.114 ± 0.012 0.011 ± 0.002 0.093 ± 0.006 0.9 ± 0.001
DecisionTree ERM 0.028 ± 0.002 0.213 ± 0.021 0.022 ± 0.001 0.154 ± 0.016 0.897 ± 0.002
DecisionTree HKRR 0.102 ± 0.003 0.127 ± 0.013 0.098 ± 0.001 0.117 ± 0.016 0.879 ± 0.0
DecisionTree HJZ 0.106 ± 0.001 0.134 ± 0.003 0.098 ± 0.0 0.112 ± 0.004 0.879 ± 0.0
DecisionTree Platt 0.025 ± 0.006 0.214 ± 0.044 0.021 ± 0.002 0.153 ± 0.019 0.897 ± 0.002
DecisionTree Temp 0.116 ± 0.001 0.173 ± 0.013 0.114 ± 0.001 0.163 ± 0.003 0.896 ± 0.002
DecisionTree Isotonic 0.01 ± 0.002 0.157 ± 0.011 0.011 ± 0.002 0.139 ± 0.014 0.896 ± 0.002

NaiveBayes ERM 0.122 ± 0.003 0.521 ± 0.002 0.093 ± 0.002 0.308 ± 0.002 0.857 ± 0.003
NaiveBayes HKRR 0.037 ± 0.005 0.121 ± 0.024 0.036 ± 0.004 0.106 ± 0.016 0.872 ± 0.003
NaiveBayes HJZ 0.106 ± 0.001 0.134 ± 0.003 0.098 ± 0.0 0.112 ± 0.004 0.879 ± 0.0
NaiveBayes Platt 0.122 ± 0.005 0.528 ± 0.01 0.094 ± 0.004 0.318 ± 0.012 0.857 ± 0.004
NaiveBayes Temp 0.217 ± 0.002 0.293 ± 0.009 0.212 ± 0.002 0.268 ± 0.009 0.857 ± 0.004
NaiveBayes Isotonic 0.007 ± 0.001 0.118 ± 0.011 0.01 ± 0.001 0.095 ± 0.012 0.885 ± 0.002

Figure 53: Bank Marketing. Alternate groups.

60



Model ECE # Max ECE # smECE # Max smECE # Acc "
MLP ERM 0.018 ± 0.005 0.039 ± 0.004 0.019 ± 0.004 0.035 ± 0.003 0.818 ± 0.001
MLP HKRR 0.028 ± 0.003 0.026 ± 0.003 0.026 ± 0.002 0.025 ± 0.002 0.781 ± 0.0
MLP HJZ 0.033 ± 0.002 0.036 ± 0.008 0.03 ± 0.001 0.028 ± 0.002 0.781 ± 0.0
MLP Platt 0.013 ± 0.004 0.043 ± 0.008 0.015 ± 0.002 0.038 ± 0.008 0.82 ± 0.0
MLP Temp 0.016 ± 0.004 0.043 ± 0.007 0.018 ± 0.003 0.033 ± 0.002 0.819 ± 0.001
MLP Isotonic 0.011 ± 0.003 0.043 ± 0.005 0.014 ± 0.001 0.035 ± 0.004 0.818 ± 0.001

RandomForest ERM 0.019 ± 0.001 0.035 ± 0.003 0.02 ± 0.001 0.033 ± 0.001 0.82 ± 0.001
RandomForest HKRR 0.028 ± 0.003 0.026 ± 0.003 0.026 ± 0.002 0.025 ± 0.002 0.781 ± 0.0
RandomForest HJZ 0.033 ± 0.002 0.036 ± 0.008 0.03 ± 0.001 0.028 ± 0.002 0.781 ± 0.0
RandomForest Platt 0.013 ± 0.002 0.04 ± 0.007 0.016 ± 0.002 0.035 ± 0.003 0.819 ± 0.001
RandomForest Temp 0.023 ± 0.003 0.04 ± 0.003 0.024 ± 0.002 0.037 ± 0.003 0.819 ± 0.001
RandomForest Isotonic 0.013 ± 0.003 0.035 ± 0.002 0.015 ± 0.002 0.031 ± 0.002 0.819 ± 0.001

SVM ERM 0.181 ± 0.0 0.21 ± 0.001 0.091 ± 0.0 0.105 ± 0.0 0.819 ± 0.0
SVM HKRR 0.02 ± 0.001 0.046 ± 0.004 0.016 ± 0.001 0.031 ± 0.003 0.819 ± 0.001
SVM HJZ 0.033 ± 0.002 0.036 ± 0.008 0.03 ± 0.001 0.028 ± 0.002 0.781 ± 0.0
SVM Platt 0.18 ± 0.001 0.213 ± 0.002 0.09 ± 0.0 0.106 ± 0.001 0.82 ± 0.001
SVM Temp 0.022 ± 0.0 0.052 ± 0.001 0.022 ± 0.0 0.051 ± 0.001 0.82 ± 0.0
SVM Isotonic 0.006 ± 0.001 0.026 ± 0.002 0.006 ± 0.001 0.026 ± 0.002 0.82 ± 0.001
LogisticRegression ERM 0.01 ± 0.001 0.042 ± 0.004 0.015 ± 0.001 0.036 ± 0.003 0.819 ± 0.0
LogisticRegression HKRR 0.028 ± 0.003 0.026 ± 0.003 0.026 ± 0.002 0.025 ± 0.002 0.781 ± 0.0
LogisticRegression HJZ 0.033 ± 0.002 0.036 ± 0.008 0.03 ± 0.001 0.028 ± 0.002 0.781 ± 0.0
LogisticRegression Platt 0.014 ± 0.001 0.045 ± 0.004 0.016 ± 0.002 0.037 ± 0.003 0.819 ± 0.0
LogisticRegression Temp 0.023 ± 0.001 0.041 ± 0.006 0.023 ± 0.001 0.037 ± 0.001 0.819 ± 0.0
LogisticRegression Isotonic 0.01 ± 0.002 0.04 ± 0.009 0.014 ± 0.001 0.034 ± 0.006 0.82 ± 0.001
DecisionTree ERM 0.04 ± 0.003 0.078 ± 0.011 0.031 ± 0.001 0.054 ± 0.006 0.81 ± 0.003
DecisionTree HKRR 0.028 ± 0.003 0.026 ± 0.003 0.026 ± 0.002 0.025 ± 0.002 0.781 ± 0.0
DecisionTree HJZ 0.033 ± 0.002 0.036 ± 0.008 0.03 ± 0.001 0.028 ± 0.002 0.781 ± 0.0
DecisionTree Platt 0.033 ± 0.003 0.062 ± 0.005 0.028 ± 0.002 0.05 ± 0.006 0.81 ± 0.003
DecisionTree Temp 0.031 ± 0.004 0.062 ± 0.009 0.029 ± 0.003 0.058 ± 0.01 0.811 ± 0.003
DecisionTree Isotonic 0.007 ± 0.001 0.04 ± 0.006 0.009 ± 0.003 0.036 ± 0.007 0.797 ± 0.004

NaiveBayes ERM 0.187 ± 0.006 0.226 ± 0.005 0.108 ± 0.005 0.132 ± 0.007 0.807 ± 0.004
NaiveBayes HKRR 0.028 ± 0.013 0.035 ± 0.008 0.026 ± 0.013 0.03 ± 0.006 0.784 ± 0.02
NaiveBayes HJZ 0.033 ± 0.002 0.036 ± 0.008 0.03 ± 0.001 0.028 ± 0.002 0.781 ± 0.0
NaiveBayes Platt 0.197 ± 0.011 0.236 ± 0.013 0.119 ± 0.015 0.143 ± 0.023 0.792 ± 0.014
NaiveBayes Temp 0.037 ± 0.012 0.075 ± 0.007 0.037 ± 0.012 0.073 ± 0.008 0.809 ± 0.003
NaiveBayes Isotonic 0.013 ± 0.004 0.039 ± 0.007 0.016 ± 0.003 0.037 ± 0.005 0.809 ± 0.001

Figure 54: Credit Default. Alternate groups.

61



Model ECE # Max ECE # smECE # Max smECE # Acc "
MLP ERM 0.045 ± 0.015 0.087 ± 0.018 0.043 ± 0.014 0.084 ± 0.018 0.834 ± 0.002
MLP HKRR 0.004 ± 0.001 0.034 ± 0.006 0.004 ± 0.001 0.033 ± 0.006 0.756 ± 0.0
MLP HJZ 0.012 ± 0.001 0.062 ± 0.021 0.016 ± 0.001 0.056 ± 0.019 0.835 ± 0.009
MLP Platt 0.184 ± 0.009 0.272 ± 0.025 0.14 ± 0.002 0.206 ± 0.017 0.781 ± 0.002
MLP Temp 0.047 ± 0.033 0.097 ± 0.02 0.046 ± 0.032 0.094 ± 0.02 0.817 ± 0.008
MLP Isotonic 0.013 ± 0.002 0.1 ± 0.009 0.014 ± 0.002 0.092 ± 0.008 0.824 ± 0.006

RandomForest ERM 0.038 ± 0.002 0.054 ± 0.001 0.038 ± 0.002 0.053 ± 0.001 0.868 ± 0.001
RandomForest HKRR 0.006 ± 0.001 0.028 ± 0.003 0.006 ± 0.001 0.027 ± 0.003 0.866 ± 0.001
RandomForest HJZ 0.007 ± 0.002 0.044 ± 0.008 0.011 ± 0.002 0.041 ± 0.007 0.869 ± 0.001
RandomForest Platt 0.009 ± 0.001 0.06 ± 0.007 0.011 ± 0.001 0.054 ± 0.005 0.867 ± 0.001
RandomForest Temp 0.037 ± 0.001 0.072 ± 0.004 0.039 ± 0.001 0.07 ± 0.004 0.866 ± 0.001
RandomForest Isotonic 0.009 ± 0.002 0.048 ± 0.002 0.01 ± 0.002 0.046 ± 0.003 0.869 ± 0.001
SVM ERM 0.144 ± 0.001 0.31 ± 0.004 0.072 ± 0.0 0.158 ± 0.002 0.856 ± 0.001
SVM HKRR 0.004 ± 0.001 0.034 ± 0.006 0.004 ± 0.001 0.033 ± 0.006 0.756 ± 0.0
SVM HJZ 0.008 ± 0.002 0.058 ± 0.009 0.011 ± 0.001 0.058 ± 0.009 0.754 ± 0.0
SVM Platt 0.008 ± 0.002 0.079 ± 0.002 0.012 ± 0.001 0.079 ± 0.001 0.754 ± 0.0
SVM Temp 0.266 ± 0.001 0.324 ± 0.005 0.253 ± 0.001 0.295 ± 0.003 0.647 ± 0.003
SVM Isotonic 0.002 ± 0.001 0.115 ± 0.001 0.002 ± 0.001 0.115 ± 0.001 0.754 ± 0.0

LogisticRegression ERM 0.016 ± 0.001 0.171 ± 0.002 0.016 ± 0.001 0.168 ± 0.002 0.827 ± 0.001
LogisticRegression HKRR 0.007 ± 0.002 0.028 ± 0.005 0.007 ± 0.002 0.026 ± 0.005 0.862 ± 0.0
LogisticRegression HJZ 0.006 ± 0.002 0.039 ± 0.007 0.011 ± 0.002 0.037 ± 0.006 0.857 ± 0.003
LogisticRegression Platt 0.008 ± 0.002 0.079 ± 0.002 0.012 ± 0.001 0.079 ± 0.001 0.754 ± 0.0
LogisticRegression Temp 0.062 ± 0.006 0.17 ± 0.039 0.058 ± 0.005 0.166 ± 0.042 0.833 ± 0.011
LogisticRegression Isotonic 0.002 ± 0.001 0.115 ± 0.001 0.002 ± 0.001 0.115 ± 0.001 0.754 ± 0.0

DecisionTree ERM 0.019 ± 0.001 0.039 ± 0.005 0.018 ± 0.002 0.038 ± 0.003 0.863 ± 0.001
DecisionTree HKRR 0.005 ± 0.001 0.033 ± 0.008 0.005 ± 0.001 0.032 ± 0.007 0.856 ± 0.001
DecisionTree HJZ 0.016 ± 0.003 0.042 ± 0.004 0.015 ± 0.002 0.036 ± 0.003 0.862 ± 0.0
DecisionTree Platt 0.02 ± 0.002 0.051 ± 0.007 0.018 ± 0.002 0.046 ± 0.007 0.861 ± 0.001
DecisionTree Temp 0.06 ± 0.002 0.08 ± 0.002 0.052 ± 0.001 0.069 ± 0.003 0.863 ± 0.002
DecisionTree Isotonic 0.006 ± 0.001 0.034 ± 0.004 0.009 ± 0.002 0.032 ± 0.003 0.863 ± 0.001
NaiveBayes ERM 0.134 ± 0.001 0.416 ± 0.006 0.126 ± 0.0 0.324 ± 0.003 0.808 ± 0.001
NaiveBayes HKRR 0.006 ± 0.001 0.032 ± 0.005 0.006 ± 0.001 0.03 ± 0.003 0.848 ± 0.001
NaiveBayes HJZ 0.008 ± 0.002 0.058 ± 0.009 0.011 ± 0.001 0.058 ± 0.009 0.754 ± 0.0
NaiveBayes Platt 0.008 ± 0.002 0.079 ± 0.002 0.012 ± 0.001 0.079 ± 0.001 0.754 ± 0.0
NaiveBayes Temp 0.185 ± 0.002 0.271 ± 0.004 0.184 ± 0.002 0.257 ± 0.003 0.809 ± 0.0
NaiveBayes Isotonic 0.002 ± 0.001 0.115 ± 0.001 0.002 ± 0.001 0.115 ± 0.001 0.754 ± 0.0

Figure 55: HMDA. Alternate groups.
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Model ECE # Max ECE # smECE # Max smECE # Acc "
MLP ERM 0.017 ± 0.005 0.3 ± 0.057 0.021 ± 0.004 0.204 ± 0.03 0.866 ± 0.002
MLP HKRR 0.019 ± 0.002 0.311 ± 0.08 0.018 ± 0.002 0.217 ± 0.043 0.84 ± 0.002
MLP HJZ 0.025 ± 0.006 0.28 ± 0.049 0.024 ± 0.003 0.208 ± 0.031 0.864 ± 0.003
MLP Platt 0.02 ± 0.004 0.314 ± 0.048 0.023 ± 0.002 0.239 ± 0.039 0.863 ± 0.002
MLP Temp 0.063 ± 0.037 0.282 ± 0.061 0.058 ± 0.032 0.195 ± 0.038 0.864 ± 0.003
MLP Isotonic 0.025 ± 0.004 0.29 ± 0.047 0.025 ± 0.004 0.234 ± 0.027 0.864 ± 0.003

RandomForest ERM 0.019 ± 0.001 0.297 ± 0.038 0.021 ± 0.001 0.228 ± 0.018 0.863 ± 0.003
RandomForest HKRR 0.019 ± 0.002 0.311 ± 0.08 0.018 ± 0.002 0.217 ± 0.043 0.84 ± 0.002
RandomForest HJZ 0.016 ± 0.002 0.239 ± 0.036 0.019 ± 0.001 0.211 ± 0.015 0.861 ± 0.002
RandomForest Platt 0.019 ± 0.005 0.267 ± 0.03 0.021 ± 0.001 0.229 ± 0.02 0.86 ± 0.003
RandomForest Temp 0.041 ± 0.004 0.283 ± 0.057 0.039 ± 0.004 0.236 ± 0.014 0.861 ± 0.002
RandomForest Isotonic 0.015 ± 0.002 0.248 ± 0.019 0.017 ± 0.001 0.235 ± 0.012 0.862 ± 0.002

SVM ERM 0.143 ± 0.002 0.565 ± 0.0 0.072 ± 0.001 0.265 ± 0.0 0.857 ± 0.002
SVM HKRR 0.019 ± 0.002 0.311 ± 0.08 0.018 ± 0.002 0.217 ± 0.043 0.84 ± 0.002
SVM HJZ 0.027 ± 0.005 0.311 ± 0.037 0.026 ± 0.002 0.284 ± 0.027 0.826 ± 0.0
SVM Platt 0.14 ± 0.001 0.47 ± 0.051 0.07 ± 0.001 0.229 ± 0.02 0.86 ± 0.001
SVM Temp 0.117 ± 0.011 0.323 ± 0.022 0.116 ± 0.011 0.277 ± 0.018 0.847 ± 0.01
SVM Isotonic 0.048 ± 0.023 0.317 ± 0.076 0.048 ± 0.023 0.275 ± 0.052 0.847 ± 0.017

LogisticRegression ERM 0.022 ± 0.002 0.26 ± 0.02 0.022 ± 0.001 0.184 ± 0.009 0.866 ± 0.002
LogisticRegression HKRR 0.019 ± 0.002 0.311 ± 0.08 0.018 ± 0.002 0.217 ± 0.043 0.84 ± 0.002
LogisticRegression HJZ 0.017 ± 0.003 0.256 ± 0.064 0.02 ± 0.001 0.177 ± 0.028 0.863 ± 0.003
LogisticRegression Platt 0.02 ± 0.001 0.254 ± 0.032 0.022 ± 0.0 0.176 ± 0.031 0.862 ± 0.004
LogisticRegression Temp 0.102 ± 0.002 0.207 ± 0.045 0.094 ± 0.001 0.159 ± 0.025 0.862 ± 0.003
LogisticRegression Isotonic 0.016 ± 0.002 0.233 ± 0.03 0.019 ± 0.002 0.188 ± 0.037 0.861 ± 0.005

DecisionTree ERM 0.067 ± 0.004 0.328 ± 0.036 0.047 ± 0.004 0.189 ± 0.01 0.85 ± 0.006
DecisionTree HKRR 0.019 ± 0.002 0.311 ± 0.08 0.018 ± 0.002 0.217 ± 0.043 0.84 ± 0.002
DecisionTree HJZ 0.03 ± 0.007 0.286 ± 0.082 0.032 ± 0.007 0.225 ± 0.057 0.838 ± 0.006
DecisionTree Platt 0.106 ± 0.007 0.529 ± 0.064 0.059 ± 0.003 0.261 ± 0.03 0.836 ± 0.006
DecisionTree Temp 0.098 ± 0.003 0.3 ± 0.026 0.091 ± 0.002 0.232 ± 0.016 0.841 ± 0.005
DecisionTree Isotonic 0.055 ± 0.024 0.292 ± 0.039 0.042 ± 0.017 0.235 ± 0.046 0.836 ± 0.006

NaiveBayes ERM 0.277 ± 0.019 0.469 ± 0.031 0.164 ± 0.013 0.266 ± 0.025 0.714 ± 0.018
NaiveBayes HKRR 0.019 ± 0.002 0.311 ± 0.08 0.018 ± 0.002 0.217 ± 0.043 0.84 ± 0.002
NaiveBayes HJZ 0.027 ± 0.005 0.311 ± 0.037 0.026 ± 0.002 0.284 ± 0.027 0.826 ± 0.0
NaiveBayes Platt 0.268 ± 0.008 0.452 ± 0.012 0.164 ± 0.005 0.268 ± 0.01 0.719 ± 0.007
NaiveBayes Temp 0.298 ± 0.003 0.343 ± 0.006 0.276 ± 0.002 0.307 ± 0.004 0.719 ± 0.007
NaiveBayes Isotonic 0.017 ± 0.002 0.216 ± 0.06 0.019 ± 0.001 0.205 ± 0.055 0.829 ± 0.006

Figure 56: MEPS. Alternate groups.
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J Results on Language and Image Datasets
J.1 Plots for All Multicalibration Algorithms

Figure 57: All multicalibration runs for image and language models. Note the small x-axis scale in
some plots.
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J.2 Result Tables for Image and Language Data

Model ECE # Max ECE # smECE # Max smECE # Acc "
ViT ERM 0.021 ± 0.008 0.076 ± 0.011 0.022 ± 0.007 0.076 ± 0.011 0.965 ± 0.003
ViT HKRR 0.003 ± 0.0 0.018 ± 0.003 0.003 ± 0.0 0.018 ± 0.003 0.978 ± 0.0
ViT HJZ 0.006 ± 0.001 0.047 ± 0.001 0.007 ± 0.001 0.044 ± 0.003 0.973 ± 0.002
ViT Platt 0.014 ± 0.008 0.049 ± 0.014 0.016 ± 0.008 0.049 ± 0.014 0.973 ± 0.003
ViT Temp 0.025 ± 0.004 0.046 ± 0.01 0.019 ± 0.003 0.037 ± 0.008 0.973 ± 0.003
ViT Isotonic 0.001 ± 0.0 0.031 ± 0.007 0.002 ± 0.0 0.031 ± 0.007 0.977 ± 0.001

DenseNet-121 ERM 0.006 ± 0.003 0.047 ± 0.005 0.006 ± 0.002 0.047 ± 0.005 0.974 ± 0.001
DenseNet-121 HKRR 0.003 ± 0.002 0.018 ± 0.002 0.003 ± 0.002 0.018 ± 0.002 0.97 ± 0.003
DenseNet-121 HJZ 0.005 ± 0.001 0.056 ± 0.014 0.006 ± 0.001 0.055 ± 0.014 0.967 ± 0.003
DenseNet-121 Platt 0.006 ± 0.001 0.062 ± 0.015 0.007 ± 0.001 0.062 ± 0.015 0.971 ± 0.002
DenseNet-121 Temp 0.015 ± 0.002 0.052 ± 0.009 0.015 ± 0.002 0.05 ± 0.008 0.967 ± 0.003
DenseNet-121 Isotonic 0.002 ± 0.0 0.047 ± 0.006 0.003 ± 0.0 0.047 ± 0.006 0.972 ± 0.001

Figure 58: Camelyon17.

Model ECE # Max ECE # smECE # Max smECE # Acc "
ViT ERM 0.016 ± 0.006 0.069 ± 0.013 0.016 ± 0.006 0.068 ± 0.014 0.92 ± 0.005
ViT HKRR 0.008 ± 0.003 0.031 ± 0.003 0.008 ± 0.003 0.031 ± 0.003 0.926 ± 0.001
ViT HJZ 0.006 ± 0.001 0.038 ± 0.002 0.009 ± 0.0 0.037 ± 0.002 0.925 ± 0.001
ViT Platt 0.009 ± 0.002 0.047 ± 0.005 0.012 ± 0.002 0.047 ± 0.005 0.924 ± 0.001
ViT Temp 0.028 ± 0.008 0.072 ± 0.012 0.029 ± 0.009 0.07 ± 0.014 0.917 ± 0.006
ViT Isotonic 0.005 ± 0.001 0.057 ± 0.005 0.007 ± 0.001 0.057 ± 0.005 0.922 ± 0.001

ResNet-50 ERM 0.008 ± 0.001 0.028 ± 0.001 0.009 ± 0.001 0.028 ± 0.001 0.945 ± 0.0
ResNet-50 HKRR 0.006 ± 0.001 0.024 ± 0.004 0.006 ± 0.001 0.024 ± 0.004 0.934 ± 0.006
ResNet-50 HJZ 0.006 ± 0.001 0.032 ± 0.003 0.008 ± 0.0 0.033 ± 0.003 0.934 ± 0.007
ResNet-50 Platt 0.005 ± 0.001 0.037 ± 0.004 0.007 ± 0.0 0.037 ± 0.004 0.935 ± 0.006
ResNet-50 Temp 0.017 ± 0.006 0.046 ± 0.006 0.017 ± 0.006 0.045 ± 0.006 0.933 ± 0.007
ResNet-50 Isotonic 0.003 ± 0.001 0.051 ± 0.009 0.006 ± 0.001 0.051 ± 0.009 0.933 ± 0.007

Figure 59: CelebA.

Model ECE # Max ECE # smECE # Max smECE # Acc "
DistilBERT ERM 0.021 ± 0.001 0.065 ± 0.005 0.021 ± 0.001 0.06 ± 0.004 0.915 ± 0.001
DistilBERT HKRR 0.013 ± 0.0 0.047 ± 0.005 0.013 ± 0.0 0.043 ± 0.004 0.915 ± 0.001
DistilBERT HJZ 0.004 ± 0.001 0.043 ± 0.008 0.007 ± 0.001 0.043 ± 0.007 0.915 ± 0.001
DistilBERT Platt 0.004 ± 0.001 0.047 ± 0.008 0.007 ± 0.0 0.045 ± 0.007 0.915 ± 0.001
DistilBERT Temp 0.025 ± 0.005 0.044 ± 0.004 0.025 ± 0.005 0.044 ± 0.004 0.914 ± 0.001
DistilBERT Isotonic 0.002 ± 0.0 0.032 ± 0.006 0.005 ± 0.0 0.032 ± 0.006 0.916 ± 0.0

Figure 60: Civil Comments.

Model ECE # Max ECE # smECE # Max smECE # Acc "
ResNet-56 ERM 0.039 ± 0.013 0.094 ± 0.009 0.039 ± 0.013 0.094 ± 0.009 0.867 ± 0.001
ResNet-56 HKRR 0.015 ± 0.001 0.059 ± 0.01 0.015 ± 0.001 0.047 ± 0.005 0.848 ± 0.004
ResNet-56 HJZ 0.013 ± 0.005 0.081 ± 0.012 0.014 ± 0.005 0.081 ± 0.012 0.863 ± 0.002
ResNet-56 Platt 0.009 ± 0.003 0.082 ± 0.01 0.01 ± 0.002 0.082 ± 0.01 0.863 ± 0.002
ResNet-56 Temp 0.024 ± 0.01 0.07 ± 0.003 0.024 ± 0.01 0.069 ± 0.003 0.863 ± 0.002
ResNet-56 Isotonic 0.005 ± 0.001 0.079 ± 0.009 0.007 ± 0.0 0.078 ± 0.008 0.863 ± 0.002

Figure 61: Amazon Polarity.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In our abstract and introduction, we claim to evaluate the performance of
current multicalibration post-processing algorithms relative to an empirical risk minimization
(ERM) baseline. Throughout our paper, this is reflected in our tables and plots which always
include ERM as well all the multicalibration algorithms we ran. For example, in Section 3
we report that ERM performs similarly to multicalibration post processing (Observation
1). In Section 4, we show that multicalibration post-processing can improve worst group
calibration error, but that the improvement is surprisingly only on the scale of 0.02 to
0.05 ECE. This is reflected in our contributions Section 1.1, where we state that ERM
performs significantly better than conventional wisdom may indicate (at least for worst
group calibration error).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, we have an explicit limitations discussion in Section 5, where we point
out weaknesses of our hyperparameter sweeps as well as applicability beyond binary classifi-
cation. Our results hold over thousands of runs, and we expect them to be broadly applicable.
We do not propose any algorithms, but do discuss the computational efficiency of existing
algorithms. Since we are evaluating a fairness method, we have some explicit discussion of
fairness throughout our introduction and related work Section 1, where we talk about the
importance of calibration and multicalibration within algorithmic fairness.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not have any theoretical results in our paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have included our anonymized code during submission along with instruc-
tions to run it. Further, in Appendix F we detail all hyperparameters searched for both our
tabular and image/language experiments. These details should suffice to fully replicate our
findings.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submit our code and detailed instructions for running it as part of our
submission. All data used to evaluate our algorithms, on the other hand, is open source and
can be freely downloaded online.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, in Section 2.2 and Appendix G we give lengthy discussion to details
such as parameter selection, train validation splits, optimizers, etc. since they have a large
impact on the performance of multicalibration algorithms. Indeed, this is one of our main
takeaways present in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All our experiments for tabular datasets are reported as the mean and standard
deviation over 5 train / validation splits, and we report this at the start of Section 3. (see e.g.
the description for Figure 1). See also Appendix H.2. Experiments for vision and language
datasets are more expensive to run, and hence, we report the mean and standard deviation
over 3 runs. We reference this at the start of Section 4. See Appendix J.2. All data used in
the main paper is derived from these tables, and hence, also reports the average and standard
deviation over a # of runs.

One of our main claims is that multicalibration post-processing does not significantly
improve over ERM, and for this we take into account statistical significance through standard
deviation. See, for example, Figure 2 and discussion in Observation 4 Section 3.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, we include the estimated time and compute to run our experiments in a
compute section within Section 2.2.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read the NeurIPS Code of Ethics and made sure the paper
follows the NeurIPS Code of Ethics in every aspect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Broader impacts are discussed in Appendix D.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper experiments with fairness measures of already available models and
data. Our work introduces no new risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all papers and code which propose datasets. Licenses for all datasets
we utilize are in Appendix E.8. Unfortunately, we are not able to find a license for the
Amazon polarity or CelebA datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce new code assets which we will eventually release through
CC-BY-4.0. Otherwise, we have no new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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