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Abstract

We investigate the interplay of generalized global symmetries in 241 dimensions
by introducing a lattice model that couples a Zy clock model to a Zy gauge theory
via a topological interaction. This coupling binds the charges of one symmetry to
the disorder operators of the other, and when these composite objects condense, they
give rise to emergent generalized symmetries with mixed 't Hooft anomalies. These
anomalies result in phases with ordinary symmetry breaking, topological order, and
symmetry-protected topological (SPT) order, where the different types of order are not
independent but intimately related. We further explore the gapped boundary states
of these exotic phases and develop theories for phase transitions between them. Addi-
tionally, we extend our lattice model to incorporate a non-invertible global symmetry,
which can be spontaneously broken, leading to domain walls with non-trivial fusion

rules.
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1 Introduction

Symmetry plays an fundamental role in physics and particularly in condensed matter physics.
In the conventional Landau theory of phase transitions, phases of matter are classified by
the global symmetries they spontaneously break. On the other hand, symmetry-protected
topological phases (SPTs) are characterized by their nontrivial response to probes of global

symmetries or by the 't Hooft anomalies of their boundary states [1-6].

Recent developments have expanded the concept of global symmetry in several ways,
thus widening our perspective on how to characterize phases of matter [7—10]. While an
ordinary global symmetry acts on local operators, a ¢-form global symmetry acts on operators
supported on g-dimensional objects. Using this terminology, an ordinary global symmetry
is a zero-form symmetry. We will be especially interested in one-form global symmetries,
which act on operators defined on noncontractible loops, since these symmetries can be used
to characterize topologically ordered phases [11, 12]. Indeed, the braiding of two Abelian
anyons in (2+1)d results in a phase factor, which can be interpreted as resulting from the
action of a one-form symmetry by the worldline of one anyon on another. A phase with
Abelian topological order may then be thought of as “spontaneously” breaking a discrete
one-form global symmetry in the sense that the symmetry is respected by the low energy
effective action (or Hamiltonian) but not by a given ground state'. We emphasize that this
one-form symmetry is an emergent infrared (IR) symmetry in the usual condensed matter

setting, but once it emerges, it is extremely robust [14].

A distinct generalization of symmetry that has garnered much attention recently is non-
invertible symmetry [15, 16]. Conventional symmetry operators are unitary (or antiunitary)
and thus have inverses. Recently, it has been argued that topological operators that do
not necessarily have inverses should be viewed as symmetry operators [17, 18]. While or-
dinary global symmetries are characterized mathematically by groups, symmetry operators
for non-invertible symmetries can have multiple fusion channels. A flurry of recent work
has introduced many examples of field theories [19-22] and lattice models [23-25] with non-

invertible symmetries, demonstrating that these symmetries can lead to novel SPTs [26, 27]

'For ordinary zero-form global symmetries, the precise definition of spontaneous symmetry breaking is
that upon coupling to a local external symmetry-breaking field h(z), the order parameter remains nonzero
if we take the thermodynamic limit and then h — 0. A analogue of this criterion does not exist for higher-
form symmetries because the observables are non-local. However, a spontaneously broken one-form global
symmetry can be defined as the condition that the correlators of Wilson operators on noncontractible loops
obey clustering. A well-known example is the Polyakov loop used to diagnose the thermal phase transition

from a confined to a deconfined phase of a pure gauge theory [13].



and intricate phase diagrams with exotic symmetry-breaking patterns [28-30].

Experience with ordinary global symmetries suggests that the interplay of different sym-
metries can give rise to rich phase diagrams with a variety of interesting phases. In particular,
the concept of intertwined order has been invoked to understand general principles at play
in the complex phase diagrams of correlated electronic systems [31]. The idea is that the dif-
ferent orders in a complex phase diagram can arise from an underlying microscopic primary
state. A paradigmatic example of a possible parent state is a pair density wave supercon-
ductor [32], which spontaneously breaks U(1) particle number conservation and translation

symmetry, which hosts several ordered states.

We therefore should expect that a rich set of physics to arise from models with an interplay
of generalized global symmetries. In this work, we develop such models with intertwined
generalized symmetries. One way in which generalized symmetries can be intertwined is
that they can form a higher-group symmetry [33, 34], but we take a different approach here.
With some inspiration from a previous work of the authors [35], our starting point is a 3d
Euclidean lattice model consisting of a Zy clock model coupled to a Zx gauge theory (defined
on dual lattices) by a topological term rather than by minimal coupling”. This topological
coupling is analogous to the theta term in (3+1)d gauge theories, which gives magnetic
monopoles an electric charge—a phenomenon known as the Witten effect [36]. Similarly, our
(24+1)d topological interaction binds vortices of the spin model to an electric charge of the
gauge theory, and the magnetic monopoles of the gauge theory become bound to the spins.
Different combinations of these composite operators can condense, leading to a rich phase
diagram with a variety of interesting phases. Using duality arguments, we can deduce much

of this phase diagram and the physics of the phases in the model.

One class of phases that arise in this model are SPTs protected by the Zy zero-form and
Zy one-form global symmetries. We denote a Zy g-form global symmetry by Zg\?) so that
the symmetry protecting the SPTs of this type is G = 253) X Zg\l,). These SPT phases are

characterized in the continuum by the response,

1N 1N
SSPT[A/JJB,U,I/] = 2—71_]9/14/\3 = 4—p/d3l’€w,)\z4“ B,,)\, (11)

™

where A, is a Zy one-form background gauge field, B, is a Zy two-form background gauge
field, and p € Z is a parameter characterizing the SPT phase. A lattice model for an SPT of
this type was first described for N =2 and p = 1 on the triangular lattice in Ref. [37]. For

a given N, an SPT with each possible value of p is realized in a phase of the lattice model.

2In this model the Zy global symmetry of the clock model is not gauged and the Zy local symmetry of
the gauge theory is not Higgsed.



Our lattice model thus serves as a microscopic model for every SPT phase with a response
of the form in Eq. (1.1), thus providing a versatile platform to study these phases and their
phase transitions.

Our lattice model also admits more intricate phases characterized by an effective field
theory that is a gauged version of Eq. (1.1), meaning that A, and B, are both promoted
to fluctuating gauge fields. By the correspondence between SPTs and topologically ordered
states [38], these phases are symmetry enriched topological states (SETs) that have topolog-
ical order, but there is some additional symmetry breaking of the ordinary global symmetry.
These phases are generated by simultaneously condensing bound states of local operators
with spin charge N and magnetic charge p and loop operators with electric charge N and
vorticity p, which is reminiscent of the physics of oblique confining phases in (3+1)d gauge
theories [39-41], so we refer to this class of (24-1)d phases as oblique phases. We demonstrate
that for L = ged(N,p) > 1, the G = Zg\?) X Zg\l,) symmetry has mixed 't Hooft anomalies with
emergent generalized symmetries, resulting in a breaking of this symmetry to a nontrivial
subgroup, H = Zg\?} . X Zg} 1> giving rise to both ordinary symmetry breaking and topologi-
cal order. Furthermore, the unbroken subgroup H has a nontrivial response to background

fields, signaling SPT order for this symmetry.

To emphasize the new features of our lattice model, let us contrast with another physical
system that has both ordinary symmetry breaking and topological order. For example,
fractional quantum Hall systems can certainly host broken symmetry states with nematic
order that coexists with topological order [42, 43]. However, the symmetry structure of the
systems we are studying here are more intricate. The physics described above for an oblique
phase is representative of the interplay of the zero-form and one-form symmetries in our
lattice model more generally. The patterns of symmetry breaking for the two symmetries
are not independent and do not merely coexist. For any phase of our lattice model, if the
Zy zero-form symmetry is spontaneously broken to a nontrivial subgroup, the Zy one-form
symmetry is also broken to the same subgroup. The remaining unbroken zero-form and one-
form symmetries additionally have mixed SPT order. These features demonstrate that the
symmetries are not independent but indeed have a special interplay throughout the phase

diagram because of the way in which they are coupled in the lattice model.

For systems with an open boundary, for every SPT of the form in Eq. (1.1), preserving
the zero-form and one-form symmetries inevitably leads to boundary modes. The one-
form symmetry cannot be spontaneously broken along the (1+1)d boundary, so any gapped
boundary state must necessarily break the zero-form symmetry spontaneously. We develop

the precise criteria the boundary theory must satisfy to cancel the 't Hooft anomaly of



the bulk and provide examples. We also develop two different gapped boundary states for
oblique phases. One of these boundary conditions, which we refer to as an electric boundary
condition, preserves the G = ZE\?) X Zg\l,) symmetry of the bulk. This boundary condition is
consistent with the SPT order of the unbroken H = ZE\?} . X ZE&} ;, subgroup and results in the
spontaneous breaking of H at the boundary. The other gapped boundary condition, which
we call the magnetic boundary state, preserves a magnetic Zéo) X Zél) symmetry, resulting

in the spontaneous breaking of this symmetry at the boundary.

We also find possible gapless boundary states for Zg\?) X Z%) SPTs. By analyzing possible
perturbations that gap the boundary, we show that the gapless state can be interpreted as
a quantum critical point (or line) that has additional emergent symmetries. In the simplest
case, we consider the gapless boundary state of the SPT, Eq. (1.1), and add only perturba-
tions that preserve the Zg\?) X Z%) symmetry coupled to the bulk. For L = ged(N, p) > 4, our
gapless state is a quantum critical point (critical line for L > 4) where the global symmetry
is enhanced to U(1)(@ x U(1)©® x ZSS) X Zg\l,). This critical point or line then separates two

gapped phases, each of which has a different Zg\(;) symmetry that is spontaneously broken.

Finally, we consider generalizations of our Euclidean lattice model in which the parameter
O, the coefficient of the topological interaction, is promoted to a dynamical matter field
associated with an additional Zg\?) global symmetry. We refer to this new matter field as a
Zy axion in analogy with the usual axion that couples to the theta term of a gauge theory
in (34+1)d. The new (ng))axion symmetry has a mixed 't Hooft anomaly with the original
G = Zg\?) X Zg\l,) symmetry, which ensures that no phase of this lattice model is gapped and
preserves all the symmetries. An especially interesting phase occurs when the (ZES)).MOH
symmetry is spontaneously broken while the remaining G symmetry is preserved. In this
case, the domain walls for the (Zg\?))axion symmetry separate distinct G SPT states.

If we now gauge the G = 253) X Z%) symmetry of the lattice model, the domain walls
will now separate distinct oblique states characterized by different topological orders, spon-
taneous symmetry breaking, and mixed SPT orders. As with the boundary states of the
oblique phases, we must then necessarily decorate the domain walls with dynamical degrees
of freedom, which is somewhat reminiscent of the decorated domain wall construction for
SPTs [44], but here, the domain walls are decorated with a lower-dimensional state with
spontaneous symmetry breaking rather than SPT order. The physical consequence of intro-
ducing these degrees of freedom is that the domain walls no longer obey group-like fusion
rules. This generalization of our lattice model thus has a phase in which a non-invertible
symmetry is spontaneously broken. Indeed, the mixed anomaly implies that gauging G

anomalously breaks the (Zﬁ))axion symmetry, but we demonstrate that it can alternatively
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Figure 1: Depiction of the topological interaction on the lattice, Eq. (2.4). This (2+1)d analogue of the
theta term represents an interaction of the field strengths, f,, which are on plaquettes of the direct lattice,

and spin phase variations, A, which live on links of the dual lattice.

be viewed as a non-invertible symmetry. This notion of generating non-invertible symmetries

from mixed anomalies as appeared in other contexts previously [19, 21].

This paper is organized as follows. In Section 2, we introduce our lattice model and
discuss its global symmetries and phase diagram. Section 3 describes the low energy physics
and effective field theory of the oblique phases. In Section 4, we discuss the intertwined
SPT response of a generic oblique phase. Section 5 develops the phase transitions of the
bulk phases of the lattice model in more detail. We then derive possible gapped boundary
states of both the SPT state and the oblique phases in Section 6. Section 7 introduces a
Hamiltonian lattice model that realizes oblique phases as its ground states. In Section 8, we
develop gapless boundary states of the SPT states and present examples of boundary phase
transitions into other gapped boundary states. Finally, in Section 9, we study the two Zy
axion generalizations of our lattice model, one of which has mixed anomalies of generalized
symmetries in the UV, and another which has a non-invertible symmetry. In Appendix A,
we review Zy gauge fields in the continuum. In Appendix B, we find dualities of our lattice
model. In Appendix C, we derive an effective Coulomb gas action for our lattice model and
relate it to duality. Appendix D reviews the lattice version of (24+1)d BF theory and its
counterpart in the ordered phase of the clock model. Appendix E contains some of the more

technical calculations associated with the Zy axion models.



2 FEuclidean lattice model

2.1 Model

To study the interplay of zero-form and one-form global symmetries, we should use a model
that couples these symmetries together. We thus consider a model of a Zy lattice gauge
theory coupled to Zy matter on a three-dimensional cubic lattice in Euclidean spacetime?®.
However, the matter is not minimally coupled to the gauge field because this type of coupling
removes the global symmetries we are interested in examining. Instead, we place the gauge
fields a, on links of the lattice, matter fields ¢ on sites of the dual lattice (i.e., centers
of cubes on the direct lattice), and couple the matter to the gauge fields using a lattice
analogue of a topological term. This choice of model was largely inspired by previous work
of the authors [35] on the Cardy-Rabinovici model [40, 41, 48-50], a (3+1)d Zy lattice gauge
theory with an analogue of a theta term. Here, we consider a partition function in the Villain

form [51], given by

Z = / (da,de] Y G(Auny) e mem s s

{n,nps s spv '}
1 , 1
S = 12 ;(Auau — Aya, — 2ms,,)* —iN ; My Gy + 2_92 Z(AM —27s,,)?

i
tNO©

82

N Y n(RI(R) 4 D S (B — 2m, ) (B) Bty — Dy, — 2m5,0) (1),

(2.1)

where A, p(R) = ¢(R+e,) — p(R) denotes the lattice difference along the link between site
R and site R + ¢e,. The gauge field a, € R and electric particle worldlines n, € Z are on
links ¢ between sites 7, and the Dirac strings s, € Z of the monopoles live on plaquettes
P. Meanwhile, ¢ € R and n € Z live on sites R of the dual lattice, and the s, € Z are on
links £ of the dual lattice. The last term, a (2+1)d analogue of the theta term in (3+1)d, is
an interaction between each plaquette and the link on the dual lattice that intersects it (see
Figure 1).

In the way we have expressed Eq. (2.1), we have embedded the Zy gauge theory and
the Zxy matter theory into U(1) theories. Indeed, if n, = n = 0, then the action reduces to
that of U(1) gauge theory coupled to an XY model by a topological term. But the gauge

group and matter fields should still be regarded as Zy fields. By the Poisson summation

3See Refs. [45-47] for a review of lattice gauge theory.



formula, summing over n, and n introduce constraints that ¢,a, € %”Z. Hence, we can
either interpret n, and n as electric worldlines and spin operators respectively, or we can
view them as Lagrange multipliers that constrain a, and ¢ to be Zy fields.

The lattice model is compact, so there are additionally two classes of disorder opera-
tors (for a review see Ref. [52]) in this theory. The vortex currents of the spin model are
represented by

mu (1) = €un Aysy (2.2)

and are on links of the direct lattice. The monopoles of the gauge theory,

1
m(R) = _§8MV>\ Ausyz\a (23)

are on sites of the dual lattice. To elucidate the physical role of the topological term, it is

useful to express this term as

1NO©

Stopo = 55 D e (D — 27ms,) (Ajax — Asay — 275, (2.4)
r, R
iN© iN© iN©
= Z <4_7T25uu)\ AMQD Az/a)\ + Tg;w)\ Sy Sux — 7(7”# ay +m 90)) : (25)

T

The last two terms couple the vortices and monopoles to a, and ¢ just like n, and n

respectively. Thus, the topological term effectively shifts the quantum numbers to

© e
o) (0 grmom ) ) (s )20

The vortices of the spin model gain an electric charge proportional to ©, and the monopoles of
the gauge theory obtain a fractional Zy spin. This phenomenon is the analogue of the Witten
effect in (34+1)d, under which a magnetic monopole gains an electric charge proportional to
© when there is a theta term [36]. For this reason, we refer to Eq. (2.6) as the generalized
Witten effect.

2.2 Global symmetries

As mentioned previously, our model is equipped with two global symmetries, which we now
discuss more formally. There is an ordinary (i.e., zero-form) Zy global symmetry under
which ¢ transforms as

2

- (2.7)

p e+



The local operator that carries the Zy charge is
V(R) = B (2.8)

on a dual lattice site R. Under the symmetry transformation, Eq. (2.7), this operator
transforms as

V(R) = wV(R), (2.9)

where w is an Nth root of unity. There is also a Zy one-form symmetry that transforms the

gauge field as

27,
N Y

where 7, € Z and A,n, — A,n, = 0 (Le., n, is a flat connection). The gauge invariant

a, — a, + (2.10)

operator that transforms under this global symmetry is the Wilson loop,

W(T) =[] e, (2.11)
ter
which is a product over all links ¢ which define the noncontractible loop I". The one-form

global symmetry, Eq. (2.10), transforms the Wilson loop to
W(T) — wW(D), (2.12)

where w is again an Nth root of unity. As mentioned in Section 1, we will use the notation
Zg\?) to denote a Zy g-form symmetry, so our lattice model in Eq. (2.1) then has the global
symmetry G = Z(O) X Z(l).

To probe these global symmetries, it is useful to couple to background fields. The Z( )
global symmetry couples to a background field 27 A, /N where A, € Z. Similarly, the AY N
couples to a two-form field 2rB,,, /N, where B, € Z is antisymmetric in its indices. In the

presence of background fields, the partition function becomes

210 Bl = [ldaldgl 37 (@) e S Al

{nsmp, s, suv}

S:4i2Z(fW —zNZnuaH Z wy[A —zNZn

7
ZN@Z% (Wl A]) (il B]) .

872

(2.13)

10



where we have defined

oA 21 B,
wu[A] = Aup — 2ms), — 7;\[ L fulBl = Asay — Ayay, — 27, — M (2.14)
The gauge transformations for the background fields act as
2
A, — A, + A+ NN, 90—>g0+ﬁﬂ§, Sp = Su — Ny, (2.15)

2,
N )
where x,&,,N,, M, € Z. From the background fields, A, and B,,, we can define corre-

B,uu — B;w + Augu - Augu + NM,UV? a’u - au + S;w — S;W - M;wa

sponding field strengths,

Fo=AA —AA, Hyy=A,Bo+ A By, +A\B (2.16)

ns

which are antisymmetric in all their indices. On the lattice, these field strengths can take
any value (mod N). In the continuum limit, as reviewed in Appendix A, any gauge field for
a discrete symmetry must be locally flat (i.e., F,, = H,y, = 0 mod N). Since our interest is
ultimately in the continuum limit, we will require A,, and B, to be locally flat. In the next
section, we will see that coupling to probes for the global symmetries is an important tool

that will help us determine the phases and phase diagram.

2.3 Duality

Before turning to the phase diagram of our lattice model, Eq. (2.1), it is useful to determine
any non-perturbative information we can exploit to constrain the phase diagram. The model
turns out to have two kinds of duality transformations. First, we note that in the absence
of background fields, the partition function is periodic under shifts of © by integer multiples
of 2m. If we also introduce background gauge fields and perform the shift © — © + 27, the
action in Eq. (2.13) changes by

1N27 2mA 21 B,
AS = o2 Zguvk (Augo —27s,, — NM) (AyaA — Aya, — 27S,\ — N ) (2.17)

B, A,
— Zsuy,\ Ao Ayay + ZQ?TNZ €0 {3” (Su,\ + NA) + €L N Es ,\] (2.18)

— zNZ ( EW,\A B,,,\> — ZNZ (mu — Ay A,\) ay,

ZNZ 271'./4 127TB,,,\
ATNTOTN

11



The first term in the first line of Eq. (2.18) is a total lattice derivative and thus will not
contribute if we take periodic boundary conditions. The remaining terms in the first line of
Eq. (2.18) are integer multiples of 27i, so they also can be ignored. The terms in the second

line of Eq. (2.18) may be removed by correspondingly shifting

1

n—=n—m+ ——ecur A, B, nu_”””u_mu_ﬁ

N Eul/)\ AZ,A)\. (219)

Because the background fields are locally flat, Eq. (2.19) is a shift of n and n, by integers, so
such a transformation is well-defined. After the shift © — © 4 27, the only term we cannot

remove is

IN 2rA,1271B, 2w Byx
> sy -

AszﬂT N 2 N

(2.20)

Thus, although the partition function is invariant under shifting © by 27 in the absence of
background fields, it gains an additional phase factor in the presence of background fields.
Hence, we may regard shifting © by 27 as stacking a G = ZS\(])) X Zg\l,) SPT.

Next, we turn to the other duality transformation, which is analogous to Kramers-
Wannier duality. As demonstrated in Appendix C, by manipulating the partition function,
Eq. (2.13), in ways similar to Refs. [7, 53], we can find a dual theory with action,

5 %@Z@W[W—wzm dﬁT;Z(@u[c])z—iNZﬁ(RWR)
7 R

zN@ e ~
871'2 Z Euv w,u + N Z Euv (bu)\ A,uk + k/,L AI/C)\) (221)
r, R
)
+ N Z EpvA (cu BV)\ + b;w A/\) )
r, R

where we use the abbreviated notation,

2 27hy,
Gule] = Ay —2m3, = 2B b = Dyl — Ay, — 275, — L (222)
and we have defined
e_F_ (8 (), a-- S (2.23)
e g2 2 Nge 02 o
()" + <W>

The gauge field @, € R is on links of the direct lattice, and ¢ € R is on sites of the dual
lattice. We also have 1, € Z lives on links and 7 € Z on dual sites. The variables 5,,,b,, € Z

are on plaquettes while 5, ¢, € Z are on dual links. Finally, £, € Z are on links, and kelZ

12



are on dual sites. All these lattice variables are dynamical except A, and B,,, which are
probes.

The duality of Eq. (2.21) and Eq. (2.13) demonstrates that our lattice model is locally
self-dual. Indeed, Eq. (2.21) is similar to Eq. (2.13) but has two important differences.
First, the coupling constants have been modified. This mapping of coupling constants is

nicely packaged if we define the complex coupling constant 7 and the coupling ratio x to be

e 2w
- = 420 ==, 2.24
T=oo +1 Nge' K P (2.24)
Duality then maps the coupling constants as
1
S: T = ——, K — K. (2.25)
T

Secondly, a more subtle difference is that the flat background gauge fields in Eq. (2.13) are
now dynamical in Eq. (2.21), so the lattice model is dual to a gauged version of itself. This
duality is a generalization of the duality relating a Zx clock model and a Zy gauge theory
in (24+1)d.

To summarize, we have two kinds of duality transformations. The partition function
Z[r; Ay, By depends on® the complex coupling constant 7 and the background fields A,

and B,,. We then define transformations 7 and S of the partition function as

T (Z]r; Ay, B;w]) =Z[t+1; Ay, B;w] = Z|r; Ay, Buu]e_%ZT’R‘EWA A BM,

S (Z[T7 A,LM BHU]) =7 [_1/7—; A,UJ B,U«l/] - Z Z[T7 Ay, b,uy]e_%i ZT’R S (@ Butbuy A)‘).
{ap, buv}
(2.26)

where a,,,b,, € Z are locally flat dynamical Zy gauge fields while A,, B,,, € Z are locally
flat background Zy gauge fields. It is also useful to consider the continuum analogues of the

transformations & and 7. The analogous transformations for a Euclidean action .S are

T: S[A,B]—>S[A,B]+ﬂ/A/\B,
2m
N (2.27)
S: S[A,B]—>S[a,b]—|—%/(a/\B+b/\A),

where a, and b, are dynamical Zy gauge fields while A, and B, are background Zy gauge
fields. We will use both Eqgs. (2.26) and (2.27) interchangeably. The mathematical structure

4The partition function also depends on k = e/g, but we suppress that dependence since & is invariant
under 7 and S in Eq. (2.26).
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of the § and T transformations is reminiscent of that in the fractional quantum Hall effect
and (2+1)d conformal field theories [54, 55]. A similar structure also arises in (341)d lattice

gauge theory with a theta term [41].

As we demonstrate in Appendix C, we can deduce how the § and 7 transformations map
between different operators, allowing us determine what objects condense in a given phase.
The local operators are labeled (gs, ¢,n) by a spin charge ¢s and a monopole charge g,,, and
the loop operators are labeled (¢, ¢,) by an electric charge ¢, and a vorticity ¢,. Because the
dynamical spins and electric charges are multiples of NV, we note that a local operator that
can condense must have ¢, € NZ, and a loop operator that condense must have an electric

charge q. € NZ. The § and T transformations act on these objects as

1
8 : T = _;7 <Qe7Q1)) — (_Nq’l)qu/N)J (QQO) = (_NQm7QS/N)7

(2.28)
7-: TI—)T—l—l, (qe7qv) = (qe—ququ)> (QSaQM) — (qs_NQm7Qm)-

We can then place many constraints on the phase diagram using these transformations. For
example, if a certain phase has local operators with (gs, ¢,) condensed, then the image of
this phase under S will have local operators with charges (—Ngy,,,qs/N) condensed. The
phase diagram can then be deduced by acting with a series of S and T transformations on

the phases near © = 0.

2.4 Phases and phase diagram

We are now equipped to understand the phases of the model and how the phase diagram
is organized. We begin with the phase structure at © = 0, where we have a decoupled
Zy clock model and Zy gauge theory. Here, the physics is well understood. The clock
model has two phases—the ordered phase and the disordered phase. At small g, the Zy
spins condense into an ordered phase in which the Zg\?) symmetry is spontaneously broken
completely. (See Appendix D.1 for a review of the effective field theory of this phase at low
energies.) At a large g, the clock model is in a trivial disordered phase in which the vortices
condense. These two phases are separated by a single direct phase transition [56-60] at a
finite value of g, which we define as g.. This phase transition is expected to be a continuous
transition for all N except N = 3 where there is solid numerical evidence that it is weakly
first order [56, 61-63].

Next, we turn to the physics of Zy gauge theory, which may be established using duality
and our knowledge of the Zy spin model [46, 64]. The Zy gauge theory at coupling e is dual
to a gauged Zy clock model at coupling g = 27 /e N, where the gauge field coupled to the Zy
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Figure 2: The phase diagram at © = 0 for fixed k = e/g as Im(7) = 27 /Nge is varied. In this limit, the
lattice model reduces to a decoupled Zn clock model and Zy gauge theory. At large e and g, there is a trivial
phase in which the clock model is disordered and the gauge theory is confining, fully preserving the global
symmetry G = Zg\?) X ZS&). At small e and g, the clock model orders, and the gauge theory is deconfined
(and topologically ordered), breaking the full symmetry group G. Depending on the value of k = e/g, there

may be an intermediate phase in which one of Zs\(,)) or Zg\}) is broken but not the other.

matter is locally flat. The phase structure of the gauge theory can then be determined from
that of the clock model. The gauge theory also has two phases separated by a single phase
transition. Under duality, the image of the disordered phase of the clock model maps to
the deconfined phase of the gauge theory at small e. Electric wordlines condense, breaking
the Z%) symmetry, which leads to topological order of the same type as the Zy toric code.
The TQFT describing this phase is (2+1)d BF theory at level N. (See Appendix D.2 for
a review.) The image of the ordered phase of the clock model, appearing at large e, is the
confining phase. Monopoles condense in this phase, leading to a gapped trivial vacuum that
preserves the Z%) symmetry. By duality, the phase transition from this topological phase to
the confining phase occurs at e = e, = 27 /Ng., and the transition is in the same universality
) gauging).

To set up the discussion of the phase diagram for nonzero ©, it is useful to restate the

class as the clock model transition (up to global structure because of the ZS\?

structure of the phase diagram at © = 0 in terms of Kk = ¢/g and 7 = % + z']\zf—;re rather than
e and g. We then fix k and determine the phase diagram as 7 is varied along the imaginary

axis. For convenience, we define the critical ratio k. as

€c 2m Ne?
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Since we have fixed k, we should write 7 at © = 0 in terms of k,

2T 27 2TK

T = =i (2.30)

Because we also know that the spin model has a transition at g = g., we know that for fixed

k, the spin model transition at © = 0 must occur at

o 2T FKe
T = szgg =i (2.31)

The gauge theory transition will occur at the image of 75 under S,
Tg=——=1—. (2.32)

These two transitions coincide on the imaginary 7 axis only if K = k., in which case the

simultaneous transition occurs at 7 = i, the fixed point of 7 under S.

We now summarize the phase structure at © = 0 for fixed &, as depicted in Figure 2. At
large Im(7) = 27/Nge, the spin model is ordered, and the gauge theory is also deconfined.
For small Im(7), the spin model is disordered, and the gauge theory confines, giving a
completely trivial phase. There is a direct transition between these two phases only if
Kk = Ke. For k > K., there will be a single intermediate phase where the spin model orders
but the gauge theory confines. For x < k., the intermediate phase will have topological
order while the spin model is disordered. We expect these phases and transitions to extend

to a finite region for nonzero ©.

We are now ready to generalize our discussion to other phases of the lattice model. We
can immediately understand the physics near © = 27p for p € Z by acting with 77 on the
phases and transitions at © = 0. Recall that a 7 transformation is the same as stacking a
G= ZS\(;) X Zg\l,) SPT. The phases that break either the ng) or Zg\l,) (or both) at low energies
are invariant under the 77 transformation because the topological term, Eq. (2.4), is trivial
if ge is small since monopoles and vortices are suppressed in this limit. For more details, an
explicit calculation demonstrating that these phases are invariant under 7 transformations

is presented in Appendix D.3.

On the other hand, the effective action for the trivial confining/disordered phase at large
ge vanishes. Since TP stacks an SPT, the image of the trivial phase under 77 will be a

nontrivial SPT with the classical action,

P
SSPT = WZEMV/\ A,u B,,)\. (233)

r, R
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In the notation for continuum field theory, this SPT action is
N
Sepr = =L /A/\ B, (2.34)
2

where A, and B, are background Zy gauge fields. The phase diagram at © = 27p is then
the same as in Figure 2, except that the trivial G' preserving phase at © = 0 is replaced by
an SPT phase described by Eq. (2.34). Thus, every SPT protected by G = ZE\?) X Z ) with
an effective action of the form in Eq. (2.34) appears as a phase of our lattice model near
integer multiples of ©/27 and large ge. In Section 4, we will discuss the physical meaning

of this SPT response in greater detail.
A particularly interesting state arises if we act on the SPT phase, Eq. (2.34), with an S

transformation. The SPT phase, which appears are large ge and © = 27p, maps to a phase
at large ge and © = —27/p. Since this phase may be obtained by acting with S on the
SPT at © = 27p, the effective theory at © = —27/p can be obtained by gauging the SPT,
Eq. (2.33). Making the Zy gauge fields in Eq. (2.33) dynamical, we arrive at

Tip ux’ U
S = ~ Tz}; Epn Cubux + N ;; € by Ax + N Tz}; Epwx Cu Bun, (2.35)

where ¢, € Z and b,, € Z are dynamical while A, € Z and B,, € Z are background
variables. Recall that all these fields are locally flat. To make the constraint of local flatness

explicit, we introduce Lagrange multipliers £, k., &, a, € Z, giving an action of

™
S = p Z Euv Cu v T o= Z v buu (A/\k + A)x Z v Cu A v\ — A)\au + Bl/)\)

+ N ;8#1,)\ gf)A#Bl,)\ + N gﬁuw\ CNL# AJA,.

(2.36)
By an analysis similar to Appendix D, the corresponding effective field theory in the contin-
uum is
N iN N
S = Z%p/mm—/m da+B)+2—/b/\(dgo+A)+2—/a/\dA——/¢/\dB (2.37)

where ¢ is a dynamical 27 periodic scalar, a, and ¢, are dynamical U(1) one-form gauge
fields, and b, is a dynamical U(1) two-form gauge field. Here, A, and B,, are background
U(1) one-form and two-form gauge fields respectively. The 27 periodic scalar ¢ and U(1)
one-form gauge field @, are dynamical fields that constrain A, and B,, to be Zy gauge

fields.
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The phase governed by the effective field theory, Eq. (2.37), may be obtained by acting
with STP? on the trivial phase at large ge and near ©® = 0, which has condensed vortices and
monopoles. The § and 7T transformations in Eq. (2.28) show us that the condensed objects
in this phase have charges of

ST? - (qS;Qm) = (0, 1) = (N7 )
—

p),
(4e: 40) = (0,1) = (N, p),

so the condensed local operators are spin charge N and magnetic charge p while the con-

(2.38)

densed loop operators have electric charge N and vorticity p. This class of phases is analogous
to oblique confining phases of (3+1)d gauge theories in which bound states of electric and
magnetic charges condense [39-41], and thus, we will refer to this type of (2+1)d phase as
an oblique phase labeled by (N, p). We will explore the bulk physics of these phases using
the effective field theory, Eq. (2.37), in Section 3.

Using the same reasoning as above, we can then find the other phases in the phase
diagram by mapping the phases near © = 0 by a series of S and 7T transformations. The

most generic transformation is
M=THET™S - TS T™, (2.39)

where k and each n; is a nonnegative integer. If we keep « finite and take eg — oo, the
above transformation M on 7 = 0 will map to a rational value of 7 = ©/27 determined by

the finite continued fraction,

© 1

— =N — .
1

2w Ny = =

(2.40)

We can then determine the effective field theory describing each gapped phase and the con-
densed operators that give rise to it by acting with the appropriate S and T transformations.
For simplicity, we will focus on phases with eg — oo and © /27 = —1/p for p € Z, which are
described by Eq. (2.37), since the physics of other rational © /27 is qualitatively similar.

3 Oblique phases: Bulk effective field theory

Now that we have established the effective field theory in the oblique phases, we shall dedi-
cate this section to investigating the physics of this field theory, Eq. (2.37). We begin with
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establishing how the global symmetries of the lattice model, Eq. (2.1), as discussed in Sec-
tion 2.2, act in this effective field theory, Eq. (2.37). The Zg\(,)) of the microscopic theory,
Eq. (2.7), acts as

L (3.1)
YT N .
while the Zg\}) symmetry acts as
Ui
— — 3.2
a a —+ N ( )

where 7 is a flat connection, dn = 0, with quantized cycles ¢ n € 2rZ. The background field
A, probes the Zy zero-form symmetry while B, is a probe for the Zy one-form symmetry.
If we set these background fields to zero, A, = B, = 0, then we have a Z(Ll) symmetry,

where L = ged(N, p), which acts as

1 [
=(1) =(0)
& C n, (2 @ n, ( )

where 711 = dfj(® is a locally flat connection and ¢ (") € 27Z. Similarly, there is a Z(LZ)

global symmetry acting as

1
b—>b+fﬁ(2), a%a—%ﬁ(l), (3.4)

where 7 = dij(!) is a locally flat connection and § 7(?) € 27Z. However, if the background
fields A, and B, are turned on, then the Z(Ll) and Z(L2) transformations change the action,
Eq. (2.37), by

N
W A7FD 475D A da+ 7P A dgp) + ;T—L (7P AA+3Y AB).
(3.5)

On a closed manifold, the terms that do not depend on A, or B, evaluate to an integer

AS 1N (p~

“orr ) UL

multiple of 2mi. The terms with background fields can be eliminated if we take

1
i— — i 3.6

N

~ -~ 1
1))

which is allowed only if L = 1. Hence, if L > 1, the Zg) and Zg\}) symmetries have a mixed
't Hooft anomaly, and similarly, the Z(Lz) and ZS\O,) have a mixed anomaly. If L = 1, there is
no mixed anomaly.

Next, we determine the physics of an oblique phase by analyzing the allowed operators.
The analysis is similar to that of other field theories in (1+1)d and (3+1)d [7]. The physical

operators must be gauge invariant, so we first establish the gauge symmetries of Eq. (2.37).
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For now, we turn off the background fields, setting A, = B,y = 0. We consider gauge

transformations,
b— b+ d\, a—a+dyxy—p, c— c+dE, o= p—p&, (3.7)

where )\, is a U(1) one-form gauge field while & and x are 27-periodic scalars. Under
Eq. (3.7), the action in Eq. (2.37) (with A, = B, = 0) changes by

N N
AS:;—/(d)\/\dgo+d§Ada)—22—p/d)\Ad§, (3.8)
T T

which is an integer multiple of 27 on a closed manifold, so the partition function is gauge
invariant.
We can now determine the gauge invariant operators. For a loop operator involving a,

to be gauge invariant, we must attach a surface to form the operator,

Wo(T, %) = exp (2 ?{ o+ ip /E b) | (3.9)

where I' is a loop in spacetime and Y is a surface such that I' = 9%. Physically, the loop T’
is the worldline of an electric charge bound to a vortex of vorticity p/N, and the surface ¥ is
the worldsheet swept by the branch cut of the vortex. Because W, (T, 3) requires attaching
a topological surface. However, we can sometimes generate genuine loop operators from
We(I', ). Since b, is a Zy gauge field (after integrating out ¢), the operator We,(I', )9 is
a genuine loop operator if ¢ is a multiple of N since the choice of surface > will not matter

in this case—the surface is undetectable. We can thus form genuine loop operators from
W (D) = Wy(T, 8)VE, (3.10)

where L = ged(N,p). Similarly, we can construct a genuine local operator,

V(P) = exp (ﬂgom) ~ iy + i / ’ c), (3.11)
L L L Jp

where P is a point in spacetime and P’ is some other fixed reference point (at infinity, for

example). Indeed, the string attached to V(P) is invisible to all other operators, so V(P)

constitutes a genuine local order parameter. The physical interpretation of V(P) is that

there is a bound state of a Zy spin and a magnetic monopole at P, and the line operator

attached is a Dirac string of magnetic flux, which in this case is undetectable. Furthermore,

we have surface and loop operators of the form

U() = exp (1 fi b) WD) = exp <z ]g c) | (3.12)
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where ¥ is a closed surface and T is a loop. We must have W (I')Y = U(Z)" = 1 since a,
and ¢ turn ¢, and b, into Zy gauge fields. Moreover, the operator W, (I')? is trivial since it
can be opened and end on local operators, and U(X)? can similarly be opened and end on a
loop. Thus, we conclude that W,.(I')¥ = U(X)F = 1.

The line operators W, (I") and W,(I") have correlation functions
2
(Wo (D) %W, (I")%) = exp (Z % daqc Prink (T, F/)) , (3.13)

where @ (I, T7) is the linking number of loops I' and I”. These operators represent the
worldlines of particles that have trivial self-statistics but fractional mutual statistics. The
topological order realized by these loop operators results from the breaking of Zg\l,) symmetry

to Z%}L’ We then effectively obtain the topological order of a Zy/Zy,1, = Zp, toric code.

The operators V(P) and U(X) reflect the spontaneous breaking of the Zg\(;) symmetry
to ZSS} ;- The local operator V(P) is an order parameter, and the surface operators U(X)
are domain walls. When a local operator V (P) crosses a domain wall U(X), its expectation

2mi/L gince the domain walls interpolate between different vacua.

value changes by a phase e
Another point of view is to Wick rotate the action, Eq. (2.37), to Minkowski space and
perform canonical quantization. Then, the equal-time canoncial commutation relations lead
to an equivalent local operator V' and an operator U supported on all space. These two

unitary operators obey
VU =¢"tyy,  vi=Ul=1, (3.14)

which is the Zy, clock and shift algebra and results in L degenerate ground states.

To summarize, there are L = ged (N, p) genuine local operators generated by V(P), L
genuine line operators generated by W, (I"), L genuine line operators generated by W.(T'),
and L surface operators generated by U(X). The spontaneous breaking of the Zg\?) symmetry
to ZS\?} ;, contributes a factor of L to the ground state degeneracy. The topological order from
the breaking of the one-form symmetry contributes a factor of L?%* to the ground state
degeneracy, where g, is the genus of the manifold on which the theory is placed. Therefore,
the full ground state degeneracy is L?»*!. In the special case in which L = 1, the ground
state is nondegenerate and is generically a G = ZES) X Zg\l,) SPT, whose physical properties
we will discuss in more detail in Sections 4 and 6. This pattern of symmetry breaking is
consistent with our analysis of mixed 't Hooft anomalies above.

Finally, we also comment on how the Zgg) and Zg\lf) symmetries are coupled. Although

the topological order and zero-form symmetry breaking may seem independent, they are not
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because they result from the same pattern of symmetry breaking, namely Zy — Zyyr,. This
observation is true for our lattice model quite generally. Indeed, in every phase of our lattice
model, Eq. (2.1), whenever the ZE\(,)) and Z%) symmetries are both broken to a nontrivial

subgroup, they are necessarily broken to the same subgroup.

4 Intertwined response

In the following section, we will elaborate on another way in which the ZE\(,)) and Zg\l,) symime-
tries are intertwined—through the mixed SPT response of their unbroken subgroup. We can
examine response by coupling to background fields for the global symmetries. As we have
seen, the G = Zg\?) X Zg\l,) is partially broken, but there is a residual H = Zgg} . X Zg\l& , CG
subgroup, which we will find has SPT order. We will couple to background fields for the full
G symmetry since an observer in the deep UV only knows about the G global symmetry and
does not a priori know that this symmetry is broken to H. Nonetheless, with probes for the

full G symmetry, we can detect that the unbroken H subgroup has SPT order.

To demonstrate the response more formally, it is simplest to use a lattice regularization
of the effective field theory, Eq. (2.37). Recall from Eq. (2.35) that the lattice action is

TP g) i
S = W Z 6IW>\ Cp by)\ + N Zélw)\ b,ul/ A>\ + N Z 5,Lw>\ Cp Bl,)\, (41)
r, R r R r, R
where ¢, and b, are locally flat dynamical Zx one-form and two-form gauge fields respec-
tively while A, and B,,, are locally flat background Zy one-form and two-form gauge fields.

Summing over b, gives the constraint
pe, = —A, mod N. (4.2)

This constraint implies that A, is a linear combination of p and N with integer coefficients,

which implies that A, is an integer multiple of L = ged(/V, p). We then must have

2 A 2T

— —7Z 4.
N MGN/L ) ( 3)

indicating that A, is in fact probing the subgroup ZS\O,; . C ZS\?) of the symmetry. By similar

reasoning, we can also show that B, is constrained to probe Zg\lf} ;, subgroup.
This constraint, Eq. (4.3), is how the UV observer, who only knows to probe the full
ZS\?) symmetry, detects the unbroken subgroup. The partition function vanishes unless the

A, is probing the unbroken ZS\?; ;- Physically, A, represents introducing twisted boundary
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conditions (see Appendix A for a review), which is compatible with the long-ranged order

only if A, probes the unbroken subgroup of the symmetry. This restriction on allowed

configurations of A, probing the 25\9)

symmetry is analogous to the Meissner effect for a
U(1) background gauge field in a superconductor. In the superconducting state, which
spontaneously breaks a U(1) global symmetry, a background electromagnetic field probing
the U(1) symmetry is suppressed in regions where the superconducting order parameter

takes a nonzero expectation value. Here, we see that the background field A, for the ZE\(;) is

suppressed unless it probes the unbroken Zg\?} ; Symmetry.

To solve Eq. (4.3) for ¢,, we write A, = Léu, where 5# € Z, and use that there always
exists k € Z such that pk = L mod N. Multiplying Eq. (4.3) by k, we have

Le¢,=—kLC,  mod N, (4.4)
so we may write ¢, = —k 5# = —k A, /L. We then have the effective action,
k
Sresp[A B ﬂ-z ng,y)\A Bl/)\; (45>

where we recall that B, is on a plaquette of the direct lattice and A, is on an intersecting

link of the dual lattice. In continuum notation, this response is

N
Sresp|A, B] = ;W’Z / AN B. (4.6)

The coefficient of this response is an observable labeling the phase that is analogous to the
Hall conductivity. Unlike the Hall conductivity, however, Eq. (4.6) cannot be understood as
a response to local probes since the background fields probe discrete symmetries rather than
continuous symmetries. Instead, we can interpret this global response as follows. Suppose we

(1)

add a symmetry defect for the Z,’ global symmetry. Specifically, we consider a configuration

of the background field B, that introduces magnetic flux through the zy-plane such that

2m
/ Byydx dy = NJL (4.7)

In this case, the response in Eq. (4.6) reduces to

Sresp = —ik / A, dt, (4.8)

which means that a static charge of —k is induced for A,,. We find that magnetic flux induces

a ZE\?} ;, charge.
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As we reviewed in Appendix A, giving a flux to B, is the same as introducing a defect for
the one-form global symmetry. Thus, the defects (or equivalently, the symmetry operators)

for the ZS\}} ; global symmetry carry charge under the ZE\% ; global symmetry. Similarly,

domain walls for the Zg\?} ;, symmetry transform nontrivially under the Zg\lf} ;, symmetry. This
phenomenon is another manifestation of the generalized Witten effect discussed previously
in Section 2.1 for the dynamical charges. We thus see that the unbroken subgroups of the
zero-form and one-form symmetries have a nontrivial SPT response, demonstrating another

way in which these symmetries are intertwined.

5 Bulk phase transitions

5.1 Decoupled transitions at © =0

Now that we have established the physics of the gapped phases of our lattice model, Eq. (2.1),
as a result of explointing the duality transformations introduced in Section 2.3, we turn to
the phase transitions of our model. In this section, we discuss how duality also allows us to
relate the different phase transitions in the phase diagram. First, we review the transitions
at © = 0, where the Zy spin model and Zy gauge theory are decoupled, and then generalize
to other kinds of transitions. The transition for the Zy spin model in Euclidean spacetime

can be described using a field theory with action,

SepinlC; Au] = /d%(!DAAW+m<!2+u\<\4+gzv [e7¢Y + e (¢C)Y]) o)
. 5.1
+%/pA(dCI>—NA).

where ((z) is a dynamical complex scalar field that serves as an order parameter for the ZS\?)
global symmetry, A, is a background U(1) gauge field, ® is a background 27 periodic scalar,
and D,[A] = 0, —iA, is the covariant derivative. The last term in Eq. (5.1) explicitly breaks
the U(1) zero-from symmetry down to Zy. The dynamical U(1) two-form gauge field p,,, is
a Lagrange multiplier for the constraint A, = d,®/N, which turns A4, into a Zy background
gauge field that probes the ZE\O,) global symmetry. We thus think of A, as a Zy background
gauge field (see Appendix A for more details). If p is large and positive, the field theory
becomes gapped and (¢) = 0, giving the disordered phase. If p is large and negative, the
field theory is also gapped but (¢) # 0 so that the Zg\?) global symmetry is spontaneously
broken. At some critical value of u, there is a direction transition that separates these two

gapped phases [56-59]. The N = 2 transition is in the 3d Ising universality class, and the
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becomes (@) =0 (¢) =0
" o iN
Sgauge[C7 Cus B;w] = Sspin[C; C,u] + 5 cA B. (52)

27

where ( is a dynamical complex scalar field, ¢y 1s a dynamical Zy one-form gauge field, and
§Spin takes the same form as Eq. (5.1) but with different coefficients for the terms in the
action. We have also introduced a coupling 8o a Zy two-form background field B,,. The
field 5 is not gauge invariant on its own since it must be attached to a line operator of c,.
Physically, ¢ represents a magnetic monopole, and the attached string is a Dirac string of

magnetic flux.

When the monopole E condenses, the (magnetic) gauge field ¢, is Higgsed, resulting in
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the confining phase. In the phase in which ({) = 0, and the effective action is

. N
Su = — ﬁA(d@—NC)+Z—/cAB, (5.3)
2 2m
where p,, is a dynamical U(1) two-form gauge field and ¢ is a dynamical 27 periodic scalar.
Integrating out ¢ constrains p = —da, where a,, is a U(1) one-form gauge field, giving an
action of

N
SBF = 22— /C/\ (da+ B), (54)
™

which is (2+1)d BF theory coupled to a background field that probes the electric Zg\l,) Sym-
metry. A topological Zy gauge theory is left, giving us the deconfined phase. Since Eq. (5.1)
and Eq. (5.2) are related to one another by discrete gauging, their transitions will essentially
be in the same universality class, except for topological data. In particular, whether the
transition is first order or continuous will be the same for each N. Further, the critical
exponents of Eq. (5.1) and Eq. (5.2) are all the same, but the local operators allowed for

)

Eq. (5.2) must be invariant under the Zg\? gauge symmetry.

Putting Egs. (5.1) and (5.2) together, we obtain the action,

. - iN
S@:O = Sspin[c; Au] + Sgauge[Cv Cu; B;w] = Sspin[c; Au] + Sspin[c; C,u] + g / cN\ B, (55)

which captures the phases and phase transitions accessible to our lattice model, Eq. (2.13),
at © = 0 as the coupling constants e and g are varied. These transitions are represented in
Figure 3.

If © is nonzero but small enough, we expect that the phase diagram in Figure 3 will still be
valid for fixed © as e and g are varied. However, one may one wonder whether the transitions
are still in the same universality class as the © = 0 transitions (in the cases in which the
© = 0 transitions are continuous). A small, nonzero © could in principle lead to different
universality classes or first-order transitions. Determining the fate of these transitions for
small, nonzero © is beyond the scope of this work. However, the transitions at © = 0 will
map to transition curves at ©® # 0 under § and 7 transformations. These examples are
reminiscent of the duality web constructions of CFTs in (2+1)d [67-69] and (1+1)d [69, 70].
Because S and T transformations only change topological data, the images of the © = 0
transitions under § and 7 will essentially be in the same universality class. In the following
subsections, we consider some specific examples of transitions that occur in our lattice model

by examining fields theories resulting from acting with S and 7 transformations on Eq. (5.5).
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Figure 4: The phase diagram for the fi

1heory of Eq. ( (g)J .8). There are four phases: an (IV,p) oblique
(0)

phase, phases in which either Zy’ or A J{INI% r(ﬂten buzftfhe ot]her is preserved, and a trivial phase that
preserves the full symmetry Zg\,) X Z( ) I@@;e_@ represené@)&?ﬁﬂ)nopole with unit magnetic charge, and C

describes a composite operator consisting ? (;5? 7@(0) order p@i}wﬁ&er and a charge p monopole.

5.2 Transitions involving obligi{¢-and 1r(i)‘15i§111€H}p,,a7§pS

6) =0
In our first example, we act on Eq. Q%ifi With S ’? W}bere p € Z, giving an action of

S = Supn[C: ] + SopialC: ] + N/(cAb+pcAb+b/\A—|—c/\B) (5.6)

2T

where ¢ and 5 are dynamical complex scalars, ¢, and ¢, are dynamical Zy one-form gauge
fields, b,, is a dynamical Zy two-form gauge field, A, is a background Zy one-form gauge
field, and B,, is a background Zy two-form gauge field. We can simplify this action by
integrating out the gauge field b, giving the®constraint,

¢y =—pc,— A (5.7)

Using this constraint and taking {“ to its complex conjugate (i.e., ¢ — (*), we arrive at the

action,

~ - N
S = Sepin[C; cu] + Sspin[C; ey + ALl + 22—7( /c/\ B. (5.8)

At © =0, in Eq. (5.5), ¢ was the Zg\?) order parameter, and ¢ was the field for a magnetic
monopole. In Eq. (5.8), ¢ and Z represent the images of these objects under an S7TP? trans-
formation. Specifically, ¢ is now a charge 1 magnetic monopole, which must be attached to
a string of ¢,, and f is a composite of a Zg\(;) order parameter and a charge p monopole, as
signaled by its coupling to both ¢, and A,,.

We now analyze the phases captured by Eq. (5.8). In the phase where (¢) # 0 and
(CN ) =0, the gauge field ¢, is Higgsed, and the Zg\?) order parameter is uncondensed, leaving

a trivial state with confinement and no symmetry breaking.
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In the phase with (¢) = () = 0, the monopoles and Zy spins are uncondensed. The
gauge field ¢, is still deconfined, and following the same logic as in Section 5.1, we find that
this phase is described by BF theory, Eq. (5.4). Electric charges condense, and the Zgl,)

symmetry is fully broken, resulting in topological order.

If (¢) # 0 and () # 0, then ¢, is Higgsed by condensation of monopoles ¢, but conden-
sation of ¢ results in Zs\?) symmetry breaking. Although ¢ is a composite of the Zg\?) order
parameter and charge p monopoles, the simultaneous condensation of charge 1 monopoles in

this phase screens the effect of the charge p monopoles in f .

Finally, we turn to the last phase, which has (¢) = 0 but (¢) # 0. The composites of
Zy spins and charge p monopoles are condensed, leading to the (NN, p) oblique phase. Deep
within this phase, the gauge field pc, + A, obeys the constraint,

dp+pc+A=0, (5.9)

where ¢ is the phase of Q: . We can introduce a Lagrange multiplier b,, for this constraint,
giving an effective theory of
1N

N
Soblique:;_w/b/\(dSO“‘pC“‘A)‘l‘g cA (da+ B), (5.10)

where a, is a Lagrange multiplier that constrains ¢, to be a Zy gauge field. This action
matches Eq. (2.37), the effective field theory for the (IV,p) oblique phase.

All these phases and transitions captured by Eq. (5.8) are summarized in Figure 4. Note
that to pass from the oblique phase to the trivial phase, one will generically encounter an
intermediate phase in which Zg\(,)) or Zg\l,) is broken but not the other. A direct transition
between the oblique phase and the trivial phase requires fine tuning. A similar phase diagram
appears in Ref. [71]. Indeed, for N = 2 and p = 1, Eq. (5.8) may be regarded as a continuum
version of the lattice model in Ref. [71] that has two matter fields and a strictly imposed

Gauss law.

To summarize, the field theory in Eq. (5.8) captures transitions between four gapped
phases: a trivial phase, a ZS\?) symmetry breaking phase, a topologically ordered phase with
ZE\}) broken, and the (N, p) oblique phase. The transitions between these gapped states are
driven by condensation of a magnetic monopole ¢ and/or the composite operator ¢, which
represents a bound state of a Zg\(;) order parameter and a charge p monopole. To pass from
the oblique phase to the trivial phase, one will generically encounter an intermediate phase
in which Zg\?) or ZS\}) is broken but not the other. A direct transition between the oblique
phase and the trivial phase requires fine tuning since these two phases are driven by the

condensation of operators that are mutually local.
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Figure 5: The phases and transitions described by the field theory of Eq. (5.13). There are two distinct
oblique phases—the (N, p) phase and the (N,p + 1) phase. There are also intermediate phases in which
either the Zg\?) or Zg\l,) is broken while the other is preserved. The field ( is a bound state of a Zx spin and
a charge p monopole, and 5 is a composite of a Zy spin and a charge p + 1 monopole.

8
5.3 Transitions involving different oblique phases

Another interesting example arises from acting with ST?ST ! on Eq. (5.5). The resulting

field theory action is

S = Sspin [Ca d,u] + gspin [éa 6}1]
iN ~ o~ ~
+ @Ac—aAb+aAb+bAc+pbAc+bAA+aAB>,
T

(5.11)

where ¢ and C~ are dynamical complex scalar fields, the fields ¢,, a,, and ¢, are dynamical
Zy one-form gauge fields, the fields b, and Buu are dynamical Zy two-form gauge fields, A,
is a background Zy one-form gauge field, and B, is a background Zy two-form gauge field.

We recognize that ZN)W and b, are Lagrange multipliers for the respective constraints,
Cy=a,—c a, = —pc— A (5.12)
Using these constraints and taking ¢ — ¢* and ¢ — ¢*, we can simplify the action to

- N
S = SepinlC;peu + ALl + Sepin[G; (P + 1)y + Ay + ZQ—W /c A B. (5.13)

The STPST ! transformation turns ¢ into a composite operator of a Zy spin and a charge
p monopole. The field ¢ is now a bound state of a Zy spin and a charge p+ 1 monopole. To
form a gauge invariant operator, each of these fields must be attached to a line operator of
¢y, which represents a Dirac string of magnetic flux.

The analysis of which phases and transitions are captured by Eq. (5.13) is similar to that

of Sections 5.1 and 5.2, so we will summarize the results briefly. If ¢ condenses and ¢ does
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not, then by the same reasoning as in Section 5.2, the (N, p) oblique phase results. Similarly,
if ¢ condenses and ¢ does not, then we obtain the (N,p+ 1) oblique phase. If both ¢ and ¢
are uncondensed, then a deconfined gauge field ¢, remains, resulting in Zy topological order
with the ZS\P global symmetry fully broken at low energies. If both ¢ and C~ condense, then
one of these fields Higgses c,, and the other gives Zg\?) symmetry breaking. These phases

and transitions are summarized in Figure 5

6 Gapped boundary states

6.1 SPT boundaries: General considerations

Given that an oblique phase has SPT order and topological order, it is natural to consider
possible boundary states. To make the analysis simpler, we first consider the case in which
the bulk has no symmetry breaking or topological order but has only SPT order. Specifically,
we consider boundary states for the SPT in Eq. (2.34). Then, we will make the background
fields for the classical SPT action dynamical, which will turn the bulk into an oblique phase,

and we will accordingly obtain possible boundary states for that phase.

The precise bulk action we consider on the (2+1)d spacetime manifold X is

N N
S=" B/\dgp+—/A/\da+Z p/A/\B, 6.1)
27'(' 27T X

where ¢ is a dynamical 27 periodic scalar, a,, is a dynamical U(1) one-form gauge field, A,
is a background U(1) one-form gauge field, and B,, is a background U(1) two-form gauge
field. If we integrate out ¢ and a,, these fields constrain A, and B, respectively, to be Zy
gauge fields, leading to the response of Eq. (2.34). Boundary theories consistent with the
SPT order must clearly have Zy zero-form and one-form symmetries with a mixed anomaly
between them, but we need to determine more precisely what this anomaly should be using
the SPT action.

If we have a boundary 0.X, then the surface operator that acts with the Zg\?) symmetry
in the (2+1)d bulk can end on 90X at a line. We denote this symmetry operator by Uy(%,T")
where ¥ is a surface in the bulk, and I' = 0¥ is on the boundary 0X. Similarly, the line
operator Uy (v, P) that acts with the Zg\l,) symmetry in the bulk can end at a point P on 0.X,
which we take to be not along I'. Suppose we compute a correlation function for Uy(%, I") and
Ui(v,P). As depicted in Figure 6, consider deforming -, which has endpoint P, to another
curve " with endpoint P’ by crossing the endpoint through I'. Using our interpretation of

the SPT response in Section 4, we know that U(vy,P) must carry charge p under the Zg;)
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47

Figure 6: Illustration of how to detect the anomaly for the SPT protected by Zg\?) X Zg\}) global symmetry

when the SPT is on a manifold X with a boundary 0X. The operator Uy(%,T") that acts with the Zgg)

symmetry is supported on a surface X in the bulk and ends at the line I' on 9.X. The Z%) symmetry operator

Ui (7, P) is supported on a line ~ in the bulk that ends at a point P on 8X. If we deform (v, P) — (v, P’)
using the dashed path on X, we obtain a phase difference in correlation functions (see Eq. (6.2)).

symmetry. Correlation functions of the symmetry operators change as
(Uo(B, D) Ui(y/, P)) = 2PN (Ug(Z,T) Ui (7, P)) (6.2)

picking up a phase factor. This expression establishes the anomaly of the bulk when a

boundary is introduced.

We can cancel this anomaly by introducing a boundary theory with local operators V(P)
that act with a ZS\}) symmetry and line operators W(T") that act with a ng) symmetry. Upon

canonically quantizing the boundary theory, if these operators obey
VW = me/Nywy PN Wl — (6.3)

then we can dress Uy (X%, T") with W(I') and dgcorate Uo (7, P) with V(P). For these dressed
operators, the anomalous phase factors of Egs. (6.2) and (6.3) will cancel one another so
that the dressed operators are fully topological. Eq. (6.3) is the precise characterization of
the mixed 't Hooft anomaly for the boundary theory. This boundary anomaly is similar to
the anomaly that arises at the (2+1)d boundary of a (3+1)d Zx one-form SPT [72]. As we
will see in some examples, if the boundary state is gapped, the anomaly of Eq. (6.3) implies

that the Zgg) symmetry is spontaneously broken along 0.X.
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6.2 SPT boundaries: Examples
6.2.1 Zg\?) X ZES) symmetry

Now that we have developed general criteria for SPT boundaries, we shall construct some
concrete examples of boundary theories. If X is a closed manifold, then the SPT action,

Eq. (6.1), is invariant mod 27i under gauge transformations,
A — A+ dE, B — B+ d), = p—p§E&, a—a+dy—pA, (6.4)

where £ and x are 27 periodic scalars and A, is a U(1) one-form gauge field. However, if X
has a boundary, then the action changes by a boundary term,

N

N 27 90X

AS (N + Eda— pEd)) . (6.5)

To cancel this anomaly from the bulk, we must add extra degrees of freedom on 9X. A

suitable boundary action to cancel the anomaly is

Sox[A, B] = % N (~pads+add+ads+ B(&— )~ A(a—a)) + S, 4;C, B),
(6.6)
So[®@, A; C, B] = %/M [(NB—dC)¢+ (NA—dd)al, (6.7)

where we have left the wedge products implicit for brevity. The fields ¢, ¢, and ¢ are
dynamical 27 periodic scalars while o, @&,, and &, are dynamical U(1) one-form gauge
fields. The fields ¢, ¢, a,, &, and @, all live soley on the boundary 0X. Here, ® is a
background 27 periodic scalar, and C), is a background U(1) one-form gauge field. The
term Sy ensures that A = d®/N and B = dC/N are one-form and two-form Zy gauge
fields respectively (see Appendix A). These boundary degrees of freedom transform under

the gauge symmetry of Eq. (6.4) as

o= a— )\ b— d—¢, ®— ¢ —pé, & —a—p, a—a—dy, (68)
C — C+ N, d — 4+ NE,

and ¢ is invariant. We can simplify this boundary state by integrating by parts in the bulk
so that the bulk SPT is

N N N
SSPT[A,B]:M/A/\B—Z—/go/\dB—i—Z—/a/\dA. (6.9)
2 Jx 27 Jx 2r Jx
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The boundary action then simplifies to

N ) )
Shary| A, B] = ZQ—W " (—pad¢+ adp+adp+Bé— A&) 4 S[®,A:C, Bl (6.10)

We are now ready to analyze the physics of this state.

We begin with the symmetries of the state, Eq. (6.10), in terms of our criteria from

Section 6.1. This analysis is simpler if we define a gauge field a, as as

a=a-—pao. (6.11)
Then the boundary action is
N ) )
Shars[A, B] = ;_W (a dé+ads+Bé—Aa +pa)> + So[®, A; C, B]. (6.12)
0X

The boundary theory decouples into two independent copies of (1+1)d BF theory at level
N. While the bulk theory, Eq. (6.1), has global symmetry G = Zg\?) X Zg\l,), the boundary
theory has a global symmetry of Gyary = G X G. The two Zg\?) symmetries act as

2m - - 2
— - — - 6.13
R (6.13)
and the two Z%) symmetries act as
Oé—)Oé—l-%, EL—>EL+%, (6.14)

where 7 and 7] are flat connections, dn = dij = 0, that satisfy § 7 € 27Z and § 7} € 27Z. The
boundary theory, Eq. (6.12), has local operators,

Vy(P)=eP) Vy(P) =P, (6.15)

and loop operators,

Wa(T) = exp (2 ]{ a) . WD) = exp (z f[} a) , (6.16)

that realize two copies of the Zy clock and shift algebra,

ViWe =W Vs VW =N W,V (6.17)
N
(Vo) = (v5)" = W)™ = (W)™ =1,

which can be interpreted to mean that the zero-form symmetry Zg\?) X Zg\?) C Ghary 18

spontaneously broken on 0.X.
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To see that this boundary state has the correct anomaly structure, Eq. (6.3), if we define

the loop operator,

Wa(T) = exp (z ]{ a) = Wi(D)Wa(D)P, (6.18)

then we observe that the symmetry operators for the subgroup G' = ZS\?) X Zg\l,) CGxG
probed by the background fields, A, and B, are V = V; and W = (Wd)fl, which indeed
obey Eq. (6.3), signaling the 't Hooft anomaly for the symmetries of the boundary state.

6.2.2 258; symmetry

Another possible boundary state for the SPT bulk, Eq. (6.9), is given by (141)d BF theory
at level Np,

~ 1Np

SoarslA, B] = P / (add+ Bé— Aa)+ Sol®, A;C, B, (6.19)

2 Jox

where ¢ is a dynamical 27 periodic scalar, «,, and is a dynamical U(1) one-form gauge field,
both of which are defined only on the boundary 0X. The term S is the same as defined in
Eq. (6.7). This boundary state is distinct from Eq. (6.10), but we have reused notation for
¢ and «a, in Eq. (6.19) since the gauge symmetry transformations act on these fields in the
same way as in Eq. (6.8).

Next, we analyze the symmetries of Eq. (6.19) and compare with our general requirements
for boundary theories established in Section 6.1. This (1+1)d BF theory has symmetry
ébdry = Zg?; X Zg\l,;, which certainly contains G' = ZE\?) X Zs\l,) as a subgroup. The local
operators,

Vy(P) = ), (6.20)

W (I') = exp (z?{a) : (6.21)

obey the Zn, clock and shift algebra,

and the line operators,

Vy W, = ™ INP Y, Wy, (6.22)

signaling the spontaneous breaking of the full 253; symmetry. The symmetry operators for
the Zg\?) X Zg\l,) subgroup of ébdry that couples to the background fields, A, and B,,, are
V = (Vy)” and W = (W,) ", which indeed satisfy Eq. (6.3).
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6.3 Boundary states for oblique phases

Now that we have established general criteria for boundary states of G = ZE\(;) X Zgl,) SPTs
and provided some examples of them, we can easily develop boundary states of oblique
phases, which have a bulk effective field theory of Eq. (2.37). We simply need to gauge the
G symmetry, making the background fields that probe this symmetry dynamical. We will
take this approach for both SPT boundary states introduced in Section 6.2.

6.3.1 FElectric boundary condition

We begin with the gauged descendent of the boundary state in Section 6.2.1, replacing A,, and
B,, in Eq. (6.10) by dynamical U(1) gauge fields, which we denote ¢, and b, respectively.
Correspondingly, we replace ® and ), with dynamical fields ¢ and ¢,. The action at the
boundary 90X is now
Selec = % (—pad¢+ adp+adp+bo— c@) + So[p, ¢; €, b], (6.23)
X

where Sy is the same as in Eq. (6.7) except that the all the fields in this term are now
dynamical. While the SPT boundary, Eq. (6.10) has global symmetry G x G, where G =
ZS\?) X Zg\l,), we have now gauged G, leaving a symmetry of (G x G)/G ~ G. We refer to this
state as the electric boundary condition since the G symmetry of the state includes the Zg\l,)
electric symmetry and the Zg\?) symmetry of the bulk oblique state.

To determine the physics of this state, we must identify the gauge invariant operators
under the gauge transformations in Eqs. (3.7) and (6.8) (with the background fields replaced

by their corresponding dynamical fields). A gauge invariant local operator is

eiNd)(P)-l—igB(’P), (624)

where P is a point. However, this operator is rendered trivial by the equation of motion for

exp (z'N/qga +i]£é> : (6.25)

which is defined on a loop T, is also trivial by the equation of motion for ¢. In gauging the

&,. Similarly, the operator

G C G x G symmetry of Eq. (6.10), we have now projected out several operators.

The nontrivial gauge invariant operators are
‘N/('P) _ eifl~5(7>)—ip¢(7’)7 W(F) = exp (@ % a — ip% Oé) , (626)
r r
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where P is a point on 0X and I' is a loop on dX. These operators realize the symmetry G
projectively,
VW =¢2Nwy, (V)N =W)N =1 (6.27)

Note that (V)N/£ and (W)L commute with all other boundary operators. We recall from

Section 3 that the ZES) X ZS\}) symmetry is broken in the bulk to the subgroup Zg\?} . X ZE\I,; Iz

where L = ged(NV, p). The operators (V)% and (W)N/- correspond to operators of the bulk.
If we mod out by these bulk operators, Eq. (6.27) implies that the remaining ZS\O,} ;, global
symmetry is spontaneously broken at the boundary. The Zs\lf} ; symmetry is still preserved

at the boundary 0X since this symmetry cannot be spontaneously broken in (1+1)d.

6.3.2 Magnetic boundary condition

We now apply a similar analysis to the SPT boundary state discussion in Section 6.2.2. We
make the background fields of this state dynamical. The resulting boundary state for the
oblique phase is

tNp

2 /aX (dd +bd —ca) + So[p, ¢ ¢,b], (6.28)

Smag =

where ¢ is a dynamical 27 periodic scalar, ¢, and ¢, are dynamical U(1) one-form gauge
fields, and b, is a dynamical U(1) two-form gauge field. The rest of the fields are the same
as in Section 6.2.2, and Sy is the same as in Eq. (6.7) but with dynamical fields.

Recall that the original global symmetry of the SPT state, Eq. (6.19), was Zg\% X Zg&;.
Now that we have gauged the ZE\?) X Zg\l,) symmetry, the symmetry group of the resulting
state, Eq. (6.28) is Z;O) X Zé,l) . Since this boundary state does not contain the symmetry
Z(O) > Z(l)

N/L N/L
order for this symmetry discussed in Section 4. Nonetheless, it is a valid boundary state of

as a subgroup, it is not a boundary condition that is consistent with the SPT

the effective field theory, Eq. (2.37), for this bulk oblique phase, so a natural question is how

) symmetry. In our microscopic lattice

to understand the physical meaning of the Z;O) X Zg
model, Eq. (2.1), we have condensed charge N spin sources and charge N electric matter
so that we are working with Zy variables. Within the (N, p) oblique phase, the charge N
spins become bound states with charge p magnetic monopoles, and the charge N electric
matter bound to vortices of vorticity p condense. The same physics can arise from first
condensing the charge p magnetic variables and then forming bound state with charge N
electric variables. In this case, there is a ZZ(?U) X Z,(}) that is broken to Z;(;(})L X ZS/)L in the bulk
oblique phase. The boundary state, Eq. (6.28), preserves this ZI(,O) X ij) symmetry, so we

refer to this boundary state as the magnetic boundary conditon.
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We now examine the physics of this state by determining the gauge invariant operators.
Like in Section 6.3.1, some of the operators of the theory in Section 6.2.2 are now projected

out. These trivialized operators are

el #(P)=wd(P) exp (ij{a — ip% a) , (6.29)
r r

where P is a point and I' is a loop, and we recall that ¢ and a, are fields from the bulk
oblique phase, Eq. (2.37). The nontrivial genuine local operators and loop operators are

respectively,

V(P) = ¢ #PIHN(P) W(r) = exp <i7{5¢ + z’Nfa) : (6.30)
T r

These boundary operators obey

~ —~

VW = NRY, (VP = (W = 1, (6.31)

which implies that the Z,(DO) magnetic global symmetry is spontaneously broken. Similar to
our analysis in Section 6.3.1, if we mod out by the bulk operators, we find that a ZS})L

symmetry is spontaneously broken at the boundary.

7 Oblique phases: Hamiltonian lattice model

Having discussed both the bulk and boundary physics of an oblique phase, to provide a
complementary perspective, we develop a class of Hamiltonian lattice models whose ground
states are oblique phases. We will then reiterate some of the previously discussed physics in
Sections 3 and 6 but now using the Hamiltonian formalism. We work on a two-dimensional
square lattice with sites r. Each link ¢ of the lattice is labeled by a site r and a spatial
direction j € {x,y}. We place Zy gauge field operators, 77(r) and 77(r), on links. These
unitary operators obey

2N = 7)Y =1, 2y mh(r’) = W= T (r') T2 (r), (7.1)

where w = e*™/N and §(¢ — ¢') = §(r — ') 5(j — j') is the Kronecker delta for links. We
additionally introduce Zy matter operators o*(R) and o*(R) on sites R of the dual lattice
(at the centers of plaquettes of the direct lattice). Similarly, these operators are unitary and

satisfy
(RN =[*(R)V =1, o*(R)o"(R) =" 0" (R) o*(R), (7.2)
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Figure 7: Depictions of (7a) the plaquette operator Bp, (7b) the dual link operator A;, and (7c) the gauge
charge operator Q(r). The darker lines indicate links of the lattice while the lighter lines are lgiﬁnks of the
dual lattice. T

T
()
where 0(R — R') is the Kronecker delta for two dual sites R, R'.
Before presenting the Hamiltonian, it is useful to define the following operzci%grg, which

are also shown pictorially in Figure 7. For a plaquette P with a lower left corner at lattice

site r, the plaquette operator Bp is defined as B
P

Bp =71;(r)7;(r +e.) 7, (1 + ey)T T;(T’)T [0%(r + (es +€4)/2)]7, 7 (7.3)

where p € Z. Next, for a dual link ¢ oriented in the positive e; direction (Where(éi.ﬁ Hx,y}),
the dual link operator A; is

4 = 0*(R) 0*(R — e,)! [Ti (R — (ex +e,)/2)]P for e; = ey, (Ux)p (7.4)
0*(R)o*(R—e,))T [T2(R — (e, +¢,)/2)]P for e; = e,.

Here, R is defined as the rightmost endpoint of the dual link if { is oriented in the positive
z-direction, and R is the uppermost end point of the dual link if £ is oriented in the positive

y-direction. Finally, we define the Zy gauge charge operator Q(r) at a lattice site r as
Q(r) =77 (r) 5 (r — ex) 1y (r) 75 (r — e,)". (7.5)
Using these operators, we are now prepared to describe the Hamiltonian.
The Hamiltonian whose ground state realizes an oblique phase is

H==3"(Bp+Bh) =Y (4;:+47). (7.6)

4

A Hamiltonian of this type was first studied in the (N,p) = (2,1) case on the triangular
lattice by Yoshida [37]. In that example, the ground state is a Zéo) X Zgl) SPT. Here, we will
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analyze this Hamiltonian for generic (IV,p) on the square lattice. This Hamiltonian is also
a natural generalization of similar models in (14-1)d [73, 74].
Since we are working with a gauge theory, the gauge charge Q(r) and the Hamiltonian

H commute,
[H,Q(r)] = 0. (7.7)
Any state |¥) in the physical Hilbert space is constrained to obey Gauss’s law,

Q(r) V) = |¥), (7.8)

for every site r on the lattice.

The Hamiltonian also has two global symmetries—a Zg\(;) zero-form symmetry and a Z%)
one-form symmetry. The respective symmetry operators that commute with the Hamiltonian
are

U=][e"®). 1@)= [] =) (7.9)

R (r,j)el
The ZE\(;) symmetry operator U is a product over all sites R on the dual lattice, and the
Zg\l,) symmetry operator, an 't Hooft loop T(f), is a product over all links intersecting a
noncontractible loop [ on the dual lattice. These operators are the lattice analogues of the
symmetry operators, Eq. (3.12), of the field theory in Section 3. The order parameter for

the ZES) symmetry is 0*(R) since it transforms nontrivially under this symmetry,
U 'o*(R)U = wo*(R). (7.10)
Likewise, the Wilson loop operator W(I'),
wm = [ =), (7.11)
(r,j)er

for a noncontractible loop T', is the operator that transforms nontrivially under the one-form

symmetry,

T(D)"' W) T(T) = wW(I), (7.12)

where T' and T' are noncontractible loops that intersect once. The lattice Hamiltonian,
Eq. (7.6), indeed has the global symmetry G = Zg\?) X Zg\}).
Next, we determine the fate of this global symmetry G at low energies. Each term of the

Hamiltonian, Eq. (7.6), commutes with every other term, so a ground state |¢)y) must satisfy

Q(r) [to) = Bp [tho) = B} [vho) = Azlth) = A} |1bo) = [tbo) (7.13)
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for all sites r, dual links ¢, and plaquettes P. From these conditions, we can demonstrate
that the global symmetry G is broken to the subgroup Zg\?} L XL ]\1,} ;» where L = ged(N, p), at
low energies. To determine whether the Zs\?) symmetry is spontaneously broken, we examine
the two-point functions for the order parameter. A subset of these correlation functions can
be expressed as string of (AE)M operators for some integer M. If M is an integer multiple
of N/L, then such a string operator can be related to a product of local operators at the
endpoints of the string. Indeed, because Np/L is a multiple of N, the string connecting the

endpoints is trivial. This statement in mathematical form is

(ol o (R)/ (o (RY) ™" o) = (wiol TT (A" o) = (7.14)

ic
where the product is over all dual links ¢ in a curve 7 in the dual lattice from R’ to R. For
simplicity, we have assumed without loss of generality that R = R' + k, e, + k, e,, where k,
and k, are positive integers. We have also used the constraint in Eq. (7.13) that A; leaves
|tp) invariant for any dual link ¢. This correlation function, Eq. (7.14), is the analogue of
Eq. (3.11) in the field theory of Section 3. Its nonzero expectation value implies long-ranged

order in O'Z(R)N / L so the ZE\?) symmetry is spontaneously broken to ZS\?; X
(1)

We now similarly analyze the Z)’ global symmetry by examining the expectation value
of a contractible Wilson loop,
wy = ] =) [] =" (7.15)
(r,3) €7+ (r,d) €v-
In the above notation, we mean that W(y) is a product over oriented links in a single
contractible loop v = v, U~_. The curve v can be divided into a set of links v, that are
oriented in the +e, or +e, direction and a distinct set of links v_ that point in the —e,
or —e, direction. In our Wilson loop operator W(v), we use 77(r) on every link in v, and
77(r)" on every link in y_. For a ground state [¢)), we have
(ol WM* o) = (Wol TT (Be)™* ltho) = 1, (7.16)
Pex
where the product is over plaquettes P of a surface > bounded by v = 9%. Here, we have
used the constraint in Eq. (7.13) that Bp leaves the ground state invariant for any plaquette
P. This Wilson loop W(fy)N/ L'is an analogue of the genuine loop operator in Eq. (3.10).
Eq. (7.16) implies that the Z(l) symmetry is broken to Zg\l,} , since W(I')M1 is deconfined.

There is another way of demonstrating that the Ay N X Z global symmetry is broken to

ZSV} . X Zg\,} ;- Note that the Hamiltonian, Eq. (7.6), commutes with the unitary operators
(RN, WM, (7.17)
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Ry

g,

Figure 8: Action of the symmetry operators when there is a lattice boundary. The 't Hooft line T(IN“ Ro)E
along r Ro, depicted by the dashed line, ends at a point Ry on the boundary. The symmetry operator U%
for the zero-form symmetry acts on the boundary along the red line, which intersects Ry, resulting in the
projective algebra of Eq. (7.23). We take the boundary Hamiltonian to have link terms A; but not plaquette

terms Bp.

where I is a noncontractible loop and W (T') is defined in Eq. (7.11). The operator o*(R)/*
acts with a Zj two-form symmetry on U, and the Wilson loop W (T')¥ acts with a Zj
one-form symmetry on T(f) The symmetry operators o*(R)Y% and U obey the clock and

shift algebra,
(RN U = 2L 7 o*(R)N/T (7.18)

which implies a ground state degeneracy associated with the symmetry breaking Zg\?) —

(0)
Lyyp- P o
and consider Wilson loops W(I';) and 't Hooft loops T'(I';), where I'; and I'; are oriented

loops on the direct and dual lattices, respectively, in the e; direction (with j € {x,y}). These

To diagnose the one-form symmetry breaking, we place the lattice model on a torus

operators also obey a clock and shift algebra,

- (7.19)

W(I)NMET(T,) = e*™/ET(T,) W(T,)ME,
W(Fy)N/L T(fw) = e/t T(Ty) W(Fy)N/Ly

so we conclude that there is topological order due to one-form symmetry breaking, Zg\l,) —
Z(l)

N/L*
topological order and a factor L is from zero-form symmetry breaking.

The full ground state degeneracy on the torus is then L3, where a factor L? is from

Finally, we diagnose the SPT order for the remaining unbroken subgroup ZES} . X ZS&} I

by introducing a boundary. As illustrated in Figure &, we choose the boundary so that
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the lattice model is in a half-space extending into the —e, direction, and the vacuum is in
the other half-space extending in the +e, direction. We take the boundary Hamiltonian to
have link terms A; but not plaquette terms Bp. The symmetry operators for the unbroken
symmetries are

vt =1 ®" 1O"= [] =" (7.20)

R (r,j)el

We can write kp = L mod N for some integer k because L = ged(N, p). Consider a line fRO,
depicted in Figure 8, that ends on the system boundary at point Ry and extends infinitely
into the bulk. Because A; leaves the ground state invariant for each dual link ¢, for each link

¢ = (r,§) intersecting I'p, we have

72 ()" o) = 77 ()7 [gho) = [o" (R) 0" (R))]* [¥o), (7.21)

where R and R’ are the endpoints of the dual link intersecting ¢. The 't Hooft operator
T(Tg,)* then acts on the ground state i) as

T(T o)™ o) = [0°(Ro)]" ). (7.22)

Therefore, the one-form symmetry operator T(f Ro )Y now has nontrivial commutation rela-

tions with U” at the boundary. We find a projective representation,
T(fI%)L ULW0> = 672m' KL/N UL T(fRo)L |¢0>7 (723>

which implies that there is a mixed 't Hooft anomaly for the unbroken Zg@ L X Zg\l,} ; Sym-
metry, and hence, there is SP'T order for this symmetry. This Zy,;, clock and shift algebra,
Eq. (7.23), implies that the state has Zgg} ;, spontaneous symmetry breaking at the boundary
in addition to the symmetry breaking in the bulk. Hence, the boundary condition is the
analogue of the state studied in Section 6.3.1. To make this connection more direct, we note
that the commutation relations of T'(I'g,)? and UP match those of V and W in Eq. (6.27).

To summarize, the low energy physics of the Hamiltonian, Eq. (7.6), is that of an oblique

phase. There is a Zg\?) X Z%) global symmetry, which is broken in the bulk to a possibly

nontrivial subgroup Zg\?} . X Z%} 1, where L = gcd(N,p). The residual subgroup symmetry
ZE\?} L X ZS\}; ;, has SPT order. This lattice Hamiltonian approach provides a complementary
perspective to our results derived using the lattice partition function and the effective field

theory in previous sections.
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8 SPT boundary criticality

The boundary states we have discussed thus far are all gapped and spontaneously break a
zero-form global symmetry. Because a one-form symmetry cannot be spontaneously broken
in (141)d, a boundary state of a (2+1)d Z(O) X Z ) SPT must either spontancously break the
ZES) symmetry or be gapless. In this section, we will present a gapless boundary state for a
generic ZES) X Zg\l,) SPT. We will then examine symmetry-allowed perturbations that can be
added to this gapless boundary state and lead to a gapped phase when these perturbations
are relevant. In these cases, the gapless phase can be interpreted as a critical point (or

critical line) between distinct gapped boundary states of the SPT.
We consider a generic ZE\,) X Z ) SPT, Eq. (6.9), on an open manifold X. The action
along the boundary 0.X is

K K, _ - 1 2 1
= | — A+ = A+ — (f94+B —_— 2
S /axdx [2 (00 + Ap)? + 2(8#¢+p ) + 13 (/) + Bu) +2(27T>2K (0,9)

«

(8t<;5+At)(819)1 N/ (adé+3¢3—pAa)+SO[<I>,A;C,B],

27
(8.1)

where ¢, é, and ¢ are dynamical 27 periodic scalars, o, is a dynamical U(1) gauge field,
and f,s,a,) = Oyay, — 0y, is the field strength of a,,. We have also introduced the Luttinger
parameters K and K for ¢ and ¢ respectively, and the scalar ¥ is the dual field of ¢. The term
So is the same as defined in Eq. (6.7). Under the gauge symmetry, Eq. (6.4), the boundary
fields of Eq. (8.1) change in the same way as in Eq. (6.8), and the newly introduced field ¢
is invariant. If the boundary fields of Eq. (8.1) transform in this way, then the bulk action,
Eq. (6.9), and the boundary action, Eq. (8.1), are together gauge invariant.

We begin by discussing the global symmetries of the boundary theory, Eq. (8.1). There

is a U(1) momentum zero-form global symmetry, denoted U (1 )m , which acts on ¢ as

¢ — O+ Cm, (8.2)

where ¢, € R is a constant. A U(1) winding zero-form symmetry, denoted U(1 )w), acts on

¥ as
¥ — 9+ cy, (8.3)

(0)

where ¢, € R is a constant. A Z),’ global symmetry acts on b as

q~5—>g5+2§. (8.4)
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Finally, we have a Zg\}) global symmetry,

n
- 8.5
a—>a+N, ( )

where 7 is a flat connection, dn = 0, with quantized cycles § n € 27Z. The one-form
background field A, probes the Zg\e) diagonal subgroup of the U(1)©® x Zg\?) that acts on ¢
and gE as

2m ~ ~  2mp

and the two-form background field B, probes the one-form symmetry of Eq. (8.5).

This boundary theory has a gapped sector and a gapless sector, which can be seen by

integrating out oy, and ¥, giving an effective action of

2 2
Sur = / e lﬁ(aﬂmAﬂ)Q v §<a“<5+p,4u)2 42 (Nea) min <<5+ pe %—Z) ]
0X

2 2

. )
+ 20 [ B+ 8@, A;C, Bl
27'(' 8x

The gauge field induces a mass term for gz~5, as in the massless Schwinger model [75]. In the

extreme IR limit, e2 — oo, we obtain the constraint,

~ pdP 2nz
o+1 =

g 7 .
NN z € Z, (8.8)

After using this constraint, the effective action that remains is

K .

Sup = / 2S00+ A+ / B(2rs — p®) + So[®, A:C. B (8.9)
X 2 21 Jax

If we turn off the background fields, this action represents a single compact boson with

Luttinger parameter K. The boundary theory thus consists of a decoupled compact boson

and a gapped sector with Zg\(;) symmetry breaking. Although these sectors are decoupled

here, because the background field A, couples to both the gapped and gapless sectors, they

will not necessarily be decoupled in gapped phases when we add perturbations.

We now determine the fate of the gapless boundary theory after adding perturbations
that preserve a subgroup of the full global symmetry. For the resulting state to be a valid
boundary state of the Zg\?) X Zﬁ@ SPT, the perturbations must preserve the Zg\?) X Zg\l,)
subgroup probed by the background fields A, and B, . We first focus on the case in which
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only this minimal subgroup is preserved by the additional perturbations. The operator of

the lowest scaling dimension that explicitly breaks the U(1) winding symmetry is
O =—i cos(1), (8.10)

where w is a real coupling constant. This operator has a scaling dimension of A = 7K.
On the other hand, we cannot form any local gauge invariant operators from the dual of ¢
because its corresponding winding symmetry is gauged. The remaining allowed operators

can be composed from ¢ and ¢. These operators take the form

(%@:_MMGEUNQ+p®¢_Q$+Q¢a (8.11)

where ¢,¢ € Z and wy4 is another real coupling constant. The scaling dimension of this
operator is
(Ng+pg)*

From the definition L = ged(N, p), there exist integers r and k such that
Nr+pk =L, (8.13)

and L is the smallest positive integer that can be formed from a linear combination of N
and p with integer coefficients. Thus, in this family of operators, O, ; has the lowest scaling
dimension, which is

L2
T K
However, the choice of » and k is not unique. Indeed, for a given solution of r and k, a
different solution is given by ' = r+p/L and k' = k— N/L. We therefore must add multiple

7k (8.14)

operators of the same scaling dimension as O,.;. If we fix a particular r and k, then the sum

of these operators with the same scaling dimension is
L—1 N\ »
O:—;tjcos {Lgb—(k:—fj)qﬁ—i-(r—i-zj)q)}, (8.15)

where ¢; is a real constant. Because gz~5 is gapped, each operator in this sum is equivalent in
the critical theory, Eq. (8.1), but in order to determine the physics of the gapped phase in
which O is relevant, we must include all of these operators. We need to consider only a finite
number of operators in this sum because the constraint, Eq. (8.8), ensures that the index j

is periodic with period L.
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Figure 9: E’xamples of ZS\?) X Zg\l,) SPT bound.pry transitiohs captured by our gapless sta%?ﬁc?. (8.1),

as a function pf the Luttinger parameter K if different globall symmetries are preserved. In all cases, the

-

gapless phaselis Eq. (8.1), land the phase for K < 2/7 has ZE\C/ symmetry breaking. If the only symmetry
of the gapless theory preserved is the Z(O) X Z( ) symmetry probed by the background fields, then for

= gcdl(\]\c/L > 4, the gapless state is a crltlcal point or line separating gapped phases of Z( ) symmetry
breakmg with different order parameters (9a). If we instead preserve the Z(O) X Z(O) X Zs\}) subgroup (9b) or

b+id
the Z(O) X ZSV) subgroup (9¢) of the’gapless phase, then we obtain if(ff) >Z§? or Z p symmetry breaking

phaﬁda&mcspectlvely at large K. Electric
(€?) #0
Magnetic Magnetic
The operator O is relevant for
0 sSB 2
i S35 K <=, (8.16)
70 x 70 $SB m Zy) x 7y SSB
N N, i
and the operator O is relevant for
L2
K>_— (8.17)
12 87T L2

We thus find that the gapless phﬁge is stable to these perturba%lons that preserve only the

)

mngmal Zgg) X Z( symmetry pr@bed by the background fields A and B, for

\2
8T

8

% <K< 8L7T L= ged(N,p) > 4. (8.18)

For L = 4, the gapless state is a critical point that separates two gapped phases, and for
L > 4, the gapless state represents a critical line.

We now determine the gapped phases that arise when O or O is relevant. When O is

relevant, the local operators that do not commute with e?’ become trivial in the low energy

limi, gapping the field ¢. The refflaining effective action is 10
iN ~ ~
Sesn = 5 <ad¢+3¢—pAa> + So[®, A; C, B, (8.19)
T Jox

indicating that the ZE\?) symmetry that acts on 45 is spontaneously broken.

If O is relevant, the physics is determined by minimizing the potential in Eq. (8.15) for
each j € Z. If we take the background field to be trivial, we must have

Lo— (k — %g) ¢ = 2k;, (8.20)
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where k; € Z. Subtracting these equations for different j, we find that

27TL(]€1 - ko) c 27
N N/L

¢ = Z,  kj=7j(k1— ko) + ko, (8.21)
which is already consistent with the constraint, Eq. (8.8), imposed by the gauge field .
Using that L ¢ — k(ﬁ = 27ky, we can solve for ¢ to obtain

2r (N 27
b= ¥ (fko +k(ky — k:o)> = NZ. (8.22)

From &7 + 2k = 1, we know that ged(N/L, k) = 1, so there always exist choices of kg and
ky that lead to
<€i¢> — 62m‘2/N7 (8.23)

for any Z € Z. We thus conclude that a Zs\?) global symmetry that acts on ¢ is spontaneously

broken in this phase. Note that the expectation value of €% is not independent since
(") = (ei‘;>. (8.24)

This gapped phase therefore has N ground states and represents the spontaneous symmetry
breaking of the Zg\?) subgroup probed by A, (cf. Eq. (8.6)).

To summarize, if we deform the gapless boundary state, Eq. (8.1), by operators that
preserve the Zg\(,)) X Z%) that is probed by the background fields A, and B,, but explicitly
break the other symmetries, then we obtain the phase diagram depicted in Figure 9a. For

L = ged(N, p) > 4, the gapless state is robust to all these deformations for

2 L?

— <K< 3 (8.25)
The gapless phase has enhanced symmetries: an emergent U(1) winding symmetry and an
enhancement of Zg\e) to a U(1) momentum symmetry acting on ¢ and a Zg\?) symmetry acting
on q~5 For K < 2/7, the operator O is relevant, gapping ¢ but leaving the gapped sector
that spontaneously breaks the Zg\?) symmetry acting on ¢. For K > L? /87, the diagonal Zgg)

symmetry acting on ¢ and q~5 is spontaneously broken.

We can access other kinds of boundary phase transitions if we consider only perturbations
that preserve a larger subgroup of the symmetry of the gapless state. Suppose we additionally
preserve the ZE\(;) symmetry that acts on ¢ only (cf. Eq. (8.4)). We can still add the
perturbation 5, which leads to the same Zg\?) symmetry breaking as before. But the operator

composed of ¢ and/or qg with the lowest scaling dimension is now
0170 = —U1p0 COS(N¢ + @), (826)
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which has scaling dimension A; o = N?/47K. When this operator is relevant, the effective
field theory deep within this phase is
N ) .
Sl Bl = 5 [ (addta(ds+ )+ Bé-pAa) + SO ACH, (520
X

™

where @, is a new U(1) one-form gauge field serving as a Lagrange multiplier that strictly
enforces the constraint that O; o imposes energetically. We see that this action is the same as

Eq. (6.12), so the resulting state in this boundary phase is the SPT boundary of Section 6.2.1

that spontaneously breaks ZSS) X Zg\?). For N > 4, the gapless theory separates this ZS\O,) X Zg\?)

symmetry breaking phase from a state that spontaneously breaks Zg\?), as summarized in

Figure 9b.
If we instead preserve the Zg\% symmetry acting on ¢ and gz~5 as
2 ~ ~ 2
— — — — 8.28
OOt POt (8.28)

and the Z%) symmetry, then the operator composed from ¢ and/or ¢ with the lowest scaling
dimension is
Oo,1 = —ug,1 cos(p ¢ — (Z;)J (8.29)
which has scaling dimension Ag; = p?/4n K. When Qo1 is relevant, & becomes pinned to
p ¢, so the effective field theory deep within this phase is
Sbary[A, B] = Np /aX (adp+ Bo — Aa) + S,[®, A; C, B, (8.30)

21

which is the gapped state studied in Section 6.2.2 that spontaneously breaks the 253; sym-
metry. In this case, as depicted in Figure 9c, the gapless theory separates a Zg\?) symmetry
breaking phase from a phase with spontaneously broken Zg\(,); for p > 4.

Finally, one may wonder what happens if we make the background fields of Eq. (8.1)
dynamical so that we obtain a boundary state of the (N,p) oblique phase. This process
results in an orbifolded boundary theory, which is gapless. However, the orbifolding changes
the Luttinger parameter as K — K/N? which modifies the scaling dimension of O to K /N?
while keeping the scaling dimensions of the O, ; operators the same. Thus, there is always

a relevant operator that destabilizes the gapless boundary state.

9 Zpy axion model and non-invertible symmetry

Having now discussed the rich phases realized in our lattice model, Eq. (2.1), in this section

we explore some natural generalizations of this lattice model with more exotic kinds of
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Figure 10: Depiction of the degrees of freedom in the lattice model, Eq. (9.3), on a single cube of the direct
lattice. The Zy gauge field k,(r) is defined on links ﬁ %f the direct lattice, labeled by the blue points. The
7 spin Varilables k(R) are on sites R of the dual Tyattice, which are depicted by red points. The Zy axion
l;;(R) lives oh the green points at the centers of plaquetteskgfrshe direct lattice. The green links connect

nearest neighbors of sites R where the Zy axion is defined.

intertwined symmetries. We previously demonstrated in Section 2.3 that although our lattice
model is invariant under © — O+ 27, this pérfedicity in © is broken by background fields for
the global symmetry G = ZS\?) X Z%). This property is reminiscent of an 't Hooft anomaly,
but it is not the same because O is a coupling constant rather than a dynamical variable. If
we then generalize our lattice model by promoting © to a dynamical matter variable whose
periodicity is now a genuine global symmetry, then this new global symmetry can have a

mixed 't Hooft anomaly with the original G = ng) X Z%) symmetry.

In Section 9.1, we promote © to a matter field that transforms under a new ZS\?) global
symmetry that has a mixed 't Hooft anomaly with G, and we examine some of the conse-
quences. We refer to this model as a Zy axion model in analogy to the U(1) axion that
couples to a theta term in (34+1)d. In Section 9.2, we consider a related lattice model in
which the global symmetry G of the Zy axion model is gauged. Because of the mixed 't
Hooft anomaly, the ZE\?) symmetry associated with the Zy axion is anomalously broken.
However, it can also be viewed as a non-invertible global symmetry, and we demonstrate
that this lattice model has an interesting pliase in which the non-invertible symmetry is
spontaneously broken, which leads to nontrivial fusion rules for domain walls. These domain
walls separate different oblique phases and are directly related to the boundary states we

discussed previously in Section 6.3.1.

9.1 Zpy axion model: Mixed anomalies

Before generalizing our original lattice model, it is helpful to express the original model,

Eq. (2.13), in a form that generalizes more easily. If we sum over the n and n,, then by the
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Poisson summation formula, ¢ and a, in Eq. (2.13) are effectively constrained so that
27k(R) 27k, (1)

ARG it o

where k, k, € Z. The action in Eq. (2.13) then reduces down to

p(R) — (9.1)

1/27\? s 1 /27\° )
SZZ(E) ;(A“k’y—Ayk’H—NS“V—BHV> +§(N_g) ;(Auk—NS“—A“)

i©
+ o E;ew (Auk — Ns,— Ay) (Ayky — Axk, — N,y — Byy) .

(9.2)

Now we are ready to generalize this model. We promote the parameter © to a dynamical

variable. Specifically, we make the replacement © — N (R ), where 0(R) = 2”%73) €27 is

now a dynamical matter field, which call a Zy axion. The Zy axion is defined on sites R

of a new lattice at the centers plaquettes of the direct lattice (see Figure 10). The modified

partition function is

_Skvl’;‘?k ySuy S VvA 7B v
Zaxion[AuaB,uu]: § € : o T H]>

Lk, By, sy, sy }
1 /27 2 2
5= Z ﬁ ; (Auku - Auku - NSW - B“”>

i % <J2\7_7;)2 ; (Ak — Ns, — A,)* — J<Z>COS (2%[/;(73) - /%(R/)])

R,R!
s ~
+ ZR Euon K(R) (Auk — A,) (A ky — Ask, — B,y) .

(9.3)

where J > 0 is a ferromagnetic coupling and the sum over (R, R’) is a sum over nearest
neighbors.

In addition to the G = Zg\e) X Z%) global symmetry of the original lattice model, Eq. (9.3)

has an additional ZSS) global symmetry;,

21

O(R) — 6(R) + N

(9.4)

where (R) = 2nk(R)/N. We refer to this symmetry as (Zg\?))a}don. The full global symmetry
of Eq. (9.3) is then
g = (ZE\?))axion x G. (95)
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As discussed at the beginning of this section, we note that the (Zg\?))axion global symmetry
descends from the periodicity of © ~ ©+ 27 in the original lattice model, Eq. (2.1), which is
the transformation 7. However, as we found in Section 2.3, although © has 27 periodicity
if there are no background fields for G, if we introduce nontrivial background fields, A, and
B,
that depends only on the background fields, Eq. (2.20). In our axion model, Eq. (9.3), this

observation implies that there is a mixed 't Hooft anomaly for (Zg\?))axion and G. Indeed, if we

for the G = Zg\?) X Zgl,) global symmetry, the action will change under 7 by a term

introduce nontrivial background gauge fields for GG, then acting with the (Zﬁ))axion symmetry;,

Eq. (9.4) changes the action by Eq. (2.20), indicating that there is a mixed anomaly.

A consequence of this mixed anomaly is that the model has no trivial phase that preserves
the full symmetry group G. We will not attempt to determine the full phase diagram of the
model, but in the interest of finding more exotic phases not already present in the original
model, Eq. (2.13), we concentrate on the phase that spontaneously breaks (ZES))MOH but

2

preserves (G. Such a phase occurs in the limit in which g2, €2, and J are all large. In this

phase, there are N degenerate ground states, and in each ground state, the order parameter

e(R) acquires a nonzero expectation value,

<€Z9(R)> — 627Tip/N’ (96)

for some integer p € 7Z that labels the distinct ground states. For a given ground state
labeled by p, we obtain the same state of the original lattice model, Eq. (2.13), at © = 27p
and large ¢ and e2. As discussed in Section 2.4, this state is an SPT protected by G with

N N N
SSPT:Q/A/\B—Z—/go/\quLZ—/a/\dA, (9.7)
2w 2w 2

in the notation for continuum fields. Here, ¢ is a dynamical 27 periodic scalar and a,, is a

action,

dynamical U(1) one-form gauge field. Integrating over these two dynamical fields constrains
the background U(1) one-form gauge field A, and background U(1) two-form gauge field
B, to be Zy background gauge fields.

In Appendix .1, we derive that the effective field theory in the continuum for this phase

at large g%, €%, and J is
S:Z—/Q/\ df + -~ ANDB —Z—/ap/\dB—l—Z—/a/\dA, 9.8)
27 2 27 2

where 6§ is a dynamical 27 periodic scalar, (3, is a dynamical U(1) two-form gauge field, and

the other fields are the same as in Eq. (9.7). To see that Eq. (9.8) reproduces the correct

51



physics of this phase, we first turn off the background fields, setting A, = B,» = 0. The
action in Eq. (9.8) then reduces to

1N
Sssp = 5 — /9 Adp, (9.9)

which is the effective field theory for a phase with spontaneously broken (Zﬁ))axion symmetry.
Indeed, integrating out 3, implements the constraint that § = 27p/N for some p € Z, giving

0

e a nonzero expectation value. If we now introduce nontrivial background gauge fields, then

setting 0 = 27p/N for a given p results in the SPT action of Eq. (9.7).

9.2 Gauged model: Non-invertible symmetry breaking

We now consider a generalization of the model in the previous section in which we gauge the
G = Zg\?) X ZE\P symmetry, promoting the background gauge fields that probe this symmetry

into dynamical fields. The partition function for this lattice model is

i
Zaxion [A;m B,uu] - Z Zaxion [Cu; buu] €Xp (_N Z guu)\ (Cu By/\ + b,uu A)\)) ) (910)
{cu,buv} R

where ¢, € Z and b, € Z are locally flat dynamical Zy gauge fields, A, and B, are locally
flat background Zy gauge fields, and Z,yon is defined in Eq. (9.3). We can equivalently think
of Zaxion is the image of Z,on under S as defined in Eq. (2.26).

Turning to the global symmetries of this new model, Eq. (9.10), we note that gauging G in
Eq. (9.3) results in a dual symmetry G = Zg\(,)) X Zg\l,), which is probed by the background fields
A, and By, in Eq. (9.10). Because (Zgg))axion has a mixed anomaly with G in Eq. (9.3), the
(ZSS))axion symmetry is now anomalously broken in the gauged model, Eq. (9.10). However,

as demonstrated in Appendix E.2, although the partition function is not invariant under

27p

6(R) = 0(R)+ =+, pEL (9.11)

it will be invariant if we also act with the transformation S7 S (and give minus signs to
the background fields), where we recall that S and T are defined in Eq. (2.26). Because this
combined operation involves duality S, it is not a conventional symmetry, but it may be
viewed as a non-invertible symmetry. Non-invertible symmetries also arise in (3+1)d axion
models [22, 76, 77].

To be explicit, the non-invertible symmetry is associated with a surface operator (or

defect) that is topological. For example, as shown in Appendix E.2, if we place a defect for
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Figure 11: Depiction of the domain wall for the Zy axion. This domain wall is the non-invertible defect of
Eq. (9.12). The vertical direction is the y-direction, and the plaquettes at the bottoms of the blue pyramids
define the y = 0 plane. The y = 1/2 plane intersects the red points at the peaks of the pyramids. We
have depicted three cubes, but of course, the domain wall extends infinitely in the imaginary time ¢ and x
directions. The domain wall lies on the blue triangles. The axion variables at the ends of the green links

that intersect a blue triangle differ by a (Zg\?))axion transformation.

the non-invertible symmetry along a surface ¥, then the action of the defect is

27p 2P 1
Se=—J Y cos (9(73) —0(R) + T) +5 > e <k Auky = by = ok b,“,)
(R,R")eX {r,R}€X
271 . ~ . 1~
N Z €y (—p(ﬁAuaV+¢Auay+gbAuay+aucy+§¢b,w).
{r,R}€X

(9.12)

To be more concrete, we choose ¥ to be the surface of triangles depicted in Figure 11,
which are just above plaquettes in the plane y = 0 in the direct lattice. In S; the sum over
(R,R') € ¥ means we sum over links connecting axion sites R and R’, where R is below X
(in the plane y = 0) and R’ is above X (in the plane y = 1/2). The gauge fields o, &, € Z
lie along links in the plane y = 0, and the lattice variables qb,gzz € Z are on dual sites in
the plane y = 1/2. The Euclidean spacetime indices are over imaginary time ¢ and the
spatial direction . The first line of Eq. (9.12) indicates that §(R) = 27k(R)/N increases by
2mp/N if 6 crosses from above the domain wall to below it. The meaning of the second line
of Eq. (9.12) is that observables that cross from above to below the domain wall are acted

upon by a ST PS transformation.

This non-invertible symmetry is especially important in the phase that is the gauged
descendant of Eq. (9.8). In Eq. (9.8), because of the mixed anomaly between (Zﬁ))axion and
G, the domain walls for the (Zs\?))axion symmetry separate distinct G SPT states. If we now
gauge G, we obtain the phase at large ¢2, €2, and J in Eq. (9.10). The operator ¢ still
acquires a nonzero expectation value, but a domain wall ¢/ that interpolates between different

expectation values of e’ now separates two distinct oblique phases, which generically have
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topological order, ordinary spontaneous symmetry breaking, and G SPT order. Just as with
the boundary states in Section 6, we must then decorate the domain wall &/ with additional
dynamical degrees of freedom, resulting in nontrivial fusion rules for I. Since e acquires
a nonzero expectation value, this phase may be regarded as having a spontaneously broken
non-invertible symmetry.

We shall proceed to develop these ideas in more detail. The G gauged version of Eq. (9.8)
is

27

where ¢, is a dynamical U(1) one-form gauge field, b,, is a dynamical U(1) two-form gauge

field, and the other fields are the same as defined in Eq. (9.8). This action, Eq. (9.13), is

invariant under the unusual gauge transformation,

N N N N
S—Z—/G/\<dﬁ+—0/\b)—l— gp/\db—i—l—/a/\dc, (9.13)
2m 27 2w

N N
c— c+d¢, b— b+ dA, gp—)go—%Qf, a—>a+dx—%9)\,
(9.14)

~ N N N
B—=F+dN\— —EANbD+ —cANX— —E NN,
2T 2 2

where ¢ is a 27 periodic scalar while A\, and /N\u are U(1) one-form gauge fields. Note that
integrating out [, imposes the constraint that § = 27p/N, where p € Z. For a given value
of p, the action, Eq. (9.13), reduces to the action for the effective field theory of an oblique
phase, Eq. (2.37). In the path integral, we are then summing over all oblique phases for a

given N.

We now turn to the global symmetries of Eq. (9.13), starting with the invertible zero-form

and one-form symmetries. The Zg\?) global symmetry acts as,

2
¢%¢+§, (9.15)

and is associated with the symmetry operator,

U(X) = exp (z 72 b) , (9.16)

where X is a surface. There is also a Zg\l,) global symmetry,

a—>a+£, (9.17)

N
where 7 is a locally flat connection, dn = 0, with quantized fluxes ¢ n € 27Z. The symmetry

operator for the Z%) symmetry is

Wo(T) = exp <z f; c) | (9.18)
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These two global symmetries form the G = 258) X Zg\l,) symmetry of the lattice model,

Eq. (9.10).

The non-invertible symmetry is more subtle. In the effective field theory, Eq. (9.8), for
)

the normal (Zﬁ))axion symmetry breaking phase, the symmetry operator for a (Z§3 )axion

transformation is
U(Z)? = exp <z’p?§ 5) ., pez, (9.19)
b

where ¥ is a closed surface. However, if we now gauge G to obtain the theory, Eq. (9.13),
we now impose gauge transformations, Eq. (9.14). Consequently, U (X) is no longer gauge
invariant. Furthermore, we cannot obtain a gauge invariant operator by simply dressing
[7(2) with 0, ¢, a,, c,, and b,,. Instead, as in Section 6, we must decorate [7(2) with

additional degrees of freedom. The resulting surface operator is

- N - _
U,(3) = /D¢D¢Damexp <ip7{ B+ g—]{ (pad¢ —Gdd—add—bd+ cd)) ,
by T Js
(9.20)
where ¢ and q; are dynamical 27 periodic scalar fields while «, and &, are dynamical U(1)
one-form gauge fields, all of which are defined solely on ¥. The surface operator U,(X) is

the continuum analogue of Eq. (9.12). These fields transform under the gauge symmetry,
Eq. (9.14), as

o — ¢—E, a— o — A, (ZS—)&—pf, a—a—pA, (9.21)

so that the surface operator U,(X) gauge invariant. Note that the (1+1)d field theory we
have introduced along > resembles the boundary state of Section 6.3.1. This resemblance
is not an accident since U, (X) can be regarded as a boundary between two distinct oblique

states.

As demonstrated in Appendix E.3, the fusion rules for U,(X) are
Up, () X Up, (5) = (Z8)" Up, 1, (5), (9.22)

where Zy is the partition function for (1+1)d BF theory at level N, which describes a state

with spontaneously broken ZE[V)) global symmetry along the surface ¥. More explicitly, we

define N
Zy = /'ng'Da exp (—Z—fadqzﬁ) , (9.23)
2 )

where ¢ is a 27 periodic scalar and «,, is a U(1) one-form gauge field. In particular, for

p1 = p and p, = —p, we obtain

U(E) X Up(E) = Up(E) x U, () = (Zn)*Cu () #1 (9.24)
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so that U,(X) is in fact non-invertible. Here, we have defined
~ . 1N T ~ -
Cn(X) = /DgzﬁDngDozDa exp [—Q—f (oz dp +adp+bo — ca)] , (9.25)
T Js

which is a surface defect along which we gauge G = ZE\(;) X Z%). Thus, U(X) and W,.(T),
which are the operators that act with this symmetry, may freely appear from or disappear
into this defect Cy.

We now consider how U,(X) acts on other operators. If ¥ is a closed surface surrounding
the point P, then U, (%) acts on e?P) as

<up<2) eiH(P) . > — 627rip/N <€i9('P) . > ’ (926)

where the - -+ denote other operators that lie outside of ¥.. Hence, U,(X) acts on ¢?(P)

just
as the (Zﬁ))axion symmetry operator U (X)P does in the ungauged theory, Eq. (9.8). Because
e®(P) takes a nonzero expectation value in the phase with effective field theory, Eq. (9.13),

we can regard this phase as having a spontaneously broken non-invertible symmetry.

To better understand the implications of this non-invertible symmetry breaking, we com-
pute the ground state degeneracy on a closed manifold X of genus g;. Recall from Section 3
that the (N, p) oblique state has a ground state degeneracy of L*"*1 where L = ged(N, p).
One factor of L may be attributed to zero-form symmetry breaking, Z§3) — ZS\(,)} - and the
remaining factor L?% is from topological order, or equivalently, discrete one-form symme-
try breaking, ZS\P — Zg\l,; ;- When ¢”(P) acquires an expectation value, all possible (N, p)
oblique states for a given N and different p mod N become degenerate. The full ground
state degeneracy Dgs(X) in this phase is therefore

=

Des(X) = ) [ged(N, p)]" (9.27)

p

I
o

where the sum over p is now a consequence of the non-invertible symmetry breaking.

We can also consider how U,,(X) acts on non-local operators. The other symmetry oper-
ators, U(X) and W,(I'), can disappear into U, (X) so that

(Up(X)We() ) = Up(B)U(E) -+ +) = Up(X) -+ ), (9.28)

where I' is a loop on X and the --- denote other operators not along 3.

The action of U, on the remaining operators, which can be formed using ¢ and a,, are

rather complicated in the general case, so we will consider some simple examples. Suppose
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we have two (2+1)d regions, X, and Xy, in spacetime, and the expectation value of ?(P) is
given by
. 1, P e Xy,
<eze(79)> = ‘ ! (9.29)
B2mp/N7 P c X2’

so that at the interface ¥ between X; and X, there is a domain wall U,(X). The operators,

V(Py) = ). TL(Ty) = exp (@ f{ | a> | (9.30)

can be defined for a point P; and line I'y that both lie in X;. However, if we move these

operators through U,(X), they become

V(P1) = V(P2) exp (z’p L2 c) : Wo(Ty) = Wo(T'y) exp (z’p /22 b) , (9.31)

where 7, is a curve in X, from the point Py € X5 to the surface > and 325 is an open surface
that connects to a loop on X to the loop I's in X5. The local operator is now attached to a
string, and the Wilson loop is attached to a surface unless p = 0 mod N. We can interpret
X, as a region in which local operators of spin charge N and loop operators of electric charge
N are condensed. In region X,, we have the oblique phase (IV,p), so the condensed local
operators here have spin charge N and magnetic charge p, and the condensed loop operators
have electric charge N and vorticity p. Thus, while the Wilson loop is deconfined in X7,
where electric charges are condensed, it is confined in X5 because the local operators that
are condensed have nontrivial magnetic charge. Similarly, the local operator V' picks up a

string because the condensation of vortices in X, makes the Zy spins energetically costly.

To summarize, the (ZES))MOH global symmetry of Eq. (9.3) becomes a non-invertible sym-
metry in Eq. (9.10). At small g but large g? and e?, we obtain phases with a spontaneously
broken non-invertible symmetry, which is signaled by a nonzero expectation value of the

Zx axion operator ()

. For a given expectation value of the axion, we obtain an oblique
phase, which is characterized by ordinary symmetry breaking, topological order, and mixed
SPT order for discrete zero-form and one-form symmetries. The gauged Zy axion model,
Eq. (9.13), indeed provides a rich platform for studying the interplay of different kinds of

generalized global symmetries.

10 Discussion

We have presented in this work a new lattice model that exhibits a rich phase diagram with

various patterns of symmetry breaking and SPT order for Zy zero-form and Zy one-form
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global symmetries. In this model a system with a global (“zero-form”) Zy symmetry (i.e. a
Zy clock model) on a 3d Euclidean lattice is coupled to a Zy gauge theory only through a
topological term, which is similar to a theta term in (3+1)d. In this 3d theory the topological
term is defined as a local coupling on the lattice, which is a vexing problem for the theta
term in (341)d. This local interaction is achieved by placing the gauge fields on links of the
direct lattice and the matter on sites of the dual lattice. The Zy zero-form global symmetry
of the matter field (in the clock model) is not gauged, and it is not charged under the Zy
gauge field. Thus, this model is very different than a conventional theory of a matter and a

gauge field coupled together.

An important feature of our lattice model is that it has duality relations. Using duality
and our knowledge of the model in the limit where the clock model and gauge theory are
decoupled, we can place constraints on the phase diagram and deduce the existence of certain
phases and phase transitions. For example, we can demonstrate that the model naturally
leads to different kinds of oblique phases that generically have ordinary symmetry breaking,
topological order, and SPT order all intertwined together. The oblique phases arise from
the interplay of zero-form and one-form global symmetries by condensing bound states of
the order parameter for one symmetry and the disorder operator for the other symmetry.
The physics of these gapped phases is described by an effective field theory consisting of a
dynamical one-form field coupled to a dynamical two-form field. Using this effective theory,
we have examined response to probes and developed several gapped boundary states for
these oblique phases and their cousins that have only SPT order protected by Zy zero-form
and one-form symmetries. In the SPT case, we developed a gapless boundary state that can
describe a boundary phase transition between distinct gapped boundary states of the same
bulk SPT phase. We have also extended our lattice model to have a non-invertible symmetry
that is intertwined with Zy zero-form and one-form symmetries. This generalized model
includes a phase in which the non-invertible symmetry is spontaneously broken, leading to

domain walls with exotic fusion rules.

We have focused in this work on Abelian generalized symmetries. While higher-form
global symmetries are necessarily Abelian, it should be possible to develop more general
models in which a non-Abelian zero-form symmetry is intertwined with an Abelian higher-
form symmetry. Furthermore, in non-Abelian topological orders, there are non-invertible
loop operators, physically corresponding to worldlines of non-Abelian anyons. Investigating
such models could offer new insights into higher-form non-invertible symmetries and their

interplay with non-Abelian symmetries.

Another promising direction for future work is to explore non-invertible one-form sym-
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metries in related lattice models. The Zy axion model introduced in Section 9.1 has a mixed
anomaly involving two Zy zero-form symmetries and a Zy one-form symmetry. By gauging
the one-form symmetry and one of the zero-form symmetries, we obtained a model with a
non-invertible zero-form symmetry in Section 9.2. We could instead gauge the two zero-form
symmetries to obtain a lattice model with a non-invertible one-form symmetry. This lattice
model will have phases with non-Abelian topological order, which are characterized by a
discrete non-Abelian gauge group [78-81]. It would be interesting to examine these phases

from the generalized symmetries point of view.
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A Review of Zy gauge fields

Here, we review the physics of Zy gauge fields in continuum field theories. (See also Ref. [82,
83].) As stated in Section 2.1, a Zy gauge field must be locally flat in the continuum. Let
us review why, focusing on Zy one-form gauge fields. (The argument for higher-form gauge

fields is analogous.) Consider a Wilson loop Wy(y) for a Zy gauge field A,

Wa(y) = exp (@ f{ A) , (A1)

which is an Nth root of unity. In the continuum, if v is a contractible loop, then we can
consider how Wy(7y) behaves as we continuously shrink « to a point. Under such a process,
we should find that the Wilson loop continuously approaches 1: Wy (y) — 1. But because
Zy is discrete, this kind of behavior can only happen if W(vy) = 1 for any contractible ~.
If we have an Wilson loop along an infinitesimal loop 7. in the pv-plane of area €2, then we
can relate the field strength F),, = 0,4, — 0, A, to this Wilson loop as

Walye) =1+ie? F,, + O("). (A.2)

We then have that F},, = 0 locally—the condition of local flatness for A,. In a lattice gauge
theory, we do not have this restriction because no Wilson loop can be contracted to a loop

smaller than a lattice plaquette.
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We now discuss how to represent these gauge fields in the continuum. As described
above, a Zy one-form gauge field A, and a Zy two-form gauge field B, are locally flat,
so we have dA = dB = 0 locally. But globally, these fields can have nontrivial fluxes over

noncontractible cycles, satisfying

2 2T
Aeily BeZlyz A.
ﬁ € 3L é € 3L (A.3)

where I' is a noncontractible loop and ¥ is a noncontractible surface. We can then represent

A, and B, as

4o ac’
A="_ pB===
N’ N’

where @ is a 27 periodic scalar and C), is a U(1) one-form gauge field.

(A4)

Next, we discuss how to couple a field theory to background Zy gauge fields. Consider
a continuum field theory in a D-dimensional Euclidean spacetime represented by an action
S|¢,a,] that is a local functional of a dynamical scalar field ¢ and a dynamical U(1) gauge
field a,. Suppose this theory has a Zy zero-form global symmetry,

¢ N 627Ti/N¢, (A5)
and a Zy one-form global symmetry,
a—a+ L (A.6)
N Y

where 7) is a locally flat connection, dn = 0, with quantized cycles ¢ n € 27Z. We can probe

these symmetries by coupling to background gauge fields as
Sprobed = S[eiiq)/Ngﬁ? Ap — (CH/N)] + QL /[Oé A (NB - dC) + B N (NA - d(I))]’ (A7)
7

where o, and 3, are dynamical U(1) one-form and two-form gauge fields respectively, ® is
a background 27 periodic scalar, A, and C, are background U (1) one-form gauge fields, and

B, is a background U(1) two-form gauge field. We impose the gauge transformations,

A — A+ dE, o — & + N¢, b — %o, (A.8)
B — B+ d), C—C+dy+ N, a—a-+ A,

where & and y are 2w periodic scalar fields and A, is a U(1) one-form gauge field. The
Lagrange multipliers a and 3 implement the contraints of Eq. A.4, turning A, and B,,, into

Zy one-form and two-form background gauge fields respectively. We thus say that in the
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Figure 12: Depiction of twisted boundary conditions for a one-form global symmetry. The square above
represents the xy-plane, which is a torus, so the opposite sides of the square are identified. We introduce a
nontrivial background field B,,,. If we put a Wilson loop along the noncontractible loop I';(yo) and adjust
4o so that the Wilson loop sweeps around the y-direction once, then the Wilson loop will be acted on by the
one-form global symmetry probed by the two-form background field.

continuum a Zy one-form gauge field is formed by a pair (¢, A,) and a Zy two-form gauge
field is formed by the pair (C,, B,).

Finally, we discuss the physical interpretation of probing the Zy global symmetries of
Eq. (A.7) with background fields. This notion is the same as introducing a defect that
establishes twisted boundary conditions, which we now review. For concreteness, we work

in 2+1 dimensions. Suppose we choose a configuration of A, such that

Wa(T,) = exp (z ]f 1. A) — e2mik/N (A.9)

where k € Z and T, is a noncontractible loop around the z-direction. This background field
configuration for A, introduces a twisted boundary condition for the Zy order parameter

o(t, ,y),
o(t,x+ Ly, y) = 2 *Np(t, ), (A.10)
where L, is the distance of the xz-direction. The symmetry operator in (2+1)d is a surface
operator U(X). The holonomy, Eq. (A.10), can be established by inserting a defect U(3,;)*
along the yt-plane ¥, since U(Z,)* is a domain wall along the y-directon. Thus, the
background field configuration is the same as introducing this defect.
A similar picture exists for the two-form background gauge field B, which may be

less familar. Suppose the zy-plane forms a torus, which we will label ¥X,,. We choose a
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configuration of B, such that

Up(X4y) = exp (z]( B) 2mikIN (A.11)
Yy

where k& € Z. We then place a Wilson loop,

W (T (5)) = exp (z fg . a> | (A12)

along a noncontractible loop I';(yo) in the xy-plane. The loop I';(yo) winds around the
x-direction, and has y-coordinate yy (see Figure 12). The background field configuration,

Eq. (A.11), introduces a twisted boundary condition,
W(Ca(yo + Ly)) = ™ N W (T, (yo)) (A.13)

where L, is the distance along the y-direction. In (2+1)d, the symmetry operator for a
one-form symmetry is a loop operator, T(f), respresenting the wordline of a magnetic flux.
This nontrivial holonomy, Eq. (A.13), for the Wilson loop can also be achieved by inserting
T (ft)k along a noncontracible loop T'; in the time direction. Hence, introducing the two-form
background field is the same as adding a defect of this kind.

B Lattice model duality

Here, we elaborate on the calculation for the duality of Eq. (2.13) to Eq. (2.21), thus estab-
lishing the relation for the S transformation in Eq. (2.26). We also find two other actions
dual to Eq. (2.13). The duality calculation is similar to those in Refs. [7, 53]. We start
from the action in Eq. (2.13) (and leave the flatness constraints of the background fields im-
plicit). First, using the Poisson summation formula, we sum over n,, which simply replaces
a, — 2nk, /N, where k, € Z, so we obtain

1 /2m\> , 1
S=13 (N) ;(Auky — Ak, — Nspy — B)? + 5 ; WA — ZNZ
zN@ 2w
87T2 ( > ZSMV)\WM AV]C)\—A/\]{?V—NSVA—BV)\).
(B.1)
We then dualize the Zy gauge field by making the replacement
Auk, — Ayk, — Nsy — By — Fu (B.2)
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for some new dynamical field F,, € R on the plaquettes. We must then also introduce a
Lagrange multiplier ©,, € R on links of the dual lattice that implements a constraint for the

replacement, Eq. (B.2). The resulting action is

=) T 3 S+ 52 (F) Bt

—iN > n(R)p(R) — 5 Z Eunn (Auky — Ayky — N, — By — Fou) O
r R

(B.3)

Next, we sum over s,,,, which simply replaces 0, — 2mc, /N, where ¢, € Z. We also integrate

out F,,,, which yields

S = Z [%92 (wu[A])2 + % (_Cu - iv_;‘?wu[AD

211 1
— S D e (Auky = Ak, = Bu) e,
r, R

—iN > n(R)p(R)

(B.4)

To make this result more transparent, we can introduce new integer fields k and 5, on dual

sites and dual links respectively with the gauge symmetries,
k—k+x, 8. 8.+8& ot Ax—NE, (B.5)

for x, &, € Z. Indeed, these gauge symmetries ensure that we have not added extra degrees

of freedom since & and 5, can be removed by gauge fixing c,. The resulting action is

2

5= 5 50 8k = N8, - S lA]) —iN SRR + o 3 (4 l4)°

! f ‘ (B.6)

271

1
— W v (/{7# AVC)\ — §B/W C)\> .
r, R

We then replace 27k /N with a real field ¢ € R and introduce nn € Z on dual sites to constrain
D€ %’TZ. We obtain

5= (%)Z (3,00 - gwum]f 5 O A

21

T (s = 3 Bes) —iN S + AR
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where @), [c] is as defined in Eq. (2.22). From Eq. (B.7), we see that our spin-gauge model
is equivalent to two coupled Zy spin models, but the Zy zero-form symmetry of one of the
spin models is gauged, and the associated Zy gauge field is constrained to be locally flat.
The remainder of the calculation entails dualizing ¢ into a gauge field a,. This computation
is analogous to the one above and leads to Eq. (2.21).

Following a similar process, we can also dualize only the matter field ¢ in the original

action, Eq. (2.13), to obtain a model of two coupled gauge theories. The resulting dual

action is
1 (gN 2 - ) 2 1 5 i ~
S = Z (g) zp: (f,uy[b] - %fuu[B]) + 4_62 zp: (f;w[B]) - N;suw\ (Auk - Au) bV)\
—iNZ(nMa“—l—ﬁudu),

l
(B.8)

where f,,[B] and f,,[b] are as defined in Eq. (2.14) and Eq. (2.22) respectively. Here, we
have 7, 5, b, k(R) € Z and a, € R is the gauge field dual to p(R). We have obtained
two coupled Zy gauge theories, but one of the Zg\l,) one-form symmetries is gauged with a
locally flat Zy two-form gauge field so that the global symmetry is G = ZES) X Zg\l,), as in

the original lattice model, Eq. (2.1).

C Coulomb gas and duality

To determine the phase structure of the model, Eq. (2.1), it is useful to integrate out a, and
¢ to obtain an effective action for n,, n, m,, and m. In doing so, we lose some information
about the topological data within each phase, but we can still learn about the phase diagram

and which objects are condensed in each phase. (Here, we turn off the background fields,
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Branch cut

Figure 13: Statistical interaction in the Coulomb gas. The last term in the Coulomb gas action, Eq. (C.1),
is a statistical interaction of spins and vortices. If m,(r) is a straight line along the Euclidean time direction
and n(R) is in the zy-plane, then ®,(r — R) is the angle between the branch cut of m,(r) and the shortest

line from m(r) to n(R).

setting A, = B,y = 0 mod N.) The partition function after integrating out a,, and ¢ is then

Z = Z 5(Aunu) 5(A”mu) e_SCG["’ ”H’auﬂ‘Pfsu’Suu]’
{n,nu,m,my}
2 2 2 2
Sca =~ > mulr) K(r =y mu(r) + =5 > m(R) K(R ~ R)m(R)
ror! R R

0 () + ) ) K =) () + ) (e

r,r!

LoV 3y (n(R) 2 m(R)) K(R- R (n(R’) + % mW))

2 2T
R, R

—iN > m(R) ®,(R—r)n,(r) +iN > _m,(r) ,(r — R)n(R).
R, 7 r, R

Here, K(r) ~ 1/4xr is the lattice Green function for the Laplacian —A? in 3d, and we define
®,(r — R) = 2menu, (u- A) ' AVK(r — R), (C.2)

where wu,, is a unit vector. We refer to the above action Scg as the Coulomb gas action
since the first three lines of Scq represent Coulomb interactions between the loops or local
operators. The terms in the last line of Eq. (C.1) are statistical interactions. For example, if
m,, is a straight line along the Euclidean time direction, then the last term in the Coulomb
gas action is the angle in the zy-plane between the branch cut of the vortex (determined by

the unit vector u,) and the shortest line from m,, to n (See Figure 13).

One useful aspect of the Coulomb gas action is that it makes certain invariances of the

partition function manifest. To make these dualities more explicit, we define the complex
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coupling constant 7 and the coupling ratio k as in Eq. (2.24). In these variables, the Coulomb

gas action takes the form

S = 2 S (1) + 7 (P} ) ) + 7 1)
T S )+ TR KR = R) [o(R) + 7 () €3

—iN > m(R) ®,(R = r)n,(r) +iN > m,(r) @,(r — R)n(R),

where 7 is the complex conjugate of 7. The Coulomb gas partition function is then manifestly

invariant under

1
S: T ——, (ny,my) = (—my,ny), (n,m) — (—m,n), (C.4)
T .
T 41, (ny,my) = (n, —my,my,), (n,m) — (n —m,m),

while keeping k fixed. Invariance under T is simply the 27 periodicity of ©, and S is
the analogue of Kramers-Wannier duality in (14+1)d or electromagnetic duality in (3+1)d.
Together, S and T generate the modular group PSL(2, Z), which is the set of mappings,

at +b

H—
T cr +d’

(C.5)

such that a,b,c,d € Z and ad — bc # 0. These modular transformations are reminiscent of
those derived in Ref. [41].

These transformations, Eq. (C.4), are less precise analogues of & and T in Eq. (2.26)
since they ignore topological properties. However, they are still useful in determining what
objects condense in a given phase. The transformations in Eq. (C.4) imply that the S and
T transformations act on charges of operators as in Eq. (2.28). As discussed in Section 2.3,
these transformations allow us to relate the charges of the condensing objects in one phase

to another.

D Effective field theories at weak coupling

D.1 Zy clock model: Ordered phase

Let us review the effective field theories for the nontrivial phases at © = 0. We begin with
the ordered phase of the Zy clock model. The part of the action in Eq. (2.13) for the spin
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model is

Sepin = # Z(AM — 2ms, — 21 A, /N)? — iNZR:n(R)cp(R). (D.1)

Summing over n(R) effectively constrains p(R) — 2wk(R)/N, where k(R) € Z, so we have
1 /21" . )
Sepin =5 (= | D _(Auk— Ns, — A,)°. (D.2)
2\ Ng ;

The ordered phase arises in the small g? limit. In the strict g> — 0 limit, we obtain the

constraint,

(Ak—A,) € NZ. (D.3)

We can then implement this constraint using a dynamical Lagrange multiplier b,,, € Z, which
is defined on plaquettes of the direct lattice. The effective action introducing the constraint
is .
SSSB = ﬂ Z Epv b,ul/ (A/\l:; - AA) (D4>
N
r, R
This effective action simply constrains the ZS\?) order parameter to take a nonzero expectation

value.

The corresponding continuum effective field theory for the ordered phase may be read
from Eq. (D.4). The effective theory depends on a dynamical 27 periodic scalar ¢, a dynam-

ical U(1) two-form gauge field b, and a background Zy one-form gauge field A,, which are

uv
related to the variables in Eq. (D.4) by

ok 27b,, 2mA
v b . M A
N ¥ ARG N w

(D.5)

where we have reused some notation because of the natural corresspondence with the lattice

degrees of freedom. The low energy effective field theory is then

N
Sesp = Z—/b/\ (dp — A). (D.6)
2
This effective theory has a Z§8) symmetry,
27
it D.7
Pt (D.7)

which acts nontrivially on a local operator,
V(P) = e#®), (D.8)
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at point P. This symmetry is probed by the background field A,. There are also operators

U() = exp (z 72 b) . (D.9)

If ¥ is a fixed timeslice, then U(X) is interpreted as a symmetry operator for the Zg\?)

defined on surfaces ¥,

symmetry. If we canonically quantize this theory, we obtain the clock and shift algebra,

VU=emNyvy, VN =UN =1. (D.10)

If 3 stretches along the time direction, then U(X) represents a domain wall for the 25\9)

symmetry. The effective field theory, Eq. (D.6), simply signals the spontaneous breaking of
the Zg\?) symmetry. We can also interpret Eq. (D.10) to mean that the local operator V' acts
on the surface operator U with a Zy two-form global symmetry. This two-form symmetry
is emergent and appears deep within the ordered phase where domain walls are suppressed.

The emergence of generalized symmetries within conventional ordered phases is generic [84].

D.2 Zy gauge theory: Deconfined phase

Similarly, we can derive the precise topologogical quantum field theory (TQFT) of the de-
confined phase of the Zy gauge theory by a calculation analogous to what we did above for
the ordered phase of the Zy clock model. Using the same notation as in Eq. (2.13), we start

with the Zy lattice gauge theory,

1 .
Sgange = e Z(Aua,, — Aya, — 278y, — 27B,,/N)* —iN Z Ny, Gy (D.11)
P ¢

By the Poisson summation formula, summing over n, forces the constraint a, — 27k,/N
where k, € Z. In analogy with the calculation in Section D.1, we take the e — 0 limit,
which constrains

Ak, — Ak, — B,, € NZ. (D.12)

Introducing a Lagrange multiplier ¢, € Z for this constraint, we obtain

m
Spr = N ZSMVA Cu (Aykx — Axky — Byy). (D-13)

r R

This action is a lattice regularization of (2+1)d BF theory at level N, encoding the topological
order of the deconfined phase.
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The analogous TQFT depends on two dynamical U(1) one-form gauge fields and a back-

ground Zy two-form gauge field B,,,, which are related to the lattice variables of Eq. (D.13)

ma
by
2rk 2 2w B,
7;\[“ — ay, 7;\?“ — ¢y, WN”’ — B, (D.14)
The TQFT is BF theory,
iN
Spr = g/c/\(da—B). (D.15)
The Zg\l,) symmetry of the lattice gauge theory acts on a, as
N
N L D.16
a a—+ N ( )

where 7 is a locally flat connection, dn = 0, with quantized cycles ¢ n € 2rZ. This symmetry
is broken at low energies, leading to the same topological order as the Zy toric code. For a

loop T in spacetime, we can define the loop operators,

W, () = exp (z ]{ a) . WD) = exp (z ?{ c) , (D.17)

which have correlation functions,
, 271
(Wa(D)We(I7)) = exp N P (T, T) (D.18)

where @y (I°, 1) is the linking number for loops I' and I, The operators W, (I") and W,(I'")
represent the worldlines of two different species of anyons with bosonic self-statistics but

fractional mutual statistics.

D.3 SPT stacking

Here, we explicitly show that the phases of the lattice model, Eq. (2.1) at © = 0 with Zg\?)
symmetry breaking or ZE\}) symmetry breaking (or both) are invariant under a 7 transfor-
mation. Consider the phase that appears at © = 0 in the limit ge — 0. In this phase, the
G = ZS\?) X Zg\l,) symmetry is broken completely. Combining Eq. (D.4) and Eq. (D.13), this
phase is effectively described by the lattice action,

2
S = ngwbﬂym(k A) ngwcu Avky — Asky — Byy). (D.19)

Under a TP transformation, the action is mapped to
i
S = Zew by Ax(k — A,,) Zgw ¢y (Aky — Ask, — B,y) + —Zew,\A By

(D.20)
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Shifting b,,, — b, + p B, leaves us with
S_ WZZ&TW,)\Z)HVA)\(/{? A ZgﬂVACH A ]{Z)\ A)\/{Z B ZWPZFE#V)\/{ZA Bl,)\,

(D.21)
where we did a summation by parts in the last term to move the lattice derivative onto
B,,. Because B, is locally flat, the last term of Eq. (D.21) is an integer multiple of 273
and therefore may be discarded. Hence, in this weak coupling phase, the TP transformation
does not affect any physics. A similar argument also shows that either intermediate phase

in which Zg\(;) or Zg\l,) is broken but not the other is also invariant under 7TP?.

E Axion model calculations

E.1 Axion SPT model: Effective field theory

Here we derive the lattice version of Eq. (9.8), which is the effective field theory of Eq. (9.3)

2

deep within the phase realized at large g%, €%, and J. The g> — oo and e€? — oo limits are

straightforward. The J — oo limit results in the constraint,

[k(R) — k(R')] € NZ (E.1)
for any nearest neighbors R and R’, which implies that the (Zg\?))axion global symmetry
is spontaneously broken. We use a Lagrange multiplier § € Z, which lives on triangles

intersecting links between nearest neighbors of the sites R on which the k(R) live (i.e., 3 is

defined on the blue triangles depicted in Figure 11.) The effective action becomes

LT ~ T ~ ~
Ser = = D Cunk (Auk = 4,) (Aky = Aok, = Boa) = = 3 BIK(R) = K(R)
e ~ o (£.2)
D Eun (=5 0B + 2k, A04))
r, R
Summing by parts, we obtain
Sut = —% Surn Bk = Ak = Bu) Axk + 24, by Ak =k AuBos + 2k, k A, Ay
r, R, R
Z Euv k A Bl/)x + Z Epv <_j AMBV)\ +2 ];u AVA)\>
r,R,R
v ~ ~
~ 3 BIRR) ~ KR
(R7R/>
(E.3)
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Because A, and B, are locally flat and k obeys the constraint, Eq. (E.1), this action

simplifies to

Ser ==y 2 PI(R) — k(R + ZEMM Box
m< R ) (E.4)
TN ;R cun (2 s = j Aﬁw) ’

which is the lattice version of the action in Eq. (9.8). The correspondence between lattice
variables and the fields in Eq. (9.8) is

ok 27r5 o7 ok
T — 0, ﬁwj, W — @, N” — CL#, (E5)
2 A orB,,
7;\7“_)14’“ T2 — B

This derivation corroborates the physical argument in the main text that Eq. (9.8) is the

e?, and J. For the gauged axion

correct field theory to describe the phase at large g2,
model, discussed in Section 9.2, the derivation on the lattice of the field theory, Eq. (9.13),
which describes the phase with non-invertible symmetry breaking is also analogous to the

calculation above.

E.2 Non-invertible symmetry in the lattice model

In this appendix, we demonstrate that the lattice model introduced in Section 9.2 has a
non-invertible symmetry that descends from the (Zg\?))axion global symmetry of the model in
Section 9.1. Similar calculations were completed in Refs. [19, 21]. First, we consider how
the partition function Zaxion transforms under the transformation ST PS, where p € Z.
Although 7 = g + z - is no longer a constant in this model since we promoted © — N0 to

a dynamical var1able, based on Eq. (2.26), we can still define S and T transformations as

T( axlon[A B ])_ axlon[A B ]6_%27',1%6;“/)\*4#31/)\7

S(Zaxion [A/“ B/W] — Z Z.ion [aw blw] e_ﬂﬁi > i S (ap Byuatbyw A)\)’ (E6)
{au, buv}

rather than as actions on 7. We also define a transformation C that simply changes the sign
of the background fields,

C( ax1on[A B D Zaxion[_Aluu_B,uy]' (E7>
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After a CST P8 transformation, the partition function of Eq. (9.10) is mapped to

CST PS(Zaxion[Au, Buw)
= Z Zaxion [CIM b/W] 6_% 2R %M(Cu buatbuy dx+au Burtbuw @ —pEu Bur—Eu Burx—Buv A,\)’ (E8)
icu’buvlau’
buv, Cu, Buv}
where ¢, a,,¢, € Z are locally flat dynamical Zy one-form gauge fields, b#,,,l;w,, BW €7
are locally flat dynamical Zy two-form gauge fields, A, € Z is a locally flat background Zy
one-form gauge field, and B,,, is a locally flat background Zy two-form gauge field.

Summing over 5,“, and a, gives the constraints ¢, = —c, mod N and BW = —by, mod N

respectively. After imposing the constraints, we find

CSTipS(Zaxion [Am B;W]) _ Z Zvion [Cm bul/] ef% > r €A (=P e burten Byatbuw AX) (

E.9)
{cu,buv}

The CST PS8 transformation can then be canceled if we also act on §(R) with

2
O(R) — O(R) + % (E.10)
which was a (Zg\?))axion symmetry transformation in the ungauged theory, Eq. (9.3). Thus,
the combination of the transformation, Eq. (E.10), on #(R) and CST S leaves the theory

invariant.

This combined operation may be regarded as a non-invertible symmetry, and the sym-
metry operator may be constructed using the half-gauging procedure [20]. Let y denote a
coordinate of the direct lattice so that y = 0 defines a plane of plaquettes of the direct
lattice. We divide our spacetime into two regions, y < 0 and y > 0. We use the action for
our gauged axion model, Eq. (9.10), in the region y > 0. For y < 0, we place the same model
but acted on with the non-invertible symmetry. To be precise, we act with CST PS and
take 8(R) — O(R) + 2mp/N for every R on a plaquette of the direct lattice where y < 0. As
established above, the combination of Eq. (E.10) and CST ~PS leaves our model invariant. A
surface defect for the non-invertible symmetry will then be left behind, which intersects all
the links between the axion sites in the plane y = 0 and their nearest neighbors in the plane
y = 1/2 (see Figure 11). In the above calculation, when we performed the CST PS trans-
formation, we left implicit the constraints that the Zy gauge fields are flat. Here, we will
need to keep these constraints explicit since they will be important when there are defects,
but for simplicity, we turn off background fields.
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Let ¥ denote the surface between y = 0 and y = 1/2 where the defect lies (i.e., the blue

surface in Figure 11). For brevity, we define the action,
1/2m\? 2
So=711{ . > (Auky = Ayky = Nsu — b))
P

+ % (]QV—WQ)Q D (Auk = Nsy—c)’=J 3 cos (%[%(R) - /5(73')])

¢ (RR) 2 (E.11)
T ~
+ > fun k(R) (Auk — c) (Avky — Asky, — byy)

r R, R

s ~ -
+ N ZRE,W)\ (—m Aub,,)\ + QmM A,,C)\) ,

where m,m, € Z are integers that enforce the local flatness of b,, and ¢, respectively. The
sum over (R,R’) ¢ 3 means that we include nearest neighbors R and R’ connected by
links that do not intersect X. Let X_ denote the half-space y < 0, where we act with the

non-invertible symmetry. The full action is

21 - ~ 2mp
S=5—J Z cos (N[k:(R) — k(R + T)
(R,R/)EX
v
+ Wp Z v (Auk’ - Cu)(AVkA — AA]{ZV — b,/>\)
- {r,R}eX_ ) ) ) ) (E].2)
+ N Z Euv (du bl/>\ + Cu bzz)\ + d,u Bz/)\ + b,uu éA - péu 61/)\)
{r,R}eX_
0D e (20 Avan + B And + 28 A+ s A6
{r,R}eX_

where qb,gzg € Z are on sites R of the dual lattice, a,, ., oy, &, € Z are on links ¢ of the
direct lattice, and Buw BW € 7 are on plaquettes of the direct lattice. In the second term of
Eq. (E.12) we take R to lie along the plane y = 0 and R’ to lie along the plane y = 1/2.

Summing over b, and a, gives the respective constraints,

& = —(Bud + cu), B = —(Ducv, = Dy, +by). (E.13)
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Using these constraints, we obtain

S=S-J Y ¢ ( (R) - %(R’Hp])

(R,R"eX
17T
+ Wp Z v (Aul{? — C#)(Ayk)\ — A)\k}l, — bl,)\)
{r,R}eX_ (E 14>
iTp '
—_— 8“1,)\ (A#gb + Cu>(A,,CY)\ — A)\Oél, + bl,)\)
{r,R}eX_
i . ~
- Z € <2 (Ao +cu) Avay + (Apa, — Ay, + b)) A)\¢) )
{r,R}eX_

If we sum by parts and take m — m + p (¢ + k) + ¢ at every dual site R for y < 0 and
my, — my,+p (o, +k,)+a, at every link ¢ for y < 0, we arrive at the original lattice action
everywhere except at y = 0 and y = 1/2. We are left with a defect,

[k(R) — k(R') + p] omip 1
Si=-J Y ¢ ( v + = > e B Ak, = cuky = kb

(R,R")ex {r,R}ex
271 ~ N 1 - N
Y (00 + DA+ 008+ 3G pA b+ Gt pa)e ).
{r,R}€X

(E.15)

We then take ¢ — ¢—p ¢ and &, — &, —pa, along the defect, which gives the defect action

of Eq. (9.12). The spacetime indices along the defect are valued in imaginary time ¢ and z.

E.3 Non-invertible symmetry in the field theory

We now explicitly construct the non-invertible symmetry operator, discussed in the context
of the lattice model in the previous section, for the effective field theory, Eq. (9.13), to
show how we can derive the non-invertible symmetry operator U,(3). We again use the
half-gauging method [20]. We divide our spacetime into two regions. For y > 0, we use the
action, Eq. (9.13). For y < 0, we use the same theory but acted on with § — 6+ 27wp/N and
CSTPS. (For simplicity, though, we set background fields to zero.) Our action is then

. ) o
S = Eaxion+z'p/ ﬁ+/ Eaxion+L/ (pcAb+&/\b+cAb+&/\ﬁ+bAé)
y=0 y<0 27 y<0

y>0
.N o ~ ~ ~

+_?'2 (—pé/\5+&/\d0&+b/\d¢+5/\dd+ﬁ/\d¢>7
T

y<0

(E.16)
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where we use the abbreviation,

N N
Loion = — {9 (dﬁ +cA b) —pdb+an dc} , (E.17)
2m 2w

and where ¢ and é are dynamical 27 periodic scalars, the fields a,, ¢,, a,, and &, are
dynamical U(1) one-form gauge fields, and the fields b, and £, are dynamical U(1) two-
form gauge fields. The other fields are the same as defined in Eq. (9.13). Note that the y =0
term and the ¢ A b term arise from the 6 — 6 + 27p/N transformation.

Integrating out BW and a, imposes the respective constraints,
¢=—(do+c), B = —(do+0). (E.18)

Using the constraints to integrate out ¢, and BW, we find

. )
S:/ Laxion+/ Losion + — [—p(c/\da+b/\dq§) —c/\d&—b/\ckb]
y>0 y<0 21 Jy<o

(E.19)
+¢/O {pﬁ—f—%(—pa/\dqb—o?/\dqﬁ—a/\dgg)}.

Integrating by parts, we obtain

N .
S = Eaxion + Eaxion + Z_ [—p (CY Adc — ¢db) —aANdec+ (b dbi|

y>0 y<0 27 y<0

—I—i/ {pﬁ—i—%(—poz/\dgb—dAdqb—aAdq~5+pc/\a—pbgb—i—c/\d—bgz;)}.
y=0

(E.20)

We can perform the shifts ¢ — ¢ +p¢+g§ and a, — a, +pa, + &, for y < 0, which results
same action for y > 0 and y < 0. We are then left with a defect at y = 0,

N _ -
Sdefect:z'/ {pﬁ—f—%(—pa/\dgb—&/\dqﬁ—a/\dgzﬁ—l—pc/\a—pquﬁ—kc/\&—b(bﬂ.
=0
! (E21)

To make this result more transparent, we perform the shifts &, — &, —pa,, and b— d—po.
The action for the defect is then

Sdefect:i/ {pﬁ—l—%(pa/\dgb—&/\chb—a/\d(;—l—c/\&—b(ﬁ)}. (E.22)
y=0
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This defect is the same as U, (X), defined in Eq. (9.20), demonstrating that ¢,(X) is in fact
a topological operator.

We now demonstrate the fusion rules for U, (3). Fusing the operators U, (¥) and U,,(X)

produces

. 1N ~ -
Uy 5t = [ e i )54 e (o dor = dd) +n (adn — d62)
@0y, Bj,0 by T Jx
1N

RS

(-561 dpy — Ao ds — b (d1 + o) + ¢ (G + 072))] ;
(E.23)

where we use the abbreviated notation,

2
/ ) :/jID@D@D%D@, (E.24)
®j,05,05,0; j=1
for the functional integrals. To simplify the result, we perform the change of variables,

¢ = ¢1, §5:€Z~51+§52, G- = Py — ¢1, (%_5:@;2—]92%7
Q

= o1 + o, oa_ = g — Oy, Q= Qig — P2 Qla.

(E.25)

a = Qq,

The fusion rule for the operators then becomes

Uy, ><Z/{p2:/¢(ZB ~exp {’i(pl +P2)]§5+%7§<(?1 +p2)ad¢—adq§—&d¢—bq§+c&)}

1N _—_—
X /¢_,¢‘>,a_,a exp (—%]i (a_ do + oqub_)) .

We then see that result decomposes into U, +,,(X) and two decoupled (1+1)d states with Zg\?)
spontaneous symmetry breaking. We denote the (1+1)d Zg\(,)) symmetry breaking partition

Zy = /¢ exp (—% ozdgb_) : (E.27)

2

(E.26)

function as

We then find that the fusion rules are given by
Up, (2) X Upy(2) = (Z8)° Upy i (2). (E.28)
Specializing to p; = p and py = —p, we find
Uy(E) x Up(2)! = Uy(S) x U,(8) = (Zx) Cx (D) # 1 (E.29)
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so that U,(X) is in fact non-invertible. Here, we have defined
N ) )
CN(E):/ exp [—1—% (adqﬁ—i—&dqﬁ—i—bqﬁ—c&)} , (E.30)
b,,0,6 2m b

which is a surface defect along which we gauge G = ng) X Z%). Indeed, integrating out a,
and ¢ turn ¢ and &, into Zy fields respectively. The fields ¢ and @, are then coupled to b,
and ¢, respectively, so that integrating over gE and &, amounts to summing over all possible

Wilson surfaces for b,

U(S)? = exp (z’q fz b) . qez, (E.31)

and all possible Wilson lines for ¢,,
W,(T)? = exp (zqf c) , j €7, (E.32)
r

where I is a loop along ¥. Recall that Eq. (9.13) has a global symmetry G = Zg\?) X Zg\l,),
and U(X) is the symmetry operator for Zg\?) while W, (I") acts with Zg\l,). Along the defect
Cn(X), we are then summing over all possible symmetry operators for é, which means we
are gauging this symmetry along 3. Thus, U(X) or W.(I") may freely disappear along the
defect Cy(X).
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