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Proprioceptive Invariant Robot State Estimation
Tzu-Yuan Lin, Tingjun Li, Wenzhe Tong, Maani Ghaffari

Abstract—This paper reports on developing a real-time in-
variant proprioceptive robot state estimation framework called
DRIFT. A didactic introduction to invariant Kalman filtering
is provided to make this cutting-edge symmetry-preserving ap-
proach accessible to a broader range of robotics applications.
Furthermore, this work dives into the development of a pro-
prioceptive state estimation framework for dead reckoning that
only consumes data from an onboard inertial measurement unit
and kinematics of the robot, with two optional modules, a
contact estimator and a gyro filter for low-cost robots, enabling
a significant capability on a variety of robotics platforms to
track the robot’s state over long trajectories in the absence of
perceptual data. Extensive real-world experiments using a legged
robot, an indoor wheeled robot, a field robot, and a full-size
vehicle, as well as simulation results with a marine robot, are
provided to understand the limits of DRIFT.

Index Terms—State estimation, symmetry-preserving observer,
invariant Kalman filtering, proprioceptive odometry, dead reck-
oning, field robotics.

I. INTRODUCTION

Autonomous robots can greatly benefit humanity by tak-
ing over dangerous and tedious jobs, such as extraplanetary
exploration, rescue missions in disaster scenes, warehouse
logistics, and daily home assistance for elders [1]. In order
to accomplish the above tasks, autonomous robots must be
able to navigate reliably in various environments and maintain
stability. Modern motion planning and control algorithms rely
heavily on accurate estimations of the robot’s states, i.e.,
orientation, position, and velocity. Subsequently, accurate state
estimation is a key capability in robot autonomy.

To handle noisy and biased data, the fusion of differ-
ent sensory data is necessary and is the standard practice
in robotics [2]. Exteroceptive sensors such as cameras and
LiDARs provide perceptual information that can assist with
global localization and navigation. However, these types of
sensors often operate at a low update rate (10-30 Hz) and are
sensitive to perceptually degraded scenarios such as illumina-
tion changes. On the other hand, proprioceptive sensors such as
Inertial Measurement Units (IMU) and joint encoders operate
regardless of external factors such as lighting conditions and
often at high frequencies (100-1000 Hz or higher). The high-
frequency information is often important for agile navigation
in challenging terrains. In addition, being agnostic to illumina-
tion changes, proprioceptive sensors can offer robust sensing
modalities in extreme or featureless environments such as
dense fog or sand storms. As such, designing an accurate and
real-time proprioceptive state estimation algorithm is desirable.
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Fig. 1. Estimated trajectory from DRIFT overlapped with the satellite image
at the University of Michigan North Campus. A Clearpath Robotics Husky
robot was driven on the sidewalk for 55 minutes, with a total path of
around 3 kilometers. Consuming proprioceptive measurements only, DRIFT
can produce highly accurate estimations for long-horizon operations. This
experiment demonstrates the potential of DRIFT to be a reliable odometry
system in perceptually degraded situations.

Contrary to Simultaneous Localization and Mapping (SLAM)
systems, which focus on achieving globally consistent esti-
mations, this proprioceptive estimator aims at obtaining high-
accuracy local estimates without relying on perceptual inputs,
serving as a reliable state tracking source for perception and
control systems in visually challenging environments [3–6].

To develop proprioceptive state estimators, one often deals
with nonlinear robot dynamics and measurement models. The
extended Kalman Filter (EKF) [2, 7–9] can be easily modified
and has been implemented on various robotic platforms [10–
12]. To address the linearization error induced in the EKF
framework, many researchers have looked into leveraging
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symmetry [13] in the filtering framework. In particular, Barrau
and Bonnabel [14, 15] developed an invariant observer, coined
Invariant extended Kalman Filter (InEKF), by modeling the
state evolution on matrix Lie Groups and tracking the error
on the corresponding Lie algebra. The theory of the invariant
observer design is founded on estimation error being invariant
under the action of a matrix Lie Group. Precisely saying, they
show that if the propagation model satisfies the group affine
property [14], it induces a log-linear property of the error,
i.e., the nonlinear error can be exactly recovered from the
time-varying linear differential equation. The InEKF has been
shown to achieve better convergence and consistency in many
applications, including SLAM [16–18], legged robot state
estimation [13, 19–21], visual-inertial odometry [22, 23], un-
derwater navigation [24] and aerial robot navigation [25, 26].

Current implementations of the InEKF remain tailored for
specific applications, and modifying existing libraries for
different robotics applications remains cumbersome. In this
work, we propose DRIFT: Dead Reckoning In Field Time,
a real-time symmetry-preserving state estimation library that
is directly applicable to various robotic platforms, including
legged robots, indoor and outdoor wheeled robots, full-size
vehicles, and marine robots.

A. Contributions

This work evolves from our prior work [27], in which we
developed the contact estimation module for legged robot state
estimation. In this work, we propose a unified framework that
works for various robotic platforms. We additionally propose
the gyro filter module for low-cost robots. Furthermore, we
release our new real-time software, which supports various
robots by default and allows easy expansion with new modal-
ities. Lastly, we conduct extensive field experiments to assess
the limits of the proposed framework on a variety of platforms,
including a full-size offroad vehicle.

In particular, this work has the following contributions.
i. An open-source symmetry-preserving robot state esti-

mation library that works in real-time on a variety
of robotic platforms. The software can be found in
https://github.com/UMich-CURLY/drift.

ii. A didactic introduction to invariant Kalman filtering.
iii. A proprioceptive state estimation framework for dead

reckoning that only consumes data from an onboard
Inertial Measurement Unit (IMU) and kinematics for the
robot, with two optional modules, a contact estimator and
a gyro filter for low-cost robots.

iv. Real-world experiments on legged robots, indoor and
outdoor wheeled robots, full-size vehicles, and simulation
results on marine robots to verify the proposed framework.

B. Outline

The remainder of this article is organized as follows. Sec. II
reviews the literature on different state estimation methods.
Sec. III provides some necessary backgrounds for developing
an invariant filtering algorithm. Then, a didactic introduction
to the invariant Kalman filtering is laid out in Sec. IV. Sec. V
details DRIFT’s framework and methodology. Sec. VI presents

extensive evaluations using different robotic platforms. Limi-
tations and future work ideas are discussed in Sec. VII, and
Sec. VIII concludes the article.

II. LITERATURE REVIEW

A. Symmetry in Robot State Estimation

Symmetry in Lie Groups has been explored since the
1970s [28–31]. Despite some early efforts on state estimation
using Lie Groups [32, 33], the standard extended Kalman
filter remained the mainstream method [2, 7, 9] for decades
due to its simplicity. With the standard EKF, the non-linear
state dynamics and the measurement model are repeatedly lin-
earized using the Taylor series at the current estimate [2, 34].
Although intuitive and easy to implement, the standard EKF
can suffer from degrading performance when the dynamics
become highly nonlinear, and bad initialization of states can
cause the filter to diverge. In addition, because the linearization
is evaluated at the current estimate, unobservable states can
lead to incorrect linearization, causing spurious correlations.

The standard EKF evolves the state on Euclidean spaces;
however, in robotics applications, the state often evolves on a
manifold. Alternatively, the state evolution can be modeled us-
ing Lie groups, such as quaternion [35, 36] and SO(3) [37, 38].
One of the early symmetry-preserving observers was proposed
by Aghannan and Rouchon [39], where they designed an
invariant observer for Lagrangian systems that is invariant
under changes of the configuration coordinate. While inspir-
ing, this method requires heavy modeling of the Lagrangian
dynamics and might not be easily transferable to complex
robot dynamics.

Contrary to the standard EKF, which tracks the state di-
rectly, the error-state (or indirect) extended Kalman Filter
(ErEKF) [40–43] tracks the state errors and their evolution. By
tracking the error, the dynamics in ErEKF become linear under
small error assumptions [40]. However, despite the near-linear
dynamics, the ErEKF still parameterizes the state in Euclidean
spaces. To be more specific, the attitude is often represented
using Euler angles. These representations contain singularities
(i.e., do not cover the entire rotation manifold), and the filter
can consequently be trapped in the famous Gimbal lock.
The multiplicative (or quaternion) EKF (MEKF) [41, 43, 44]
addresses this problem by tracking the rotation using quater-
nions and updating the state using multiplicative actions. The
orientation error is modeled as a 3-vector on the tangent space
of SO(3) to maintain the nonsingular covariance [41]. The
MEKF has been successfully implemented on many platforms,
including aerial vehicles [45–47], legged robots [48, 49],
and marine robots [50]. Nevertheless, the linearized error
propagation of the MEKF still depends on the estimated states,
which can degrade the filter performance.

In invariant observer design, the estimated error is invariant
under the action of a matrix Lie group [51]. This resulted
in developing the InEKF [14, 15, 52, 53] where the state is
represented using a matrix Lie group, and the error is tracked
in the corresponding Lie algebra. If the system satisfies the
“group-affine” property, the estimation error follows a “log-
linear” dynamics in the Lie algebra [14, 15, 53]. Namely,

https://github.com/UMich-CURLY/drift
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the system linearization is independent of the state estimates.
Because of this invariance property, the InEKF can achieve
stronger convergence on many state estimation applications,
including SLAM [16–18], legged robot [19–21, 54], visual-
inertial odometry [22, 23], underwater robots [24] and aerial
vehicles [25, 26, 55]. In addition to filtering, some researchers
also investigated the potential of symmetry-preserving struc-
tures in optimization-based smoothing frameworks [56–59].
The invariant smoother framework can perform better than
InEKF at the cost of higher computational time [56, 58].

More recently, a generalization of the InEKF framework,
the Equivariant Filter (EqF), has been proposed by van Goor
et al. [60] and Mahony and Trumpf [61]. In EqF, the state
evolves on a homogeneous space (smooth manifolds with
transitive Lie group actions). By finding an appropriate lift, the
system dynamics can be realized on symmetry Lie groups. The
correction, on the other hand, is derived by linearizing the error
kinematics with respect to a fixed origin on the homogeneous
space [60–62]. Because the EqF does not require the system to
be modeled explicitly on Lie groups, it relaxes the group-affine
constraint posed in the InEKF and works with any system with
equivariant properties. In fact, it can be reduced to the InEKF
when the corresponding state evolves on matrix Lie groups and
satisfies the group-affine property [61, 62]. Moreover, since
the state is modeled on homogeneous spaces, EqF opens up
the opportunity to estimate the input bias without breaking
the symmetry of the system [63, 64], which is not feasible
in the invariant framework [15, 19]. The EqF demonstrates
great potential in different applications [65–67] and can be
integrated into DRIFT in the future.

B. Legged Robots
The controller of legged robots often requires accurate

and high-frequency state estimations to maintain the robot’s
stability. This can be achieved by fusing multiple onboard
sensors such as IMU, joint encoders, and cameras.

1) State Estimation: One simple way to obtain the state
of a legged robot is through leg kinematics, known as leg
odometry [68]. By assuming the contact foot to be static in
the world frame, one can infer the robot’s state using forward
kinematic functions and encoder measurements. Leg odometry
is simple and has been successfully implemented on many
early legged robotic platforms, including CMU Amhler [68],
RHex hexapod [69], and MARLO [70]. However, it often
performs poorly due to noisy encoder data, inaccuracies in
kinematic modeling, and foot slip [68]. This results in noisy
velocity and unbounded position and orientation estimates. To
address this, Lin et al. [69] used prior terrain information and
three non-colinear contact feet to estimate the instantaneous
robot’s pose through kinematics. Although achieving better
accuracy, this algorithm cannot operate when two or more feet
are in the aerial phase. As a result, it significantly hampers any
agile movements of the robot.

Modern legged robots are often equipped with extra sensors
like IMU, camera, and LiDAR. Lin et al. [71] fused leg
kinematics with IMU measurements using an EKF for the
RHex hexapod. They showed that by fusing the two measure-
ments, the algorithm outperforms methods that only use one

modality in isolation. In addition to IMU and leg odometry,
researchers also explored fusing different sensor modalities
within an EKF framework, including fusing leg odometry
with a magnetometer and GPS [12], and leg odometry with
optical flow [72]. By fusing multiple sensor measurements, the
above methods improve the estimation accuracy of pure leg
odometry. However, they still require heavy modeling of the
robot’s dynamics, which can be cumbersome and inaccurate.

Bloesch et al. [73] proposed observability-constrained
ErEKF to fuse IMU and kinematic measurements. In this
framework, the process model does not depend on the robot or
the gait motion. Instead, the readings from an inertial sensor
are integrated to obtain the prediction (also known as the
IMU strapdown modeling). Hence, the need for complicated
dynamic modeling is circumvented [40]. Another innovation of
this work is the state augmentation of the contact foot position.
This augmented position serves as a fixed reference position in
the world frame. Therefore, the mismatch between new kine-
matic measurements and the predicted contact state can then
be used as the correction model. IMU strapdown has become a
common approach for modern state estimators [3, 48, 74, 75].
Rotella et al. [49] includes the foot orientation measurements
from forward kinematics in an ErEKF for humanoid robots.
However, this method only works when the foot does not rotate
during the contact phase.

In the context of optimization-based methods instead of fil-
tering, Hartley et al. [76] proposed a factor graph formulation
to fuse leg odometry with IMU measurements on a bipedal
Cassie robot. They introduced new forward kinematics and
pre-integrated contact factors to include additional constraints
posed by the non-slip contact assumption. Hartley et al.
[3] further incorporated visual information from semi-direct
visual odometry (SVO) [77] to form a visual-inertial-legged
smoother. Instead of using SVO as an additional module,
Wisth et al. [78] proposed VILENS (Visual Inertial LEgged
Navigation System), which tightly integrates visual features
from an RGB-D camera into the cost function. VILENS is
implemented on an ANYmal robot and showed improved
performance over previous methods. Built upon VILENS, the
same group introduced the foot velocity integration factor
in [79]. By integrating the foot velocity instead of position,
a slow-varying velocity bias can be inferred from vision to
account for foot slip events. Kim et al. [80] exploited the body
velocity estimation from a camera and dropped the need for
the contact estimation module. Their method was implemented
on an MIT mini cheetah and shown to achieve superior
performance on slippery terrains. When only proprioceptive
sensors were presented, Kim et al. [58] proposed a slip-
rejection mechanism in addition to a proprioceptive smoother
framework using an MIT mini cheetah. This method improved
the robustness of state estimation even in the absence of
camera information. Smoothing approaches have the privilege
of leveraging past information during optimization. However,
this comes at the cost of higher computational efficiency than
filtering, especially during long-horizon experiments, where
the past factors could grow unboundedly. Moreover, the above
methods did not take advantage of the existing symmetry struc-
ture present in the problem, which improves the performance
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and consistency of the estimator.
Hartley et al. [19] introduced the InEKF to the legged

robot community by designing a contact-aided InEKF filtering.
Similar to the work of Bloesch et al. [73], the IMU strapdown
model was used for propagation, and the contact states were
augmented for correction. However, in this work, the states
were tracked on the Lie group SEk(3) [53], and the error dy-
namics evolved in the corresponding Lie algebra. Hartley et al.
[19] showed that the contact-inertial process model satisfies
the group-affine property [15], and the resulting linearization
matrix is independent of the estimated state. The contact-
aided InEKF demonstrated state-of-the-art performance on a
bipedal Cassie robot and has since been modified for different
applications [20, 21, 54, 81].

Existing open-sourced libraries legged robot state estima-
tion, include Pronto proposed by Camurri et al. [10], EKF-
based framework for both exteroceptive and proprioceptive
sensor fusion. The framework supports multiple bipedal and
quadruped robots. However, Pronto is based on the tradi-
tional EKF and the state-dependent linearization could lead
to sub-optimal results. Another example is Cerberus proposed
by Yang et al. [82], which is a factor graph framework for
visual-inertial-leg odometry. One key feature of Cerberus is
the ability to estimate kinematic parameters online. However,
Cerberus relies on visual information for the kinematic pa-
rameters estimation, which can lead to degraded performance
in visually challenging environments. Moreover, Cerberus is
reported to operate at 20Hz, which might be insufficient for
some control algorithms. In addition to the above two libraries,
Hartley et al. [19] also released their source code for contact-
aided InEKF for Cassie. In DRIFT, we adopt the software by
Hartley et al. [19], and our previous work [20], and enable
modular extensions to different modalities.

2) Contact Estimation: Reliable contact estimation that
accurately captures the zero velocity events on foot is of
crucial importance for legged robot state estimators. Model-
based approaches segment the touchdown event of robot legs
or prosthetic legs by thresholding of the estimated Ground Re-
action Force (GRF) from the general equation of motion [83–
85]. Although this method can detect touchdown events, the
estimated GRF is often noisy and unreliable, especially for
lightweight robots. De Luca et al. [86], Haddadin et al. [87]
proposed a Generalized Momentum (GM) method for de-
tecting contact events on robot manipulators. This GM-based
method is, in fact, a filtered version of the work of Focchi
et al. [83]. Although GM-based methods mitigate the noise
problem in GRF estimation, an empirical threshold on the cut-
off frequency is still required.

Hwangbo et al. [88] used a probabilistic representation of
the contact state and a Hidden Markov Model (HMM) to
fuse the dynamics and kinematics for contact estimation by
adopting a Monte-Carlo sampling algorithm to compute the
transition model and verifying against GM-based methods.
Jenelten et al. [89] expanded the HMM method and focused
on slippage detection. They demonstrate ANYmal [90], a
quadruped robot, walking stably on slippery ground. The
above two methods aim to detect contact as early as possible
for the controller to maintain stability; however, we aim to

detect contact intervals for state estimation on various terrains.
Bledt et al. [91] leveraged the GM-based methods and

the probabilistic representation of contact states by using a
Kalman filter to fuse the gait phase scheduler information from
the controller with the GRF and demonstrate that estimated
contacts can assist the controller in reducing the bouncing
event upon touchdown. However, this method assumes the leg
phase to be periodic as it uses the gait scheduler information
in the prediction step of the Kalman filter. It could experience
a loss in performance when the phase is heavily violated as
the robot interacts with uneven terrains.

Camurri et al. [92] used logistic regression to learn the
GRF threshold for contact detection. This work compares
against heuristic-based thresholding on GRF using a base
state estimator. The result shows that the logistic regression
classifier can double the performance of the state estimator.
However, compared to deep learning methods, the perfor-
mance of a logistic regression classifier gets saturated as the
amount of data increases [93, 94]. Moreover, this method
requires a specific training procedure for different gait, loading
conditions of the robot, and individual terrain properties.

Rotella et al. [95] used a fuzzy C-means clustering for
the probability of contacts in all six end-effector degrees of
freedom. They integrate the contact estimator with a base
state estimator and show their approach performs consider-
ably better than implementations purely based on measured
normal force. However, this method assumes contact wrench
sensors and additional IMU are available at each end-effector.
Furthermore, this method was only tested in simulation. Its
performance on real robots remains unknown. Piperakis et al.
[96] proposed an unsupervised learning method for humanoid
gait phase estimation by employing Gaussian Mixture Models
(GMMs) for clustering and comparing to the ground-truth
data and leg odometry. However, this work also assumes the
availability of wrench/force sensors at each end-effector, and
the clustering result is affected by the gait and data density.

The above methods either assume the availability of
wrench/force sensors or are restricted by the nature of simple
regression and are thus unable to generalize to different
scenarios. In contrast, our work proposes a multi-modal deep
learning-based contact estimator that does not require contact
sensors and can generalize well to different gaits and terrain
properties. Moreover, as more data becomes available, the
network performance can be improved.

C. Wheeled Robots

Wheeled robots and autonomous vehicles state estimation
problems often treat odometer measurements and dynamics
constraints as given, which increases the accuracy and robust-
ness of the localization systems [97, 98]. However, such meth-
ods require high computational power to process image flow.
The IMU-based algorithms are more universal and approach-
able for wheeled robots, which can contribute to emergency
events detection such as collision and slippage [99, 100].

For outdoor wheeled robots, GPS plays an important role
in exteroceptive localization which uses multiple satellites to
obtain the robot’s position in the earth coordinates. Never-
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theless, the GPS accuracy is limited by radio signal trans-
mission time, and the slow-down effect of water vapor and
other particles in the atmosphere counts for the propagation
delay [101]. The occlusions and reflections of and between the
buildings, namely multipath fading, will also reduce the GPS
localization accuracy. To overcome these limitations, beacon-
based methods, such as RFID [102, 103], QR-code [104, 105],
WiFi or Bluetooth [106–109], and UWB [110, 111], are used
for urban and indoor environments localization.

In terms of proprioceptive state estimation for four-wheeled
chassis robots, typically autonomous vehicles, the measure-
ments are IMU readings, steering wheel angle, and wheel an-
gular velocity, which is the most common sensor configuration
for vehicle velocity estimation [112, 113]. Nonlinear observer
(NLO), nonlinear unknown input observer (NUIO), and re-
duced nonlinear observer (RNLO) are proposed for vehicle
lateral and longitudinal velocity estimation by Imsland et al.
[112, 114], Guo et al. [115]. Wenzel et al. [116] invented the
dual extended Kalman filter (DEKF) for combined estimation
of vehicle states and vehicle parameters.

Mobile robot filtering-based localization performance can
be increased by augmenting uncertain parameters into the
state [117]. Nevertheless, with model-based filters such as the
Kalman filter, the performance highly depends on how accu-
rately the stochastic model can capture the underlying physical
process. Kwon et al. [118] proposed a combined Kalman
filter-perturbation estimator (CKF) for wheeled robots, which
does not require any uncertainty model except for the noise
statistics. The perturbation estimator generates equivalent per-
turbations based on the nominal state equation and action
model of the robot, which is simultaneously corrected by the
estimates of perturbation. The perturbation estimator’s integral
control module leads to a decrease in the localization error.

A dead-reckoning system has an unavoidable drift over time
because, first, the integration of sensors’ random walk and,
secondly, inaccuracies of the system modeling for the action
and observation models. Welte et al. [119] presented a dead-
reckoning model that can fuse all common sensors and then
merge the redundant ones, increasing the robustness compared
with the traditional Zero Velocity Update (ZUPT) method.
The work also proposed a method to compensate for the
systematic sensor and observation model errors, which relies
on the Rauch-Tung-Striebel smoothing method to estimate the
robot state and further calibrate the system model parameters.

D. Marine Robots
Underwater environments are often featureless with limited

visibility, and objects underwater are frequently subject to
unexpected external forces from ocean currents or surges. This
poses extra challenges for Autonomous Underwater Vehicles
(AUVs) state estimation. To make matters worse, some com-
mon sensors for ground robots, such as joint encoders and
GPS, cannot be directly applied to AUVs. However, many
widely used modern underwater localization systems depend
on accurate dead reckoning solutions [120]. We position dead
reckoning algorithms such as DRIFT as a submodule of a
more complex localization system. Comprehensive reviews on
underwater state estimators can be found in [120–122].

There are several specialized sensors for underwater navi-
gation. Because the water pressure can roughly translate to the
depth below sea level, a pressure sensor can be used to obtain
depth measurements. In addition to pressure sensing, acoustic
sensors such as Doppler Velocity Logs (DVL) [123] also play
a big role in underwater navigation. A DVL can provide
ground-referenced velocity measurements. This is achieved by
emitting directional acoustic beams to the seabed and using
the Doppler effect on the reflected acoustic signals. Unlike the
above sensors that are mounted directly on the robot, transpon-
der systems [124], such as a Long Baseline system (LBL),
use floating beacons to provide positioning measurements
from triangulation. Although transponder systems allow direct
positioning measurements, they require additional beacons to
be deployed, limiting the operation range of AUVs.

EKF has been implemented on multiple AUVs due to its
simplicity [11, 125, 126]. Karras et al. [127] proposed a Dual
Unscented Kalman Filter (DUKF) framework to fuse mea-
surements from a laser sensor and an IMU. The filter jointly
estimated the 6D pose of the robot and its dynamic parameters.
The DUKF was still sensitive to initialization, and a specific
closed-loop control scheme was required during initialization.
Instead of online optimization of the dynamic parameters,
Hegrenaes and Hallingstad [128] formulated a more accurate
vehicle model in a model-aided EKF framework. The kinetic
model was integrated to provide velocity measurements for
filter correction. Sea current velocity was treated as a slowly
varying bias and was estimated along with the robot’s state.
The method was evaluated using a HUGIN 4500 AUV on
various field tests. The IMU strapdown modeling was also
adopted for marine robotic applications to circumvent complex
modeling of the vehicle. Using an ErEKF framework, Miller
et al. [129] fused multiple sensors, including an IMU, an
LBL, a DVL, a pressure sensor, and an attitude sensor for
UAV state estimation. Additional calibration parameters, such
as the speed of sound in seawater, were also estimated to
reduce systematic errors. This framework was shown to be
robust to sporadic sensor failures. However, a prolonged failure
of the DVL or LBL can degrade the performance, and the
requirement of LBL still limits the operation range.

Potokar et al. [24] used an InEKF to estimate the 6D
pose of an AUV. The velocity readings from a DVL, and
depth measurements from a pressure sensor were fused with
the IMU strapdown model. Because the depth measurements
do not obey the left-invariant formulation, which we will
discuss later in Sec. III, pseudo measurements with infinity
covariances were introduced to allow the incorporation of such
measurements. This framework was evaluated in a simulation
environment and was shown to have better convergence over
the MEKF. The algorithm was implemented in Python and
was demonstrated to have real-time performance. DRIFT is a
unified state estimator that directly supports multiple robots.
Modular implementation in C++ enables faster computation
on resourced-constrained devices and allows easy expansion
with new modalities. In addition, for convenience, we provide
a ROS wrapper for real-time communication on robots.
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III. PRELIMINARIES AND NOTATION

Matrix Lie groups [2, 130, 131] provide natural (exponen-
tial) coordinates that exploits symmetries of the space [61,
132–136]. State estimation is the problem of determining a
robot’s position, orientation, and velocity that are vital for
robot control [2]. An interesting class of state estimators that
can be run at high frequency, e.g., 2 kHz, are based on
InEKF [14, 15, 19, 53]. The theory of invariant observer
design is based on the estimation error being invariant under
the action of a matrix Lie group. The fundamental result
is that by correct parametrization of the error variable, a
wide range of nonlinear problems can lead to log-linear error
dynamics [14, 51, 53].

Consider a deterministic Linear Time-Invariant (LTI) pro-
cess model ẋ = Ax + Bu. Let x̄ be an estimate of x,
i.e., ˙̄x = Ax̄ + Bu. Define the error e := x − x̄. Then
ė = ẋ − ˙̄x = A(x − x̄) = Ae is an autonomous differential
equation. Given an initial condition e(0) = e0, we can solve
for the error at any time via e(t) = exp(At)e0. In other words,
error propagation is independent of the system trajectory,
i.e., state estimate. The Invariant EKF [14] generalizes this
observation to linear-exponential systems, e.g., rigid body
systems, using the framework of matrix Lie groups.

A. Process Dynamics on Lie Groups

A process dynamics evolving on the Lie group G, for state
Xt ∈ G, is

d

dt
Xt = fut(Xt). (1)

X̄t denotes an estimate of the state. The state estimation error
is defined using right or left multiplication of X−1

t .

Definition 1 (Left and Right Invariant Error). The right- and
left-invariant errors between two trajectories Xt and X̄t are:

ηrt = X̄tX
−1
t = (X̄tL)(XtL)

−1 (Right-Invariant)

ηlt = X−1
t X̄t = (LX̄t)

−1(LXt), (Left-Invariant)
(2)

where L ∈ G is an arbitrary element of the group.

Theorem 1 (Autonomous Error Dynamics [14]). A system is
group affine if the dynamics, fut(·), satisfies:

fut
(X1X2) = fut

(X1)X2 +X1fut
(X2)−X1fut

(I)X2 (3)

for all t > 0 and X1, X2 ∈ G. Furthermore, if this condition
is satisfied, the right- and left-invariant error dynamics are
trajectory-independent and satisfy:

d

dt
ηrt = gut

(ηrt ) where gut
(ηr) = fut

(ηr)− ηrfut
(I),

d

dt
ηlt = gut

(ηlt) where gut
(ηl) = fut

(ηl)− fut
(I)ηl. (4)

I denotes the group identity element (In for n× n identity
matrix). Define At to be a dimg × dimg matrix, where g is
the Lie algebra (tangent space at the identity) of G, satisfying

gut
(exp(ξ)) := (Atξ)

∧ +O(∥ξ∥2). (5)

For all t ≥ 0, let ξt ∈ Rdimg be the solution of the linear
differential equation d

dtξt = Atξt.

Theorem 2 (Log-Linear Property of the Error [14]). Con-
sider the right-invariant error, ηt, between two trajectories
(possibly far apart). For arbitrary initial error ξ0 ∈ Rdimg, if
η0 = exp(ξ0), then for all t ≥ 0, ηt = exp(ξt); that is, the
nonlinear estimation error ηt can be exactly recovered from
the time-varying linear differential equation.

For an example of the difference with Euler angle
parametrization, see Hartley et al. [19, Sec. 4].

B. Associated Noisy System

A noisy process dynamics evolving on the Lie group take
the following form.

d

dt
Xt = fut

(Xt) +Xtw
∧
t ,

where w∧
t ∈ g is a continuous white noise whose covariance

matrix is denoted by Qt. Then the equivalent noisy error
dynamics can be shown to be

d

dt
ηrt = gut(η

r
t )− (X̄tw

∧
t X̄

−1
t )ηrt

= gut
(ηrt )− (AdX̄t

wt)
∧ηrt ,

d

dt
ηlt = gut(η

l
t)− w∧

t η
l
t, (6)

where for every X ∈ G, the adjoint action, AdX : g → g,
is a Lie algebra isomorphism that enables change of frames
(matrix similarity).

C. Invariant Observation Model

During the correction step of a Kalman filter, the error is
updated using incoming sensor measurements. If observations
take a particular form, then the linearized observation model
and the innovation will also be autonomous. This happens
when the measurement, Ytk , can be written as either

Ytk = Xtkb+ Vtk (Left-Invariant Observation) or

Ytk = X−1
tk

b+ Vtk (Right-Invariant Observation).
(7)

b is a constant vector and Vtk is a vector of Gaussian noise.

IV. INVARIANT KALMAN FILTERING

A. Left-Invariant Extended Kalman Filter

We now derive the Left-Invariant Extended Kalman Filter
(LI-EKF). In particular, the filter tracks the state mean and
covariance as parameters and corrects the error via a “linear”
update rule. As we will see, the innovation is in the Lie
algebra, and the update rule follows the group operation for
integration.

1) Propagation: In the propagation (or prediction) step,
the mean can be directly computed using the process model.
However, for the covariance propagation, we use the left-
invariant log-linear error dynamics. As such, the state’s mean
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evolves on the group while the covariance is tracked in the
Lie algebra.

d

dt
X̄t = fut

(X̄t), tk−1 ≤ t < tk,

d

dt
ηlt = gut

(ηlt)− w∧
t η

l
t =⇒ d

dt
ξlt = Al

tξ
l
t − wt,

d

dt
P l
t = Al

tP
l
t + P l

tA
l
t

T
+Qt. (8)

2) Update: In the update (or correction) step, we use
η = exp(ξ) ≈ I + ξ∧ and neglect the higher order terms to
derive the linear update error equation as follows.

X̄+
tk

= X̄tk exp
(
Ltk

(
X̄−1

tk
Ytk − b

))
,

X−1
tk

X̄+
tk

= X−1
tk

X̄tk exp
(
Ltk

(
X̄−1

tk
(Xtkb+ Vtk)− b

))
,

ηl+tk = ηltk exp
(
Ltk

(
(ηltk)

−1b− b+ X̄−1
tk

Vt

))
,

ξl+tk
∧
= ξltk

∧
+

(
Ltk

(
(I − ξltk

∧
)b− b+ X̄−1

tk
Vt

))∧
,

ξl+tk = ξltk + Ltk

(
−ξltk

∧
b+ X̄−1

tk
Vt

)
. (9)

To arrange all terms according to the vector form of ξ, define
the measurement Jacobian, H , such that Hξ = ξ∧b . Then it
follows that

X̄+
tk

= X̄tk exp
(
Ltk

(
X̄−1

tk
Ytk − b

))
,

ξl+tk = (I − LtkH)ξltk + LtkX̄
−1
tk

Vt,

P l+
tk

= (I − LtkH)P l
tk
(I − LtkH)T + LtkN̄kL

T
tk
, (10)

where N̄k := X̄−1
tk

Cov(Vk)X̄
−T
tk

.
3) LI-EKF Result: To summarize, we have the following

two steps (as usual for a Kalman filter).

1) LI-EKF Propagation:

d

dt
X̄t = fut(X̄t), tk−1 ≤ t < tk,

d

dt
P l
t = Al

tP
l
t + P l

tA
l
t

T
+Qt. (11)

2) LI-EKF Update:

X̄+
tk

= X̄tk exp
(
Ltk

(
X̄−1

tk
Ytk − b

))
,

P l+
tk

= (I − LtkH)P l
tk
(I − LtkH)T + LtkN̄kL

T
tk
,

(12)

where

Ltk = P l
tk
HTS−1, S = HP l

tk
HT + N̄k. (13)

Given these equations, once we know Al
t and H matrices, we

can implement the LI-EKF.

B. Right-Invariant Extended Kalman Filter

Next, we derive the Right-Invariant Extended Kalman Filter
(RI-EKF) similarly.

1) Propagation: In the propagation step, the mean can be
directly computed using the process model. However, for the
covariance propagation, we use the right-invariant log-linear

error dynamics. As such, the state’s mean evolves on the group
while the covariance is tracked in the Lie algebra.

d

dt
X̄t = fut(X̄t), tk−1 ≤ t < tk,

d

dt
ηrt = gut(η

r
t )− (AdX̄t

wt)
∧ηrt ,

=⇒ d

dt
ξrt = Ar

t ξ
r
t −AdX̄t

wt,

d

dt
P r
t = Ar

tP
r
t + P r

t A
r
t
T +AdX̄t

QtAdTX̄t
. (14)

2) Update: We use η = exp(ξ) ≈ I + ξ∧ and neglect the
higher order terms to derive the linear update error equation
as follows.

X̄+
tk

= exp
(
Ltk

(
X̄tkYtk − b

))
X̄tk ,

ηr+tk = exp
(
Ltk

(
ηrtkb− b+ X̄tkVt

))
ηrtk ,

ξr+tk
∧
= ξrtk

∧ +
(
Ltk

(
(I + ξrtk

∧)b− b+ X̄tkVt

))∧
,

ξr+tk = ξrtk + Ltk

(
ξrtk

∧b+ X̄tkVt

)
. (15)

To arrange all terms according to the vector form of ξ, define
the measurement Jacobian, H , such that Hξ = −ξ∧b . Then
it follows that

X̄+
tk

= exp
(
Ltk

(
X̄tkYtk − b

))
X̄tk ,

ξr+tk = (I − LtkH)ξrtk + LtkX̄tkVt,

P r+
tk

= (I − LtkH)P r
tk
(I − LtkH)T + LtkN̄kL

T
tk
, (16)

where N̄k := X̄tk Cov(Vk)X̄
T
tk

.
3) RI-EKF Result: To summarize, we have the following

two steps.

1) RI-EKF Propagation:

d

dt
X̄t = fut

(X̄t), tk−1 ≤ t < tk,

d

dt
P r
t = Ar

tP
r
t + P r

t A
r
t
T +AdX̄t

QtAdTX̄t
. (17)

2) RI-EKF Update:

X̄+
tk

= exp
(
Ltk

(
X̄tkYtk − b

))
X̄tk ,

P r+
tk

= (I − LtkH)P r
tk
(I − LtkH)T + LtkN̄kL

T
tk
,

(18)

where

Ltk = P r
tk
HTS−1, S = HP r

tk
HT + N̄k. (19)

Given these equations, once we know Ar
t and H matrices, we

can implement the RI-EKF.

C. Switching Between Left and Right-Invariant Errors

We can switch between the left and right error forms
through the use of the adjoint map.

ηrt = X̄tX
−1
t = X̄tη

l
tX̄

−1
t ,

exp(ξrt ) = X̄t exp(ξ
l
t)X̄

−1
t = exp(AdX̄t

ξlt),

ξrt = AdX̄t
ξlt. (20)
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Fig. 2. DRIFT takes measurements from an IMU and encoders as inputs.
The angular velocities and linear accelerations are used in the propagation
model. The encoder measurements are passed through kinematic functions and
applied in the correction model. Two optional modules, a contact estimator and
a gyro filter, are provided for low-cost robots to enhance their performance.

Remark 1. This transformation is exact, which means that we
can easily switch between the covariance of the left and right
invariant errors using P r

t = AdX̄t
P l
t Ad

T
X̄t

.

V. DRIFT: A SYMMETRY-PRESERVING ROBOT STATE
ESTIMATION LIBRARY

DRIFT can be used as a standalone C++ program, and
we additionally provide an optional Robot Operating System
(ROS) wrapper for easy communication between programs.
The library can also be easily expanded with new sensor
modalities. In addition, we provide two additional modules,
a contact estimator and a gyro filter, to enable the proposed
framework to be applied to low-cost robotic platforms. Fig. 2
shows the architecture implemented in this work. The pro-
posed framework can be seamlessly extended to other existing
and emerging symmetry-preserving filters in the future.

A. State Representation

In most robotics applications, we are interested in tracking
the orientation, velocity, and position of the robot with respect
to a fixed world frame. We denote Rt ∈ SO(3), the rotation
matrix that takes the coordinate frame from the body to the
world, vt ∈ R3, and pt ∈ R3 as the body velocity and position
in the world frame. Following Barrau [53], we can define our
state as a direct isometries group Xt ∈ SEl+2(3):

Xt :=

[
Rt vt pt d1t · · · dlt

0l+2,3 Il+2

]
, (21)

where dlt ∈ R3 is the augmented vectors, e.g., foot contact
position in the world frame for the legged robot or landmark
positions. In the minimal setup for wheeled or marine robots,
the navigation state simply reduces to SE2(3).

B. IMU Propagation

An IMU measures the angular velocity and the linear
acceleration in the body frame. By integrating the measure-
ments from an IMU, we can predict the robot’s motion,

enabling filter propagation without dealing with complicated
dynamics [19, 40].

In DRIFT, we model the IMU as corrupted by additive white
Gaussian noise.

ω̃t = ωt + wg
t , wg

t ∼ GP(03,1,Σ
gδ(t− t′)),

ãt = at + wa
t , wa

t ∼ GP(03,1,Σ
aδ(t− t′)),

(22)

where, GP represents a Gaussian process and δ(t− t′) is the
Dirac delta function. With this, we define the input ut to the
system as: ut :=

[
ω̃T
t , ã

T
t

]T
.

1) Continuous Dynamics: We can write down the continu-
ous dynamic process model:

d

dt
Rt = Rt(ω̃t − wg

t )×,
d

dt
vt = Rt(ãt − wa

t ) + g,
d

dt
pt = vt.

(23)
Here, (·)× denotes a 3 × 3 skew-symmetric matrix, and g is
the known gravity vector.

For legged robots, we assume the foot contact position in the
world frame remains constant during the same contact period.
As a result, the dynamics is only affected by the rotated white
Gaussian noise:

d

dt
dt = RthR(q̃t)(−wd

t ), (24)

where q̃t is the encoder measurements, and hR(q̃t) is the orien-
tation of the contact frame in the IMU (body) frame calculated
from forward kinematics. For the sake of readability, we
derive the propagation model with one contact augmentation
in the following derivation. The propagation model for robots
without foot contacts can be easily deduced by removing the
corresponding column and row for the contact position.

Collecting the above equations into the matrix form and
separating the noise term, we can obtain the deterministic
dynamic function fut

(·):

d

dt
Xt =


Rt(ω̃t)× Rtãt + g vt 0

0 0 0 0
0 0 0 0
0 0 0 0



−


Rt vt pt dt
0 1 0 0
0 0 1 0
0 0 0 1



(wg

t )× wa
t 0 hR(q̃t)(w

v
t )

0 0 0 0
0 0 0 0
0 0 0 0


:= fut

(Xt)−Xtw
∧
t . (25)

We can verify that fut(·) satisfies (3) and thus is group-affine,
and from Theorem 1, the right-invariant error dynamics is
given by (4). Using gut

(exp(ξ)) := (Atξ)
∧ + O(∥ξ∥2) from

Theorem 1 and following the derivation from Sec. IV-B, we
can obtain the state-independent linearized error dynamics:

d

dt
ξrt = Ar

t ξ
r
t −AdX̄t

wt, A
r
t =


0 0 0 0

(g)× 0 0 0
0 I 0 0
0 0 0 0

 . (26)

In summary, with fut(·), Ar
t , and Qt = Cov(wt), the IMU

propagation can then be computed using (17).
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2) Integration: In practice, IMU provides discrete sam-
plings of the continuous inputs. We assume the inputs to be
constant between two timestamps and perform the propagation
by integrating between time tk and tk+1:

R̄tk+1
= R̄tk exp (ωtk∆t)

v̄tk+1
= v̄tk + g∆t+ R̄tk(

∫ tk+1

tk

exp (ωtkt)dt)atk

p̄tk+1
= p̄tk + v̄tk∆t+

1

2
g∆t2

+ R̄tk(

∫ tk+1

tk

∫ tτ

tk

exp (ωtkt)dtdτ)atk (27)

The exponential map and the integration for SO(3) has closed-
form solutions [19, 43], leading to

R̄tk+1
= R̄tkΓ0(ωtk∆t)

v̄tk+1
= v̄tk + g∆t+ R̄tkΓ1(ωtk∆t)atk

p̄tk+1
= p̄tk + v̄tk∆t+

1

2
g∆t2 + R̄tkΓ2(ωtk∆t)atk , (28)

with

Γ0(ϕ) = I +
sin(∥ϕ∥)

∥ϕ∥
(ϕ)× +

1− cos(∥ϕ∥)
∥ϕ∥2

(ϕ)2×

Γ1(ϕ) = I +
1− cos(∥ϕ∥)

∥ϕ∥2
(ϕ)× +

∥ϕ∥− sin(∥ϕ∥)
∥ϕ∥3

(ϕ)2×

Γ2(ϕ) =
1

2
I +

∥ϕ∥− sin(∥ϕ∥)
∥ϕ∥3

(ϕ)×

+
∥ϕ∥2+2 cos(∥ϕ∥)− 2

2∥ϕ∥4
(∥ϕ∥)2×. (29)

We can propagate the covariance using a discretized state
transition matrix Φr = exp(Ar∆t) and

Pk+1 = ΦrPkΦ
rT +AdX̄k

QdAd
T
X̄k

. (30)

3) Bias Augmentation: In practice, IMU is often corrupted
by slow-varying biases. To compensate for this, augmenting
the biases as additional states in the system is common.
However, no existing matrix Lie group can describe this
additional state with the pose without violating the group-
affine property [53]. Adding IMU biases breaks the symmetry
and makes the linearization matrix dependent on the estimated
states [15, 19]. Nevertheless, this imperfect InEKF still out-
performs traditional approaches like EKF [19].

To account for the biases, we model the IMU as being cor-
rupted by additive low-frequency signals and white Gaussian
noise:

ω̃t = ωt + bgt + wg
t , wg

t ∼ GP(03,1,Σ
gδ(t− t′)),

ãt = at + bat + wa
t , wa

t ∼ GP(03,1,Σ
aδ(t− t′)). (31)

The system’s state then becomes a tuple of the state defined
in (21) and the augmented biases:

(Xt, θt) ∈ SEl+2(3)× R6, θt :=

[
bgt
bat

]
. (32)

The new augmented state has a right-invariant error in the
form of: ert = (X̄tX

−1
t , θ̄t − θt) := (ηt, ζt). With the bias

augmented, we can obtain the continuous system dynamics:

d

dt
Rt = Rt(ω̃t − bgt − wg

t )×,

d

dt
vt = Rt(ãt − bat − wa

t ) + g,

d

dt
pt = vt. (33)

The contact position is not affected by biases. Therefore, for
legged robots, we have the same contact dynamics as (24).
Since the biases are slow-varying signals, we can model their
dynamics using random walks. That is, white Gaussian noises
govern the dynamics as follows.

d

dt
bgt = wbg

t , wbg
t ∼ GP(03,1,Σ

bgδ(t− t′)),

d

dt
bat = wag

t , wag
t ∼ GP(03,1,Σ

agδ(t− t′)). (34)

With the new continuous dynamics, we can obtain our
linearized error dynamics following Section IV-B:

d

dt

[
ξt
ζt

]
= At

[
ξt
ζt

]
+

[
AdX̄t

0
0 I

]
wt, (35)

At =


0 0 0 0 −R̄t 0

(g)× 0 0 0 −(v̄t)×R̄t −R̄t

0 I 0 0 −(p̄t)×R̄t 0
0 0 0 0 −(d̄t)×R̄t 0
0 0 0 0 0 0

 . (36)

C. Velocity Correction

Body velocity measurements provide a generic correction
model that can work on any robotic platform. Specifically, the
filer requires the ground-referenced body velocity [21, 24]. For
some robotic applications, ground-referenced body velocity
can be directly measured from the sensors, such as DVL for
marine robots. However, accurate body velocity measurement
is not always readily available. For wheeled robots with no
lateral movements, one practical solution is to use the encoder
measurements along with the nonholonomic constraints (i.e.,
velocity constraints that cannot be integrated) to form pseudo
measurements for correction:

vw =
[
r(q̇r+q̇l)

2 0 0
]T

, (37)

where q̇r and q̇l are angular velocity readings from the
wheel encoders and r is the wheel radius. The nonholonomic
constraints provide the pseudo measurements in the y and z
components under the assumption that the robot does not drift
side-way nor jump up vertically.

1) Correction Model: In DRIFT, the velocity correction
model is implemented independently of the velocity source.
This allows the library to be generic and to be applied to any
robot with any source of velocity measurements. Here, we
again assume the velocity measurements to be corrupted by
white Gaussian noise:

ṽt = vt + wv
t wv

t ∼ GP(03,1,Σ
vδ(t− t′)). (38)



10

The body velocity is measured in the body frame. As a result,
a right-invariant measurement model is used here.

Ytk = X−1
tk

b+ Vtk ,ṽtk−1
0

 =

RT
tk

−RT
tk
vtk −RT

tk
ptk

0 1 0
0 0 1

 0
−1
0

+

wv
tk
0
0

 .

(39)

We proceed to find H as follows.

Hξrk = −ξrk
∧b

H

ξωkξvk
ξpk

 = −

ξωk ∧ ξvk ξpk
0 0 0
0 0 0

 0
−1
0

 =

ξv0
0


H =

01,3 I 0
01,3 0 0
01,3 0 0

 .

Then, we can perform the update step using (18), where
after eliminating zeros H =

[
01,3 I 0

]
, and N =

R̄tk Cov(w
v)R̄T

tk
.

2) Observability Analysis: Theorem 2 reveals the log-linear
property of the error dynamics. Consequently, one can perform
linear observability analysis using the linear error dynamic
matrix [53], which, in our case, is time-invariant and nilpotent
(with a degree of three):

Φ = exp(A∆t) =

 I 0 0
(g)×∆t I 0

1
2 (g)×∆t2 0 I

 .

Accordingly, the observability matrix becomes:

O =


H
HΦ
HΦ2

...

 =


0 I 0

(g)×∆t I 0
2(g)×∆t I 0

...
...

...

 .

The roll and pitch are observable, as well as the velocity.
However, since gravity only contains a value in the z axis,
the yaw angle is not observable.

D. Contact Correction

Foot contacts provide additional constraints for legged robot
state estimation by assuming the contact foot velocity in the
world frame to be zero over the contact period. This allows
the estimator to observe the body velocity from the forward
kinematics models. In fact, this has become a core module for
many modern legged robot state estimation algorithms [10, 19,
73]. In DRIFT, we integrate the contact-inertial process model
for legged robots proposed by Hartley et al. [19]. We assume
the encoder measurements to be affected by zero-mean white
Gaussian noise:

q̃t = qt + wq
t , wq

t ∼ GP(03,1,Σ
qδ(t− t′)). (40)

1) Contact State Augmentation: When a contact point is
detected, we append it to the state using the forward kinemat-
ics and the current position estimate:

d̄lt = p̄t + R̄thp(q̃t),

where hp(·) is the forward kinematics function that maps the
encoder measurements to the foot position in the body frame.
The corresponding covariance can be augmented using

P new
tk

= FtkPtkF
T
tk

+Gtk Cov(w
q
tk
)GT

tk
,

Ftk =


I 0 0
0 I 0
0 0 I
0 0 I

 , Gtk =


0
0
0

R̄tkJp(q̃tk),


where Jp(·) is the Jacobian of hp(·).

The augmented contact state remains in the state throughout
the contact phase. When the contact constraint breaks (i.e.,
when the foot is lifted), the contact state is marginalized via

X̄new
tk

= MX̄tk , P̄
new
tk

= MP̄tkM
T,M =

I 0 0 0
0 I 0 0
0 0 I 0

 .

(41)

2) Correction Model: Once the foot enters the contact
phase, the augmented contact position follows (24) in the prop-
agation step. When a new encoder measurement is obtained,
the right-invariant correction model is given by

Ytk = X−1
tk

b+ Vtk
hp(q̃tk)

0
1
−1

 =


RT

tk
−RT

tk
vtk −RT

tk
ptk −RT

tk
dtk

0 1 0 0
0 0 1 0
0 0 0 1




0
0
1
−1


+

Jp(q̃tk)wq
tk

0
0

 ,

The linearized measurement matrix H and the noise matrix N
are as follows.

H =
[
0 0 −I I

]
,

N = R̄tkJp(q̃tk) Cov(w
q
tk
)Jp(q̃tk)

TR̄T
tk
.

E. Contact Estimator

The contact correction model provides a means to correct
the predicted state reliably. However, obtaining reliable contact
estimation is often challenging, and false contact detection
can introduce additional biases into the system. Moreover, for
some low-cost legged robots, foot contact sensors are often
not readily available. In the spirit of making the proposed
framework more generalizable to different robotic platforms,
we propose an additional contact detection module for robots
without dedicated contact sensors [27].

The proposed contact estimator is a self-supervised
lightweight neural network that only takes measurements from
an IMU and joint encoders as input. The neural network can
operate at 830Hz on an NVIDIA Jetson AGX Xavier, which
can be easily attached to existing robots.
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1) Contact State Representation: To design the network,
we define our contact state C as a vector of binary values:

c =
[
cRF cLF cRH cLH

]
, for quadruped robots

c =
[
cR cL

]
, for bipedal robots

where cl ∈ {0, 1} for each leg l, with 1 indicate a firm contact
and 0 as no contact.

Depending on the robot’s motion, the contact states can have
a finite set of combinations, from all feet on the ground to
all in the air. As a result, we can address the problem using
a classification framework. That is, for each timestamp, we
estimate which foot configurations are posed by the robot. In
order to follow typical classification pipelines, we map our
contact state vector c to an integer S by treating c as a binary
value and using binary-to-decimal conversion as the function.
For quadruped robot, S ∈ {0, 1, . . . , 15}, and for bipedal, S ∈
{0, 1, 2, 3}.

2) Input Data: The contact estimator depends
solely on proprioceptive measurements, including joint
encoders, IMU, and kinematics. For a synchronized
time n, we concatenated the above measurements as
zn =

[
qn q̇n an ωn dln ḋln

]
. In order for

the network to incorporate temporal information, we
append previous w − 1 measurements to the current data:
Dn =

[
zTn−w zTn−w+1 . . . zTn

]T
. Therefore, at each time

n, the network takes in a 2D matrix Dn and estimates the
current contact configuration Sn.

3) Network Structure: The network comprises 2 convo-
lutional blocks and 3 fully connected layers. Each convolu-
tional block consists of 2 one-dimensional convolutions and a
one-dimensional max pooling. We choose a one-dimensional
kernel to improve efficiency and reduce memory usage. For
nonlinearity, we employ ReLU as the activation function.
To prevent the network from overfitting, we add a dropout
mechanism at the end of the second convolutional block.

With the deep features extracted from the convolutional
blocks, the fully connected layers convert them into the
contact configuration Sn. Again, to prevent the network from
overfitting, we employ dropout mechanisms for the first 2 fully
connected layers. Finally, the cross-entropy loss is applied for
the classification task:

L(Pi) = − log
exp (Pi)∑
j exp (Pj)

, (42)

where Pj is the probability output from the network of state
j, and Pi is the probability of the ground truth state.

F. Gyro Filter
Low-cost IMUs can deteriorate performance. This is espe-

cially worse for states that are not observable, such as the yaw
angle. To mitigate this issue, we propose an additional gyro
filter that fuses angular velocity measurements from different
sources, such as additional IMUs or kinematic models. The
gyro filter is a linear Kalman filter, with its state defined as:

x :=
[
ωT bgT

]T
, (43)

where ω is a 3-vector representing the angular velocity in the
base IMU frame, and bg denotes the corresponding biases.

1) Propagation: In the propagation step, we assume the
measurement biases to be slowing-varying quantities, which
remain the same between two timestamps. As a result, we
can formulate an integration model by taking the differences
between two consecutive measurements and canceling out the
biases as:

xk+1 = xk +

[
ω̃α
k+1 − ω̃α

k ,
03×1

]
, Pk = Pk +Qk. (44)

Here, ω̃α denotes the angular velocity measurements from
one sensing source, Pk is the filter covariance, and Qk is the
process noise covariance.

2) Correction: A second source of angular velocity mea-
surements, ω̃β , can be used to correct the filter using a linear
measurement model:

ω̃β = Hx.

The corresponding H matrix is
[
I3×3 I3×3

]
if the mea-

surement is biased, and
[
I3×3 03×3

]
if the measurement is

unbiased. With this model, the filter can be corrected following
the standard EKF correction algorithm [2].

VI. EXPERIMENTAL RESULTS

A. Contact Estimation

To train the proposed contact estimator, we create open-
source contact data sets using an MIT Mini Cheetah
robot [137]. We record all proprioceptive sensor measure-
ments, including joint encoders data, foot position and ve-
locities, IMU measurements, and estimated joint torques from
an MIT controller [138]. All data are upsampled to 1000Hz
to match the IMU frequency. The data sets are created over
8 different terrains, including asphalt roads, concrete, forest,
grass, middle pebbles, small pebbles, rock road, and sidewalks.
In addition to the above terrains, several sequences of the
robot walking in the air (i.e., not having contact with the
ground while operating the same gait.) are recorded to provide
negative examples to the network. We collect around 1,000,000
data points and reserve some sequences for state estimation
tests. The rest of the data sets are separated into testing,
validation, and training sets with the ratio of 15%, 15%, and
70%. Fig. 3 shows examples of the different terrain types in
the contact data sets.

The ground truth labels are generated using an offline
algorithm, which takes the robot’s foot height in the hip frame
as input. The algorithm applies a low-pass filter and uses
future and past data points around the current time stamp
to extract local minima and maxima. Moreover, we observe
a bouncing effect on the robot’s foot upon touchdown after
inspecting slow-motion videos of Mini Cheetah’s walking
patterns. The bouncing results in a sudden change of foot
height in the signal, causing false positives which can be
removed by applying the low-pass filter.

We present the accuracy, false positive rate (FPR), and
false negative rate (FNR) of the proposed method against
other baselines. For baselines, we implement a model-based
approach [83–85], where the estimated ground reaction force
(GRF) is computed via the general equation of motion with
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Fig. 3. Left: The configuration of an MIT Mini Cheetah robot for contact data collection. Right: Different terrain types in the contact data set.

TABLE I
ACCURACY COMPARISON AGAINST BASELINES.

Sequence Method % Accuracy % False Positive Rate % False Negative Rate
Leg RF Leg LF Leg RH Leg LH Leg Avg Leg Avg Leg Avg

Concrete Test Sequence
GRF Thresholding 73.43 70.02 71.69 70.04 71.30 37.07 13.24

Gait Cycle 85.66 84.98 84.68 85.11 85.11 22.95 0.00
Proposed Method 98.34 97.87 97.95 98.56 98.18 1.45 2.51

Grass Test Sequence
GRF Thresholding 82.55 78.93 84.62 82.48 82.14 26.87 0.63

Gait Cycle 92.41 92.38 91.04 90.55 91.59 10.95 3.53
Proposed Method 98.08 97.57 97.73 97.73 97.78 2.35 1.98

Forest Test Sequence
GRF Thresholding 80.99 80.09 82.75 83.24 81.77 26.54 1.84

Gait Cycle 83.03 82.56 84.44 84.28 83.58 24.71 0.08
Proposed Method 97.05 96.62 97.24 97.40 97.08 2.82 3.12

a low-pass filter. A fixed threshold is set to the estimated
GRF to detect the contact events. We would like to highlight
that because there is no direct access to the motor current
on the Mini Cheetah robot, we use the torque command
from the controller to approximate the actual torque on the
actuators. We denote this method as GRF thresholding. In
addition, we also obtain the gait cycle command from the
MIT controller [138] to serve as a second contact estimation
baseline.

Table I lists the accuracy, FPR, and FNR of the compared
methods on three test sequences. We can see that the proposed
method achieves the highest accuracy across all sequences and
the GRF thresholding has the worst performance. Although the
baselines obtain slightly lower FNRs, our method maintains
significantly lower FPRs. Lower FPR is crucial for state
estimation tasks as false positive contact events can introduce
biased measurements into the system.

B. Legged Robot

We present the state estimation results using DRIFT with
the proposed contact estimator for the Mini Cheetah robot. The
robot walks on an outdoor grassy field, where we use a motion
capture system to obtain the ground truth pose. We deploy the
proposed contact estimator, as well as the two baseline contact
estimation methods with DRIFT. Fig. 4 shows the estimated
trajectory. Qualitatively, DRIFT with the proposed contact
estimator produces a trajectory closer to the ground truth. In
addition, the two baseline methods produce extra height (z)
drifts. We argue this is the result of the high false positive rates

of the baseline methods. This experiment confirms DRIFT’s
support for accurate legged robot state estimation. Moreover,
the contact estimation module allows robots without contact
sensors, such as the MIT Mini Cheetah, to obtain reliable
contact estimation results, which are essential to contact-aided
state estimation algorithms.

C. Indoor Wheeled Robot

For indoor applications, we deploy DRIFT on a Fetch robot.
A picture of the Fetch robot is shown in Fig. 5. Fetch is
equipped with a low-cost IMU and wheel encoders on each
wheel, which we use as the input to DRIFT. We collected data
sets in a lab environment, where Fetch drove on a polished
concrete surface for several sequences. We obtained the ground
truth poses from a motion capture system. We additionally
implement a MEKF [43] to serve as a baseline algorithm. Both
DRIFT and MEKF take only IMU and encoder measurements
as input and estimate the 6D pose of the robot. The low-
cost IMU on Fetch can cause the unobservable yaw angle to
degrade and further reduce the accuracy of the overall state
estimation. As a result, we implemented an additional gyro
filter described in Sec. V-F to fuse the yaw angular velocity
measurement from the IMU with the encoder measurements.

Fig. 6 shows a top-down view of the estimated trajectory
on the 01_square sequence. We observe that because of the
inaccurate yaw angular velocity measurements, both DRIFT
and MEKF experience significant drift after turning. However,
with the help of the gyro filter, we can obtain a much better
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Fig. 4. The estimated trajectories from DRIFT using different contact estimation methods on the Mini Cheetah data set. The robot walks on a grassy field
with a motion capture system, which is used for ground truth capturing. With the proposed contact estimator, DRIFT produces the best trajectory. Contrarily,
the two baseline methods introduce significant drift in the height (z) axis. This figure is generated with the aid of the Python package evo [139].

TABLE II
THE RMSE OF RELATIVE POSE ERROR (RPE) FOR FETCH. WE REPORT THE RPE IN THE UNIT OF DRIFT PER METER.

01˙square 02˙um 03˙eight 04˙random 05˙right˙turn 06˙left˙turn 07˙origin Avg Std

Trajectory 10.59 14.15 11.61 38.91 15.64 22.29 11.26 17.78 N/ALength (m)

Duration (sec) 43.720 49.62 34.62 99.06 39.72 51.71 46.68 52.16 N/A

MEKF [43] Trans. (m/m) 0.1012 0.0634 0.0855 0.0990 0.0853 0.0435 0.1126 0.0844 0.0182
Rot. (°/m) 1.0555 5.5752 3.8387 6.9809 3.9911 1.6304 2.4502 3.6460 1.1016

DRIFT Trans. (m/m) 0.0688 0.0587 0.0629 0.0863 0.0857 0.0436 0.0786 0.0692 0.0156
Rot. (°/m) 1.9766 5.3704 3.6134 6.6857 3.6606 1.5580 2.4741 3.6198 1.8587

DRIFT Trans. (m/m) 0.0565 0.0585 0.0566 0.0801 0.0613 0.0438 0.0558 0.0590 0.0127
(Gyro Filter) Rot. (°/m) 1.5723 5.3865 3.8561 6.7959 1.9193 1.9246 3.4866 3.5631 1.2172

Fig. 5. A Fetch robot used in the indoor experiments. The figure shows the
robot at the Department of Naval Architecture and Marine Engineering on
the University of Michigan campus. Fetch is a differential drive robot that is
commonly used for indoor service robot research.

trajectory estimation. In addition, we notice that the estimated
trajectory from DRIFT is much smoother than MEKF.

Since DRIFT is an odometry framework instead of a full
SLAM system, we follow Sturm et al. [140] and report the
root-mean-square error (RMSE) of the Relative Pose Error
(RPE), in the unit of drift per meter in Table II. DRIFT per-
forms consistently better than the baseline. With the aid of the
gyro filter, the position estimation is further improved, which
likely results from a more accurate yaw angle estimation.

Fig. 6. The bird’s-eye view of the estimated trajectory on the 01_square
sequence in the Fetch data set. Overall, the estimated trajectory from DRIFT
is smoother than MEKF. Among them, DRIFT with the gyro filter has the
best performance.

D. Outdoor Wheeled Robot

We deploy DRIFT on a Clearpath Robotics Husky robot.
Husky is a four-wheeled differential-drive robot, as shown in
Fig. 1. The robot is equipped with two VectorNav VN-100
IMUs and wheel encoders on each side. We conducted both
short and long-horizon experiments using the Husky robot.
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TABLE III
THE RMSE OF RELATIVE POSE ERROR (RPE) FOR HUSKY SHORT-HORIZON EXPERIMENT. WE REPORT THE RPE IN THE UNIT OF DRIFT PER METER.

1˙rectangle 2˙batman 3˙broken˙cat 4˙um 5˙type˙z 6˙rocker 7˙peace 8˙cheetah 9˙m Avg Std

Trajectory 20.56 38.47 90.43 39.11 59.89 39.46 40.56 50.37 63.72 49.17 N/ALength (m)

Duration (sec) 49.78 77.92 154.57 67.09 90.48 67.49 66.50 92.01 100.07 85.10 N/A

MEKF [43] Trans. (m/m) 0.0477 0.0812 0.1139 0.0625 0.0652 0.0680 0.0749 0.0829 0.0755 0.0747 0.0384
Rot. (°/m) 1.3738 4.8355 2.5033 1.6061 1.9539 1.6396 1.4865 1.6416 1.3962 2.0485 1.0650

DRIFT Trans. (m/m) 0.0482 0.0781 0.0881 0.0564 0.0678 0.0627 0.0728 0.0817 0.0755 0.0701 0.0351
Rot. (°/m) 1.0152 4.8559 1.7097 1.3381 1.3089 1.3126 1.1606 1.6321 0.8657 1.6888 1.2657

Fig. 7. Husky long-horizon experiment. The robot starts and ends at the
bottom right corner. While being purely proprioceptive, DRIFT can obtain
accurate estimates after 3 kilometers of operation.

The short-horizon data were collected on an outdoor grassy
field with a motion capture system, which we used to obtain
ground truth poses. For the long-horizon experiment, we drove
the robot on the sidewalk for 55 minutes. The total trajectory
path is around 3 kilometers. Since no motion capture system
is possible for such large-scale experiments, we used the GPS
signals as a proxy for the ground truth trajectory. To better
assess the performance of DRIFT, we again used a MEKF [43]
as the baseline algorithm.

Table III reports the RPE of the short-horizon experiment.
On average, DRIFT performs better than the MEKF. This is
expected as both the state-transition matrix A and linearized
measurement matrix H of the InEKF are independent of
the estimated states, while the corresponding matrices in the
MEKF depend on the estimated states.

The benefit of using InEKF becomes even more obvious in
long-horizon operations. Fig. 1 and 7 show the bird’s-eye view
of the estimated trajectory for the long-horizon experiment.
We can see DRIFT performs significantly better than MEKF,
with the final drift in the xy plane to be 71.41m and 166.40m,
respectively. We highlight that DRIFT uses proprioceptive data
only. This demonstrates DRIFT’s capability of being a reliable
odometry source for visual-SLAM systems in perceptually
degraded environments, even for long-horizon operations.

We also compare the estimated velocity in the world frame

Fig. 8. The velocity estimated from DRIFT overlapped with the ground truth
velocity for the 9_M sequence. The estimated velocity converges to the ground
truth velocity, which agrees with the observability analysis in Sec. V.

Fig. 9. The Polaris MRZR from the Neya Systems. The full-size military
vehicle was tested in an off-road forest area. The environment was featureless
and the ground was covered in leaves.

with the ground truth velocity in Fig. 8. The ground truth
velocity is obtained by differentiating the ground truth pose
from the motion capture system. We see the estimated ve-
locity converges to the true velocity, which agrees with the
observability analysis in Sec. V.

E. Off-road Vehicle

DRIFT also supports full-size vehicles with a single shaft
encoder. We evaluate DRIFT on data gathered with the support
of Neya Systems from their full-size military test vehicle,
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Fig. 10. Left: 1_follow. Right: 2_leader_follow. Bird’s-eye views of two sequences from the off-road data set. The data set was collected using
a full-size military test vehicle in a featureless forest area. Qualitatively, we see DRIFT outperforms MEKF in both sequences. Since drift only relies on
proprioceptive measurements, it can serve as a robust odometry source for modern SLAM systems in such featureless environments.

the Polaris MRZR. The data was collected with support from
Neya Systems at two of their off-road test facilities. As shown
in Fig. 9, the test facility is a featureless forest area with
leafy ground. In this experiment, we obtain GPS signals as
approximations to the ground truth positions.

Compared to a motion capture system, GPS provides less
accurate positional signals. As a result, we compute the final
drift and drift percentage in Table IV instead of the RPE. We
define the drift percentage as Final Drift/Trajectory Length.
From the table, we see that DRIFT achieves low drift percent-
ages across the three sequences and outperforms the MEKF.

Fig. 10 shows the bird’s-eye view of two off-road sequences,
with trajectory lengths of 1.48 km and 1.26 km. DRIFT
performs significantly better than MEKF in both sequences.
This experiment demonstrates that with only an IMU and shaft
encoder as inputs, DRIFT can produce highly accurate odom-
etry results for full-size vehicles in off-road environments.
These off-road environments are often featureless or with
repetitive features. Since DRIFT only relies on proprioceptive
measurements, it can serve as a reliable odometry source for
perception systems in such scenarios.

F. Marine Robot

For marine robots, ground-reference velocity can be ob-
tained via a DVL. The DVL is an acoustic sensor that
emits directional acoustic beams to the seabed. The seabed-
referenced velocity is then computed using the Doppler effect
of the reflected acoustic signals. This enables us to correct the
predicted state using the velocity correction method described
in Sec. V-C.

To verify the efficacy of the proposed framework on marine
robots, we set up experiments in an open-sourced marine
simulation software, Stonefish [141]. An IQUA Robotics
Girona500 Autonomous Underwater Vehicle (AUV) was sim-
ulated with an IMU and a DVL attached to the robot, as
shown in Fig. 11. The sensor data is corrupted by unbiased
Gaussian noises. We used the noise parameters from the
VectorNav VN-100 IMU manual to assign the simulation noise
parameters. Specifically, we applied σ = ρ ·

√
fs to recover the

standard deviation, σ, from the noise density, ρ, and operating
frequency, fs. Table V lists the noise parameters used in the
simulation. We set the IMU and DVL frequencies to 200Hz
and 20Hz.

Fig. 11 shows the estimated trajectories from the underwater
data set. Qualitatively, we see both DRIFT and MEKF perform
well on this sequence. In particular, DRIFT performs slightly
better in position estimation in the x and y axes, as well as
the roll and pitch estimation. Moreover, the roll and pitch
estimations converge to the true values after a perturbation
around 36 sec, which agrees with our observability analysis in
Sec. V-C.

G. Runtime Analysis

We perform runtime evaluations using a personal laptop
with an Intel i5-11400H CPU and an NVIDIA Jetson AGX
Xavier (CPU). The Jetson AGX Xavier is commonly used
by many robotic platforms. We record the processing time
for every propagation and correction method in the InEKF
filter and the gyro filter, as presented in Table VI. DRIFT
can operate at an extremely high frequency using CPU-only
computation, even on the resourced-constrained Jetson AGX
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TABLE IV
FINAL DRIFT AND DRIFT PERCENTAGE OF THE OFF-ROAD VEHICLE DATA SET, WHERE THE FULL-SIZE VEHICLE OPERATES IN A FOREST AREA FOR MORE

THAN 1 KILOMETER. THE DRIFT PERCENTAGE IS COMPUTED BY (FINAL DRIFT)/(TRAJECTORY LENGTH).

1˙follow 2˙leader˙follow 3˙long˙run Avg

Trajectory 1481.9 1264.0 1785.4 1510.4Length (m)

Duration (sec) 317.0 424.7 605.8 449.2

MEKF [43] Final Drift (m) 187.4 29.6 392.1 203.0
Drift Percentage (%) 12.7 2.3 22.0 12.3

DRIFT Final Drift (m) 30.2 25.8 97.3 51.1
Drift Percentage (%) 2.0 2.0 5.5 3.18

Fig. 11. Top Left: A Girona500 AUV simulated in the Stonefish simulator [141]. Bottom Left: The 3D estimated trajectories from the underwater data set.
Top Right: The estimated trajectories projected to the x, y, and z axes. From the plots, we see DRIFT performs slightly better than MEKF. Bottom Right:
The estimated roll, pitch, and yaw angles. We observe the roll and pitch estimations converge to the true values after a perturbation around 36 sec.

TABLE V
NOISE PARAMETERS USED IN THE UNDERWATER SIMULATION.

Measurement Type Noise Parameter

Angular Velocity 0.0035 °/sec/
√
Hz

Linear Acceleration 0.0014 m/sec/
√
Hz

DVL Sensor 0.02626 m/sec

Xavier. For the optional contact estimator, the inference speed
on an NVIDIA RTX 3090 GPU is approximately 1100 Hz,
and the inference speed on a Jetson AGX Xavier (GPU) is
around 830 Hz after TensorRT optimization.

VII. DISCUSSION AND FUTURE WORK

One limitation of DRIFT is the assumption of nonholonomic
constraints. These constraints can be detached from the robot’s
actual behavior. Learning such constraints provides a way to

TABLE VI
RUNTIME EVALUATION OVER DATASETS ON A LAPTOP CPU AND AN

NVIDIA JETSON AGX XAVIER. FOR THE JETSON AGX XAVIER, ALL
COMPUTATIONS ARE OPERATED ON THE CPU ONLY.

i5-11400H AGX Xavier (CPU)

Unit: µs mean std mean std

InEKF
propagation 11.33 4.00 18.35 4.19
propagation with contact 10.32 4.76 22.56 7.21
velocity correction 9.91 4.80 18.46 6.66
contact correction 17.46 9.78 29.39 13.07
Gyro Filter
propagation 2.57 3.46 3.96 2.28
correction 2.85 2.89 4.64 4.40

use sensory inputs instead of assumptions [27, 142, 143].
Moreover, the nonholonomic constraints are violated when
the robot drifts. Slip detection and friction estimation are
challenging and necessary tasks for robot state estimation [99].
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Instead of relying on the nonholonomic assumption, marine
robots can obtain ground-referenced velocity measurements
from a DVL. However, it is worth noticing that a reliable
velocity measurement requires a sufficient number of emitted
beams to have a line of sights on the seabed, known as bottom-
lock [123]. If the robot operates at an extreme roll and pitch
angle, or if the robot is too far away from the seabed, the
bottom-lock might be lost. A typical DVL can obtain bottom-
lock for ranges up to 500 m, depending on the frequency of
the sensor [144]. In this work, however, we assumed the DVL
can always obtain the bottom-lock.

Lastly, DRIFT is a real-time dead-reckoning system. While
dead-reckoning might be sufficient for some applications,
in many cases it can not replace a localization or SLAM
system, where global consistency is the objective. As a result,
we position DRIFT as an odometry module of a perception
system or a dead-reckoning system for applications that do not
require global consistency. A natural next step will then be to
incorporate DRIFT into a visual SLAM system for real-time
globally consistent state estimation.

VIII. CONCLUSION

We developed DRIFT, an open-source, real-time propriocep-
tive state estimator for multiple robotic platforms. DRIFT is
based on the invariant Kalman filtering, leading to significantly
better consistency in robot state estimation tasks. Optionally,
DRIFT provides two additional modules, a contact estimator
and a gyro filter, to assist operations on low-cost robots. We
evaluate DRIFT using various robotic platforms with real-
world experiments, including a legged robot, an indoor service
robot, a field robot, and a full-size vehicle. Additionally,
we report simulation results of an underwater vehicle. These
experiments verify DRIFT’s capability of being a reliable
odometry source, even for long-horizon operations. Future
directions include extending the framework to support a more
general equivariant filter [60, 64], broader incorporation with
symmetry-preserving perception and control algorithms [13],
and incorporating DRIFT into a more comprehensive localiza-
tion system for global consistency.
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