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Abstract: This paper presents the development of a novel collaborative road profile estimation
and active suspension control framework in connected vehicles, where participating vehicles
iteratively refine the road profile estimation and enhance suspension control performance
through an iterative learning scheme. Specifically, we develop a robust iterative learning
approach to tackle the heterogeneity and model uncertainties in participating vehicles, which
are important for practical implementations. In addition, the framework can be adopted as an
add-on system to augment existing suspension control schemes. Comprehensive simulations are
performed to confirm the effectiveness of the proposed framework.
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1. INTRODUCTION

There is a growing interest in utilizing road profile informa-
tion to enhance suspension control with improved comfort
and safety [Yu et al. (2023); Hajidavalloo et al. (2022)].
In addition, the estimated road profile information can
also be used for optimized budget allocation for pavement
maintenance [Peraka and Biligiri (2020)]. Traditionally,
the road profile estimation process involves specialized sen-
sors such as contact-based [Healey et al. (1977), Doumiati
et al. (2011)] and laser-based sensors [McCann and Nguyen
(2007), Ni et al. (2020)], which are costly to acquire and
maintain and can only provide limited coverage [Li et al.
(2017)].

On the other hand, modern vehicles are equipped with
a multitude of sensors [Massaro et al. (2016)], which can
be readily integrated with advanced machine learning and
communication telematics for efficient road data crowd-
sourcing [Ma et al. (2020); Whaiduzzaman et al. (2014)].
The crowdsourced data has been proven effective in ac-
curately estimating road and traffic information such as
real-time traffic data (e.g. Google Maps, Waze). Similarly,
with advancements in onboard vehicular sensing and com-
munication, the process of estimating the road profile can
also take advantage of the crowdsourced data. Specifically,
with multiple participating vehicles estimating and sharing
the information on the same road segment, vehicle-specific
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biases and errors can be tackled and mitigated. Also, the
widespread road profile estimations can be done in a very
cost-effective manner.

The onboard sensor-based road profile estimation has been
done in some studies. Frej et al. (2023) utilized H-infinity
based observer and onboard sensors to estimate the road
profile in the passive suspension vehicles. Tudén-Martinez
et al. (2015) utilizes the Q-parametrization approach to es-
timate the road profile for semi-active suspension systems.
Gohrle et al. (2014) utilizes the onboard sensor capable of
measuring the road height profile in front of the vehicle to
control the active suspension force. Song and Wang (2020)
utilized model predictive control to predict the road profile
using the lead vehicle preview. Some other studies used
methodologies such as observer and dynamic response of
the vehicle [Hassen et al. (2019), Li et al. (2019),Rath
et al. (2014)]. However, all of these research methods
were focused on using only one vehicle, which is prone
to inaccuracies due to vehicle-specific characteristics.

Some studies have worked on using multiple vehicles and
iterative learning for estimating the road profile [Chen
et al. (2022), Gao et al. (2020)]. However, they are focused
on passive suspension systems, which do ntypesave closed-
loop feedback. The learning-based approach with a closed-
loop active suspension system can estimate the road pro-
files more accurately as the closed-loop feedback inherently
ensures the correction of estimation errors. This kind of
approach is used in other domains such as estimating



Fig. 1. Overall learning schematic along with a quarter car model used for one of the agents

the disturbance in UAVs and improving their trajectory
tracking [Chen et al. (2020), Zheng et al. (2020)]. In
this study, we utilize the disturbance observer along with
iterative learning control for estimating the road profile.
To the best of our knowledge, this is the first attempt
at utilizing closed-loop active suspension with learning
among multiple vehicles to estimate the road profiles.

In this research, the learning is among the vehicles with
different dynamics. The difference in dynamics can arise
either from different type of vehicles used or from the dif-
ferences in payload, tire pressure, suspension coefficients,
etc. within the same vehicle type. The learning frame-
work is designed to account for these differences. Also,
some vehicle parameters may change with time, hence
the learning framework is designed to be robust enough
to account for these variations. The basic outline of the
learning framework is as follows:

(1) Each vehicle equipped with active suspension esti-
mates the road profile on its own using the distur-
bance observer (DOB).

(2) The vehicle also receives anonymous data from the
previously passed vehicle. This data includes informa-
tion about its nominal dynamics model and its errors.

(3) Based on this data, the learning filters generate a
learning signal, which is added to the road profile
estimate from the DOB, improving the estimation
accuracy.

The remaining paper is organized as follows: In section
2, we will establish the theoretical learning framework. In
section 3, we will present the numerical studies and we will
conclude the article in section 4.

2. LEARNING FRAMEWORK

The learning framework is implemented in a cascaded
format, i.e. an agent #(j) learns from the information of
agent #(j — 1) and agent #(j) passes on the data to be
used by agent #(j + 1). Fig. 1 shows the overall learning
information flow among different agents (vehicles). They
share information such as their own learning signal, the
sprung mass displacement, and their dynamics to a shared
database. We use a quarter-car model for developing the
learning framework. Fig. 1 also shows a detailed version of
this quarter car model for one of the agents.

In Fig. 1, ms is a sprung mass, my,s iS an unsprung
mass, ks and k,s are suspension stiffness and tire stiffness
coefficients respectively, and Cs and C,, are spring and
tire damping coefficients respectively. The Active suspen-
sion force is described as Fy. zs, zys, and z, are sprung
mass displacement, unsprung mass displacement, and road
profile displacement respectively. It is important to note
that we treat the road profile z,. as a function of time
instead of a function of space. With the speed of the
vehicle readily available in the onboard sensing, the road
profile estimation can be converted into a spatial domain.
In this study, we will consider the road profile as a dis-

turbance. Hence, we subtract the equivalent disturbance
estimate from the control signal generated by the baseline
controller. This research aims to accurately estimate this
disturbance. To establish a disturbance estimation process,
let us first describe the governing equations of this quarter-
car suspension system:

msés = Fa + Cs(zus - Zs) + ks(zus - Zs)
Mysuys = —Fq — Cs(éus - Zs) - ks(zus - zs) (1)
+Cus (Zr - Zus) + kus(zr - Zus)

The systems of Eq. (1) have two independent inputs: 1.
active suspension force (F,), and 2. the road profile (z,.).
As we want to minimize the sprung mass displacement
(2s), we consider z; as the output of the system. In
this study, we assume can measure z; using the onboard
sensors [Sisi et al. (2024)]. Using Eq. (1) and assuming the
suspension operates in a linear regime, we can derive the
transfer functions relating the output (zs) to each of the
inputs (F, and z,) respectively as:

P(1) = zs/Fa

Mys '52+cus S+kus
T mem s (coms + ceMuys + Cusmis)s® 2)
S us S S S us us S
+(ksms + ksMuys + kusmis + CsCyus) 8
+(Cskus + Cusks)s + kskus

2s/ %
(ks + cs5)(kus + cuss)
MsMyss® + (csms + csmys + Cusg)s? (3)
+(ksmg + ksmuys + kysms + cscus) s
+(Cskus + Cusks)s® + kskyss

Fig. 2. (a) Original block diagram of the system (b) Equiv-
alent block diagram after block diagram manipulation

The transfer function system derived in Eq. (2) and Eq.
(3) is arranged in block diagram form in Fig. 2 (a). In
this block diagram, C' represents a baseline controller,
e represents an error in trajectory tracking (i.e. —zy),
and s is a derivative transfer function. The learning
framework is developed such that the baseline controller C'
remains untouched by the framework. Hence, the learning
framework can be applied to any active suspension system
regardless of what controller is used in the system.

As we consider using a DOB for a primary estimation of
the road profile, we need to treat the road profile as a
disturbance. Hence, we move the signal corresponding to
zr upstream of P(1) using the block diagram manipulation
as shown in Fig. 2 (b). Considering this, the equivalent
disturbance based on the road profile can be given as:

20,y = d = 5{z} (4)
where

§=sP 1(1)P(2) (5)



As 2., is being added between the baseline controller
and the plant, it can be considered a disturbance to the
system. For simplicity, we will represent 2,._, as d in further
equations and figures. The notation {} means that the
signal inside the notation is sent to a system which can be
represented by the outside transfer function.

Fig. 3. Block diagram of the system along with learning
framework for Agent#(j)

Fig. 3 shows a block diagram of the system with the
disturbance observer and learning framework added to
the system. As the learning framework establishes the
learning relationship between different agents (vehicles),
each agent’s dynamics can be different from any other
agent. In order to denote this difference, we use the index
J as the subscript of each term. In Fig. 3, M; ~ Qij*l
is an inverse approximation of the plant P;(1), Q; is
a low pass filter, F,; is an active suspension actuator
force. cf; is a disturbance estimate from the DOB. We
complement this estimate with the learning signal d¢ ; in

order to generate the final disturbance estimate d;. This
learning signal is generated using the trajectory tracking
error of the previous agent (e;_1), the learning signal of
the previous agent (ds ;_1), and respective to-be-designed
learning filters Ly j, and Lo ;. Similarly, the data from the
current agent is passed to the next agent.

With this agent description established, we will derive the
learning filters Ly ;, and Lo ; in the following subsections
such that disturbance estimation error is reduced itera-
tively. As we want to reduce the disturbance estimation
error of agent#(j) (i.e. eq;) compared to the disturbance
estimation error of agent#(j — 1) (i.e. eqj—1), we will
establish a relationship between eq ; and eq j_;.

2.1 Establishing relationship between eq; and eqj_1:

Let us first define a few system parameters:

System Parameters: Based on the block diagram in Fig.
3, G4 ; (dynamics from disturbance d; to output zs ;), Gy ;
(dynamics from learning signal dy; to output zs;), and
Q; (dynamics from disturbance d; to DOB disturbance

estimate ci;) can be described by:
Gaj=[1—-Q; +P(1);(M; +C;)]7'P(1);(1 - Q;) (6)
Grj=[1-Q;+P1);(M;+Cy)]  (-P(1);) ()
Qj = [1-Q;+P(1);(M;+Cy)] ™1 (M;+Q;C;)P(1); (8)
Using Fig. 3 and Eq. (8), the error in disturbance estima-
tion of agent#(j) can be given by:
caj =dj —dj = dj — (d} + dy;)
= (1= ){d;} —dy;
Similarly, eq j—1 can be described by:
eaj—1 = (L—=Q-1){dj1} —ds;
Subtracting Eq. (9) with Eq. (10), we get:

9)

(10)

edj —edj—1 =1 —=Q){d;}—(1—Q_1){dj_1}

11
—dyj+dpj ()

Now, using Eq. (4), we replace d; with a term containing
d;_1 and rewrite Eq. (11) as:

5.
Qj)ﬁ—
o

—dy;+dsj

(1—=Q5-1)| {dj-1}

€dj —edj-1= (1 -

(12)

Now, Let us define a learning signal dy ; using the to-be-
designed learning filters L; ; and L ; as:

dfj=Lij{ej—1} + L2 j{ds -1}

Using Eq. (13) and with some simplifications, Eq. (12) can
be written as:

(13)

05
5,J —(1=9Q5-1)| {dj-1}
7—1

=Ly j{ej-1}+ (1 — Lo j){dys -1}
(14)

edj — edj—1= |(1—y)

Now, using Eq. (6) and Eq. (7), the displacement of the
sprung mass for agent#(j — 1) can be given by:

zsj—1 = Gaj-1{dj—1} + Gyj1{dy;—1}  (15)

Hence, with the aim of z,; = 0, the error in trajectory
tracking can be described as:

ej—1=—25j-1=—Gaj-1{dj—1} — Gy j-1{dys -1} (16)

Using Eq. (16), we can simplify Eq. (14) as:

€d,j—€d,j—1 =

5.
1-Q)—2
( J)ﬁj_l

+ (1= Loj + L1;Gfj—1){dsj-1}

—(1-9Q-1)+ Ll,dej—1:| {dj—1} (A7)

Now, using Eq. (10), we substitute d;_; in Eq. (17) and
simplify the Eq. (17) as:

o (1—Qj) (Sj Ll’dejfl ]
T {(1—%‘1)51'1 (1—-95-1) tea g
(=9 6 | L1;Gdj
+ : — Lo+ L1 ;Gfj 1| {ds —
{(1—%‘1)%‘1 (- fim| g1}
(18)
For simplicity, let us define new terms T, ; and T, ; as:
M=) 6010 (1-9Q5-1) (19)
_ (=9 4 L1Gdja Of
T =00, o (- 2 TheCha
Using Eq. (19), the Eq. (18) can be written as:
€d,j = Tel,j{edJ*l} + Tez,j {dfvjfl} (20)

Eq. (20) is the desired relationship between eq ; and eq j_1
for designing the learning filters. In subsection 2.2, we will
introduce the proposed learning filters in a theorem and
prove the error reduction using this relationship



2.2 Designing the learning filters

We will define a few notations to be used in the theorem.
Let us define an error reduction factor 0 < o < 1, where

llea;ll = a - [lea;-l| (21)

and let us define n; as zero order approximation of a
transfer function 6;/6;_1. Also, for determining the learn-
ing filters for any agent, we will use the estimated plant
models. These plant models may not be perfectly accurate
due to modeling errors or due to variations in the model
parameters. In order to quantify this uncertainty, let us
define Ay ; and A, ; where:

Pi(1) = (1+ Ay )P5(1)
Pj(2) = (1+ Ag)P5(2)

with P;(1) and P;j(2) being the estimated plant models.
Ay ; and As ; are small gain transfer functions to account
for inaccuracies in these estimated plant models. From
hereon, the hat symbol (*) over any transfer function
indicates it is the estimated transfer function of the cor-
responding actual transfer function. With these notations,
let us introduce the learning filters and prove the error
reduction in the following theorem:
Theorem: With the learning filters
Liy=Gily [ =0 —n-9)] (@)

and R

Lyj=a+L1;Gy (25)
we can achieve iterative estimation error reduction of
factor &~ « in each iteration, where 0 < a < 1
Proof:

Using Eq. (24) and Eq. (25), the Eq. (19) can be written
as:

Te, ,; = 1-9) & Gajor [0 =Qi1) = (1 - )] Gdj
T (1=Q-0) 6 (1—-95-1)
T, - 1-9) &  Gohg[a=90)—n0-9)]Gd;
T (1=Q5-1) 65 (1—Qj-1)
— (o4 L1,;Gy 1) + L1;Gfj1
(26)

Now, Let us expand Eq. (26) using Eq. (6), Eq. (7), Eq.
(8), Eq. (22), and Eq. (23). Also, let us assume that the
low pass filter for all the systems is the same (ie. Q; = Q
for Vj). With this, Eq. (26) can be expressed as:

AN IS
Telj:(1+ L 1@ )
’ 1 Jer-le—l(l)
(A4+Aq1,;-1)(A4+A2,5)

Ay 1
(o = mj) (1 + 1+Cj,1P,-,1(1)) 0; +A1)(0+B2,5-1)

Ar,j1Q i Ay ;Q
(1 + 1+cjiin71(1)) =t (1 + 1+c,-fjj(*1))

Tez,j = Tel,j =N — (O{ - 77]) <1 +

Aq 1 >
14+ C;1Pj—1(1)
(27)

In Eq. (27), the term

(e mm)

reflects the transfer function from reference to the tra-
jectory tracking error for agent#(j). For a well designed
baseline active suspension controller, this term will have a
gain very close to zero. Additionally,

—— Jand (| ——>——
1+ C;P(1) 1+ C;P;(1)
will have even smaller gain, hence:

Ay
14— =8 ) a1 for Vj 2
(*ﬁ+@ﬂm) or Vg (28)
and ALQ
1+ "M% ) 1 for Vj 29
(*ﬁ+@ﬂm) or ¥ (29)
Also, we can assume
(1+Arjo)(L+Agy) . (30)

1+ A1)+ Az;-1)

as Ay ; and Ay ; have a small gain for reasonably well
modelled plants for Vj

Using Eq. (28), Eq. (29), and Eq. (30), the Eq. (26) reduces

to:
77') (1-9y)
g1 7)) (1=9Q)
5; (1-9,)
Te o~ _J _ . S P
> (5j1 m) (1—95-1)

For a suspension system, d;/d;_1 can be approximated as
a static gain in the desired road profile frequency range. As
7; is the zero-order approximation of the transfer function
5j/5j_1, (5j/(5j_1 —n; = 0. With this, Eq. (31) can be
simplified as:

Tel,j ~a+ (5] —
(31)

T., , =«
’ 32
i (32)
Using Eq. (32), Eq. (20) can be written as:
eq;j ~ ofea -1} (33)

Hence, the estimation error will be reduced by a factor &~ «
in each iteration. This is the end of the theorem proof.

3. NUMERICAL EVALUATION

Parameter Actual Model Nominal Model
ms (kg) (2.454 8 x j) (2.45+ B X ) fms
muys (kg) (1+8x37) (14 B X J) frmus
ks (N/m) (950 4 1008 X j7) (950 4 1008 x j7) fr,

kus (N/m) (1250 + 1008 x j) | (1250 4 1008 X j) fi.,,

¢s (N's/m) (7.5+ 8% j) (7.5 + B X j) fes
cus (N s/m) (5+8x4) (5+ B X T7j) feus

Table 1. Simulation agent characteristics. In
current simulations, 8 = 1/15



figures/TFls-eps-converted-to.pdf
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Fig. 4. Bode plots for the actual model transfer function
from active suspension force to sprung mass displace-
ment (P;(1)) for all the agents

figures/TF2s-eps-converted-to.pdf

Fig. 5. Bode plots for the actual model transfer function
from road profile to sprung mass displacement (P;(2))
for all the agents

We evaluate the performance of the learning framework
numerically in the MATLAB simulations. We perform the
simulation over 90 dynamically different agents running
on the same road profile in succession. We use a quarter-
car model of the vehicle suspension system as we had
illustrated in Fig. 1.

Fig. 6. Road profiles introduced

The specific characteristics of the agents used in the
simulation are described in Table 1. The definitions used to
generate both the actual models and the nominal models
are shown in the table. The simulator uses the actual
model to simulate the response of the system, but the
learning framework has access to the inaccurate nominal
model only. This ensures the numerical evaluation reflects
modeling uncertainties described by A ; and A, ; in the
theorem.

Each agent’s dynamics is varied using the index multiplier
j varying from 1 to 90. In our current simulations, we
choose 8 = 1/15. Hence, for example, the actual sprung
mass varies in the range of 2.45 + 1/15 x 0 = 2.45 kg
to 2.45 + 1/15 x 90 = 8.45 kg. We also randomize the
order of j in the simulation to ensure that none of the
characteristics are steadily increasing or decreasing with
each successive agent. The f, (e.g. fi., fe.., etc.) indicates
the relevant model uncertainty added to defer the nominal
model from the actual model. This factor represents the
modeling error either due to incorrect system identification
or variations in the parameters with time (e.g. change in
the payload, change in tire pressure, etc). The f, is chosen
as a random number with a mean of 1.0 and an upper
bound chosen before starting the simulation. Importantly,
fx is not known to the learning framework. In our current
setup, we have chosen this upper bound on uncertainty
as 10% (i.e. f, varies from 0.9 to 1.10 randomly for each
agent and each parameter). Fig. 4 and Fig. 5 show the
bode plots of actual model P;(1) and P;(2) respectively
for all the agents.

For each of our agents, we are using a PID controller as the
baseline controller. Iterating again, the learning framework
does not require any specific controller type as long as
the controller is stable. Table 2 shows the PID controller
constants used in our simulations. Here, also, j varies from
1 to 90 in a random order. Unline the agent plant models,
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Fig. 7. (a) Comparison of road profile estimations for a few agents for a sinusoidal road profile (b) Comparison of “Root
Mean Square Errors” of the road profile estimations for all agents for a sinusoidal road profile

PID Controller Constant Value
P (1500 + 2j)
I (200 + 0.0675)
D (500 + 7)

Table 2. Simulation agent controllers

we do not need to add any uncertainties to the controller
as the controller is known to us.

We perform simulation over 2 different road profile sce-
narios as shown in Fig. 6. In scenario 1, a sinusoidal road
profile of magnitude 15 mm and a frequency 5 rad/s is
used. In scenario 2, we introduce a type-C road profile

[Hassen et al. (2019)]. We also perform the simulation
without learning but with the disturbance observer for all
the agents. This is done to compare the results of the “no
learning” cases with the “learning” cases. In the following
subsections, we will describe these results for each of the
scenarios in detail.

3.1 Sinusoidal Road Profile

Fig. 7 shows the results from the simulation for scenario 1
with a sinusoidal road profile. Fig. 7(a) compares the road
profile estimations without learning (only DOB running)
and with learning. We show only a few agents’ estimates
out of 90 agents to de-clutter the plots. The actual road



Fig. 8. Learning signals for a few agents for the sinusoidal
road profile

profile is also shown in both figures for ease of comparison.
In the "without learning” case, the estimates from all
the agents are almost similar. The variations in these
estimates are due to differences in the vehicle models. The
important observation from this plot is that the estimates
have a significant delay than the actual road profile. This
is due to the disturbance observer using the outputs of
the system to estimate the disturbances, which is often
delayed. These estimates are also scaled down compared
to the actual road profile. However, with learning, the
road profile estimates gradually approach the actual road
profile with each vehicle. The agent#(90) has a road profile
estimate very close to the actual road profile.

Fig. 7(b) shows the “Root Mean Square Error (RMSE)”
of the road profile estimation for all the agents. This
plot represents the overall “closeness” of the road profile
estimates to the actual road profiles. In the “without learn-
ing” cases, all the agents have almost the same RMSE of
around 10.25 mm. However, in the “with learning” cases,
the error decreases exponentially in each iteration. The
RMSE errors converge to around around 1.22 mm. The
exponential curve that fits the data with 95% confidence
bounds is:

y(z) = 8.75¢ 00397 1 (0,273¢0-014x (34)
Fig. 8 shows the learning signals generated by the learning
framework for a few agents. This plot represents how
the inaccuracies of the disturbance observer are corrected
by the iterative learning process. The learning signal for
the agent#(1) is a constant 0 as there is no previous
agent to learn from. From agent#(2) onwards, the learning
signal tries to compensate for the errors of the disturbance
observer. The learning signals slowly converge toward the
learning signal of the last agent (i.e. agent#(90)).

3.2 Type-C Road Profile

Fig. 9 shows the results from the simulation for scenario
2 with a type-C road profile. Similar to scenario 1, the

figures/sin_learning_signals_brads-eps-con verte%g‘éﬁtp

agents with learning are able to iteratively improve the
road profile estimation. Fig. 9 (a) shows the comparison
of road profile estimates for a few agents in “without
learning and “with learning” cases. Without learning,
the road profile estimates are delayed. They are also
missing the higher frequency components of the road
profile and are only estimating the slowly varying signal.
In the learning cases, the agents gradually improve their
estimations in each iteration. Also, the estimation of high-
frequenc qg components is gradually improving with each
gent#(90) is able to capture the actual road
profile with much more detail and with almost negligible
delay. For ease of visualization, Fig. 10 shows the road
profile estimation errors for agent#(1) (i.e. the first agent)
and agent#(90) (i.e. the last agent) in the learning case.
It can be clearly confirmed that the estimation errors in
the last agent are negligible compared to the first agent.

Fig. 9 (b) shows the RMSE of the road profile estimation
errors. Here also, in the “without learning” case, the errors
are almost constant at about 4 mm. In the learning cases,
the error exponentially decreases and converges to around
0.8 mm. The exponential curve that fits the data with 95%
confidence bounds is:

y(x) = 3.38¢7 00397 1 0.28¢0-012% (35)
Fig. 11 shows the learning signals for a few agents in this
scenario. Again, the learning signal for the agent#(1) is a
constant 0 as there is no previous agent to learn from. The
high-frequency components in the learning signals indicate
the learning process is able to capture the frequencies that
otherwise would have been missed out without learning.
This plot explains why the road profile estimation in Fig.
9 (a) is able to estimate the higher frequency changes in
the road profile. In this scenario also, The learning signals
change very rapidly for initial agents but then converge to
almost the same signal for the final few agents.

4. CONCLUSION

This paper established the learning framework for esti-
mating the road profile using disturbance observer and
iterative learning control using the onboard sensors. The
framework utilizes multiple dynamically different active
suspension vehicles to estimate the road profile accurately
simultaneously increasing the passenger comfort in each
vehicle. The learning framework can incorporate modeling
uncertainties to iteratively reduce road profile estimation
errors. The framework has been evaluated in robust sim-
ulations and they confirm the effectiveness of the learning
process.
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