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Abstract

We consider the problem of learning fair policies for multi-
stage selection problems from observational data. This prob-
lem arises in several high-stakes domains such as company
hiring, loan approval, or bail decisions where outcomes (e.g.,
career success, loan repayment, recidivism) are only observed
for those selected. We propose a multi-stage framework that
can be augmented with various fairness constraints, such as
demographic parity or equal opportunity. This problem is
a highly intractable infinite chance-constrained program in-
volving the unknown joint distribution of covariates and out-
comes. Motivated by the potential impact of selection deci-
sions on people’s lives and livelihoods, we propose to fo-
cus on interpretable linear selection rules. Leveraging tools
from causal inference and sample average approximation, we
obtain an asymptotically consistent solution to this selection
problem by solving a mixed binary conic optimization prob-
lem, which can be solved using standard off-the-shelf solvers.
We conduct extensive computational experiments on a vari-
ety of datasets adapted from the UCI repository on which we
show that our proposed approaches can achieve an 11.6% im-
provement in precision and a 38% reduction in the measure
of unfairness compared to the existing selection policy.

1 Introduction

Selection problems are very common decision-making prob-
lems in many high-stakes domains, such as company hiring,
college admission, and loan audit. Given a set of candidates,
a decision-maker aims to select a fixed fraction of them with
objectives such as hiring the most talented candidates, ad-
mitting the most qualified students, or selecting the appli-
cants who are most likely to repay the loan. Often, selection
problems are under a multi-stage setup. In hiring, for exam-
ple, candidates are initially chosen for interviews based on
their résumés and the final selection is subsequently made
from those who have been interviewed.

Substantial evidence points to the existence of discrimi-
nation in many selection problems that involve prejudiced
outcomes for individuals or groups based on sensitive at-
tributes like gender, race, ethnicity, nationality, disability
status, or religion. For example, job applicants with African-
American names are found to receive far fewer callbacks
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for each résumé they send out (Bertrand and Mullainathan
2004). Also, in the Canadian labor market, there exists no-
table discrimination towards applicants with foreign expe-
rience or those with Indian, Pakistani, Chinese, and Greek
names compared with English names (Oreopoulos 2011).
In college admission, a recent study reveals that typical
Asian American applicants would see their average admit
rate rise by 19% if treated as white applicants (Arcidia-
cono, Kinsler, and Ransom 2022). Additionally, recent re-
search finds that Black-owned businesses received loans that
were approximately 50% lower than observationally simi-
lar White-owned businesses through the Paycheck Protec-
tion Program during Covid-19 (Atkins, Cook, and Seamans
2022).

With the growing availability of data and the empirical
success of machine learning, data-driven decision-making
is increasingly being used in many selection problems (Li
et al. 2021; Ahmad et al. 2022; Marques-Silva and Ignatiev
2022). As a result, much recent research focuses on promot-
ing fairness and mitigating discrimination toward candidates
from certain groups (Barocas, Hardt, and Narayanan 2017;
Green and Chen 2019; Aghaei, Azizi, and Vayanos 2019).
One prevalent approach to addressing fairness concerns dur-
ing the training process is either by integrating fairness con-
straints into the training process (Zafar et al. 2017, 2019;
Wang, Nguyen, and Hanasusanto 2021; Jo et al. 2022), or
penalizing discrimination using the fairness-driven regular-
ization terms (Kamishima et al. 2012; Berk et al. 2017; Ye
and Xie 2020).

Often, the models are trained and evaluated on historical
datasets containing fully observed outcomes and covariates.
However, this raises questions about the possible harm of
the deployed models as the training data may reflect implicit
biases by humans who may unconsciously be in favor of cer-
tain groups of people (Greenwald and Banaji 1995; Barocas
and Selbst 2016). For example, in the hiring setup, the avail-
able dataset only contains full covariates of people who got
hired, and the outcome measure is whether they are “quali-
fied” or “not qualified”; on the other hand, we do not have
access to the outcomes of candidates who were not hired.
One may use a trained model based on the candidates with
full covariates and outcomes to select candidates. However,
when deployed to assess the qualification of future candi-
dates, the model may exhibit significant unfairness, even if



it satisfies the fairness constraints during the training pro-
cess (Kallus and Zhou 2018). This is because, in the real
world, the candidates have diverse profiles, unlike the train-
ing dataset that only contains profiles of hired candidates.

This paper considers the problem of learning fair policies
for multi-stage selection problems in socially sensitive do-
mains (e.g., employment, education, finance) given a labeled
observational dataset containing one (or more) protected at-
tribute(s). The main desiderata for such a framework are: (1)
Maximizing precision: the decision-maker wants to maxi-
mize his/her utility by hiring/admitting/approving as many
“qualified” candidates among those selected as possible; (2)
Possible to augment with arbitrary fairness notions: in dif-
ferent socially sensitive settings, the decision-maker needs
to consider the proper legal, ethical, and social standards in
choosing the appropriate fairness measure; (3) Applicable to
the (potentially) biased real-world data: in the presence of a
selection bias in the observational data, our model must be
able to learn the fair policy for future candidates instead of
those “recorded” candidates in the observational data. Next,
we summarize the state-of-the-art in related work and high-
light the need for a unifying framework that addresses these
desiderata.

1.1 Related Work

Selection Problems. Kleinberg and Raghavan (2018)
study selection problem with implicit bias and analyze the
Rooney Rule in the selection process. They show that this
rule can not only improve the representation of the disadvan-
taged group but also lead to higher payoffs for the decision-
maker. Celis, Mehrotra, and Vishnoi (2020) investigate the
ranking problem (where the selection problem can be seen
as a special case) under implicit bias and obtain similar re-
sults. Khalili et al. (2021) study the possibility of using the
exponential mechanism to address both privacy and unfair-
ness issues. They show that this mechanism can be used as
a post-processing step to improve the fairness and privacy
of the pre-trained model. All these works focus on one-shot
decision processes, whereas our proposed framework is ap-
plicable to multi-stage selection processes.

Emelianov et al. (2019) study an optimal multi-stage se-
lection problem and propose a simple model based on a
probabilistic formulation. Their model, however, assumes
perfect statistical knowledge of the joint distribution of co-
variates and outcome labels without bias. Moreover, their
policies are not consistent, as they ignore the issue that the
selection probability at a stage depends on which candi-
dates were selected in the previous stages. Khalili, Zhang,
and Abroshan (2021) consider a selection problem where
sequentially arriving applicants apply for a limited number
of positions/jobs, and the decision-maker accepts or rejects
the given applicant using a pre-trained supervised learning
model at each time step. Unlike their model, we consider
the setting where additional covariates can only be revealed
at later stages for the subset of selected individuals, whereas
they assume all covariates are observable for each applicant.

Mixed Integer Programming (MIP). There is a grow-
ing interest in using MIP to address machine learning

tasks (Bertsimas and Dunn 2017; Taskesen et al. 2020;
Maragno et al. 2021; Aghaei, Gémez, and Vayanos 2021; Jo
et al. 2022). Aghaei, Azizi, and Vayanos (2019) introduce a
versatile MIP framework for learning optimal and fair deci-
sion trees. They show that their proposed framework yields
non-discriminative decisions at a lower price to overall ac-
curacy. Ye and Xie (2020) study fair classification problems
and propose a framework that can be recast as mixed-integer
convex programs. Wang, Nguyen, and Hanasusanto (2021)
propose a distributionally robust classification model with a
fairness constraint that encourages the classifier to be fair in
view of the equality of opportunity criterion. They reformu-
late the model as a mixed binary conic optimization problem
that can be solved using off-the-shelf solvers. Note that all
of the above works focus on classification problems under
a one-stage setup, whereas our work considers the general
multi-stage selection problems.

Inverse Probability Weighting (IPW). IPW is a common
method to reduce selection bias and has been used in sev-
eral fairness-related works. Kallus and Zhou (2018) study a
similar setting of the censored dataset and characterize the
problem of residual unfairness. They show how to use IPW
to estimate and adjust fairness metrics. However, they only
focus on the one-stage static classification setup. Nabi and
Shpitser (2018) consider the problem of fair statistical infer-
ence involving outcome variables and use the IPW method
to estimate the natural direct effect. Khademi et al. (2019)
study the problem of detecting group unfairness. They in-
troduce fair on average causal effect — a definition of group
fairness grounded in causality and show how to use IPW to
estimate fair on average causal effect and use the resulting
estimates to detect and quantify discrimination based on spe-
cific attributes. Kilbertus et al. (2020) analyze consequential
decision-making using imperfect predictive models. They
use IPW to compute the expected overall profit of a given
policy. To the best of our knowledge, IPW has not been used
to deal with our multi-stage selection problem.

Biased Data. There are many works on the interplay be-
tween biased data and fairness in classification (Blum and
Stangl 2019; Kilbertus et al. 2020; Rezaei et al. 2021; Jo
et al. 2021; Liao and Naghizadeh 2023). Lakkaraju et al.
(2017) study the “selective labels” problem. They develop
an approach that harnesses the heterogeneity of human
decision-makers. Specifically, the paper assumes that the
decision-makers differ in the thresholds they use for their
yes-no decisions, but the paper does not consider the fair-
ness of the learned policy. Goel et al. (2021) established a
causal framework to analyze the effect of missing data on the
fairness of downstream tasks. The authors consider a multi-
stage decision-making process and propose a decentralized
approach, which is different from ours. Also, we do not as-
sume the availability of the outcome label selected candidate
at every stage.

1.2 Proposed Approach and Contributions
Our main contributions are summarized as follows:

1. We propose a framework for learning fair policies in
multi-stage selection problems from observational data.



Our framework can be augmented with various fairness
constraints, such as demographic parity or equal oppor-
tunity.

2. Leveraging tools from causal inference and sample av-
erage approximation, we obtain an asymptotically con-
sistent solution to this selection problem by solving a
mixed binary conic optimization problem using standard
off-the-shelf solvers.

3. We conduct experiments on synthetic and real-world
datasets. The superiority of our model is observed
through substantial precision improvement and unfair-
ness reduction compared to the existing selection policy.

Notations. Vectors are printed in bold letters, while scalars
are printed in regular font. For any ¢t € N, we define [{] as
the index set {1,...,t}. We denote by e as the vector of all
ones whose dimension will be clear from the context. For
any set S, we use |S| to denote its cardinality. For any log-
ical expression &, the indicator function 1(&) admits value
1 if £ is true and O otherwise. We denote by ¢ the Dirac
distribution concentrating unit mass at £ € = where Z is the
support set of the distribution. We use R to denote the set
of nonnegative real numbers and R to denote the set of
strictly positive real numbers.

2  Multi-stage Selection Problem

We formalize the multi-stage selection problem in this part.
All proofs are included in the supplemental Appendix A.

2.1 Problem Setup

We consider the multi-stage problem of learning a fair se-
lection policy with T' stages. Assume that there are n can-
didates from two demographic groups, distinguished based
on a single sensitive attribute A € A = {0, 1} that repre-
sents their group membership. This sensitive attribute could
be information such as gender, race, or age group, which
differentiates privileged and unprivileged individuals.

At stage t € [T — 1], for those n;—; candidates that
passed stage ¢ — 1, the decision maker observes an extra
covariate vector X! € X' C R% that is not available
in the previous stages. In the real world, X t can repre-
sent predictors delineating qualifications, creditworthiness,
criminal history, etc. Next, based on all available features
XU = (x' ... X" e Rttt py < @yn candi-
dates are selected to advance to the next stage where 0 <
@; < 1 denotes the predefined upper bound selection ratio
by the decision-maker. This process continues until the final
stage T', where all covariate vectors X (1 of those who were
selected at stage T'— 1 are revealed. The decision maker then
selects a;n < ny < arn candidates from those available
at stage T', where 0 < ap < ar < --- < @a; < 1. Unlike
the previous stages, the final stage has a lower bound selec-
tion ratio a.;-. In the real world, a;- represents the minimum
hiring/admission rate by the decision-maker. For example,
the university has a minimum admission rate — a level at
which the school may lose money on tuition, federal aid, or
not using resources like faculty and classrooms to capacity.

Additionally, we assume each candidate has a binary out-
come label Y € Y = {0, 1}, which can only be observed if
the candidate were selected to be hired (i.e., made it to the
last stage). Without loss of generality, we use the positive
response to indicate a positive (good) outcome, such as the
candidate is qualified, the applicant repays the loan, or the
individual does not recidivate.

o
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Figure 1: Two-stage selection problem: X? is observable
only for those selected in the first stage (S' = 1). Outcome
label Y is only observable for those selected in both stages
(St=52=1).

Assume that we possess a training dataset containing N

samples of the form {:i:ET], a;,9;}Y, that are generated
from an unknown joint probability distribution P of the ran-
dom vector (X1 A, Y). We denote by I* the set of se-
lected candidates at stage ¢ — 1. In other words, I* includes
all candidates with covariates up to time ¢. Thus, we have
[N]=1°2>1*D>1% 2 ... D IT. Theset IT collects the
indices of those candidates whose entire covariates X (7! and
outcome label Y are observable. Figure 1 shows the biased
training dataset of a two-stage selection process.

Let St € {0,1} be the selected outcomes where S* = 1
if the candidate is selected at stage ¢. In this paper, we make
the following assumptions.

Assumption 1 (Conditional Exchangeability). Whether a
candidate is selected or not at stage t € [T is independent
of all future covariates (Xt‘H, . Y'), and mathemat-
ically,

(xt* . xTy) L st xtH st =
vx e x,

Assumption 1 implies that at each stage ¢, whether a can-
didate is selected or not depends only on the available co-
variates X/ and that there are no unmeasured confounders
that affect both (X', ..., X7 V) and the selection deci-
sion S*. In reality, the selection decision at each stage ¢ is
only based on observed covariates up to that stage. Hence,
we can infer the outcome distribution for individuals who
were not selected in the observational data by looking at
their counterparts with the same (or similar) X (7] values
who got selected.

Assumption 2 (Positivity). At stage t € [T, the probabil-
ity of being selected is strictly positive for any candidate’s
covariate values, i.e.,

P(st =1/ XMy >0 vxil e xl,

The positivity assumption states that any candidate should
have a positive probability of being selected at any stage.
Otherwise, there is no information about the distribution of



the outcomes for some covariates, and we will not be able to
make inferences about it.
In the multi-stage fair selection problem, at each stage ¢,

in view of the candidate’s information X [t], the decision-
maker aims to find a policy C; : X! x --- x Xt — Y
that determines whether the candidate proceeds to the next
stage or not. In the real world, those finally selected can-
didates can represent hired, admitted, or approved candi-
dates. The decision-maker wants to maximize his/her util-
ity by hiring/admitting/approving more “qualified” candi-
dates among those selected. Hence, we use the precision
P(Y =1 |Cr(X!™) = 1) as our performance metric.

Fairness Notions In the machine learning literature, dif-
ferent notions of fairness can generally be classified into in-
dividual fairness and group fairness. Both perspectives have
their advantages and limitations. In this paper, we concen-
trate on the group fairness due to its straightforward defi-
nition and comprehensibility for decision-makers. Further-
more, in practice, many people prioritize assessing and en-
forcing group fairness (Los Angeles Homeless Services Au-
thority 2018).

We now briefly explain several commonly used group
fairness notions based on the sensitive attribute A and intro-
duce our unfairness measure. Demographic Parity requires
the probability of being selected to be equal across dif-
ferent demographic groups (Calders, Kamiran, and Pech-
enizkiy 2009). Equal Opportunity requires the true posi-
tive rate (TPR) to be equal across different demographic
groups (Hardt, Price, and Srebro 2016). Conditional Sta-
tistical Parity requires the probability of being selected to
be equal across different demographic groups, conditional
on some legitimate covariate(s) indicative of risk (Corbett-
Davies et al. 2017). Additional fairness concepts include dis-
parate impact (Feldman et al. 2015) and disparate mistreat-
ment (Zafar et al. 2017) criteria. We refer the interested read-
ers to Pleiss et al. (2017); Chouldechova and Roth (2020);
Mehrabi et al. (2021) for extensive reviews of the literature.

In the real world, the decision-maker needs to consider
the proper legal, ethical, and social context in choosing the
proper fairness measure. For example, Demographic Parity
could be chosen to address representation disparities, which
can be important for promoting diversity. And the decision-
maker may choose Equal Opportunity to ensure fairness
among those “qualified” candidates. For a given fairness no-
tion, we define the unfairness measure as follows.

Definition 2.1 (Unfairness measure). For a given policy Cr,
the unfairness measure is defined as the absolute disparity
of the respective statistical metric across groups, and we de-

note it using U(Cp (X, P).

Here, we focus on fairness in the final stage. However, it is
worth noting that fairness can also be enforced at every stage
by employing similar unfairness measures. The larger the
value of U(Cr (X, P), the more unfair our selection pol-
icy is. In other words, it measures how biased the selection
policy is across the privileged and unprivileged groups. Due
to the page limit, we will concentrate on unfairness mea-
sures using the Equal Opportunity notion, which is defined

as follows:
UCH( X P) = [PCr(XT=1]A=1,Yy =1)
—PCr(X"T=1]4A=0,Y =1)|.

Nonetheless, our approach is flexible enough to accommo-
date other notions of fairness.

Observed 1st-Stage Empirical Distribution

Observed 2nd-Stage Empirical Distribution
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Figure 2: Evaluation of the performance of a counterfactual
two-stage selection process (shown in the bottom tree) using
data collected by an observed selection process (shown in
the top tree) using the IPW estimator. The dataset consists
of 100 candidates with binary features in each stage.

2.2 Mathematical Formulation

Based on the previous problem description, we now present
our proposed infinite chance-constrained program for learn-



ing optimal multi-stage fair selection policy, as follows:

max  P(Y =1|Cp(X1)=1)
{C. (M,
s.t. PC(XY=1)<a, VtelT]
PCr(X") =1) > (1
Ca (X < ( )
v(x W, Xty v e [T —1)
U(Cr(X™),P) <.

The objective function aims to maximize the ratio of “qual-
ified” candidates to those who advance to the final stage,
e.g., hired candidates. The first two constraints represent our
selection ratio requirements. The penultimate constraint en-
sures the decisions are consistent — that is, candidates that
were dropped at stage ¢ can no longer be selected at the next
stage ¢ + 1. The last constraint corresponds to the fairness
constraint, where 1 € [0, 1] represents the unfairness toler-
ance of the decision-maker.

Problem (1) is challenging because (i) it optimizes over
functions; (ii) due to selection bias, we cannot observe out-
come labels Y for those who did not get selected in the
training data; (iii) we do not know the true distribution P of
(X 71 A, Y), and even if P were known, the probabilistic
program (1) is computationally difficult since the problem
of computing the probability of an event involving multi-
ple random variables belongs to the complexity class #P-
hard (Dyer and Frieze 1988).

To address the first challenge and to also make the deci-
sions transparent and hence accountable, we focus on the in-
terpretable linear selection policies C; (X [t]) parameterized
by slope parameters Wl = (w!, ... w!) € Rt +de
and an offset by € R. The selection decision is then deter-
mined through an indicator function of the form C; (X [t])

LW X145, > 0), where W X1 = 7 aw]" X7,

For the second challenge, one may propose to include
only the selected candidates in the training dataset without
any modification; however, the resulting dataset is not i.i.d.
due to selection bias. To tackle this challenge, we employ the
IPW scheme to evaluate the performance of a counterfactual
selection policy. Specifically, we assume that the historical
selection in the data follows a logging policy {u*}L_,. For
a candidate with covariates ! = (z',..., '), we have
pi(xll) .= P(st = 1| X1 = 2l §lt-1 = 1) ie., it rep-
resents the selection probability of a candidate with covari-
ate x!*) at stage ¢. Horvitz and Thompson (1952) originally
proposed IPW as a method to estimate causal quantities
such as expected values of counterfactual outcomes, average
treatment effects, and risk ratios. IPW involves reweighting
the outcome of each selected candidate i € I7' by the inverse

of their propensity score, denoted as pu!(x [t]) This reweight-
ing creates a pseudo-population where all candidates in the
data are hypothetically selected. This allows for the estima-
tion of the distribution of unobserved counterfactual selected
outcomes for all candidates. We then estimate a counterfac-
tual selection policy by reweighting each selected individ-

uali € IT at stage t by 3! = 1(S! = 1)/H i (2!) as

illustrated in Figure 2; see also (Bottou et al. 2013). Here,
f1" is an estimator of p! that can be obtained using machine
learning techniques like logistic regression by fitting a model
to {.’f}y] , Sf}ieﬁ .

Finally, to tackle the last challenge, we use sample aver-
age approximation to approximate the true distribution em-
pirically. In a data-driven setting, at stage ¢, we only have
access to |I*| training samples generated from P, and we

define PV to be the empirical distribution supported on
{wgt ,Gi, Ui }sepr after applying IPW:
11

t
IPW B
P Z Tﬁt (f'% ,ai,0i)"

2.3 MIP Reformulation
Using the aforementioned methods, we obtain the following
finite-dimensional chance- constrained program:
max PPV(Y =1]Cp(XT) =1)
st. W eRrdit-td p cR vt € [T
EDH’W(W“] XM b, >0) <@, Vtel[T)
PPV W X by > 0) > ayp )
Cria (XIH) < (XM
v(x® Xty v e [T —1]
U(Cr (X, PPV <.
Program (2) allows decision-makers to explicitly bound the
unfairness measure in the training set using 7. Unfortunately,
it remains challenging to transform (2) into an exact mixed-
integer conic representable formulation that can be solved
using standard MIP solvers. To see this, consider the lower

bound selection ratio constraint at the final stage, which can
be further represented as

17|
ZﬁT

It can be verified that for o € (0, 1), the feasible region of
(W[T] , br) with such constraint is an open set that cannot be
exactly reformulated as a bounded MIP problem (Jeroslow
1987). If 1 —ap < 1/(e7BT), then (W1 b7) must satisfy
wi. x4 or > 0vie ™.

To address this issue, we propose a conservative approx-
imation to (2). Firstly, for the selection ratio constraint, we

change the inequality sign of the function ]l(W[T] »
br < 0) to a strict inequality. Furthermore, to ensure ro-
bustness, we modify the right-hand side to a positive quan-
tity € and use an inner approximation. Next, for the fair-
ness constraint, leveraging the finite cardinality of .4 and

Y, we can decompose PV using its conditional measures
PIPW(.) = PPW(- | A = = y). We now define the
e-unfairness measure U, as
PPV (W X T 4 by > 0)

PPV W X 4 by > 6,
PPV W X T by > 0) ’

R W X4y s )

P X 4 bp <0) < (1-agp)e™8

max



which is parameterized by a strictly positive value e € R ;.
Lastly, for the penultimate constraint in (2), we introduce

coxy = awlh. x4 p, > ),

where € € Ry, . This approximation yields our proposed
e-IPW multi-stage fair selection (e-IPWMFS) model:

max PPV(Y =1|Cp(XT) =1)
st. W eRrat-td p cR Vvt € [T)
PPV W X b, > 0) <@, Vte T
PPV W X 4 pp <€) <1 —ap 3)
Cran (X 1Y) < cp (X1
v(xM, xtY v e [T — 1]
U (Cr(X T, PPV < .
It is worth noting that when defining the e-IPWFS model (3),
we have the option to use three distinct values of e: one for
the admission requirement constraint, one for the penulti-
mate constraint, and another for U.. However, to simplify
the notation and avoid the need for excessive parameter tun-
ing, we use a single parameter e.
Proposition 2.1 (Conservative approximation).
Let {W[t]*7 by }L_, be an optimal solution to problem (3).
Then {W[t]*, by }L_| is feasible in problem (2). Moreover,
let f* and f5, be the optimal values of problems (3)
and (2), respectively. Then, fy, > f*.

According to Proposition 2.1, the optimal value of prob-
lem (3) provides a lower bound on the precision. We now
present the main result of this section, which asserts that the
problem (3) can be reformulated as a mixed binary conic
optimization problem.

Theorem 2.1 (e-IPWMFS reformulation). The e-IPWMFS
model (3) is equivalent to the mixed binary conic optimiza-
tion problem

min f

st. W eRbht-+d p cR vt € [T)
feER, g, {0, 1} p, € {0,117 vt e [T]
1<f
|17

> Bgra)* < £> Blgr:
i=1

€T,

grB' <@ (e™@) vt € [T]
prB" < (1-ag)(e™8")
g1 +P < e Vi e [T —1]
Zielal gTzﬂiT ZiEIaq pTzﬂiT 1<

Sier B ez, B

V(a,a’) € {(0,1),(1,0)}
~M(1 = gii) < W& 1 b, < Mg,
e—w. gl _p, < Mpy

vt e [T), Vie I,

“
where M is the big-M parameter, Ty = {i € IT : §; = 1},
andL,1 = {z eIt . a; = a,§; = 1}_

We remark that problem (4) can be solved using any pop-
ular off-the-shelf solver, such as Gurobi, Mosek, or CPLEX.

3 Numerical Experiments

In this section, we present the numerical experiments using
both synthetic and real-world datasets. We consider the two-
stage selection process to simplify the exposition. All op-
timization problems were implemented using Python 3.10
and solved by Gurobi 10.0.1. The experiments were run on
an M1 Ultra CPU laptop with 64GB RAM.

Synthetic Data Experiments We first use a synthetic
dataset to illustrate the importance of reweighting and the
effectiveness of our fair optimization model. We simulate
two-stage selection data with two subgroups, one being the
minority (i.e., A = 0). Both groups have the same Gaussian
distribution of true qualification: X ~ N(0,2). To create
a selection bias, we set X! = X — 0.5B + noise;, where
noise; ~ N(0,0.5), B ~ Bernoulli(.2) if A = 0; and
B ~ Bernoulli(.1) if A = 1. Then, the candidates are
selected for the next stage with probability 1/(1 4+ e=X").
This selection criterion ensures that every candidate has a
non-zero probability of being selected, and a higher value of
X' corresponds to a higher probability of selection.

Next, for those who enter the second stage, we set a more
biased X? = X — 05 x 1(A =0)+ 05 x 1(A =1) +
noises, where noises ~ N(0,0.25). Specifically, we tend
to underestimate the qualifications of candidates from the
minority group while overestimating those from the majority
group. Then, based on both X L and X2, the candidates are
selected with probability 1/(1 4 ¢~ (0-7X*+0.3X")y

Lastly, we generate the outcome label for each selected
candidate as Y = 1(X > 1). In other words, the label is
only related to the true qualification and is not influenced by
any sensitive attribute.

Using the aforementioned procedure, we conducted sim-
ulations of over 200,000 candidates. The results indicate
that such an existing selection policy has an overall pre-
cision of approximately 68.57% and an overall unfairness
score of 0.050. We will use these results as a benchmark
to compare against our proposed methods. To implement

Training Testing 1°!-Stage | Testing 2""-Stage Testing Precision Testing Training
Size Violation Ration | Violation Ration | (mean # standard deviation) | Unfairness Time
100 TPW 0% 80% 82.92% + 12.63% 0.0447 0.0768s
No-IPW 20% 80% 0.1224 0.3579s
200 PW 0% 80% 0.0931 0.2004s
No-IPW 0% 100% 0.0135 13.9079s
400 PW 20% 0% 0.1772 2649295
No-IPW 20% 80% 0.0674 30.82525
500 PW 0% 0% 0.1742 55.0997s
No-IPW 40% 60% 0.0322 | 100.4673s
2000 PW 0% 20% 0.1390 | 197.395%
No-IPW 60% 40% 0.0251 198.8476s
3000 PW 0% 0% 95. 0.1840 | 24038925
No-IPW 20% 80% 41.91% 0.0136 | 219.9468s

Table 1: Out-of-sample testing results. Here we set the fair-
ness parameter 1 = 1.

the IPW scheme, we use logistic regression to estimate the
propensity score 3'. For the No-IPW scheme, we assign an
equal weight to each selected candidate data point by set-
ting B° = e. We conduct out-of-sample experiments with
training dataset sizes N = 100, 200, 400, 800, 2000, 3000.
The selection ratios are set to &; = 0.7, @, = 0.35 and



as = 0.2. The results of all experiments are averaged over
five random trials. We set a time limit of 4 minutes for each
trial (the final solution obtained with N = 2000 and 3000
samples may not be optimal). For each trial, we evaluate the
performance using 10,000 independent testing samples. To
ensure a fair comparison during the out-of-sample test, we
randomly select candidates from previous stages if we select
fewer than ¢, proportion candidates to meet the lower bound
selection requirement. Similarly, if we select more than &
or aiy proportion candidates, we randomly eliminate some
candidates from those selected to meet the upper bound se-
lection requirement.

The out-of-sample statistics in Table 1 showcase the supe-
rior performance of e-IPWMFES, as evidenced by its decreas-
ing constraint violation ratio as the training size increases.
In contrast, the No-IPW scheme consistently yields a 100%
violation ratio, rendering the generated policies unsuitable
for implementation. Furthermore, IPW achieves higher pre-
cision as the training size increases, whereas the No-IPW
scheme has low precision and a lower fairness score. This is
due to the high violation ratio, so some candidates need to
be randomly selected or eliminated to satisfy the constraints.

Unfairness-precision Pareto frontiers

1.0
5 08-
%]
e .
; 0.6 1
£
@ —— IPW
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Figure 3: Pareto frontiers. The red star represents the unfair-
ness and precision of the existing selection policy.

We plot the Pareto frontiers of the two schemes with train-
ing size N = 800 in Figure 3. We examine models with
different values of the unfairness controlling parameter 7 on
[0.01, 0.06] with six equidistant points, and the results were
obtained from 10 independent trials. Compared to the No-
IPW scheme, the IPW scheme provides higher precision for
the same unfairness score. Additionally, the existing selec-
tion policy provides an unfairness score of 0.050 and a pre-
cision of 68.57% (red star in Figure 3). Using our proposed
e-IPWMFS method, the learned policy can achieve a much
higher precision of 76.51% and a lower unfairness score of
0.031. Without IPW, the resulting learned policy is not use-
ful as the observational data cannot represent the real-world
“test” population due to selection bias.

Experiments with Real-world Data In this part, we
present several semi-synthetic experiments using the
Adult (Kohavi et al. 1996), COMPAS (Angwin et al. 2022),
and German (Dua and Graff 2019) datasets to illustrate the
effectiveness of our framework. Such semi-synthetic experi-
ments are necessary because of the unavailability of datasets

with a multi-stage selection setup. Details about the datasets
are provided in the supplemental Appendix B.

For each dataset, we randomly split the covariates into
two sets, one for the first-stage X ! and one for the second-
stage X 2 We simulate a synthetic selection process based
on the following. In the first stage, we use a trained logis-
tic regression model f(X') = P(Y = 1|X!) to learn the
true outcome label Y, and a trained logistic regression model
g(X') = P(A = 1|X") to learn the sensitive attribute A.
We create a selection bias by assigning a score to each candi-
date as follows: Score; = 10f;(X ") —2B +noise;, where
noise; ~ N(0,1), B ~ Bernoulli(.2) if g(X') = 0; and
B ~ Bernoulli(.1) if g(X') = 1. Then the candidates are
selected for the next stage with probability 1/(1-+e~5¢e1),
This selection criterion ensures that every candidate has a
non-zero probability of being selected, and a higher value of
X' corresponds to a higher probability of selection.

Next, for those who get into the second stage, after we
see additional covariates X2 and sensitive attribute A, we
use a trained logistic regression model fo(X?) = P(y =
11X [2]) to learn the true label Y. Then, we assign a score
to each candidate as follows: Score; = 10fo(X2) —
1.5 x 1(A = 0) + 1.5 x 1(A = 1) + noisey, where
noises ~ N(0,1). The candidates are finally selected with
probability 1/(1+4 e~ (0-85core2+0.25core1)) We generate the

[ Dataset [ Metric [ No-Fair | Fair [ Empirical ]
Precision 0.52 £ 0.05 0.51 £0.04 (1.92%) 0.28
Unfairness (U) 0.26+0.19 | 0.17 £ 0.13 (34.61%) 0.22
Adult Precision 0.45 £ 0.05 0.44 £0.05 (2.22%) 0.27
Unfairness (U) 0.21+£0.15 | 0.16 £ 0.12 (23.81%) 0.23
Precision 0.39 £ 0.05 0.37 £0.06 (5.13%) 0.27
Unfairness (U) 0.17+0.11 0.14 £ 0.12 (17.65%) 0.24
Precision 0.78 £ 0.12 0.78 £ 0.13 (0%) 0.76
Unfairness (U) 0.08 +0.07 0.05 + 0.05 (37.5%) 0.16
German Precision 0.82 £0.11 0.76 £ 0.13 (7.32%) 0.76
Unfairness (U) 0.11+£0.09 | 0.05 £ 0.03 (54.55%) 0.17
Precision 0.73 £0.09 0.72£0.08 (1.37%) 0.72
Unfairness (U) 0.12 = 0.06 0.09 + 0.07 (25%) 0.13
Precision 0.67 £ 0.04 0.60 +0.09 (10.45%) 0.52
Unfairness (U) 0.14+0.04 | 0.09 £ 0.06 (35.71%) 0.13
Precision 0.57 £0.07 0.53£0.04 (7.02%) 0.51
COMPAS Unfaimess (U) | 0.07£0.07 | 0.05 %+ 0.05 (28.57%) | 0.12
Precision 0.59 £ 0.05 0.58 £0.06 (1.69%) 0.53
Unfairness (U) 0.09 4 0.05 | 0.06 & 0.03 (33.33%) 0.16

Table 2: Out-of-sample testing results (mean + standard de-
viation). The numbers inside the parentheses represent the
average reduction compared to the No-Fair model.

selection process three times following the aforementioned
procedure for each dataset. We compare the performance of
two different models: the No-Fair model, where the unfair-
ness control parameter is set to 7 = 1 in (4), and the Fair
model, where the unfairness control parameter 7 is set to the
respective empirical unfairness score.

We conduct out-of-sample experiments with a training
dataset of size N = 200. The selection ratios are set to
a; = 0.7,a2 = 0.35 and a, = 0.2. The results of all exper-
iments are averaged over 20 random trials. Table 2 demon-
strates the superior performance of e-IPWMFS. As we can
see, both the No-Fair and Fair models achieve high preci-
sion compared with the existing selection policy. Besides,
the Fair model can achieve much lower unfairness scores
with a negligible decrease in precision compared with the
No-Fair model.
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Appendix

A Proofs in the main text

In this section, we provide the proofs for Proposition 2.1 and
Theorem 2.1 in Section 2.3.

A.1 Proof of Proposition 2.1

Proof. Consider any feasible solution (W )T | to (3)

and any distribution PV, We first prove the feasibility of
the fairness constraint in (2). For any € € R, we have

U(CT(X[T]),EDIPW)

PPV (W X T 4 by > 0)
—PEVwWIT. X 1 b > 0),
PPV W X 4 py > 0)
—pPV W X1 4 py > 0)
PPV (W X T 4 by > 0)
_]fblll’lw(w[T] x4 br > ¢),
PPV W X1 4 by > 0)
—PPW (W X 4 by > )
=U (Cp(X ), PPV <.

= max

<max

Therefore, (W b,)7_ | are also feasible to the fairness
constraint in (2). Next, by definition, we have

Ct+1(X[t+l]) < Cf(X[t])
= 1wl x4 p, > )
<1(wl. x4 p, > 0) = Cy(xH.
This proves the feasibility of the penultimate constraint
to (2). Lastly, we have
PPV W x4 b < 0)
<PPV W X 4 by <€)
<1 - ap,
which proves the feasibility of the selection ratio require-

ment to (2). Consequently, the feasible set of problem (3) is
an inner approximation of the feasible set of problem (2) for

any € € R, . Therefore, an optimal solution (W *, bE,
of problem (3) is also feasible for problem (2). By plug-

ging in the optimal solution (W[t]* bi)E | to (2), we have
opt = f*. This completes the proof.
A.2 Proof of Theorem 2.1

Proof. We start with the reformulation for the objective
function of (3). By definition of conditional probability, we
can rewrite the precision as

PPY(Y =1|Cp(X™T) = 1)
PPV(Yy = 1,Cp(X!") = 1)
- Prev (cr(Xx Ty = 1)
Using the fact that the final stage selection constraint re-

quires 0 < ap; < PPV(Cp(XT1) = 1), instead of maxi-
mizing the precision, we can minimize the reciprocal of it.

By introducing an epigraphical variable f, which we min-
imize, and moving the reciprocal of the precision into the
constraint, we have

EDIPW(CT(X[T]) =1)
PV (Y = 1,0p(X ) = 1)

min f
st. feR

PPV (Cp (XY = 1)
< fPPV(Y =1,00(X") = 1),

where the first constraint comes from the fact that the re-
ciprocal of a conditional probability is at least one. For any
t € [T]andi € IT, we define

gn = 1(C(&") = 1) =1 (W& + b, > 0)
pri = 1(Cs (@) =1) = 1wl - &l 4, < o).

Usmg big-M parameter M, we can reformulate the above
indicator function as

g, €10, 1}|1T‘ p; € {0, 1}|1T
~M(1-gy) <WH. & H +b < Mgy,
€ — W[t] . Agt] _bt S Mptz'

Recalling the definition of PPV,

11°]

t
IPW B
]P Z T/Bf (:B ,ai,0i)"

we can thus rewrite the above minimization problem as

min f
st. feR, gpe {01}
1<f

SV BT (gr4)? < £ iex, BLare,

where Z; = {i € I : §j; = 1}, M is the big-M parame-
ter. Next, we provide the reformulation for the upper bound
selection ratio requirement constraint of (3) at ¢t € [T]. By
definition, we have

PPV w . x4 p, > 0) <@
sl b > 0)
eT[)’t
T
gt € {Oa 1}‘1 l
—
{ g1 B <@ (eT3).

For the lower bound selection ratio requirements at the ter-
minal stage, we have

<ay

PPV W XTI 4 b < 6) <1 —ar

_ ) prefo,pil
pLB" < (1—ap)(e™B).



The admission requirement constraint of (3) can be written

as

Copr (XY < c(x M)

1w g Ly s 0)

<1(wll. gl 4 p, > ¢
=W gl 4 s 0)

1wl gl 4y, <o) <1

which can be reformulated as

{

Finally, we provide the reformulation for the fair-

g1 € {0,131771] p, € {0, 1}

g1+ < e

ness constraint of (3). Define the index sets Z,;

{i€[N]:a;=a,y; =1} Va € A. For any fixed pair

(a,a") € {(0,1),(1,0)}, we have
PPV w I X 4 > 0)
—PEV W XTT 4 py > ¢)

= PPV w I X 4 b > 0)

+PEW W X pr < e) —1
= Ego |5t 1WI - X 4 by > 0)1((4,Y) = (a,1))

+p AW XTI L < 91((4,Y) = (o, 1)) — 1,

where po1 = PPV(A = a,Y = 1) and po = PPV(A =
a’,Y = 1). Using the definition of PV, we can rewrite the

about expression as

gr € {0, 11171 p, e {0,131

ZiEIal

orem 2.1.

B Real Datasets

In this section, we provide the details for the datasets in Sec-

T ZB?QT’L—’—

4 1€ZLa1

1
ZiEIa/l

Combining all the above analysis, we have the result in The-

Z B pri — 1.

i 1€L, 1,

tion 3.

[| Dataset | Covariates d | Protected Attribute | Number of Samples |
Adult 12 Gender 32561, 12661
German 19 Gender 1000
COMPAS 10 Ethnicity 6172

The Adult dataset, also known as
dataset, is taken from a 1994 Census database. The goal
is to determine whether a person’s annual income exceeds
$50,000 or not. It contains 13 features concerning demo-
graphic characteristics of 45,222 instances, and we consider

Table 3: Summary of Datasets.

gender as the sensitive attribute.

The German Credit Risks dataset consists of samples of
bank account holders with good or bad credit. The data are

“Census Income”

collected from 1,000 individuals, and we take gender as the
sensitive attribute.

The COMPAS dataset consists of the variables of a
commercial algorithm called COMPAS (Correctional Of-
fender Management Profiling for Alternative Sanctions),
used to predict a convicted criminal’s likelihood of recidi-
vism within two years. The data contains 6,172 data points,
and we use ethnicity as the sensitive attribute.



