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Abstract

For a widely-studied data model and general loss and sample-hardening functions we prove that the
losses of Supervised Contrastive Learning (SCL), Hard-SCL (HSCL), and Unsupervised Contrastive
Learning (UCL) are minimized by representations that exhibit Neural-Collapse (NC), i.e., the class
means form an Equiangular Tight Frame (ETF) and data from the same class are mapped to the same
representation. We also prove that for any representation mapping, the HSCL and Hard-UCL (HUCL)
losses are lower bounded by the corresponding SCL and UCL losses. In contrast to existing literature,
our theoretical results for SCL do not require class-conditional independence of augmented views and
work for a general loss function class that includes the widely used InfoNCE loss function. Moreover,
our proofs are simpler, compact, and transparent. Similar to existing literature, our theoretical claims
also hold for the practical scenario where batching is used for optimization. We empirically demonstrate,
for the first time, that Adam optimization (with batching) of HSCL and HUCL losses with random
initialization and suitable hardness levels can indeed converge to the NC-geometry if we incorporate unit-
ball or unit-sphere feature normalization. Without incorporating hard-negatives or feature normalization,
however, the representations learned via Adam suffer from Dimensional-Collapse (DC) and fail to attain
the NC-geometry. These results exemplify the role of hard-negative sampling in contrastive representation
learning and we conclude with several open theoretical problems for future work. The code can be found
at https://github.com/rjiang03/HCL/tree/main

Keywords: Contrastive Learning, Hard-Negative Sampling, Neural-Collapse.

1 Introduction

Contrastive representation learning (CL) methods learn a mapping that embeds data into a Euclidean space
such that similar examples retain close proximity to each other and dissimilar examples are pushed apart.
CL, and in particular unsupervised CL, has gained prominence in the last decade with notable success in
Natural Language Processing (NLP), Computer Vision (CV), time-series, and other applications. Recent
surveys [2, 23] and the references therein provide a comprehensive view of these applications.

The characteristics and utility of the learned representation depend on the joint distribution of similar
(positive samples) and dissimilar data points (negative samples) and the downstream learning task. In
this paper we are not interested in the downstream analysis, but in characterizing the geometric structure
and other properties of global minima of the contrastive learning loss under a general latent data model.
In this context, we focus on understanding the impact and utility of hard-negative sampling in the UCL
and SCL settings. When carefully designed, hard-negative sampling improves downstream classification
performance of representations learned via CL as demonstrated in [24], [11, 10], and [17]. While it is known
that hard-negative sampling can be performed implicitly by adjusting what is referred to as the temperature
parameter in the CL loss, in this paper we set this parameter to unity and explicitly model hard-negative
sampling through a general “hardening” function that can tilt the sampling distribution to generate negative
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samples that are more similar to (and therefore harder to distinguish from) the positive and anchor samples.
We also numerically study the impact of feature normalization on the learned representation geometry.

1.1 Main contributions

Our main theoretical contributions are Theorems 1, 2, and 3, which, under a widely-studied latent data
model, hold for any convex, argument-wise non-decreasing contrastive loss function, any non-negative and
argument-wise non-decreasing hardening function to generate hard-negative samples, and norm-bounded
representations of dimension at least C − 1.

Theorem 1 establishes that the HSCL loss dominates the SCL loss and similarly the HUCL loss dominates
the UCL loss. In this context we note that Theorem 3.1 in [30] is a somewhat similar result for the UCL
setting, but for a special loss function and it does not address directly hard-negatives.

Theorem 2 is a novel result which states that the globally optimal representation geometry for both SCL
and HSCL corresponds to Neural-Collapse (NC) (see Definition 6) with the same optimal loss value. In
contrast to existing works (see related works section 2), we show that achieving NC in SCL and HSCL does
not require class-conditional independence of the positive samples.

Similarly, Theorem 3 establishes the optimality of NC-geometry for UCL if the representation dimension
is sufficiently large compared to the number of latent classes which, in turn, is implicitly determined by the
joint distribution of the positive examples that corresponds to the augmentation mechanism.

A comprehensive set of experimental results on one synthetic and three real datasets are detailed in Sec. 5
and Appendix B. These include experiments that study effects of two initialization methods, three different
feature normalization methods, three different batch sizes, two very different families of hardening functions,
and two different CL sampling strategies. Empirical results show that when using the Adam optimizer
with random initialization, the matrix of class means for SCL is badly conditioned and effectively low-rank,
i.e., it exhibits Dimensional-Collapse (DC). In contrast, the use of hard-negatives at appropriate hardness
levels mitigates DC and enables convergence to the global optima. A similar phenomenon is observed in the
unsupervised settings. We also show that feature normalization is critical for mitigating DC in these settings.
Results are qualitatively similar across different datasets, a range of batch sizes, hardening functions, and CL
sampling strategies.

2 Related work

2.1 Supervised Contrastive Learning

The theoretical results for our SCL setting, where in contrast to [7] and [13] we make use of label information
in positive as well as negative sampling, are novel. The debiased SCL loss in [5] corresponds to our SCL
loss, but no analysis pertaining to optimal representation geometry was considered in [5]. A recent ArXiv
preprint by [6], which appeared after our own ArXiv preprint, [11], considers using label information for
negative sampling in SCL with InfoNCE loss, calling it the SINCERE loss. Our theoretical results prove
that NC is the optimal geometry for the SINCERE loss. Furthermore, our results and analysis also apply to
hard-negative sampling as well, a scenario not considered thus far for SCL.

We would like to note that our theoretical set-up for UCL under the sampling mechanism of Figure 1, can
be seen to be aligned with the SCL analysis that makes use of label information only for positive samples as
done in [13] and [7]. Therefore, our theoretical results provide an alternative proof of optimality of NC based
on simple, compact, and transparent probabilistic arguments complementing the proof of a similar result in
[7]. We note that similarly to [7], our arguments also hold for the case when one approximates the loss using
batches.

We want to point out that in all key papers that conduct a theoretical analysis of contrastive learning e.g.,
[1, 7, 25], the positive samples are assumed to be conditionally i.i.d., conditioned on the label. However, this
conditional independence may not hold in practice when using augmentation mechanisms typically considered
in CL settings e.g., [19, 20, 31, 4].

Unlike the recent work of [33] which shows that the optimization landscape of supervised learning with
least-squares loss is benign, i.e. all critical points other than the global optima are strict saddle points, in
Sec. 5 we demonstrate that the optimization landscape of SCL is more complicated. Specifically, not only
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may the global optima not be reached by SGD-like methods with random initialization, but also the local
optima exhibit the Dimensional-Collapse (DC) phenomenon. However, our experiments demonstrate that
these issues are remedied via HSCL whose global optimization landscape may be better. Here we note that
[32] show that with unit-sphere normalization, Riemannian gradient descent methods can achieve the global
optima for SCL, underscoring the importance of optimization methods and constraints for training in CL.

2.2 Unsupervised Contrastive Learning

[27] argue that asymptotically (in number of negative samples) the InfoNCE loss for UCL optimizes for a
trade-off between the alignment of positive pairs while ensuring uniformity of features on the hypersphere.
However, a non-asymptotic and global analysis of the optimal solution is still lacking. In contrast, for UCL in
Theorem 3, we show that as long as the embedding dimension is larger than the number of latent classes,
which in turn is determined by the distribution of the similar samples, the optimal representations in UCL
exhibit NC-geometry.

Our results also complement several recent papers, e.g., [22], [29], [28], that study the role of augmentations
in UCL. Similar to theoretical works analyzing UCL, e.g. [1] and [16], our results also assume conditional
independence of positive pairs given the label. This assumption may or may not be satisfied in practice.

We demonstrate that a recent result, viz., Theorem 4 in [12], that attempts to explain DC in UCL is
limited in that under a suitable initialization, the UCL loss trained with Adam does not exhibit DC (see
Sec. 5). Furthermore, we demonstrate empirically, for the first time, that HUCL mitigates DC in UCL at
moderate hardness levels. For CL (without hard-negative sampling), [34] characterize local solutions that
correspond to DC but leave open the analysis of training dynamics leading to collapsed solutions.

A geometrical analysis of HUCL is carried out in [24], but the optimal solutions are only characterized
asymptotically (in the number of negative samples) and for the case when hardness also goes to infinity, the
analysis seems to require knowledge of supports of class conditional distributions. In contrast, we show that
the geometry of the optimal solution for HUCL depends on the hardness level and is, in general, different
compared to UCL due to the possibility of class collision.

3 Contrastive Learning framework

3.1 Mathematical model

Notation: k, C ∈ N, k > 1, C > 1,Y := {1, . . . , C},Z ⊆ RdZ . For i, j ∈ Z, i < j, i : j := i, i+ 1, . . . , j, and
a
i:j

:= a
i
, a

i+1
, . . . , a

j
. If i > j, i : j and a

i:j
are “null”.

Let f : X → Z denote a (deterministic) representation mapping from data space X to representation
space Z ⊆ RdZ . Let F denote a family of such representation mappings. Contrastive Learning (CL) selects
a representation from the family by minimizing an expected loss function that penalizes “misalignment”
between the representation of an anchor sample z = f(x) and the representation of a positive sample
z+ = f(x+) and simultaneously penalizes “alignment” between z and the representations of k negative
samples z−

i
:= f(x−

i
), i = 1 : k.

We consider a CL loss function ℓ
k
of the following general form.

Definition 1 (Generalized Contrastive Loss).

ℓ
k
(z, z+, z−

1:k
) := ψ

k
(z⊤(z−

1
− z+), . . . , z⊤(z−

k
− z+)) (1)

where ψ
k
: Rk → R is a convex function that is also argument-wise non-decreasing (i.e., non-decreasing with

respect to each argument when the other arguments are held fixed) throughout Rk.

This subsumes and generalizes popular CL loss functions such as InfoNCE and triplet-loss with sphere-
normalized representations. InfoNCE corresponds to ψ

k
(t

1:k
) = log(α+

∑k

i=1
eti) with α > 01 and ψ

k
(t) =

max{t+ α, 0}, α > 0, is the triplet-loss with sphere-normalized representations. However, some CL losses
such as the spectral contrastive loss of [8] are not of this form.

1This is the log-sum-exponential function which is convex over Rk for all α ≥ 0 and strictly convex over Rk if α > 0.
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The CL loss is the expected value of the CL loss function:

L
(k)
CL(f) := E

(x,x+,x−
1:k)∼pCL

[ℓ
k
(f(x), f(x+), f(x−

1
), . . . , f(x−

k
))]

where p
CL

(x, x+, x−
1:k

) is the joint probability distribution of the anchor, positive, and k negative samples
and is designed differently within the supervised and unsupervised settings as described below.

Supervised CL (SCL): Here, all samples have class labels: a common class label y ∈ Y for the anchor and
positive sample and one class label for each negative sample denoted by y−

i
∈ Y for the i-th negative sample,

i = 1, . . . , k. The joint distribution of all samples and their labels is described in the following equation:

p
SCL

(y, x, x+, y−
1:k
, x−

1:k
) := λ

y
q(x, x+|y)

k∏
i=1

r(y−
i
|y) s(x−

i
|y−

i
), (2)

r(y−
i
|y) :=

1(y−
i
̸= y)λ

y−
i

(1− λ
y
)

(3)

where λ
y
∈ (0, 1) for all y ∈ Y is the marginal distribution of the anchor’s label and s(x−|y−) is the conditional

probability distribution of any negative sample x− given its class y−.
This joint distribution may be interpreted from a sample generation perspective as follows: first, a common

class label y ∈ Y for the anchor and positive sample is sampled from a class marginal probability distribution λ.
Then, the anchor and positive samples are generated by sampling from the conditional distribution q(x, x+|y).
Then, given x, x+ and their common class label y, the k negative samples and their labels are generated
in a conditionally IID manner. The sampling of y−

i
, x−

i
, for each i, can be interpreted as first sampling a

class label y−
i

different from y in a manner consistent with the class marginal probability distribution λ
(sampling from distribution r(y−

i
|y)) and then sampling x−

i
from the conditional probability distribution

s(·|·) of negative samples given class y−
i
. Thus in SCL, the k negative samples are conditionally IID and

independent of the anchor and positive sample given the anchor’s label.
In the typical supervised setting, the anchor, positive, and negative samples all share the

same common conditional probability distribution s(·|·) within each class given their respective
labels.

We denote the CL loss in the supervised setting by L
(k)
SCL(f).

Unsupervised CL (UCL): Here samples do not have labels or rather they are latent (unobserved) and the
k negative samples are IID and independent of the anchor and positive samples.

Latent labels in UCL can be interpreted as indexing latent clusters. Suppose that there are C latent
clusters from which the anchor, positive, and the k negative samples can be drawn from. Then the joint
distribution of all samples and their latent labels can be described by the following equation:

p
UCL

(y, x, x+, y−
1:k
, x−

1:k
) := λ

y
q(x, x+|y)

k∏
i=1

r(y−
i
) s(x−

i
|y−

i
), (4)

where λ is the marginal distribution of the anchor’s latent label, r(·) the marginal distribution of the latent
labels of negative samples, and s(x−|y−) is the conditional probability distribution of any negative sample
x− given its latent label y−. We have used the same notation as in SCL (and slightly abused it for r(·)) in
order to make the similarities and differences between the SCL and UCL distribution structures transparent.

In the typical UCL setting, r = λ and the conditional distribution of x given its label y
and the conditional distribution of x+ given its label y are both s(·|y) which is the conditional
distribution of any negative sample given its label.

We denote the CL loss in the unsupervised setting by L
(k)
UCL(f).

Anchor and positive samples: For the SCL scenario, we will consider sampling mechanisms in which the
representations of the anchor x and the positive sample x+ have the same conditional probability distribution
s(·|y) given their common label y (see (2)). We will not, however, assume that x and x+ are conditionally
independent given y. This is compatible with settings where x and x+ are generated via IID augmentations

4
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z
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xref−y− x− z−

Figure 1: Graphical model for augmentation and negative sampling for SCL and UCL settings used in
practical implementations such as Sim-CLR.

of a common reference sample xref as in SimCLR [4] (see Fig. 1 for the model and Appendix A for a proof of
compatibility of this model).

For UCL, we assume the same mechanism for sampling the positive samples as that for SCL, but the latent
label y is unobserved. Further, the negative samples are generated independently of the positive pairs using
the same mechanism, e.g., IID augmentations of an xref− chosen independently of xref (see Fig. 1). Thus,

the anchor, positive, and negative samples will all have the same marginal distribution given by
∑C

i=1
λ
i
s(·|i).

3.2 Hard-negative sampling

Hard-negative sampling aims to generate negative samples whose representations are “more aligned” with
that of the anchor (making them harder to distinguish from the anchor) compared to a given reference
negative sampling distribution (whether unsupervised or supervised). We consider a very general class of
“hardening” mechanisms that include several classical approaches as special cases. To this end, we define a
hardening function as follows.

Definition 2 (Hardening function). η : Rk → R is a hardening function if it is non-negative and argument-
wise non-decreasing throughout Rk.

As an example, η(t
1:k

) :=
∏k

i=1
eβti , β > 0, is an exponential tilting hardening function employed in [25]

and [10].

Hard-negative SCL (HSCL): From (2) it follows that in SCL, p(x−|x, x+, y) = p(x−|y) =
∑

y−∈Y r(y
−|y) s(x−|y−) =:

p−
SCL

(x−|y) is the reference negative sampling distribution for one negative sample and p(x−
1:k

|x, x+, y) =
p(x−

1:k
|y) =

∏k

i=1
p−
SCL

(x−
i
|y) is the reference negative sampling distribution for k negative samples. Let η be

a hardening function such that for all x ∈ X and all y ∈ Y,

γ(x, y, f) := E
x−
1:k∼ IID p−

SCL(·|y)[η(f(x)
⊤f(x−

1
), . . . , f(x)⊤f(x−

k
))] ∈ (0,∞).

Then we define the η-harder negative sampling distribution for SCL as follows.

Definition 3 (η-harder negatives for SCL).

p−
HSCL

(x−
1:k

|x, x+, y, f) :=
η(f(x)⊤f(x−

1
), . . . , f(x)⊤f(x−

k
))

γ(x, y, f)

k∏
i=1

p−
SCL

(x−
i
|y). (5)

Observe that negative samples which are more aligned with the anchor in the representation space, i.e.,
f(x)⊤f(x−

i
) is large, are sampled relatively more often in p−

HSCL
than in the reference p−

SCL
because η is

argument-wise non-decreasing throughout Rk.
In HSCL, x−

1:k
are conditionally independent of x+ given x and y but they are not conditionally independent

of x given y (unlike in SCL). Moreover, x−
1:k

may not be conditionally IID given (x, y) if the hardening function
is not (multiplicatively) separable. We also note that unlike in SCL, p−

HSCL
depends on the representation

function f .
We denote the joint probability distribution of all samples and their labels in the hard-negative SCL

setting by p
HSCL

and the corresponding CL loss by L
(k)
HSCL(f).
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Hard-negative UCL (HUCL): From (4) it follows that in UCL, p(x−|x, x+, y) = p(x−) =
∑

y−∈Y r(y
−) s(x−|y−) =:

p−
UCL

(x−) is the reference negative sampling distribution for one negative sample and p(x−
1:k

|x, x+, y) =

p(x−
1:k

) =
∏k

i=1
p−
UCL

(x−
i
) is the reference negative sampling distribution for k negative samples. Let η be a

hardening function such that for all x ∈ X ,

γ(x, f) := E
x−
1:k∼ IID p−

UCL

[η(f(x)⊤f(x−
1
), . . . , f(x)⊤f(x−

k
))] ∈ (0,∞). (6)

Then we define the η-harder negative sampling probability distribution for UCL as follows.

Definition 4 (η-harder negatives for UCL).

p−
HUCL

(x−
1:k

|x, x+, y, f) :=
η(f(x)⊤f(x−

1
), . . . , f(x)⊤f(x−

k
))

γ(x, f)
·

k∏
i=1

p−
UCL

(x−
i
). (7)

Again, observe that negative samples which are more aligned with the anchor in representation space, i.e.,
f(x)⊤f(x−

i
) is large, are sampled relatively more often in p−

HUCL
than in the reference p−

UCL
because η is

argument-wise non-decreasing throughout Rk.
In HUCL, x−

1:k
are conditionally independent of x+ given x, but they are not independent of x (unlike in

UCL). Moreover, x−
1:k

may not be conditionally IID given x if the hardening function is not (multiplicatively)
separable. We also note that unlike in UCL, p−

HUCL
depends on the representation function f .

We denote the joint probability distribution of all samples and their (latent labels) in the hard-negative

UCL setting by p
HUCL

and the corresponding CL loss by L
(k)
HUCL(f).

4 Theoretical results

In this section, we present all our theoretical results using the notation and mathematical framework for CL
described in the previous section.

4.1 Hard-negative CL loss is not smaller than CL loss

Theorem 1 (Hard-negative CL versus CL losses). Let ψ
k
in (1) be argument-wise non-decreasing over Rk

and assume that all expectations associated with L
(k)
UCL(f), L

(k)
HUCL(f), L

(k)
SCL(f), L

(k)
HSCL(f) exist and are

finite. Then, for all f and all k, L
(k)
HUCL(f) ≥ L

(k)
UCL(f) and L

(k)
HSCL(f) ≥ L

(k)
SCL(f).

We note that convexity of ψ
k
is not needed in Theorem 1. The proof of Theorem 1 is based on the

generalized (multivariate) association inequality due to Harris, Theorem 2.15 [3] and its corollary which are
stated below.

Lemma 1 (Harris-inequality, Theorem 2.15 in [3]). Let g : Rk → R and h : Rk → R be argument-wise
non-decreasing throughout Rk. If u

1:k
∼ IID p then

E
u1:k∼ IID p

[g(u
1:k

)h(u
1:k

)] ≥ E
u1:k∼ IID p

[g(u
1:k

)] · E
u1:k∼ IID p

[h(u
1:k

)]

whenever the expectations exist and are finite.

Corollary 1. Let η : Rk → R be non-negative and argument-wise non-decreasing throughout Rk such that

γ := E
u1:k∼ IID p

[η(u
1:k

)] ∈ (0,∞). Let p
H
(u

1:k
) := η(u1:k)

γ

∏k

i=1
p(u

i
). If g : Rk → R is argument-wise

non-decreasing throughout Rk such that E
u1:k∼ IID p

[g(u
1:k

)] exists and is finite, then

E
u1:k∼pH

[g(u
1:k

)] ≥ E
u1:k∼ IID p

[g(u
1:k

)].
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Proof

E
u1:k∼pH

[g(u
1:k

)]

= E
u1:k∼ IID p

[
g(u

1:k
)
η(u

1:k
)

γ

]
≥ E

u1:k∼ IID p
[g(u

1:k
)]
E
u1:k∼ IID p

[η(u
1:k

)]

γ

= E
u1:k∼ IID p

[g(u
1:k

)]

where the inequality in the second step follows from the Harris-inequality (see Lemma 1).

Proof of Theorem 1. The proof essentially follows from Corollary 1 by defining u
i
:= f(x)⊤f(x−

i
) for i = 1 : k,

defining g
x,x+(u1:k) := ψ

k
(u

1
− f(x)⊤f(x+), . . . , u

k
− f(x)⊤f(x+)), noting that u

1:k
are conditionally IID

given (x, x+) in the UCL setting and conditionally IID given (x, x+, y) in the SCL setting, and verifying that
the conditions of Corollary 1 hold.

For clarity, we provide a detailed proof of the inequality L
(k)
HSCL(f) ≥ L

(k)
SCL(f). The detailed proof of the

inequality L
(k)
HUCL(f) ≥ L

(k)
UCL(f) parallels that for the (more intricate) supervised setting and is omitted.

L
(k)
HSCL(f) =

= E(x,x+,y)

[
E
x−
1:k

∼p−
HSCL

(x−
1:k

|x,x+,y,f)

[
ψk(f(x)

⊤(f(x−1 )− f(x+), . . . , f(x)⊤(f(x−k )− f(x+)))
]]

= E(x,x+,y)

[
E
x−
1:k

∼ IID p−
SCL

(·|y)

[
ψk(f(x)

⊤(f(x−1 )− f(x+)), . . . , f(x)⊤(f(x−k )− f(x+))) ·

η(f(x)⊤f(x−1 ), . . . , f(x)
⊤f(x−k ))

γ(x, y, f)

]]
(8)

≥ E(x,x+,y)

[
E
x−
1:k

∼ IID p−
SCL

(·|y)

[
ψk(f(x)

⊤(f(x−1 )− f(x+)), . . . , f(x)⊤(f(x−k )− f(x+)))
]
·

E
x−
1:k

∼ IID p−
SCL

(·|y)

[
η(f(x)⊤f(x−1 ), . . . , f(x)

⊤f(x−k ))
]

γ(x, y, f)

]
(9)

= E(x,x+,y)

[
E
x−
1:k

∼ IID p−
SCL

(·|y)

[
ψk(f(x)

⊤(f(x−1 )− f(x+)), . . . , f(x)⊤(f(x−k )− f(x+)))
]]

(10)

= L
(k)
SCL(f)

where (8) follows from (5) which defines p−
HSCL

, (9) follows from the application of the Harris-inequality (see
Lemma 1) to the inner expectation where x and x+ are held fixed, and (10) follows from the definition of
γ(x, y, f) in (6).

4.2 Lower bound for SCL loss and Neural-Collapse

Consider the SCL model with anchor, positive, and k negative samples generated as described in Sec. 3.1.
Within this setting, we have the following lower bound for the SCL loss and conditions for equality.

Theorem 2 (Lower bound for SCL loss and conditions for equality with unit-ball representations and
equiprobable classes). In the SCL model with anchor, positive, and negative samples generated as described
in (2) and (3), let (a) λ

y
= 1

C for all y ∈ Y (equiprobable classes), (b) Z = {z ∈ RdZ : ||z|| ≤ 1} (unit-ball

representations), and (c) the anchor, positive and negative samples have a common conditional probability
distribution s(·|·) within each class given their respective labels. If ψ

k
is a convex function that is also

argument-wise non-decreasing throughout Rk, then for all f : X → Z,

L
(k)
SCL(f) ≥ ψ

k

(
−C

(C−1) , . . . ,
−C

(C−1)

)
. (11)
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For a given f ∈ F and all y ∈ Y, let

µ
y
:= E

x∼s(x|y)[f(x)]. (12)

If a given f ∈ F satisfies the following additional condition:

Equal inner-product class means: ∀j, ℓ ∈ Y : j ̸= ℓ, µ⊤
j
µ
ℓ
= −1

C−1 , (13)

then equality will hold in (11), i.e., additional condition (13) is sufficient for equality in (11). Additional
condition (13) also implies the following properties:

(i) zero-sum class means:
∑

j∈Y µj
= 0,

(ii) unit-norm class means: ∀j ∈ Y, ∥µ
j
∥ = 1,

(iii) dZ ≥ C − 1.

(iv) zero within-class variance: for all j ∈ Y and all i = 1 : k, Pr(f(x) = f(x+) = µ
j
|y = j) = 1 =

Pr(f(x−
i
) = µ

j
|y−

i
= j), and

(v) The support sets of s(·|y) for all y ∈ Y must be disjoint and the anchor, positive and negative samples
must share a common deterministic labeling function defined by the support sets.

(vi) equality of HSCL and SCL losses:

L
(k)
HSCL(f) = L

(k)
SCL(f) = ψ

k

(
−C

(C−1) , . . . ,
−C

(C−1)

)
.

If ψ
k
is a strictly convex function that is also argument-wise strictly increasing throughout Rk, then

additional condition (13) is also necessary for equality to hold in (11).

Proof We have

L
(k)
SCL(f) = E

x,x+,x−
1:k

[ψ
k
(f(x)⊤(f(x)−

1
− f(x+)), . . . , f(x)⊤(f(x−

k
)− f(x+)))]

≥ E
x,x+,x−

1:k

[ψ
k
(f(x)⊤f(x−

1
)− 1, . . . , f(x)⊤f(x−

k
)− 1)] (14)

≥ ψ
k
(E

x,x−
1
[f(x)⊤f(x−

1
)]− 1, . . . ,E

x,x−
k

[f(x)⊤f(x−
k
)]− 1) (15)

= ψ
k
(E

y,y−
1
[E

x,x−
1
[f(x)⊤f(x−

1
)|y, y−

1
]]− 1, . . . ,E

y,y−
k

[E
x,x−

k

[f(x)⊤f(x−
k
)|y, y−

k
]]− 1) (16)

= ψ
k

( ∑
j,ℓ∈Y,j ̸=ℓ

µ⊤
j µℓ

C(C−1) − 1, . . . ,
∑

j,ℓ∈Y,j ̸=ℓ

µ⊤
j µℓ

C(C−1) − 1
)

(17)

= ψ
k

( ||
∑

j∈Y µj ||2−
∑

j∈Y ∥µj∥2

C(C−1) − 1, . . . ,
||
∑

j∈Y µj ||2−
∑

j∈Y ∥µj∥2

C(C−1) − 1
)

(18)

≥ ψ
k

(
0−C

C(C−1) − 1, . . . , 0−C
C(C−1) − 1

)
(19)

= ψ
k

(
−C

(C−1) , . . . ,
−C

(C−1)

)
(20)

which is the lower bound in (11). Inequality (14) is because ψ
k
is argument-wise non-decreasing and

f(x)⊤f(x+) ≤ 1 by the Cauchy-Schwartz inequality since ∥f(x)∥, ∥f(x+)∥ ≤ 1 (unit-ball representations).
Inequality (15) is Jensen’s inequality applied to the convex function ψ

k
. Equality (16) is due to the law

of iterated expectations. Equality (17) follows from (2), (3), and the assumption of equiprobable classes.
Equality (18) is because

∑
j,ℓ∈Y µ

⊤
j
µ
ℓ
=
∑

j,ℓ∈Y,j ̸=ℓ
µ⊤
j
µ
ℓ
+
∑

j∈Y ||µ
j
||2. Inequality (19) is because ψ

k
is

argument-wise non-decreasing and the smallest possible value of ||
∑

j∈Y µj
||2 is zero and the largest possible

value of ||µ
j
||2 is one (unit-ball representations): Jensen’s inequality for the strictly convex function ∥ · ∥2

together with ∥f(x)∥2 ≤ 1 (unit-ball representations) imply that for all y ∈ Y, we have

∥µ
y
∥2 = ∥E

x∼s(x|y)[f(x)]∥
2 ≤ E

x∼s(x|y)[∥f(x)∥
2] ≤ 1. (21)

Finally the equality (20) is because 0−C
C(C−1) − 1 = −C

(C−1) .
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(i) and (ii) Proof that additional condition (13) implies zero-sum and unit-norm class means: Inequality
(21) together with condition (13) implies that

0 ≤ ∥
∑
j∈Y

µy∥2 =
∑
j,ℓ∈Y

µ⊤
j µℓ =

∑
j,ℓ∈Y,j ̸=ℓ

µ⊤
j µℓ︸ ︷︷ ︸

= −1
C−1

+
∑
j∈Y

∥µj∥2︸ ︷︷ ︸
≤1

≤ −C(C − 1)

C − 1
+

∑
j∈Y

1 = −C + C = 0.

Thus ∥
∑

j∈Y µy
∥2 = 0 and for all j ∈ Y, ∥µ

j
∥2 = 1.

(iii) Let M := [µ
1
, . . . , µ

C
] ∈ RdZ×C . Then from (13) and (ii), the gram matrix M⊤M = C

C−1IC −
1

C−11C
1
⊤
C

where I
C

is the C × C identity matrix and 1
C

is the C × 1 column vector of all ones. From this

it follows that M⊤M has one eigenvalue of zero corresponding to eigenvector 1
C
and C − 1 eigenvalues all

equal to C
C−1 corresponding to (C − 1) orthogonal eigenvectors spanning the orthogonal complement of 1

C
.

Thus, M has C − 1 nonzero singular values all equal to
√

C
C−1 and a rank equal to C − 1 ≤ dZ .

(iv) Proof that additional condition (13) implies zero within-class variance: We just proved that additional
condition (13) together with the unit-ball representation constraint implies unit-norm class means. This,
together with (21) implies that for all y ∈ Y,

1 = ∥µ
y
∥2 = ∥E

x∼s(x|y)[f(x)]∥
2 ≤ E

x∼s(x|y)[∥f(x)∥
2] ≤ 1. (22)

This implies that we have equality in Jensen’s inequality, which can occur iff with probability one given y, we
have f(x) = µ

y
(since ∥ · ∥2 is strictly convex). Since the anchor, positive and negative samples all have a

common conditional probability distribution s(·|·) within each class given their respective labels, it follows that
for all j ∈ Y and all i = 1 : k, Pr(f(x) = µ

j
|y = j) = Pr(f(x+) = µ

j
|y = j) = Pr(f(x−

i
) = µ

j
|y−

i
= j) = 1.

Moreover, since the anchor and positive samples have the same label, for all j ∈ Y , with probability one given
y = j, we have f(x) = f(x+) = µ

j
.

Proof that additional condition (13) is sufficient for equality to hold in (11): From the proofs of (i), (ii),
and (iv) above, if additional condition (13) holds, then we showed that with probability one given y = j we
have f(x) = f(x+) = µ

j
(see the para below (22)). This equality of f(x) and f(x+) is a conditional equality

given the class. Since this is true for all classes, it implies equality (with probability one) of f(x) and f(x+)
without conditioning on the class:

Pr(f(x) = f(x+)) =
∑
j∈Y

Pr(f(x)=f(x+)|y=j)
C = 1. (23)

From (23) we get

Pr(f(x)⊤f(x+) = 1) = Pr(||f(x)||2 = 1) =
∑
j∈Y

Pr(||f(x)||2=1|y=j)
C = 1, (24)

since f(x) = f(x+) = µ
j
with probability one given y = j and ∥µ

j
∥2 = 1. Equality in (14) then follows from

(23) and (24). Moreover, due to zero within-class variance we will have

with probability one, for all i = 1 : k, f(x)⊤f(x−
i
) = µ⊤

y
µ
y−
i

= −1
C−1 , (25)

and then we will have equality in (15) and (19). Therefore additional condition (13) is a sufficient condition
for equality to hold in (11).

(v) Proof that support sets of s(·|y), y ∈ Y are disjoint: From part (iv), all samples belonging to the
support set of s(·|y), y ∈ Y, are mapped to µ

y
by f . From part (ii) and condition (13), distinct labels have

distinct representation means: for all y, y′ ∈ Y, if y′ ≠ y, then µ
y
̸= µ

y′ . Therefore the support sets of

s(·|y) for all y ∈ Y must be disjoint. Since the anchor, positive, and negative samples all share a common
conditional probability distribution s(·|·) and the same marginal label distribution λ, it follows that they
share a common conditional distribution of label given sample (labeling function). Since the support sets of
s(·|y) for all y ∈ Y are disjoint, the labeling function is deterministic and is defined by the support set to
which a sample belongs.
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(vi) Proof of equality of HSCL and SCL losses under additional condition (13): under the equal inner-
product class means condition, with probability one f(x)⊤f(x−

i
) = −1

C−1 simultaneously for all i = 1 : k and

η(f(x)⊤f(x−
1
), . . . , f(x)⊤f(x−

k
)) = η( −1

C−1 , . . . ,
−1
C−1 ), a constant. Consequently, for all x, y and the given f ,

we must have γ(x, y, f) = η( −1
C−1 , . . . ,

−1
C−1 ) which would imply that (see Equation 5) p−

HSCL
(x−

1:k
|x, x+, y, f) =∏k

i=1
p−
SCL

(x−
i
|y) and therefore L

(k)
HSCL(f) = L

(k)
SCL(f) = ψ

k

( −C
(C−1) , . . . ,

−C
(C−1)

)
where the last equality is

because additional condition (13) is sufficient for equality to hold in (11).
Proof that additional condition (13) is necessary for equality in (11) if ψ

k
is strictly convex and argument-

wise strictly increasing over Rk: If equality holds in (11), then it must also hold in (14), (15), and (19). If ψ
k

is argument-wise strictly increasing, then equality in (19) can only occur if all class means have unit norms.
Then, from (22) and the reasoning in the paragraph below it, we would have zero within-class variance and
equations (23) and (24). This would imply equality in (14). If ψ

k
is strictly convex then equality in (15),

which is Jensen’s inequality, can only occur if for all i = 1 : k, Pr(f⊤(x)f(x−
i
) = β

i
) = 1 for some constants

β
1:k

. Since (x, x−
i
) has the same distribution for all i, it follows that for all i, β

i
= β for some constant β.

Since we have already proved zero within-class variance and the labels of negative samples are always distinct
from that of the anchor, it follows that for all j ≠ ℓ, we must have µ⊤

j
µ
ℓ
= β. Since we have equality in (14)

and ψ
k
is argument-wise strictly increasing, we must have β = −1

C−1 which implies that additional condition
(13) must hold (it is a necessary condition).

Remark 1. We note that Theorem 2 also holds if we have unit-sphere representations (a stronger constraint)
as opposed to unit-ball representations, i.e., if Z = {z ∈ RdZ : ∥z∥ = 1}: the lower bound (11) holds since
the unit sphere is a subset of the unit ball and equality can be attained with unit-sphere representations in
Theorem 2.

Remark 2. Interestingly, we note that inequality (19) and therefore the lower bound of Theorem 2 also
holds if we replace the unit-ball constraint on representations ∥f(x)∥ ≤ 1 with the weaker requirement
1
C

∑C

j=1
∥µ

j
∥2 ≤ 1.

Definition 5 (ETF). The equal inner-product, zero-sum, and unit-norm conditions on class means in
Theorem 2 define a (normalized) Equiangular Tight Frame (ETF) (see [18]).

Definition 6 (CL Neural-Collapse (NC)). We will say representation map f(·) exhibits CL Neural-Collapse
if it has zero within-class variance as in condition (iv) of Theorem 2 and the class means in representation
space form a normalized ETF as in Definition 5.

Remark 3. The term “Neural-Collapse” was originally used for representation mappings implemented by
deep classifier neural networks (see [21]). However, here we use the term more broadly for any family of
representation mappings and within the context of CL instead of classifier training.

The following corollary is a partial restatement of Theorem 2 in terms of CL Neural-Collapse:

Corollary 2. Under the conditions of Theorem 2, equality in (11) is attained by any representation map f
that exhibits CL Neural-Collapse. Moreover, if ψ

k
is strictly convex and argument-wise strictly increasing over

Rk, then equality in (11) is attained by a representation map f , if, and only if, it exhibits CL Neural-Collapse.

4.3 Empirical and batched empirical SCL losses

Empirical SCL loss: Theorem 2 also holds for empirical SCL loss because simple averages over samples can be
expressed as expectations with suitable uniform distributions over the samples. If the family of representation
mappings F has sufficiently high capacity (e.g., the family of mappings implemented by a sufficiently deep
and wide feed-forward neural network) and ∀y ∈ Y , s(·|y) is a discrete probability mass function (pmf) over a
finite set (e.g., uniform pmf over training samples within each class) with support-sets that are disjoint across
different classes, then the equal inner-product condition (13) in Theorem 2 can be satisfied for a suitable f in
the family. If either convexity or monotonicity of ψ is not strict, e.g., ψ(t) = max{t+ α, 0}, then it may be
possible for a representation map f to attain the lower bound without exhibiting CL Neural-Collapse.
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Batched empirical SCL loss: We will now show that representations that exhibit CL Neural-Collapse will also
minimize batched empirical SCL loss under the conditions of Theorem 2. Here, the full data set has balanced
classes (equal number of samples in each class) but is partitioned into B disjoint nonempty batches of
possibly unequal size. Let b denote the batch index and n

b
the number of samples in batch b. Let E

x,x+,x−
1:k|b

[·]
denote the empirical SCL loss in batch b and

L
(k,b)
SCL(f) :=

B∑
b=1

1

n
b

E
x,x+,x−

1:k|b

[
ψ
k
(f(x)⊤(f(x−

1
)− f(x+)), . . . , f(x)⊤(f(x−

k
)− f(x+)))

]
the overall batched empirical SCL loss. Note that in a given batch the data may not be balanced across classes
and therefore we cannot simply use Theorem 2, which assumes balanced classes, to deduce the optimality of
CL Neural-Collapse representations.

We lower bound the batched empirical SCL loss as follows:

L
(k,b)
SCL(f) =

B∑
b=1

1

n
b

E
x,x+,x−

1:k|b

[
ψ
k
(f(x)⊤(f(x−

1
)− f(x+)), . . . , f(x)⊤(f(x−

k
)− f(x+)))

]
≥

B∑
b=1

1

n
b

E
x,x+,x−

1:k|b

[
ψ
k
(f(x)⊤f(x−

1
)− 1, . . . , f(x)⊤f(x−

k
)− 1)

]
(26)

≥ ψ
k

(
B∑

b=1

1

n
b

E
x,x−

1 |b[f(x)
⊤f(x−

1
)]− 1, . . . ,

B∑
b=1

1

n
b

E
x,x−

k

[f(x)⊤f(x−
k
)]− 1

)
(27)

= ψ
k

(
E
x,x−

1
[f(x)⊤f(x−

1
)]− 1, . . . ,E

x,x−
k

[f(x)⊤f(x−
k
)]− 1

)
(28)

≥ ψ
k

(
−C

(C−1) , . . . ,
−C

(C−1)

)
(29)

where inequality (26) holds for the same reason as in (14), inequality (27) is Jensen’s inequality applied to ψ
k

which is convex, and equality (28) is due to the law of iterated (empirical) expectation. The right side of
(27) is precisely the right side of (15) and therefore (29) follows from (15) – (20). From the above analysis it
follows that the arguments used to prove Theorem 2 can be applied again to prove that the conclusions of
Theorem 2 and Corollary 2 also hold for the batched empirical SCL loss.

4.4 Lower bound for UCL loss with latent labels and Neural-Collapse

Consider the UCL model with anchor, positive, and k negative samples generated as described in Sec. 3.1.
Within this setting, we have the following lower bound for the UCL loss and conditions for equality.

Theorem 3 (Lower bound for UCL loss with latent labels and conditions for equality with unit-ball
representations and equiprobable classes). In the UCL model with anchor, positive, and negative samples
generated as described in (4), let (a) λ

y
= 1

C for all y ∈ Y (equiprobable classes), (b) Z = {z ∈ RdZ : ||z|| ≤ 1}
(unit-ball representations), (c) the anchor, positive and negative samples have a common conditional probability
distribution s(·|·) within each latent class given their respective labels, (d) r = λ in (4), and (e) the anchor
and positive samples are conditionally independent given their common label, i.e., q(x, x+|y) = s(x|y)s(x+|y)
in (4).2 If ψ

k
is a convex function that is also argument-wise non-decreasing throughout Rk, then for all

f : X → Z,

L
(k)
UCL(f) ≥

1

Ck+1

∑
y,y−

1:k∈Y

ψ
k

(
−C 1(y−

1 ̸=y)
(C−1) , . . . ,

−C 1(y−
k ̸=y)

(C−1)

)
(30)

where 1(·) is the indicator function. For a given f ∈ F and all y ∈ Y, let µ
y
be as defined in (12). If a given

f ∈ F satisfies additional condition (13), then equality will hold in (30), i.e., additional condition (13) is
sufficient for equality in (30). Additional condition (13) also implies the following properties:

2As discussed in Sec. 2, all existing works that conduct a theoretical analysis of UCL make this assumption.
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(i) zero-sum class means:
∑

j∈Y µj
= 0,

(ii) unit-norm class means: ∀j ∈ Y, ∥µ
j
∥ = 1,

(iii) dZ ≥ C − 1.

(iv) zero within-class variance: for all j ∈ Y and all i = 1 : k, Pr(f(x) = f(x+) = µ
j
|y = j) = 1 =

Pr(f(x−
i
) = µ

j
|y−

i
= j), and

(v) The support sets of s(·|y) for all y ∈ Y must be disjoint and the anchor, positive and negative samples
must share a common deterministic (latent) labeling function defined by the support sets.

If ψ
k
is a strictly convex function that is also argument-wise strictly increasing throughout Rk, then

additional condition (13) is also necessary for equality to hold in (30).

Proof For i = 1 : k, we define the following indicator random variables b
i
:= 1(y−

i
̸= y) and note that for all

i = 1 : k, b
i
is a deterministic function of (y, y−

i
). Since y ⊥⊥ {y−

1:k
} and y−

1:k
∼ IID Uniform(Y), it follows

that b
1:k

∼ IID and independent of y. We then have the following sequence of inequalities:

L
(k)
UCL(f) = E

x,x+,x−
1:k

[
ψ
k

(
f(x)⊤(f(x−

1
)− f(x+)), . . . , f(x)⊤(f(x−

k
)− f(x+))

)]
≥ E

y,y−
1:k

[
ψ
k
(E

x,x−
1 ∼s(x|y)s(x−

1 |y−
1 )
[f(x)⊤f(x−

1
)
]
− E

x,x+∼s(x|y)s(x+|y)[f(x)
⊤f(x+)

]
, . . . ,

. . . ,E
x,x−

k ∼s(x|y)s(x−
k |y−

k )

[
f(x)⊤f(x−

k
)
]
− E

x,x+∼s(x|y)s(x+|y)

[
f(x)⊤f(x+)

]
)
]

(31)

= E
y,y−

1:k

[
ψ
k

(
µ⊤
y
µ
y−
1
− µ⊤

y
µ
y
, . . . , µ⊤

y
µ
y−
k

− µ⊤
y
µ
y

)]
(32)

≥ E
b1:k

[
ψ
k

(
E[µ⊤

y
µ
y−
1
− ||µ

y
||2|b

1:k
], . . . ,E[µ⊤

y
µ
y−
k

− ||µ
y
||2|b

1:k
]
)]

(33)

= E
b1:k

[
ψ
k

(
E[µ⊤

y
µ
y−
1
− ||µ

y
||2|b

1
], . . . ,E[µ⊤

y
µ
y−
k

− ||µ
y
||2|b

k
]
)]

(34)

= E
b1:k

[
ψ
k

(
b
1
E[µ⊤

y
µ
y−
1
− ||µ

y
||2|b

1
= 1], . . . , b

k
E[µ⊤

y
µ
y−
k

− ||µ
y
||2|b

k
= 1]

)]
(35)

≥ E
b1:k

[
ψ
k

(
b
1
E[µ⊤

y
µ
y−
1
− 1|b

1
= 1], . . . , b

k
E[µ⊤

y
µ
y−
k

− 1|b
k
= 1]

)]
(36)

= E
b1:k

[
ψ
k

( b1 ∑
ℓ̸=j(µ

⊤
j µℓ−1)

C(C−1) , . . . ,
bk

∑
ℓ̸=j(µ

⊤
j µℓ−1)

C(C−1)

)]
(37)

= E
b1:k

[
ψ
k

( b1(∥∑
j µj∥2−

∑
j ∥µj∥2−C(C−1))

C(C−1) , . . . ,
bk(∥

∑
j µj∥2−

∑
j ∥µj∥2−C(C−1))

C(C−1)

)]
(38)

≥ E
b1:k

[
ψ
k

( b1(0−C−C(C−1))
C(C−1) , . . . , bk(0−C−C(C−1))

C(C−1)

)]
(39)

= E
b1:k

[
ψ
k

( b1(0−C·C)
C(C−1) , . . . , bk(0−C·C)

C(C−1)

)]
= E

b1:k

[
ψ
k

( −Cb1
(C−1) , . . . ,

−Cbk
(C−1)

)]
(40)

= 1
Ck+1

∑
y,y−

1:k∈Y

ψ
k

(
−C1(y−

1 ̸=y)
(C−1) , . . . ,

−C1(y−
k ̸=y)

(C−1)

)
(41)

where the validity of each numbered step in the above sequence of inequalities is explained below.
Inequality (31) is Jensen’s inequality conditioned on y, y

1:k
applied to the convex function ψ

k
. Equality

(32) holds because for every i, we have x and x−
i

are conditionally independent given y and y−
i

(per the
UCL model (4)), x and x+ are conditionally independent given their common label (assumption (d) in the
theorem statement), and the class means in representation space are as defined in (12). Inequality (33) is
Jensen’s inequality conditioned on b

1:k
applied to the convex function ψ

k
. Equality (34) holds because for all

i = 1 : k, (y, y−
i
) ⊥⊥ {b

ℓ
, ℓ ̸= i}|b

i
. Equality (35) holds because b

i
only takes values 0, 1 and if b

i
= 0, then

µ
y−
i

= µ
y
and µ⊤

y
µ
y−
i

− ∥µ
y
∥2 = 0. Therefore the expressions to the right of the equality symbols in (34) and

(35) match when b
i
= 0 and when b

i
= 1. Inequality (36) is because ψ

k
is non-decreasing and ||µ

y
|| ≤ 1 for

all y because all representations are in the unit closed ball. Equality (37) holds because for each i = 1 : k,
y, y−

i
∼ IID Uniform(Y) and y ̸= y−

i
when b

i
= 1. Equality (38) follows from elementary linear algebraic

operations. Inequality (39) holds because ψ
k
is argument-wise non-decreasing, the smallest possible value for

∥
∑

j
µ
j
∥2 is zero and the largest possible value for ∥µ

j
∥2, for all j, is one. Equality (41) follows from the

definition of the indicator variables in terms of y, y−
1:k

and because y, y−
1:k

are IID Uniform(Y).
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Similarly to the proof of Theorem 2, if additional condition (13) holds for some f , then properties (i)–(v)
in Theorem 3 hold. Moreover, then (23), (24), and (25) also hold and then we will have equality in (31), (33),
(36) and (39). Thus additional condition (13) is sufficient for equality to hold in (30).

Proof that additional condition (13) is necessary for equality in (30) if ψ
k
is strictly convex and argument-

wise strictly increasing over Rk: If equality holds in (30), then it must also hold in (31), (33), (36), and (39).
If ψ

k
is argument-wise strictly increasing, then equality in (39) can only occur if all class means have unit

norms (which would also imply equality in (36)). Then, from (22) and the reasoning in the paragraph below
it, we would have zero within-class variance and (24), which would imply that with probability one for all
i, f(x)⊤f(x−

i
) = µ⊤

y
µ
y−
i

and f(x)⊤f(x+) = ||µ
y
||2 which would imply equality in (31) as well. Equality in

(33) together with strict convexity of ψ
k
and ||µ

y
||2 = 1 would imply that with probability one, for all i,

given b
i
we must have µ⊤

y
µ
y−
i

= some deterministic function of b
i
and if ψ

k
is also argument-wise strictly

increasing, then this function must be such that µ⊤
y
µ
y−
i

− 1 = −Cbi
(C−1) due to (40). This would imply that

for all i, we must have µ⊤
y
µ
y−
i

= 1− Cbi
(C−1) = 1− C1(y−

i ̸=y)

(C−1) . Thus for all y ̸= y−
i
, i.e., b

i
= 1 (and this has

nonzero probability), µ⊤
y
µ
y−
i

= 1− C
C−1 = −1

C−1 which is the additional condition (13). Thus the additional

condition (13) must hold (it is a necessary condition).

Counterparts of Corollary 2 and results for empirical SCL loss and batched empirical SCL loss can be
stated and derived for UCL. One important difference between results for SCL and UCL is that Theorem 3 is
missing the counterpart of property (vi) in Theorem 2. Unlike in Theorem 2, we cannot assert that if

the lower bound is attained, then we will have L
(k)
HUCL(f) = L

(k)
UCL(f). This is because in the UCL

and HUCL settings, the negative sample can come from the same latent class as the anchor (latent class
collision) with a positive probability ( 1

C2 ). Then for a representation f that exhibits Neural-Collapse, we
cannot conclude that with probability one we must have η(f(x)⊤f(x−

1
), . . . , f(x)⊤f(x−

k
)) = η(β, . . . , β), for

some constant β. Deriving a tight lower bound for HUCL and determining whether it can be
attained iff there is Neural-Collapse in UCL (under suitable conditions), are open problems.

Neural-Collapse in SCL or UCL requires that the representation space dimension dZ ≥ C − 1 (see part
(iii) of Theorems 2 and 3). This can be ensured in practical implementations of SCL since labels are available
and the number of classes is known. In UCL, however, not just latent labels, but even the number of latent
classes is unknown. Thus even if it was possible to attain the global minimum of the empirical UCL loss
with an f exhibiting Neural-Collapse, we may not observe Neural-Collapse with an argument-wise
strictly increasing and strictly convex ψ

k
unless dZ is chosen to be sufficiently large.

In practice, even without knowledge of latent labels, it is possible to design a sampling distribution having
a structure that is compatible with (4) and conditions (c) and (d) of Theorem 3, e.g, via IID augmentations of
a reference sample as in SimCLR illustrated in Fig. 1. However, it is impossible to ensure that the equiprobable
latent class condition (a) or the anchor-positive conditional independence condition (d) in Theorem 3 hold
or that the supports of s(·|·) determined by the sample augmentation mechanism will be disjoint across all
latent classes. Thus a representation minimizing UCL loss may not exhibit Neural-Collapse even if ψ

k
is

strictly convex and argument-wise strictly increasing or it might exhibit zero within-class variance, but the
class means may not form an ETF (see [26]).

A second important difference between theoretical results for SCL and UCL is that unlike in Theorem 2,
conditional independence of the anchor and positive samples given their common label is assumed in Theorem 3
(condition (d) in the theorem). It is unclear whether the results of Theorem 3 for the UCL setting will
continue to hold in entirety without conditional independence and we leave this as an open problem.

5 Practical achievability of global optima

We first verify our theoretical results using synthetic data comprising three classes with 100 data points
per class. The points within each class are IID with a 3072-dimensional Gaussian distribution having an
identity covariance matrix and a randomly generated mean vector having IID components that are uniformly
distributed over [−1, 1]. We explored two strategies for constructing anchor-positive pairs:
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• Using Label Information: For each anchor sample, a positive sample is chosen uniformly from among
all samples having the same label as the anchor (including the anchor). all samples that share the same
label with the anchor are used to form the positive pairs. Note that the anchor and the positive can be
identical.

• Additive Gaussian Noise Augmentation Mechanism: For each (reference) sample, we generate
the anchor sample by adding IID zero-mean Gaussian noise of variance 0.01 to all dimensions of the
reference sample. The corresponding positive sample is generated in the same way from the reference
sample using noise that is independent of that used to generate the anchor.

The data dimension of 3072 allows for reshaping the vector into a 32×32×3 tensor which can be processed
by ResNet. We then investigate the achievability of global-optima for UCL, SCL, HUCL, and HSCL on
the following three real-world image datasets: CIFAR10, CIFAR100 [14], and TinyImageNet [15]. These
datasets consist of 32× 32× 3 images across 10 classes (CIFAR10), 100 classes (CIFAR100), and 200 classes
(TinyImageNet), respectively. Similar phenomena are observed in all three datasets. We present results for
CIFAR100 here and results for CIFAR10 and TinyImageNet in Appendix B.

We utilize the InfoNCE loss with the exponential tilting hardening function described in Sec. 3.1. For
simplicity, in all four CL settings (UCL, SCL, HUCL, and HSCL), for a given anchor x, we randomly sample
(without augmentation) the positive sample x+ from the class conditional distribution corresponding to the
class of x. We also report additional results with the SimCLR framework in Appendix B.5 where instead of
using the label information or only a single augmentation, a positive pair is generated using two independent
augmentations from one reference sample. For both supervised and unsupervised settings as well as SimCLR,
for a given positive pair, we select negative samples independently and uniformly at randomly from all the
data in a mini-batch (including anchors and/or positive samples). We call this random negative sampling.

We used ResNet-50, [9], as the family of representation mappings F and set the representation dimension
to d = C − 1 to observe Neural-Collapse (Definition 5). We normalized representations to be within a unit
ball as detailed in Algorithm 1, lines 5-12, in Appendix B. We only report results for k = 256 negative
samples, but observed that results change only slightly for all k ∈ [32, 512].

We chose hyper-parameter β of the hardening function from the set {0, 10, 30, 50} for synthetic data and
the set {0, 2, 5, 10, 30} for real data and trained each model for E = 400 epochs with a batch size of B = 512
using the Adam optimizer at a learning rate of 10−3. Computations were performed on an NVIDIA A100 32
GB GPU.

5.1 Results for synthetic data

Figure 2 summarizes the results for synthetic data. For a representation function f∗ that achieves Neural-

Collapse, the values of L
(256)
SCL (f∗) and L

(256)
HSCL(f

∗) across all β values and the value of L
(256)
UCL(f

∗) are 0.2014,
0.2014, and 0.3935, respectively. These values are obtained by numerically evaluating the lower bounds in
Theorem 2 and Theorem 3.

The first row in Figure 2 shows the result using label information for positive pair construction. The
values of the minimum loss in different settings are displayed at the top of Fig. 2. Our simulation results are

consistent with our theoretical results. After 200 training epochs, we observed that L
(256)
SCL (f) and L

(256)
HSCL(f)

across all β values and L
(256)
UCL(f) converged to their minimum values. From the figure, we can visually confirm

that the representations exhibit Neural-Collapse in SCL, HSCL, and UCL. However, Neural-Collapse was
not observed in HUCL as the class means deviate significantly from the ETF geometry.

The second row in Figure 2 shows the results using the additive Gaussian noise augmentation mechanism,
where label information is not used in constructing positive examples. We note that in accordance with our
theoretical results, NC is observed in SCL and HSCL. However, NC is not observed in UCL and HUCL,
likely due to the lack of conditional independence. Moreover, the degree of deviation from NC increases
progressively with increasing hardness levels.

Contrary to a widely held belief that hard-negative sampling is beneficial in both supervised and
unsupervised contrastive learning, results on this simple synthetic dataset suggest that not only may SCL
not benefit from hard negatives, but UCL may suffer from it. To investigate whether these conclusions hold
true more generally or whether there are practical benefits of hard-negatives for SCL and UCL, we turn to
real-world datasets next.
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Figure 2: Synthetic dataset results using label information (top row figures) or additive Gaussian noise
augmentation mechanism (bottom row figures) for generating anchor-positive pairs: Initial two-dimensional
representations (left), post-training SCL and HSCL representations and losses at different hardness levels
(middle), post-training UCL and HUCL representations and losses at different hardness levels (right).

5.2 Results for real data

We first show that hard-negative sampling improves downstream classification performance. From
the first row of Fig. 3, we see that with negative sampling at moderate hardness levels (β = 5, 10), the
classification accuracies of HSCL and HUCL are more than 40% points higher than those of SCL and UCL
respectively.

Achievability of Neural-Collapse: We investigate whether SCL and UCL losses trained using Adam
can attain the globally optimal solution exhibiting NC. To test this, in line with properties (i), (ii) and
condition (13) in Theorems 2 and 3, we employ the following metrics which are plotted in Fig. 3 in rows two
through four.

1. Zero-sum metric:
∥∥∥∑j∈Y µj

∥∥∥
2. Unit-norm metric: 1

C

∑
j∈Y

∣∣∣∥µj
∥ − 1

∣∣∣
3. Equal inner-product metric: 1

C(C−1)

∑
j,k∈Y,
k ̸=j

∣∣µ⊤
j
µ
k
+ 1

C−1

∣∣
We note that even though the equal inner-product class means condition together with unit-ball normalization
implies the zero-sum and unit-norm conditions, we report these three metrics separately to gain more insight.

According to Theorems 2 and 3, the optimal solutions for UCL, SCL, and HSCL are anticipated to
manifest NC. However, our experimental findings reveal a gap between the theoretical expectations and the
observed outcomes. Specifically, in both supervised and unsupervised settings, when leveraging the random
negative sampling method, i.e., when the negative samples are sampled uniformly from the whole data in a
mini-batch which may include the anchor and positive samples, NC is not exactly achieved: the zero-sum and
equal inner-product metrics do not approach zero for all hardness levels (rows 2 and 4 in Fig. 3). This is also
supported by the results in Table 1 which shows the theoretical minimum SCL loss value and the practically
observed SCL loss values after 400 epochs for different hardness levels. While our theoretical results posit
that both SCL and HSCL should have the same minimum loss value for all values of β > 0, the practically
observed loss value for SCL deviates noticeably from theory. On the other hand, increased hardness in HSCL,
especially at β = 5, 10, brings the observed loss value close to the theoretical minimum.

In addition, the manner in which the final values of NC metrics change with increasing hardness levels is
qualitatively different in the supervised and unsupervised settings. Specifically, in the supervised settings,
increased hardness invariably leads to improved results, and the model tends to approach NC, notably at
β = 5, 10, 30. However, in the unsupervised settings, there seems to be just a single optimal hardness level
(β = 5 is best among the choices tested).
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Theory Empirical

0.3105
SCL HSCL
β = 0 β = 2 β = 5 β = 10 β = 30
0.3384 0.3603 0.3106 0.3107 0.3222

Table 1: Comparison of minimum theoretical loss and practically observed loss values after 400 epochs for
CIFAR100.

5.3 Dimensional-Collapse

To gain further insights, we investigate the phenomenon of Dimensional-Collapse (DC) that is known to
occur in contrastive learning (see [12]).

Definition 7. [Dimension Collapse (DC)] We say that the class means µ
1
, . . . , µ

C
suffer from DC if their

empirical covariance matrix has one or more singular values that are zero or orders of magnitude smaller
than the largest singular value.

If dZ = C − 1, then under Neural-Collapse (NC), the class mean vectors would have full rank C − 1
in representation space since they form an ETF (see Definition 5). Thus when dZ = C − 1, NC ⇒ ¬DC.
However, we note that ¬DC ̸⇒ NC because, for example, the class means could have full rank and satisfy
the equal inner-product and unit-norm conditions in Theorem 2 without satisfying the zero-sum condition.

We numerically assess DC by plotting the singular values of the empirical covariance matrix of the class
means (at the end of training) normalized by the largest singular value in decreasing order on a log-scale.
Results for UCL, SCL, HUCL, and HSCL are shown in Fig. 4. In the supervised settings, (first row and first
column of Fig. 4), the results align with our previous observations from Fig. 3. However, in the unsupervised
settings (first row and second column of Fig. 4), while HUCL with high hardness values deviates more from
NC compared to UCL in Fig. 3, in Fig. 4 we see that HUCL suffers less from DC.

5.4 Role of initialization

To gain further insights into the DC phenomenon, we trained a model using HSCL with β = 10 for 400
epochs until it nearly attains NC as measured by the three NC metrics (zero-sum, unit-norm, and equal
inner-product) shown in the second row of Table 2. We call this representation mapping (or pre-trained
model) the “near-NC” representation mapping (pre-trained model).

Next, with the near-NC representation mapping as initialization, we continue to train the model for an
additional 400 epochs under 10 different settings corresponding to hard supervised and hard unsupervised
contrastive learning with different hardness levels. Rows 3-12 in Table 2 show the final values of the three
NC metrics for the 10 settings. The resulting normalized singular value plots are shown in the second row of
Fig. 4.

From Table 2 we note that in all 5 supervised settings, the final representation mappings have NC metrics
that are very similar to those of initial near-NC mapping. However, in the unsupervised settings, especially
HUCL for β = 10, 30, the unit-norm and equal inner-product metrics of the final representation mappings are
significantly larger than those of the initial near-NC mapping. This shows that mini-batch Adam optimization
of CL losses exhibit dynamics that are different in the supervised and unsupervised settings and are impacted
by the hardness level of the negative samples.

From the second row of Fig. 4 we make the following observations:

• SCL and HSCL trained with near-NC initialization and Adam do not exhibit DC or DC is negligible
(second row and first column of Fig. 4).

• UCL trained with near-NC initialization and Adam also does not exhibit DC, but the behavior of
HUCL depends on the hardness level β. A larger β value appears to make DC more pronounced. This
could be explained by the fact that a higher β value increases the odds of latent-class collision.
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Setting Zero-
sum

Unit-norm Equal
inner-product

near-NC model 0.012 1.8× 10−8 0.004
SCL 0.006 2.0× 10−8 0.007

HSCL, β = 2 0.005 2.2× 10−8 0.004
HSCL, β = 5 0.007 1.9× 10−8 0.002
HSCL, β = 10 0.007 2.0× 10−8 0.002
HSCL, β = 30 0.004 1.7× 10−8 0.001

UCL 0.005 3.9× 10−4 0.005
HUCL, β = 2 0.005 6.1× 10−4 0.003
HUCL, β = 5 0.004 1.4× 10−3 0.002
HUCL, β = 10 0.093 1.5× 10−3 0.047
HUCL, β = 30 0.761 7.9× 10−4 0.586

Table 2: Post-training NC metrics for near-NC initialization in different settings.

5.5 Role of normalization

Feature normalization also plays an important role in alleviating DC. To demonstrate this, we test three
normalization conditions during training: (1) unit-ball normalization, (2) unit-sphere normalization, and (3)
no normalization. The resulting normalized singular value plots are shown in Fig. 4 (rows 1, 3, and 4). As
can be observed, the behavior of unit-sphere normalization is close to that of unit-ball normalization, and
with hard-negative sampling, both SCL and UCL can achieve NC (for suitable hardness levels). Without
normalization, neither random-negative nor hard-negative training methods attain NC and they suffer from
DC. We also observe that for SCL and UCL, absence of normalization leads to less DC (compare blue curves
in rows 1 and 4 of Fig. 4). However, feature normalization could potentially reduce DC in hard-negative
sampling for a range of hardness levels.

5.6 Impact of batch size

In Appendix B.3, we report results using different batch sizes. We observe that when the batch size is
decreased to 64, NC is still evident in HSCL and HUCL for certain values of β. However, when the batch
size is further reduced to 32, NC is no longer observed.

5.7 Role of hardening function

We investigated the impact of hardening functions, using a family of polynomial functions detailed in
Appendix B.4. Results shown in Figs. 10 and 11 of Appendix B.4 confirm that hard-negative sampling helps
prevent DC and achieve NC.

5.8 Experiments using the SimCLR framework

In Appendix B.5 we report results using the state-of-the-art SimCLR framework for contrastive learning
which uses augmentations to generate samples. The results of Figs. 12 and 13 in Appendix B.5 are somewhat
similar to those in Figs. 3 and 4, respectively, but a key difference is the failure to attain NC in the SimCLR
sampling framework for both supervised and unsupervised settings at all hardness levels. This is primarily
because the SimCLR sampling framework does not utilize label information and cannot guarantee property
(v) in Theorem 2 and Theorem 3 nor (for UCL) the conditional independence of anchor and positive samples
given their label.

6 Conclusion and open questions

We proved the theoretical optimality of the NC-geometry for SCL, UCL, and notably (for the first time)
HSCL losses for a very general family of CL losses and hardening functions that subsume popular choices. We
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empirically demonstrated the ability of hard-negative sampling to achieve global optima for CL and mitigate
dimension collapse, in both supervised and unsupervised settings. Our theoretical and empirical results
motivate a number of open questions. Firstly, a tight lower bound for HUCL remains open due to latent-class
collision. It is also unclear whether the HUCL loss is minimized iff there is Neural-Collapse. Our theoretical
results for the SCL setting did not require conditional independence of anchor and positive samples given
their label, but our results for the UCL setting did. A theoretical characterization of the geometry of optimal
solutions for UCL in the absence of conditional independence remains open. A difficulty with empirically
observing NC in UCL and HUCL is that the number of latent classes is not known because it is, in general,
implicitly tied to the properties of the sampling distribution requiring one to choose a sufficiently large
representation dimension. Another open question is to unravel precisely how and why hard-negatives alter
the optimization landscape enabling the training dynamics of Adam with random initialization to converge
to the global optimum for suitable hardness levels and what are optimum hardness levels.
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Figure 3: Results for CIFAR100 under supervised settings (SCL, HSCL, left column) and unsupervised
settings (UCL, HUCL, right column) with unit-ball normalization and random initialization. From top to
bottom: Downstream Test Accuracy, Zero-sum metric, Unit-norm metric, and Equal inner-product metric,
all plotted against the number of epochs.
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Figure 4: Normalized singular values of the empirical covariance matrix of class means (in representation space)
plotted in log-scale in decreasing order for CIFAR100 under supervised (left column) and unsupervised (right
column) settings. The horizontal axis is the sorted index of the singular values. From top to bottom: Unit-ball
normalization with random initialization, Unit-ball normalization with near-NC initialization, Unit-sphere
normalization with random initialization, and un-normalized representation with random initialization.
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A Compatibility of sampling model with SimCLR-like augmenta-
tions

The following generative model captures the manner in which many data augmentation mechanisms, including
SimCLR, generate a pair of anchor and positive samples. First, a label y is sampled. The label may represent
an observed class in the supervised setting or a latent (implicit, unobserved) cluster index in the unsupervised
setting. Then given y, a reference sample xref is sampled with conditional distribution p

ref
(·|y). Then a pair

of samples (x, x+) are generated given (xref , y) via two independent calls to an augmentation mechanism
whose behavior can be statistically described by a conditional probability distribution p

aug
(·|xref , y), i.e.,

p(x, x+|xref , y) = p
aug

(x|xref , y) · p
aug

(x+|xref , y). Finally, the representations z = f(x) and z+ = f(x+)

are computed via a mapping f(·), e.g., a neural network. Under the setting just described, it follows that
both z|y and z+|y have identical conditional distributions given y which we denote by s(·|y). This can be
verified by checking that both x|y and x+|y have the same conditional distribution given y equal to

p(·|y) =
∫
xref

p
aug

(·|xref , y)p
ref

(xref |y)dxref

where the integrals will be sums in the discrete (probability mass function) setting. Note that although x, x+

are conditionally IID given (xref , y), they need not be conditionally IID given just y.

B Additional experiments

We replicated the same experiments conducted in Sec. 5 on CIFAR10. The results are plotted in Fig. 5
and Fig. 6. In contrast to CIFAR10 and CIFAR100 where the numerical results are provided under three
different settings, namely, unit-ball normalization with random initialization, unit-ball normalization with
Neural-Collapse initialization, and unit-sphere normalization with random initialization, for Tiny-ImageNet,
we only conduct experiments under unit-ball normalization with random initialization. This is because the
size of the Tiny-ImageNet dataset (120000 images) is much larger than the sizes of both CIFAR10 and
CIFAR100 datasets (50000 images per dataset) which results in a significantly longer processing time. The
results for Tiny-ImageNet are plotted in Fig. 7.

B.1 Neural-Collapse and Dimensional-Collapse

For CIFAR10, from Fig. 5 and Fig. 6, we observe similar phenomena as those for CIFAR100. As before, we
note that while Theorems 2 and 3 suggest that Neural-Collapse should occur in both the supervised and
unsupervised settings when using the random negative sampling method, one may not be able to observe
Neural-Collapse in unsupervised settings in practice. For the supervised case in CIFAR10, any degree of
hardness propels the representation towards Neural-Collapse. This may be due to the small number of classes
in CIFAR10.

For Tiny-ImageNet, from Fig. 7, we observe that when β = 5, 10, 30, the geometry of the learned
representation closely aligns with that of Neural-Collapse. However, in HUCL, a high degree of hardness
can be harmful. At β = 5, the geometry most closely approximates Neural-Collapse for both CIFAR10 and
Tiny-ImageNet. However, increasing the degree of hardness further, for example at β = 30, causes the center
of class means to deviate from the origin and the equal inner-product condition is heavily violated.

Furthermore, from the the normalized singular values for CIFAR10 in Fig. 6 and for Tiny-ImageNet in
Fig. 7, we observe that random negative sampling without any hardening (β = 0) suffers from DC whereas
hard-negative sampling consistently mitigates DC. The supervised case benefits more from a higher degree of
hardness, since in the unsupervised cases there are higher chances of (latent) class collisions.

B.2 Effects of initialization and normalization

The normalized singular value plots for CIFAR10 are shown in Fig. 6. Compared to CIFAR 100 (see Fig. 4),
the phenomenon of DC in CIFAR10 is far less pronounced. This may be because CIFAR10 has a smaller
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Algorithm 1 Contrastive Learning Algorithm

Require: Batch size N , data X , label Y, neural-net parameters of representation function f , Algorithm:
SCL/ UCL/HSCL/HUCL, normalization type: unit-ball/unit-sphere/no-normalization, the hardening

function η(t
1:k

) :=
∏k

i=1
eβti , β > 0.

1: Define negative distribution p−(z−
1:k

|z, z+) based on the chosen Algorithm, see Sec. 3 for details.

2: for each sampled minibatch {x
i
}N
i=1

do
3: for all i ∈ {1, . . . , N} do
4: Compute f(x

i
)

5: if unit-ball normalization then
6: if ∥f(x

i
)∥ ≤ 1 then

7: z
i
= f(x

i
)

8: else
9: z

i
= f(xi)

∥f(xi)∥
10: end if
11: else if unit-sphere normalization then

12: z
i
= f(xi)

∥f(xi)∥
13: else if no-normalization then
14: z

i
= f(xi)√

d
15: end if
16: end for
17: for all i ∈ {1, . . . , N} do
18: for all j ∈ {1, . . . , N} do
19: if y(x

i
) = y(x

j
) then

20: Draw {z−
1:k

} from p−(z−
1:k

|z
i
, z

j
)

21: {v
i,j,m

}k
m=1

= {z⊤
i
z−
m
− z⊤

i
z
j
}k
m=1

22: ℓ
i,j

= log
(
1 + 1

k

∑k

m=1
evi,j,m

)
23: else
24: ℓ

i,j
= 0

25: end if
26: end for
27: Compute the average loss of sample x

i
: ℓ

i
= 1

|{ℓij ̸=0}|
∑N

j=1
ℓ
i,j

28: end for
29: Compute the average loss of minibatch: L = 1

N

∑N

i=1
ℓ
i

30: Take one stochastic gradient step using Adam
31: end for

return Encoder network f(·)

22



Figure 5: Results for CIFAR10 under supervised settings (SCL, HSCL, left column) and unsupervised settings
(UCL, HUCL, right column) with unit-ball normalization and random initialization. From top to bottom:
Downstream Test Accuracy, Zero-sum metric, Unit-norm metric, and Equal inner-product metric, all plotted
against the number of epochs.
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Figure 6: Sorted normalized singular values of the empirical covariance matrix of class means (in representation
space) in the last epoch plotted in log-scale for CIFAR10 under supervised (left column) and unsupervised
(right column) settings. From top to bottom: Unit-ball normalization with random initialization, Unit-ball
normalization with near-NC initialization, Unit-sphere normalization with random initialization, and un-
normalized representation with random initialization.
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number of classes compared to CIFAR100 (10 vs. 100). However, the effects of initialization and normalization
on the learned representation geometry are similar to that for CIFAR100:
Effects of initialization: 1) SCL and HSCL trained with near-NC initialization and Adam do not exhibit
DC and 2) UCL trained with near-NC initialization and Adam also does not exhibit DC, but the behavior of
HUCL depends on the hardness level β.
Effects of normalization: The behavior of unit-sphere normalization is close to that of unit-ball normaliza-
tion, and with hard-negative sampling (and suitable hardness levels), both SCL and UCL can achieve NC.
Without normalization, neither regular nor hard-negative training methods attain NC and they suffer from
DC. We also observe that with random-negative sampling, un-normalized representations lead to reduced DC
in both SCL and UCL. However, hard-negative sampling benefits more from feature normalization and its
absence leads to more severe DC.

B.3 Experiments with different batch sizes

To investigate the effect of batch size on the outcomes, we conducted experiments with varying batch sizes.
All previous experiments were performed with a batch size of 512. In this section, we present results for batch
sizes of 64 and 32 in Fig. 8 and Fig. 9, respectively.

We observe that when the batch size is reduced to 64, Neural-Collapse is still nearly achieved in both HSCL
(β = 5, 10, 30) and HUCL (β = 5). However, with a further reduction of batch size to 32, Neural-Collapse is
only achieved in HSCL (β = 30), and it fails to occur in HUCL for any value of β.

B.4 Experiments with a different hardening function

To explore whether similar results can be achieved with a different hardening function, we investigated
the impact that changing the hardening function has on NC and DC under unit-ball normalization. We
conducted experiments using the CIFAR10 and CIFAR100 datasets adopting the setup consistent with
previous experiments but used a new family of hardening functions having the following polynomial form:
η(t

1:k
) :=

∏k

i=1
(max{t

i
+ 1, 0})ϵ, ϵ > 0, for the following set of hardness values ϵ = 3, 5, 10, 20. We note that

this family of hardening functions decays at a significantly slower rate compared to the exponential hardening
function we used in all our previous experiments.

Results for CIFAR100 and CIFAR10 are plotted in Figs. 10 and 11, respectively. We observe phenomena
similar to those in Figs. 3 and 5. By selecting an appropriate hardening parameter ϵ, we can achieve, or
nearly achieve, NC in both supervised and unsupervised settings. Consequently, we can draw conclusions
that are qualitatively similar to those in Sec. B.1. Specifically, hard-negative sampling in both supervised
and unsupervised settings can mitigate DC while achieving NC.

B.5 Experiments with the SimCLR framework

We conducted additional experiments using the state-of-the-art SimCLR framework for Contrastive Learning.
Instead of sampling positive samples from the same class directly, we follow the setting in SimCLR which
uses two independent augmentations of a reference sample to create the positive pair. No label information is
used to generate the anchor-positive pair.

Figure 12 shows results for SimCLR sampling using the loss function proposed in SimCLR which is the
large-k asymptotic form of the InfoNCE loss:

LSimCLR(f) = E
p(x,x+)

[
log

(
1 +

QE
p(x−|x)[e

f(x)⊤f(x−)]

ef(x)⊤ f(x+)

)]
(42)

where Q is a weighting hyper-parameter that is set to batch size minus two. Compared to our previous
experiments, all the NC metrics deviate significantly away from zero in both supervised and unsupervised
settings and all hardness levels. Still, the high-level conclusions for DC are qualitatively similar to those from
our previous experiments, specifically that hard-negative sampling can mitigate DC in both supervised and
unsupervised settings.

Figure 13 shows results for SimCLR sampling using the InfoNCE loss with k = 256 and a positive
distribution that only relies on the augmentation method. The results are very similar to those in Fig. 12.
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Since the results in Figs. 12 and 13 share the same SimCLR sampling framework but different losses, it
follows that the failure to attain NC is not due to the particular loss function used, but the SimCLR sampling
framework itself which does not utilize label information to generate samples. From the unit-norm metric
plots in both figures it is clear that the final representations are mostly distributed within the unit-ball than
on its surface.
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Figure 7: Results for Tiny-ImageNet under supervised settings (SCL, HSCL, left column) and unsupervised
settings (UCL, HUCL, right column) with unit-ball normalization and random initialization. Top row: sorted
normalized singular values of the empirical covariance matrix of class means (in representation space) in the
last epoch plotted in log-scale. Rows 2–4: Zero-sum metric, Unit-norm metric, and Equal inner-product
metric, all plotted against the number of epochs.
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Figure 8: Results for CIFAR100 under supervised settings (SCL, HSCL, left column) and unsupervised
settings (UCL, HUCL, right column) with unit-ball normalization and random initialization when batch size
is equal to 64. Top row: sorted normalized singular values of the empirical covariance matrix of class means
(in representation space) in the last epoch plotted in log-scale. Rows 2–4: Zero-sum metric, Unit-norm metric,
and Equal inner-product metric, all plotted against the number of epochs.
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Figure 9: Results for CIFAR100 under supervised settings (SCL, HSCL, left column) and unsupervised
settings (UCL, HUCL, right column) with unit-ball normalization and random initialization when batch size
is equal to 32. Top row: sorted normalized singular values of the empirical covariance matrix of class means
(in representation space) in the last epoch plotted in log-scale. Rows 2–4: Zero-sum metric, Unit-norm metric,
and Equal inner-product metric, all plotted against the number of epochs.
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Figure 10: Results for CIFAR100 with polynomial hardening function, under supervised settings (SCL, HSCL,
left column) and unsupervised settings (UCL, HUCL, right column) with unit-ball normalization and random
initialization. Top row: sorted normalized singular values of the empirical covariance matrix of class means
(in representation space) in the last epoch plotted in log-scale. Rows 2–4: Zero-sum metric, Unit-norm metric,
and Equal inner-product metric, all plotted against the number of epochs.
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Figure 11: Results for CIFAR10 with polynomial hardening function, under supervised settings (SCL, HSCL,
left column) and unsupervised settings (UCL, HUCL, right column) with unit-ball normalization and random
initialization. Top row: sorted normalized singular values of the empirical covariance matrix of class means
(in representation space) in the last epoch plotted in log-scale. Rows 2–4: Zero-sum metric, Unit-norm metric,
and Equal inner-product metric, all plotted against the number of epochs.
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Figure 12: Results for CIFAR100 with SimCLR sampling with SimCLR loss (Eq.44), under supervised settings
(SCL, HSCL, left column) and unsupervised settings (UCL, HUCL, right column) with unit-ball normalization
and random initialization. Top row: sorted normalized singular values of the empirical covariance matrix
of class means (in representation space) in the last epoch plotted in log-scale. Rows 2–4: Zero-sum metric,
Unit-norm metric, and Equal inner-product metric, all plotted against the number of epochs.
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Figure 13: Results for CIFAR100 with SimCLR sampling using InfoNCE loss, under supervised settings (SCL,
HSCL, left column) and unsupervised settings (UCL, HUCL, right column) with unit-ball normalization and
random initialization. Top row: sorted normalized singular values of the empirical covariance matrix of class
means (in representation space) in the last epoch plotted in log-scale. Rows 2–4: Zero-sum metric, Unit-norm
metric, and Equal inner-product metric, all plotted against the number of epochs.
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